
Privacy-Preserving K-means Clustering
with Multiple Data Owners

Jung Hee Cheon, Jinhyuck Jeong, Dohyeong Ki, Jiseung Kim,
Joohee Lee, and Seok Won Lee

Seoul National University, Seoul 08826, South Korea
{jhcheon,wlsyrlekd,wooki7098,tory154,skfro6360,cvpndrv}@snu.ac.kr

Abstract. Recently with the advent of technology, a lot of data are
stored and mined in cloud servers. Since most of the data contain poten-
tial private information, it has become necessary to preserve the privacy
in data mining. In this paper, we propose a protocol for collaboratively
performing the K-means clustering algorithm on the data distributed
among multiple data owners, while protecting the sensitive private data.
We employ two service providers in our scenario, namely a main service
provider and a key manager. Under the assumption that the cryptosys-
tems used in our protocol are secure and that the two service providers
do not collude, we provide a perfect secrecy in the sense that the cluster
centroids and data are not leaked to any party including the two ser-
vice providers. Also, we implement the scenario using recently proposed
leveled homomorphic encryption called HEAAN. With our construction,
the privacy-preserving K-means clustering can be done in less than one
minute while maintaining 80-bit security in a situation with 10,000 data,
8 features and 4 clusters.

Keywords: K-means Clustering, Machine Learning, Privacy-Preserving,
Fully Homomorphic Encryption, HEAAN

1 Introduction

Recently, the development of information and communication technology has
made it possible to integrate a large amount of data that is difficult for an in-
dividual to handle. Thus, delegating information process to agencies that can
manage and treat large data sets has become a natural phenomenon. Conse-
quently, service providers that professionally process large volumes of data have
emerged. Data mining is a major method for data analysis, and one of the fun-
damental techniques of data mining is clustering.

Clustering analysis is one of the most vigorously studied methods in the un-
supervised machine learning field. Among many clustering analysis methods, it
is well-known that K-means clustering is easy to implement, apply and inter-
pret with fast and efficient algorithm in terms of a computational cost. In the
signal processing field from which K-means clustering originated, this algorithm
is used for the task of an image segmentation or a color quantization [1,2]. Fur-
thermore, K-means clustering can be used to find correlations between different

types of cancers [3], myocardial infarction prediction [4], weather prediction [5]
and fraud or abuse detection of medical claims [6]. In many cases, the datasets
are sensitive, so it is necessary to pay particular attention in privacy. For ex-
ample, we can assume a situation that patient data are spread among multiple
hospitals and they should aggregate all data to predict a specific disease or to
obtain meaningful information about diseases. In such case, we have to perform
K-means clustering over multiple data owners while preserving privacy of given
data.

Our Contribution. In this paper, we design and implement a two-server proto-
col for privacy preserving K-means clustering using a fully homomorphic encryp-
tion scheme, recently proposed HEAAN [7]. By using HEAAN, we can encode
the real number data into the message space without adopting any strategies
to inject them into the integer space. Previously this can not be done, because
most of the fully homomorphic encryption schemes support operations over a
fixed integer modulus space only, and it was necessary to encode real data into
integers in the bounded ranges. Hence, especially for a large real data set, any
encoding strategies would easily get failed to fit in, which causes a blow-up of the
parameter sizes. We avoid this hurdle using HEAAN, which results in a fast im-
plementation. We further optimize the implementation using the batching tech-
nique for HEAAN to parallelize the computation in the algorithm and to pack
a number of data into a single ciphertext, and it allows us to gain considerable
efficiency in both time complexity and communication cost. We demonstrate the
full process in detail, especially focusing on how to use HEAAN efficiently. To
curb unnecessary burdens, we also employed the additive homomorphic encryp-
tion, Paillier encryption, when encrypting a weight vector of clusters. Compared
to the result of Rao et al. [8] which takes 337 minutes per iteration for the same
goal when clustering 10000 data with 8 features, our protocol is much faster. It
takes less than one minute per iteration for the same data set and security level.

We also gain the perfect secrecy on the data owner’s perspective assuming
the honest-but-curious (HBC) model. In other words,

– Each data owners can not obtain any information of the data of other data
owners.

– Both service providers can not achieve any information of the data assuming
that the service providers do not collude with each other.

Therefore, not only the raw data itself, but also any of the cluster centroids
and the number of data in each cluster are remained as secret, if the hired
cryptosystems are secure and the service providers do not collude with each
other.

Related Works There have been many researches on collaboratively perform-
ing K-means clustering algorithm in a privacy-preserving way. Earlier studies
are reviewed in a proper manner in a survey paper written by Meskine et al. [9].
The paper classifies the researches into three groups according to the way data
are distributed: researches on vertically partitioned data [10,11], where each data

2

owner has some portion of features of all data, researches on horizontally parti-
tioned data [12,13], where each data owner has some portion of data with full
features, and researches on arbitrarily partitioned data [14,15,16,17], where each
data owner has arbitrary portion of data and features. They all share one thing in
common: multiple data owners cooperatively perform K-means clustering with-
out revealing information of their own data set to each other.

With the advent of cloud services, recent studies [18,19,20] focus more on
an outsourced environment, where service providers are commissioned to collect
a lot of data from data owners who have restricted computational resources
and compute cluster centroids for them. In this scenario, data are assumed to
be horizontally distributed among data owners and the service provider should
not achieve any confidential information from the data while performing the
algorithm.

In general, there are two approaches in Honest but Curious (HBC) model that
consists of service providers and data owners for this problem: one is having a
single service provider [21,22,23], and the other consists of two or more service
providers [18,24,8].

The former one is relatively simple, Xing et al. [23] recently suggested an
algorithm which is secure even if multiple parties collude, but the line of work in
this approach has a drawback in common that the cluster centroids and indices
of clusters to which each data is assigned are revealed to the service provider.

The latter can be considered if one needs to hide all the information from the
service providers. We take this approach with two service providers and intend
to be conservative for any leakage of information in our scenario. Rao et al. [8]
also presented a protocol with two service providers and their goal is the closest
to ours. In their algorithms, they eliminated data owners’ burden in computing
cluster centroids with a satisfactory security level by using Paillier cryptosystem
and a set of privacy-preserving primitives. However, it took quite a lot of time to
run a single iteration in their algorithm: clustering 10,000 10-dimensional data
into 4 clusters took 337 minutes per iteration.

Our Scenario. Our scenario consists of two service providers, called a main
service provider and a key manager, and multiple data owners. For the sake of
simplicity, we denote the main service provider by MSP, the key manager by KM
and i-th data owner by DOi. The KM generates public keys for the homomor-
phic encryption schemes and distributes them to MSP and DOi’s. Multiple data
owners delegate clustering process to the main service provider, and the main
service provider performs computation with encrypted data using homomorphic
properties of cryptosystems. More precisely, KM generates public key of Paillier
encryption, which is an additive homomorphic encryption and HEAAN, which is
a fully homomorphic encryption, and disseminates them to MSP [25], [7]. At the
same time, MSP generate secret keys of symmetric key encryption like AES-128
and deliver them to each data owner DOi. DOi first encrypt their data employ-
ing HEAAN and sends them to a MSP. MSP then calculate encrypted distance
between data and clusters using homomorphic properties of HEAAN and sends

3

Fig. 1: Our Scenario

them back to the DOi. DOi classifies decrypted data by clusters using distance,
and return the number of data contained in each cluster using a Paillier encryp-
tion. With the additive property of Paillier encryption, MSP can obtain how
many data included in each cluster. All participant repeat the protocol until the
number of data contained in each cluster has not changed.

The scenario is based on an Honest but Curious (HBC) model, where each
participant honestly follows instructions that are given. We also assume that the
key manager does not collude with the main service provider.

Moreover, all of the communication between MSP and DOi’s should be en-
crypted with a symmetric key encryption such as AES-128 because KM has
secret key of Paillier encryption and HEAAN. Otherwise, KM can observation
all secret information of DOi’s.

Organization. In Section 2, we introduce some preliminaries related to homo-
morphic encryption schemes and K-means clustering. In Section 3, we present
our new privacy-preserving K-means clustering algorithm using HEAAN and
Paillier cryptosystem with its security analysis. In Section 4, we display our
experimental results and compare it with previous works.

2 Preliminaries

2.1 Additive Homomorphic Encryption

Additive homomorphic encryption (AHE) is a cryptosystem which supports
the additive operation of plaintext without decryption process. Among various
AHEs, we adopt the Paillier cryptosystem proposed first by [?]. Here is a brief
description for algorithms of Paillier system.

– (pkP, skP) ← Paillier.KeyGenP(1λ) : Set n = pq and ` = lcm(p − 1, q − 1)
with two large primes p and q having the same bitsize. Choose en element
g ∈ Z×n2 of order divided by n and compute

µ =

(⌊
(gλ mod n2)− 1

n

⌋)−1
(mod n).

4

Output pkP = (n, g) and skP = (`, µ).

– c ← Paillier.EncpkP(m) : For a message 0 ≤ m < n and a public key pkP =
(n, g), choose a random r ∈ Zn and compute a ciphertext c = gm ·rn mod n2.
Output c.

– m ← Paillier.DecskP(c) : For a ciphertext c and a secret key skpa = (`, µ),
compute

m =

⌊
(cλ mod n2)− 1

n

⌋
· µ (mod n2)

and output m.

2.2 Homomorphic Encryption for Arithmetic of Approximate
Numbers

Homomorphic Encryption (HE) is a cryptographic scheme which aims to enable
homomorphic operations such as additions and multiplications on encrypted
data. After Gentry’s blueprint [26,27], there have been many following works
[28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45], and many applications of
HE also emerged for various usage in medical, genomic, or financial fields of
studies [46,47,48,49,50,51]. Though remarkable improvements in the area of HE
arose and the HE libraries such as HElib [37,52,53] or YASHE [41] show some
good implementation results in their applications [47,51], they only support op-
erations over a fixed integer modulus space so that there are some difficulties
to adapt the real data sets in most cases. In fact, encoding strategy for the real
data affects the real time of the implementations and especially for the huge
data set with much entropy, any hired encoding strategy can cause blow-up for
the parameters and it might be very costly to implement.

Recently, a homomorphic encryption scheme which focus on arithmetic of
approximate numbers, namely HEAAN [7], appeared to mitigate this problem.
Indeed, they suggest a kind of converting technique to turn a HE scheme with
certain hardness assumptions into a HE scheme that carries out approximate
computations efficiently. The main idea of HEAAN is to treat a noise from
the hardness assumption of a scheme as part of error occurred in approximate
computations.

We describe the algorithms in the (leveled) HE scheme HEAAN of depth L
here. Let ΦM ′(x) be an M ′-th cyclotomic polynomial of degree φ(M ′): we will
set φ(M ′) to be a power-of-two and ΦM ′(x) = xM + 1 where φ(M ′) = M . We
also set the parameters M ′, an integer h, an integer P , and a real σ to make the
hard problem RLWEP ·qL,σ with certain secret distribution (the distribution of s)
achieve λ-bit security for targeted λ. Let R = Z[x]/(ΦM ′(X)) and Rq := R/qR.
First, we need to set the sequence of moduli {qi}Li=0 for the ciphetext space in
each depth by letting p, q0 > 0 be fixed integers and qi = pi · q0 for 0 < i ≤ L.
Then, the ciphertext space of level ` is Rkq` for fixed k.

One major difference in HEAAN compared to other HE schemes is that a
plaintext can be an arbitrary complex vector, and it is encoded into the space

5

R. Let S be a subgroup of Z∗M ′ satisfying Z∗M ′/S = {±1}, and H = {z = (zj) ∈
Z∗M ′ : zj = z−j ,∀j ∈ Z∗M ′}. Let σ : Q[X]/ΦM ′(X)) → CN be the canonical
embedding map. Then, the specifications of their algorithms are as follows.

– KeyGen(1λ)→ (pk, sk, evk):
• Sample random a ← RqL , sparse signed binary polynomial s in R of h

non-zero coefficients, and e ∈ RP ·qL of small sizes of which sizes depend
on σ2. Calculate b← −as+ e mod qL, and set the secret key sk ← (1, s)
and the public key pk ← (b, a) ∈ R2

qL .
• Sample random a′ ← RP ·qL and e′ ∈ RP ·qL of small sizes of which sizes

depend on σ2. Calculate b′ ← −a′s+e′+Ps′ mod P · qL, where s′ ← s2.
Set the evaluation key evk ← (b′, a′) ∈ R2

P ·qL .

– Encode(z)→ m: For an (N/2)-dimensional vector z = (zj)j∈S ∈ Z[i]N/2, first
transform z into H using the map ι defined by

ι(z)[j] =

{
zj if j ∈ S
z−j if j /∈ S

,

and compute m = b∆ · ι(z)eσ(R) in H for the scale factor ∆. Return the
polynomial m(X) = σ−1(m) ∈ R.

– Decode(m)→ z: Let m = σ(m(X)) ∈ H and output the corresponding vector
z = ∆−1 · ι−1(m) ∈ CN/2, that is, zi = ∆−1 ·m(δiM) for i ∈ S.

– Encrypt(pk, m)→ c: Sample r ∈ R2 for which coefficients of each component
would be zero with probability 1/2, and ±1 with probability 1/4, respec-
tively, and e0, e1 ← DGqL(σ2). Output c← r · pk + (m+ e0, e1) ∈ R2

qL .

– Decrypt(sk, c = (c0, c1))→ m: Output m← c0 + c1 · s mod q`.

– Add(c1, c2)→ cadd: Output cadd ← c1 + c2 mod q`.

– Mult(c1, c2)→ cmult: Set c1 = (b1, a1) and c2 = (b2, a2). Let (d0, d1, d2) ←
(b1b2, a1b2+a2b1, a1a2) ∈ R3

q`
. Output cmult ← (d0, d1)+b 1P (d2·evk mod Pq`)e

∈ R2
q`

.

– Rescaling`→`′(c)→ c′: For a level ` ciphertext c, output c′ ← b q`′q` ce ∈ R
2
q`′

at level `′.

For more details, we recommend to see [7]. Additionally, we make some notes
on functions in the open library of HEAAN [54] of the version reported on Aug 7,
2017. We will use the following functions in the library for our implementation.

– modEmbedOne : We can convert a ciphertext into a ciphertext in the next
level with this function, e.g. we make [xi,t]2 from [xi,t]1 with this function.

6

– modSwitchOne : This function is used for increasing FHE level by 1 after
multiplying ciphertexts.

– leftRotateByPo2 (= shift Operator) : This function used for shifting cipher-
text slots by 1 to the left.

2.3 K-means Clustering

Given N data x1,x2, · · · ,xN ∈ Rm and the number of clusters K, K-means clus-
tering algorithm clusters data into K clusters based on an Euclidean distance.
It is performed by assigning each data to its nearest cluster and computing
centroids of clusters repeatedly.

Initializing cluster centroids is done by randomly choosing K data from
x1,x2, · · · ,xN . After initialize the centroids µ1, · · · , µK , an iteration which
consists of two steps starts:

(i) Compute ci := arg minj‖xi − µj‖ for each xi.
(ii) Update cluster centroids by setting

µj = (
∑
i∈Aj

xi)/|Aj |,

where Aj = {i|ci = j}.

There are several termination criterion that are widely used. One of them
which we will use is to check each data’s assignment between (i) and (ii) of
every iteration. If a newly computed ci is the same as the former ci for all
i = 1, 2, · · · , N , then the iteration is terminated.

It can be proved that J =
N∑
i=1

‖xi − µci‖2, a cost function that we want

to minimize, decreases in every iteration. While J attains the function’s local
minimum when the algorithm finishes, it cannot be assured that the value is
global minimum. Thus it is recommended to repeat this algorithm multiple times
and choose the clustering result with the minimum value of the cost function.[55]

2.4 Notation

The followings are notations that will be used for the rest of this paper:

3 Privacy-Preserving K-means Clustering with Multiple
Data Owners

In this section, we present an algorithm that clusters data which are horizontally
distributed among multiple data owners. More precisely, our scenario consists
of a main service provider MSP, who is in charge of heavy computations, a key
manager KM, who is in charge of key distributions and decryptions of HEAAN

7

N the number of total data

Ni the number of data of DOi

m the dimension of each data

n the number of data owners

K the number of clusters

M the parameter in HEAAN from

ΦM ′(x) = xM + 1

xi,t t-th data of DOi

µ
(j)
i i-th cluster centroid in j-th iteration

kMSP
i a symmetric key between MSP and DOi

kKMi a symmetric key between KM and DOi

(pkH, skH) a key pair of HEAAN

(pkP, skP) a key pair of Paillier

EncMSP,i(x) x encrypted with a symmetric key kMSP
i

EncKM,i(x) x encrypted with a symmetric key kKMi
H.Enc(x) x encrypted with HEAAN

P.Enc(x) x encrypted with Paillier

and Paillier cryptosystem, and multiple data owners DOi who owns Ni data with
full m feature for i = 1, . . . , n. (Let N = N1 + · · ·+Nn.)

Our algorithm consists of 3 steps;

– In the first step (Setup), symmetric keys are distributed to create secure
channels via a Public key infrastructure, and HEAAN and Paillier cryp-
tosystem are initialized.

– In the second step (Initialization for Iterations), each DOi sends encrypted
data to MSP and MSP initializes cluster centroids.

– In the third step (Iteration), an iteration is started. MSP computes the en-
crypted distances between each data and centroids and returns the distances
to each DOi via KM. Then each DOi compares the distances and construct
weight vectors, which will be explained later, using additive homomorphic
encryption scheme; Paillier. Finally, MSP updates new encrypted cluster
centroids with weight vectors received from DOi. Additionally, a termina-
tion criterion is checked inside Step 3 to decide whether or not to terminate
the iteration phase.1

1 Of course, fully homomorphic encryption makes it possible to operate this third step
without data owner’s help. However, each iteration requires one computation for

8

3.1 Description

Here we give a detailed description for each of three step.

Step 1. Setup

First of all, each DOi exchanges a symmetric key kMSP
i and kKMi with MSP

and KM, respectively. Then KM generates public keys and secret keys of HEAAN
and Paillier cryptosystems. We denote them by (pkH, skH) and (pkP, skP) respec-
tively. After generating keys, KM disseminates two public keys to MSP and all
DOi.

Step 2. Initialization for Iterations

(i) DO Side. Through this process, each DOi will encrypt their data {xi,t}Ni
t=1

with HEAAN at level 1 using batch processing and send it to MSP after encrypt-
ing again with kMSP

i . Considering the trivial embedding of Rm into Rm̃, where
m̃ = 2dlog2me, we consider xi,t as an m̃-dimensional vector. The data owner DOi
encrypts as 2

[xi,t]1 = H.Enc(xi,t ⊗ 1̄) ∀ 1 ≤ i ≤ N, 1 ≤ t ≤ Ni,

where 1̄ = (1, . . . , 1) ∈ RK̃ with K̃ = 2dlog2Ke, and send EncMSP,i ([xi,t]1) to
MSP.

For the initialization of cluster centroids, each DOi also sends s = dK/ne data
which are randomly chosen from its data set to MSP. We temporarily denote
them by [yi,t]1 where 1 ≤ i ≤ n, 1 ≤ t ≤ s. The encryption and communication
process is the same as the above.

(ii) SP Side. MSP decrypts all data received and obtains [xi,t]1 for all 1 ≤ i ≤
n, 1 ≤ t ≤ Ni, and [yi,t]1 for all 1 ≤ i ≤ n, 1 ≤ t ≤ s.

MSP firstly computes

[δi]1 = H.Enc(1̄⊗ ei),

for 1 ≤ i ≤ K where 1̄ = (1, . . . , 1) ∈ Rm̃ and {ei}Ki=0 is the first K elements

of the standard basis of RK̃ . Note that 1̄ ⊗ ei is a vector containing ones from
(m̃(i− 1) + 1)-th component to m̃i-th component and zeros in others.

maximum argument per each data and this computation has homomorphic compar-
isons as a subroutine. Note that homomorphic comparison circuit consumes asymp-
totically log(d) levels of encryption where d is the bit size of input[56]. It means
that it is impractical to operate the third step using a comparison circuit without
decryption.

2 For the convenience, we describe this algorithm with the assumption that one cipher-
text contains one data. We can optimize this if we use one ciphertext for multiple
data which will be explained in the end of this section.

9

Among [yi,t]1 received, MSP randomly chooses K ciphertexts, namely [z1]1,
· · · , [zK]1. Now MSP computes the following:

1. [µ
′

i]1 = [zi]1 × [δi]1, ∀ 1 ≤ i ≤ K,

2. [µ
′

i]2
Increase 1-level←−−−−−−−−−− [µ

′

i]1,

3. [µ(0)]2 =

K∑
i=1

[µ
′

i]2.

In this way, MSP only obtains encrypted data and encrypted initial cluster
centroids. Also, we can guarantee that centroids are well-spread among diverse
data owners by the K random choices. In addition, MSP obtains [xi,t]2 by in-
creasing the level of [xi,t]1 and stores it with [xi,t]1 for further computations.

Step 3. Iteration

Before we start, this step can be summarized as follows:

(i) MSP computes the encrypted distance from each data to centroids, and
adds a random error to it. MSP sends the ciphertext to KM. KM decrypts the
ciphertext, encrypts it with kKMi and sends it to DOi. MSP also encrypts the
error with kMSP

i and sends it to DOi.

(ii) DOi can get distances between its data and centroids in plaintext. DOi
computes the number of its data that are assigned to each cluster. DOi then
encrypts it with pkP and kMSP

i , and sends it to MSP.

(iii) MSP sums those data and gets the number of total data that are assigned
to each cluster, along with another random error. MSP sends the ciphertext to
KM. KM decrypts the ciphertext, encrypts it with kKMi and sends it to DOi. MSP
also encrypts the error with kMSP

i and sends it to DOi.

(iv) DOi computes a weight vector, which will soon be explained, of each data
and encrypts it with pkH and kMSP

i , and sends it to MSP.

(v) MSP performs multiplications between an encrypted data and an encrypted
weight vector of the same index and sums them all up, thereby obtaining new
encrypted centroids.

Throughout this step, we assume that we are in the j-th iteration.

(i) SP Side 1. In the first sub-step, MSP performs the following computations
for each i = 1, · · · , N and t = 1, · · · , Ni:

10

1.
[(

xi,t − µ(j)
)]

2
= [xi,t]2 − [µ(j)]2

2.

[(
xi,t − µ(j)

)2]
2

=
([

xi,t − µ(j)
]
2

)2
3.

[(
xi,t − µ(j)

)2]
3

Increase 1-level←−−−−−−−−−−
[(

xi,t − µ(j)
)2]

2

4.
[
D

(j)
i,t

]
3

=

m∑
s=1

(shift)s
([(

xi,t − µ(j)
)2]

3

)

As a result, one can easily check ((l − 1)m̃ + 1)-th slot of [D
(j)
i,t]3 has an

encrypted data of a squared Euclidean distance between xi,t and µ
(j)
l for l =

1, . . . ,K. Note that only 1-st, (m̃ + 1)-th, · · · , and ((K − 1)m̃ + 1)-th slots are

meaningful in [D
(j)
i,t]3.

MSP generates a random error ri,t for each [D
(j)
i,t]3 and makes [ri,t]3. MSP

then sends [D
(j)
i,t +ri,t]3 to KM and sends EncMSP,i(ri,t) to DOi. After KM sending

EncKM,i(D
(j)
i,t + ri,t) to DOi, DOi can obtain D

(j)
i,t .

(ii) DO Side 1. Now DOi can obtain distances between the t-th data and
cluster centroids and can decide to which cluster the t-th data should be assigned.
We denote the index of the cluster to which DOi’s t-th data is assigned in j-th

iteration by c
(j)
i,t . After DOi figuring out all Ni data’s assignments, DOi creates

a vector

v
(j)
i = (a

(j)
i,1 , · · · , a

(j)
i,K)

where a
(j)
i,t is the number of data which are assigned to the t-th cluster.

Before continuing, a termination criterion is checked here. Each DOi informs

MSP about whether or not c
(j)
i,t is the same as c

(j−1)
i,t for all 1 ≤ t ≤ Ni. Upon

receiving those information, MSP announces the termination of iterations if all

DOi said that their c
(j)
i,t and c

(j−1)
i,t are the same. If not, MSP announces that the

iteration should go on.
To get the value of the cost function, the i-th data owner also computes

J
(j)
i =

Ni∑
t=1

‖xi,t − µ(j)

c
(j)
i,t

‖2,

a sum of squared Euclidean distances between DOi’s data and their closest clus-

ter centroid. Although DOi does not know cluster centroids, J
(j)
i can be com-

puted by finding and adding values from corresponding coordinates of D
(j)
i,t where

t = 1, . . . , Ni. Then DOi encrypts each component of v
(j)
i and J

(j)
i with pkP and

kMSP
i and sends EncMSP,i(P.Enc(a

(j)
i,t)), EncMSP,i(P.Enc(J

(j)
i)) to MSP.

11

(iii) SP Side 2. MSP decrypts all data that each DOi sent in (ii), thereby

obtaining P.Enc(a
(j)
i,t) and P.Enc(J

(j)
i) for all i and t. Using these encrypted data

and the additive homomorphic cryptosystem, MSP computes

1. P.Enc(a
(j)
t) =

n∑
i=1

P.Enc(a
(j)
i,t), 1 ≤ t ≤ K,

2. P.Enc(J (j)) =

n∑
i=1

P.Enc(J
(j)
i).

MSP also generates random errors s1,t (1 ≤ t ≤ K) and s2, and computes

P.Enc(a
(j)
t + s1,t) and P.Enc(J (j) + s2). Similar to (i), KM decrypts them for

DOi and MSP sends EncMSP,i(s1,i) and EncMSP,i(s2) to DOi.

(iv) DO Side 2. Upon receiving data from MSP and KM, each DOi obtains
v = (a1, · · · , aK). It means that among total data, each DOi knows how many
data are assigned to each cluster. As DOi knows the index of the cluster to

which its each data is assigned, DOi can now create a weight vector w
(j)
i,t for all

1 ≤ t ≤ Ni and encrypted with pkH at level 1 with batch processing as follows:

[w
(j)
i,t]1 = H.Enc

(
1

a
c
(j)
i,t

· 1̄⊗ e
c
(j)
i,t

)
,

where 1̄ = (1, . . . , 1) ∈ Rm̃. Each then sends EncMSP,i([w
(j)
i,t]1) to MSP.

(v) SP Side 3. MSP obtains [w
(j)
i,t]1 after decryption. To update encrypted

cluster centroids, MSP computes

1. [µ
′′

i,t]1 = [xi,t]1 × [w
(j)
i,t]1,

2. [µ
′′

i,t]2
Increase 1-level←−−−−−−−−−− [µ

′′

i,t]1,

3. [µ(j+1)]2 =
∑
i,t

[µ
′′

i,t]2.

Here [µ(j+1)]2 contains data of updated cluster centroids encrypted with HEAAN
at level 2. Then MSP goes back to (i) of Step 3 and enter (j + 1)-th iteration
with these updated centroids.

After Step 3 is finished by meeting the termination criterion3, each DOi
obtains ci,t, an index of the cluster to which t-th data is assigned. DOi also
obtains J , the value of the cost function, and can decide whether to run the
whole algorithm again or not.

Finally, Step 3 is summarized in Algorithm 1.

3 It can be easily proved that the algorithm terminates within finite iterations.

12

Algorithm 1 The Iteration to Update Cluster Centroids

Input: {[xi,t]1, [xi,t]2} ∀ i = 1, · · · , n, t = 1, · · · , Ni and [µ(0)]2 of MSP

Output: ci,t ∀ t = 1, · · · , Ni to DOi for i = 1, · · · , n
1: for i = 1 upto n do

2: for t = 1 upto Ni do

3: MSP generates ri,t and computes [D
(j)
i,t]3, [ri,t]3.

4: MSP sends [D
(j)
i,t + ri,t]3 to KM and sends EncMSP,i(ri,t) to DOi.

5: KM sends EncKM,i(D
(j)
i,t + ri,t) to DOi.

6: DOi computes c(j)i,t .
7: end for

8: DOi computes v
(j)
i .

9: end for

10: if c
(j)
i,t = c

(j−1)
i,t ∀ i = 1, · · · , n, t = 1, · · · , Ni then

11: ci,t = c
(j)
i,t ∀ i = 1, · · · , n, t = 1, · · · , Ni

12: goto return.
13: end if

14: for i = 1 upto n do

15: DOi computes J(j)
i , and sends EncMSP,i(P.Enc(J

(j)
i)) to MSP.

16: for t = 1 upto Ni do

17: DOi sends EncMSP,i(P.Enc(a
(j)
i,t)) to MSP.

18: end for

19: end for

20: MSP computes P.Enc(a
(j)
t) and P.Enc(J(j)).

21: for i = 1 upto n do

22: MSP generates s1,t and s2, and sends EncMSP,i(s1,i) and EncMSP,i(s2) to DOi

∀ t = 1, · · · ,K.
23: MSP sends P.Enc(a

(j)
t + s1,t) and P.Enc(J(j) + s2) to KM ∀ t = 1, · · · ,K.

24: KM sends EncKM,i(a
(j)
t + s1,t) and EncKM,i(J

(j) + s2) to DOi ∀ t = 1, · · · ,K.
25: end for

26: for i = 1 upto n do

27: for t = 1 upto Ni do

28: DOi computes [w
(j)
i,t]1 and sends it to MSP.

29: end for

30: end for

31: MSP computes [µ(j+1)]2 and goto 1.
32: return ci,t ∀ t = 1, · · · , Ni to DOi for i = 1, · · · , n.

13

Optimization. Although we stated our algorithm under the setting that one ci-
phertext contains only one data, we can optimize this by packing multiple data
in one ciphertext with batching technique. More precisely, as aforementioned,
each m-dimensional data should be extended into an m̃-dimensional data and
be repeated K̃ times to be encrypted. Therefore, we need m̃K̃ slots to encrypt
one data. Furthermore, because one slot of ciphertext in HEAAN consists of
not only a real part but an imaginary part, we can utilize this that packing
two coordinates of a data vector in one slot is possible. The number of slots

per data now becomes m̃K̃
2 and it is far smaller than M

2 , the number of slots

available per ciphertext. Thus it is possible to pack M/m̃K̃ data in one cipher-
text. Since time elapsed for encryption and decryption scarcely change when
we increase the number of slots in one ciphertext, we can increase efficiency by
packing multiple data in one ciphertext. In section refexperi we will show that
this optimization drastically decreases time consumption of the algorithm with
detailed experimental results.

3.2 Security Analysis

In this paper, we assume that all the participants are honest but curious because
if some malicious participant manipulates data, everyone cannot obtain correct
results. Moreover, the scenario for running the K-means clustering algorithm
while preserving the private information is based on the security of the three
cryptographic systems such as the Fully Homomorphic Encryption (HEAAN),
Additive Homomorphic Encryption (Paillier), and symmetric encryptions in-
volved. In other words, if the three systems are secure against existing attacks,
this scenario is sufficiently secure.

MSP only achieves the encrypted data of DOs with HEAAN. However, since
MSP does not have the secret key of the HEAAN due to the assumption that
MSP does not collude with KM, MSP cannot know the secret information of the
DO only with accessing to ciphertexts from the semantic security of the HEAAN.
Similarly, since each DOi encrypts the data using the HEAAN and symmetric
encryption when sending data to the MSP, so even if KM see the communication
between MSP and DOi, it is impossible that KM obtains additional private in-
formation. Although the attacker colludes with the DO’s, additional information
can not be obtained except for the secret information of the data owners who
conspired since the shared symmetric key between each of the colluded DO and
MSP is different.

Also, in Step 3, when the MSP encrypts the distance [Di,t]3 by injecting
random error and sends it to KM.Therefore, even if KM decrypts the ciphertext,
it cannot get the original message due to the error.

4 Experimental Results

In this section, we analyze running times of our algorithm. We first state our
implementation environment and then explain experimental results of the algo-
rithm.

14

A. Implementation Environment

– The experiments were conducted on a single computer with Intel(R) CORETM

i7-7500 at 2.7GHz and 8GB of memory.
– We checked the running time of computations with various parameter set-

tings of data set, i.e. N , m or K.
– We ignore the time consumption of encryption and decryption with sym-

metric keys since it is too small.
– We used KEGG Metabolic Reaction Network (Undirected) Data Set [57] for

our K-means clustering. The original data set contains 65554 data with 29
attributes. We chose m attributes from the front and randomly selected N
data from the data set for each m and N .

B. Performances

Firstly, we setN = 10, 000, m = 8 and K = 4 as our standard parameters and
analyzed the running time of each part in Step 2 and 3, respectively. The timing
results for each part are presented in Table 1, 2. As targeting 80-bit security,
we set the parameters for HEAAN cryptosystem as M = 13, log2 q = 154 and
log2 p = 48, thereby attaining correctness for the outputs of the whole process
except negligible probabilities, respectively.

Table 1: Timing Results for Each Part in Step 2 with 80-bit security (N =
10, 000, m = 8, K = 4)

Data Encryption Centroid Initialization
Total

DOs DOs MSP

5196 ms 212 ms 458 ms 5866 ms

88.6 % 3.6 % 7.8 % 100 %

Table 2: Timing Results for Each Part in Step 3 with 80-bit security (N =
10, 000, m = 8, K = 4)

SP Side 1 DO Side 1 SP Side 2 DO Side 2 SP Side 3
Total

MSP KM DOs MSP KM DOs MSP

11433 ms 4381 ms 8 ms 8 ms 6 ms 4546 ms 11687 ms 32069 ms

35.7 % 13.7 % ≈ 0 % ≈ 0 % ≈ 0 % 14.2 % 36.4 % 100 %

In Step 2, which is a preparation phase, most of the time is spent on en-
crypting data with HEAAN. But it only needs to be done once so the time

15

consumption is amortizable. In Step 3, the first thing to notice is that the time
consumption of Paillier cryptosystem is negligible. We can also see that SP Side
1 and SP Side 3 take up most of the time. These two steps take up 86% of the
total time per iteration while MSP taking up 72% alone. DOi is in charge of only
14% of the total time.

If the number of data owners increases while N remains the same, each data
owner’s time consumption of Data Encryption in Step 2 and DO Side 2 in Step
3 decreases while time consumption of Paillier cryptosystem hardly increases.
Thus, the running time decreases as the number of data owners increases.

Next, we focus on 4 parts which take the most of time consumption. We
present the analysis of how each parameter affects on the time consumption.

• MSP of SP Side 1:
- The most time consuming part is computing distances.
- The number of homomorphic subtraction, multiplication and conjuga-

tion is linear in N , m̃ and K̃.
- The number of shift operations and homomorphic additions exactly

equals to m.
- Thus the time consumption is linear in N , K̃, and asymptotically linear

in m.

• KM of SP Side 1:
- The most time consuming part is decrypting distances.
- The number of ciphertexts of distances to decrypt is linear in N , m̃ and
K̃

- Thus the time consumption is linear in N , m̃ and K̃.

• DOi of DO Side 2:
- The most time consuming part is encrypting weight vectors.
- The number of weight vectors to encrypt is linear in N , m̃ and K̃.
- Thus time consumption is linear in N , m̃ and K̃.

• MSP of SP Side 3:
- The most time consuming part is computing new centroids.
- The number of homomorphic additions and multiplications is linear in
N , m̃ and K̃.

- Due to the optimization, we need additional shift operators and homo-
morphic additions as many as the number of data packed in one cipher-
text, which is inversely proportional to m̃ and K̃.

For the last, we changed only one parameter among N , m and K in consec-
utive order to get more analyses. It can be checked that total time consumption
is asymptotically linear in N , m, and K. Also it is notable that while the algo-
rithm suggested in Rao et al. [8] took 337 minutes to finish one iteration with
N = 10, 000, m = 10 and K = 4, it took only 52 seconds for our algorithm to
finish one iteration with the same dataset and parameters N , m and K.

The results are neatly visualized in the following Table 3 and Figure 2.

16

Table 3: Results with varying N , m and K with 80-bit security, respectively. All
the timing results are reported in seconds.

N Step 2 Step 3

(m = 8, K = 4) DOi MSP MSP KM DOi Total

5000 3.1 0.2 15.6 2.2 2.3 20.1

10000 5.7 0.2 22.8 4.4 4.5 21.7

15000 8.1 0.2 29.5 6.5 6.6 42.6

20000 10.9 0.2 36.8 8.5 8.8 54.1

m Step 2 Step 3

(K = 4, N = 104) DOi MSP MSP KM DOi Total

2 1.8 0.2 36.9 1.1 1.1 39.1

4 3.1 0.2 23.8 2.2 2.3 28.3

8 5.7 0.2 22.8 4.4 4.5 31.7

10 8.0 0.2 34.8 8.5 8.7 52.0

16 10.8 0.2 34.8 8.5 8.7 52.0

K Step 2 Step 3

(N = 104, m = 8) DOi MSP MSP KM DOi Total

2 2.9 0.1 24.0 2.2 2.4 28.6

4 5.7 0.2 22.8 4.4 4.5 31.7

8 11.1 0.4 32.4 8.5 8.5 49.4

16 21.8 0.8 58.1 16.8 16.0 90.9

5 Conclusion

In this paper, we propose a privacy-preserving K-means clustering algorithm
employing a fully homomorphic encryption HEAAN and Paillier encryption. We
use a two-server model to prevent any information leakage about centroids. In
the single server model, it is inevitable that the server knows the results of
the clustering algorithm Also, we use interaction between users MSP for each
iteration because the cost of comparison with encrypted data such as sorting
and argmax is too expensive. Indeed, we implement our scenario with 80-bit
security parameter of HEAAN and Paillier encryption, and obtain the following
an experimental result: clustering 10,000 data with 8 features into 4 clusters
takes less than a minute per iteration.

17

Fig. 2: Results with varying N , m and K, respectively. All the timing results are
reported in seconds.

References

1. B. S. Everitt, S. Landau, and M. Leese, “Clustering analysis,” Arnold, London,
2001.

2. J. A. Hartigan and J. Hartigan, Clustering algorithms. Wiley New York, 1975,
vol. 209.

3. Z. Kakushadze and W. Yu, “*k-means and cluster models for cancer signatures,”
Biomolecular Detection and Quantification, vol. 13, no. Supplement C, pp. 7 –
31, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S2214753517302061

4. M. Umamaheswari and P. Isakki alias Devi, “Myocardial infarction prediction using
k-means clustering algorithm,” International Journal of Innovative Research in
Computer and Communication Engineering, vol. 5, 2017.

5. S. Chakraborty, N. Nagwai, and L. Dey, “Weather forecasting using incremental
k-means clustering,” vol. 4, 06 2012.

6. L. W. Wakoli, A. Orto, and S. Mageto, “Application of the k-means clustering
algorithm in medical claims fraud / abuse detection,” International Journal of
Application or Innovation in Engineering & Management, vol. 3, 2014.

7. J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption for arith-
metic of approximate numbers,” IACR Cryptology ePrint Archive, 2016: 421, Tech.
Rep., 2016, to appear in the proceedings of Asiacrypt 2017.

18

http://www.sciencedirect.com/science/article/pii/S2214753517302061
http://www.sciencedirect.com/science/article/pii/S2214753517302061

8. F.-Y. Rao, B. K. Samanthula, E. Bertino, X. Yi, and D. Liu, “Privacy-preserving
and outsourced multi-user k-means clustering,” 2015 IEEE Conference on Collab-
oration and Internet Computing (CIC), vol. 00, pp. 80–89, 2015.

9. F. Meskine and S. Nait-Bahloul, “Privacy preserving k-means clustering: A survey
research,” vol. 9, 03 2012.

10. J. Vaidya and C. Clifton, “Privacy-preserving k-means clustering over
vertically partitioned data,” in Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, ser. KDD
’03. New York, NY, USA: ACM, 2003, pp. 206–215. [Online]. Available:
http://doi.acm.org/10.1145/956750.956776

11. M. C. Doganay, T. B. Pedersen, Y. Saygin, E. Savaş, and A. Levi, “Distributed
privacy preserving k-means clustering with additive secret sharing,” in Proceedings
of the 2008 International Workshop on Privacy and Anonymity in Information
Society, ser. PAIS ’08. New York, NY, USA: ACM, 2008, pp. 3–11. [Online].
Available: http://doi.acm.org/10.1145/1379287.1379291

12. S. Jha, L. Kruger, and P. McDaniel, Privacy Preserving Clustering. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 397–417. [Online]. Available:
https://doi.org/10.1007/11555827 23

13. S. Samet, A. Miri, and L. Orozco-Barbosa, “Privacy preserving k-means clustering
in multi-party environment.” pp. 381–385, 01 2007.

14. G. Jagannathan and R. N. Wright, “Privacy-preserving distributed k-means
clustering over arbitrarily partitioned data,” in Proceedings of the Eleventh ACM
SIGKDD International Conference on Knowledge Discovery in Data Mining, ser.
KDD ’05. New York, NY, USA: ACM, 2005, pp. 593–599. [Online]. Available:
http://doi.acm.org/10.1145/1081870.1081942

15. C. Su, F. Bao, J. Zhou, T. Takagi, and K. Sakurai, “Privacy-preserving
two-party k-means clustering via secure approximation,” in Proceedings of
the 21st International Conference on Advanced Information Networking and
Applications Workshops - Volume 01, ser. AINAW ’07. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 385–391. [Online]. Available:
http://dx.doi.org/10.1109/AINAW.2007.295

16. P. Bunn and R. Ostrovsky, “Secure two-party k-means clustering,” in Proceedings
of the 14th ACM Conference on Computer and Communications Security, ser.
CCS ’07. New York, NY, USA: ACM, 2007, pp. 486–497. [Online]. Available:
http://doi.acm.org/10.1145/1315245.1315306

17. J. Sakuma and S. Kobayashi, “Large-scale k-means clustering with user-centric
privacy preservation,” in Proceedings of the 12th Pacific-Asia Conference
on Advances in Knowledge Discovery and Data Mining, ser. PAKDD’08.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 320–332. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1786574.1786606

18. M. Upmanyu, A. M. Namboodiri, K. Srinathan, and C. V. Jawahar, Efficient
Privacy Preserving K-Means Clustering. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 154–166. [Online]. Available: https://doi.org/10.1007/
978-3-642-13601-6 17

19. D. Liu, E. Bertino, and X. Yi, “Privacy of outsourced k-means clustering,”
in Proceedings of the 9th ACM Symposium on Information, Computer and
Communications Security, ser. ASIA CCS ’14. New York, NY, USA: ACM, 2014,
pp. 123–134. [Online]. Available: http://doi.acm.org/10.1145/2590296.2590332

20. “Privacy-preserving kernel k-means outsourcing with randomized kernels,” 2013
IEEE 13th International Conference on Data Mining Workshops, vol. 00, pp. 860–
866, 2013.

19

http://doi.acm.org/10.1145/956750.956776
http://doi.acm.org/10.1145/1379287.1379291
https://doi.org/10.1007/11555827_23
http://doi.acm.org/10.1145/1081870.1081942
http://dx.doi.org/10.1109/AINAW.2007.295
http://doi.acm.org/10.1145/1315245.1315306
http://dl.acm.org/citation.cfm?id=1786574.1786606
https://doi.org/10.1007/978-3-642-13601-6_17
https://doi.org/10.1007/978-3-642-13601-6_17
http://doi.acm.org/10.1145/2590296.2590332

21. A. İnan, S. V. Kaya, Y. Saygın, E. Savaş, A. A. Hintoğlu, and A. Levi,
“Privacy preserving clustering on horizontally partitioned data,” Data &
Knowledge Engineering, vol. 63, no. 3, pp. 646 – 666, 2007, 25th International
Conference on Conceptual Modeling (ER 2006). [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0169023X0700047X

22. Z. Erkin, T. Veugen, T. Toft, and R. L. Lagendijk, “Privacy-preserving distributed
clustering,” EURASIP Journal on Information Security, vol. 2013, no. 1, p. 4,
Nov 2013. [Online]. Available: https://doi.org/10.1186/1687-417X-2013-4

23. K. Xing, C. Hu, J. Yu, X. Cheng, and F. Zhang, “Mutual privacy preserving k -
means clustering in social participatory sensing,” IEEE Transactions on Industrial
Informatics, vol. 13, no. 4, pp. 2066–2076, Aug 2017.

24. M. Beye, Z. Erkin, and R. L. Lagendijk, “Efficient privacy preserving k-means
clustering in a three-party setting,” in 2011 IEEE International Workshop on In-
formation Forensics and Security, Nov 2011, pp. 1–6.

25. P. Paillier et al., “Public-key cryptosystems based on composite degree residuosity
classes,” in Eurocrypt, vol. 99. Springer, 1999, pp. 223–238.

26. C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. dissertation, Stanford
University, 2009, crypto.stanford.edu/craig.

27. ——, “Fully homomorphic encryption using ideal lattices,” in Proceedings of the
41st annual ACM symposium on Symposium on theory of computing-STOC’09.
ACM Press, 2009, pp. 169–169.

28. M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully homomorphic
encryption over the integers,” in Proc. of EUROCRYPT, ser. LNCS, vol. 6110.
Springer, 2010, pp. 24–43.

29. J.-S. Coron, A. Mandal, D. Naccache, and M. Tibouchi, “Fully homomorphic en-
cryption over the integers with shorter public keys,” in Annual Cryptology Confer-
ence. Springer, 2011, pp. 487–504.

30. J.-S. Coron, D. Naccache, and M. Tibouchi, “Public key compression and modulus
switching for fully homomorphic encryption over the integers,” in Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques.
Springer, 2012, pp. 446–464.

31. J. H. Cheon, J.-S. Coron, J. Kim, M. S. Lee, T. Lepoint, M. Tibouchi, and A. Yun,
“Batch fully homomorphic encryption over the integers,” in Annual International
Conference on the Theory and Applications of Cryptographic Techniques. Springer,
2013, pp. 315–335.

32. J.-S. Coron, T. Lepoint, and M. Tibouchi, “Cryptanalysis of two candidate fixes
of multilinear maps over the integers,” IACR Cryptology ePrint Archive, vol. 2014,
p. 975, 2014.

33. J. H. Cheon, J. Kim, M. S. Lee, and A. Yun, “CRT-based fully homomorphic
encryption over the integers,” Information Sciences, vol. 310, pp. 149–162, 2015.

34. Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic encryption from
(standard) lwe,” SIAM Journal on Computing, vol. 43, no. 2, pp. 831–871, 2014.

35. ——, “Fully homomorphic encryption from ring-lwe and security for key dependent
messages,” in Annual cryptology conference. Springer, 2011, pp. 505–524.

36. Z. Brakerski, “Fully homomorphic encryption without modulus switching from
classical gapsvp.” in CRYPTO, vol. 7417. Springer, 2012, pp. 868–886.

37. Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully homomorphic
encryption without bootstrapping,” ACM Transactions on Computation Theory
(TOCT), vol. 6, no. 3, p. 13, 2014.

20

http://www.sciencedirect.com/science/article/pii/S0169023X0700047X
http://www.sciencedirect.com/science/article/pii/S0169023X0700047X
https://doi.org/10.1186/1687-417X-2013-4
crypto.stanford.edu/craig

38. C. Gentry, S. Halevi, and N. P. Smart, “Fully homomorphic encryption with polylog
overhead,” in Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2012, pp. 465–482.

39. ——, “Homomorphic evaluation of the aes circuit,” in Advances in Cryptology–
CRYPTO 2012. Springer, 2012, pp. 850–867.

40. A. López-Alt, E. Tromer, and V. Vaikuntanathan, “On-the-fly multiparty compu-
tation on the cloud via multikey fully homomorphic encryption,” in Proceedings of
the forty-fourth annual ACM symposium on Theory of computing. ACM, 2012,
pp. 1219–1234.

41. J. W. Bos, K. E. Lauter, J. Loftus, and M. Naehrig, “Improved security for a ring-
based fully homomorphic encryption scheme.” in IMA Int. Conf. Springer, 2013,
pp. 45–64.

42. C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based,” in Advances
in Cryptology–CRYPTO 2013. Springer, 2013, pp. 75–92.

43. J. H. Cheon and D. Stehlé, “Fully homomophic encryption over the integers revis-
ited.” EUROCRYPT (1), vol. 9056, pp. 513–536, 2015.

44. Y. Doröz, Y. Hu, and B. Sunar, “Homomorphic aes evaluation using the modified
LTV scheme,” Designs, Codes and Cryptography, vol. 80, no. 2, pp. 333–358, 2016.

45. L. Ducas and D. Micciancio, “FHEW: Bootstrapping homomorphic encryption in
less than a second.” EUROCRYPT (1), vol. 9056, pp. 617–640, 2015.

46. M. Naehrig, K. Lauter, and V. Vaikuntanathan, “Can homomorphic encryption be
practical?” in Proceedings of the 3rd ACM workshop on Cloud computing security
workshop. ACM, 2011, pp. 113–124.

47. J. W. Bos, K. Lauter, and M. Naehrig, “Private predictive analysis on encrypted
medical data,” Journal of biomedical informatics, vol. 50, pp. 234–243, 2014.

48. K. Lauter, A. López-Alt, and M. Naehrig, “Private computation on encrypted ge-
nomic data,” in International Conference on Cryptology and Information Security
in Latin America. Springer, 2014, pp. 3–27.

49. J. H. Cheon, M. Kim, and K. Lauter, “Homomorphic computation of edit dis-
tance,” in International Conference on Financial Cryptography and Data Security.
Springer, 2015, pp. 194–212.

50. S. Wang, Y. Zhang, W. Dai, K. Lauter, M. Kim, Y. Tang, H. Xiong, and X. Jiang,
“Healer: Homomorphic computation of exact logistic regression for secure rare
disease variants analysis in gwas,” Bioinformatics, vol. 32, no. 2, pp. 211–218,
2015.

51. J. H. Cheon, J. Jeong, J. Lee, and K. Lee, “Privacy-Preserving Computations
of Predictive Medical Models with Minimax Approximation and Non-Adjacent
Form,” to appear in International Conference on Financial Cryptography and Data
Security. Springer, 2017.

52. S. Halevi and V. Shoup, “Design and implementation of a homomorphic-encryption
library,” IBM Research (Manuscript), 2013.

53. ——, “Algorithms in HElib,” in International Cryptology Conference. Springer,
2014, pp. 554–571.

54. “Homomorphic Encryption for Arithmetic of Approximate Numbers,” https://
github.com/kimandrik/HEAAN.

55. K. Fukunaga, Introduction to Statistical Pattern Recognition., ser. Computer
Science and Scientific Computing. Academic Press, 1990, vol. 2nd ed. [Online].
Available: http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=
196121&site=ehost-live

21

https://github.com/kimandrik/HEAAN
https://github.com/kimandrik/HEAAN
http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=196121&site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=196121&site=ehost-live

56. J. H. Cheon, M. Kim, and M. Kim, “Search-and-compute on encrypted data,” in
International Conference on Financial Cryptography and Data Security. Springer,
2015, pp. 142–159.

57. M. Naeem, S. Asghar, and M. Lichman, “UCI machine learning repository,” 2011.
[Online]. Available: http://archive.ics.uci.edu/ml

22

http://archive.ics.uci.edu/ml

	Privacy-Preserving K-means Clustering with Multiple Data Owners

