
Dual-Mode NIZKs from Obfuscation

Dennis Hofheinz1, Bogdan Ursu1

Karlsruhe Institute of Technology
{dennis.hofheinz,bogdan.ursu}@kit.edu

Abstract. Two standard security properties of a non-interactive zero-
knowledge (NIZK) scheme are soundness and zero-knowledge. But while
standard NIZK systems can only provide one of those properties against
unbounded adversaries, dual-mode NIZK systems allow to choose dy-
namically and adaptively which of these properties holds uncondition-
ally. The only known dual-mode NIZK systems are Groth-Sahai proofs
(which have proved extremely useful in a variety of applications), and
the FHE-based NIZK constructions of Canetti et al. and Peikert et al,
which are concurrent and independent to this work. However, all these
constructions rely on specific algebraic settings.
Here, we provide a generic construction of dual-mode NIZK systems for
all of NP. The public parameters of our scheme can be set up in one of
two indistinguishable ways. One way provides unconditional soundness,
while the other provides unconditional zero-knowledge. Our scheme relies
on subexponentially secure indistinguishability obfuscation and subexpo-
nentially secure one-way functions, but otherwise only on comparatively
mild and generic computational assumptions. These generic assumptions
can be instantiated under any one of the DDH, k-LIN, DCR, or QR as-
sumptions.
As an application, we reduce the required assumptions necessary for
several recent obfuscation-based constructions of multilinear maps. Com-
bined with previous work, our scheme can be used to construct multi-
linear maps from obfuscation and a group in which the strong Diffie-
Hellman assumption holds. We also believe that our work adds to the
understanding of the construction of NIZK systems, as it provides a con-
ceptually new way to achieve dual-mode properties.

Keywords: non-interactive zero-knowledge, dual-mode proof systems,
indistinguishability obfuscation.

1 Introduction

Obfuscation and structured assumptions. Indistinguishability obfuscation
(iO) is a powerful cryptographic object, and along with one-way functions, it
implies almost every cryptographic primitive, from deniable encryption [42] to
functional encryption [26] and fully-homomorphic encryption [18]. However, it
is not currently known whether iO gives rise to structures in which algebraic
assumptions hold (such as DDH, DCR, LWE etc.). In this work, we are motivated
by the following open problem:

mailto:dennis.hofheinz@kit.edu,bogdan.ursu@kit.edu

2 Dennis Hofheinz and Bogdan Ursu

Can structured objects (such as DDH groups) be bootstrapped from
unstructured objects (like generic one-way functions and iO)?

We make progress in this direction by developing the first construction of dual-
mode non-interactive zero-knowledge (NIZK) proof systems from unstructured
assumptions (iO, one-way functions and lossy trapdoor functions). This dual-
mode NIZK can be used in the constructions from [1,2,21], allowing us to answer
this question in the affirmative.
Zero-knowledge proof systems. Zero-knowledge (ZK) proof systems [28,29]
are (implicitly or explicitly) at the heart of countless cryptographic construc-
tions. In a ZK proof system, a prover P tries to convince a verifier V of the
validity of a statement x. “Validity” usually means that x ∈ L for some language
L ∈ NP. In this case, P obtains a witness w to x ∈ L. For security, we re-
quire soundness, which means that no dishonest prover can convince V of a false
statement x /∈ L. Additionally, we may want to protect P (and in particular the
used witness w) in several ways. For instance, the protocol is zero-knowledge if
it is possible to efficiently simulate (transcripts of) protocol runs even without
w. Alternatively, we can require the protocol to be witness-hiding or witness-
indistinguishable [23].

ZK proof systems can be interactive or non-interactive (the latter of which
means that the prover sends only one message to the verifier). In this work, we are
interested in non-interactive ZK (NIZK) proof systems [10]. There exist already
various NIZK proof systems, ranging from generic [22, 24, 42] to highly efficient
constructions based on concrete number-theoretic assumptions [24,32,44]. Some
of these systems only allow to prove x ∈ L for specific languages L, while others
can be used to prove statements from arbitrary languages L ∈ NP.
Dual-mode proof systems. Some NIZK systems enjoy statistical security,
i.e., information-theoretic soundness or zero-knowledge guarantees. However, in-
terestingly, no NIZK system can be statistically sound and statistically zero-
knowledge simultaneously. Hence, a NIZK system can be secure only either
against unbounded malicious provers or against unbounded malicious verifiers.

Fortunately, there is a compromise that combines the best of both worlds:
Groth-Sahai proofs [32] are statistically sound or statistically zero-knowledge
depending on the choice of public parameters crs. Furthermore, both choices
of parameters are computationally indistinguishable. This “dual-mode” property
leads to comparatively simple proofs for complex protocols (e.g., for anonymous
credentials [4] or payment systems [33]). In the case of [2, 21], a proof without
using dual-mode properties in fact does not seem obvious at all.1

Until recently, only Groth-Sahai proofs [32] (and their variants, e.g., [9,20,35])
were known to possess this dual-mode property.2 These proof systems all rely on
1 A bit more technically, dual-mode NIZK proofs allow to use both witness extraction
or simulation trapdoors in different stages of the proof, depending on the chosen
mode. (This is helpful in case of [4,33] and crucial in [2,21].) Furthermore, in complex
settings with mutually dependent statements and witnesses, statistical properties are
easier seen to compose.

2 We do not consider NIZK proofs in the random oracle model (such as [37]) here.

Dual-Mode NIZKs from Obfuscation 3

a very specific and structured algebraic setting (pairing-friendly cyclic groups).
In contrast, we rely on generic rather than algebraic techniques, resulting in a
fundamentally new way of obtaining dual-mode proof systems.

Concurrent work Concurrently and independently to this work, [19, 39] have
put forward breakthrough approaches to obtain dual-mode NIZKs from the LWE
assumption. These constructions rely on rich algebraic structures and are non-
blackbox. In contrast, our techniques are generic and our perspective is closer
to computational complexity, in that we investigate whether the existence of a
powerful non-algebraic object (iO) can lead to algebraic ones.

Our contribution In this paper, we give the first generic construction of dual-
mode NIZK proofs from (the combination of) the following ingredients:
– subexponentially secure indistinguishability obfuscation (iO, [3, 26]),
– subexponentially secure one-way functions,
– a (selectively) subexponentially secure functional encryption scheme,
– lossy encryption [5, 40], and
– lossy functions (LFs), a relaxation of lossy trapdoor functions [41] which we

introduce in this paper.
We stress that some of our ingredients are implied by (a combination of) others:
Functional encryption can be constructed from iO and one-way functions [26].
Conversely, subexponentially secure functional encryption implies subexponen-
tially secure iO and one-way functions (e.g., [8] and the references therein).
Furthermore, both LFs and lossy encryption are implied by lossy trapdoor func-
tions [41].

As a side note, we remark that thus, a subexponential variant of any of the
DDH, k-LIN, QR, DCR, or LWE assumptions, along with subexponential iO
implies all of our ingredients.3

Of course, since we assume iO, our construction is far from practical. Still,
it has interesting theoretical applications. For instance, it allows to instantiate
dual-mode NIZK proofs in the recent works [1, 2, 21] without any additional
assumptions, and in particular without pairing-friendly groups. (Incidentally,
these works already assume what we need for our construction.)

In particular, combining our results with the scheme from [1], shows that it
is possible to obtain a very structured object (namely, a cyclic group in which
Diffie-Hellman and similar assumptions hold) solely from an unstructured and
generic object (iO), and a mildly structured object (a lossy trapdoor function).4

3 See [11,25,41] for the corresponding instantiations of lossy trapdoor functions from
these concrete assumptions.

4 Indeed, except for a dual-mode NIZK proof system, all assumptions in [1] can be
instantiated from subexponentially secure iO and a subexponentially secure lossy
trapdoor function. We note, however, that [1] construct a group in which elements
have only a non-unique representation and no canonical form. Hence, their group
might not be considered a “standard group”, but still has a rich algebraic structure.

4 Dennis Hofheinz and Bogdan Ursu

Similarly, implementing [2,21] with our system (instead of with Groth-Sahai
proofs) yields a pairing-friendly group (with non-unique representation) from iO
and a DDH group (both subexponentially secure). Therefore, we also give an
answer to the following open problem:

Can bilinear groups be bootstrapped from DDH groups and iO?

Previous work This work + [1,2, 21]
[2] iO + Pairings+ SDDH⇒ Multilinear Maps iO + SDDH⇒ Multilinear Maps

[21] iO + Pairings+ SDDH⇒ Graded Encoding Schemes iO + SDDH⇒ Graded Encoding Schemes
[1] iO + Pairings⇒ Interactively Secure Groups iO + LTDF⇒ Interactively Secure Groups

Fig. 1. Some implications on previous results. “ iO”, “LTDF” and “SDDH” denote subex-
ponential versions of indistinguishability obfuscation, lossy trapdoor functions and the
“Strong DDH” (a q-type variant of the Diffie-Hellman assumption).

Open problems. We note that the groups from [1, 2, 21] all enjoy non-unique
representations of group elements. That is, equality of group elements can be
tested, but there does not exist a canonical form. Removing this limitation re-
mains an open problem.

Our techniques

Existing generic approaches. Before explaining our main ideas, we first men-
tion that generic constructions of NIZKs from iO already exist. Namely, [42]
present a NIZK construction that only assumes iO and one-way functions. Their
construction is (even perfectly) zero-knowledge. However, proofs are in their case
simply signatures of the corresponding statement x. Thus, their construction is
inherently limited to computational soundness, in the sense that it is not clear
how to tweak this construction to obtain statistical soundness.

Secondly, it is possible to construct a notion of trapdoor permutations from
iO that is in turn sufficient to construct statistically sound NIZK proofs [17]
(cf. [6, 7, 22, 30]). However, it is not clear how to tweak this NIZK construction
to obtain statistical zero-knowledge.

The hidden bits model. Similarly to [17], our starting point is also the generic
NIZK construction from [22]. This work presents a statistically sound and per-
fectly zero-knowledge NIZK protocol in an ideal model of computation called
the “hidden bits model” (HBM).5 It will be helpful to first recall the HBM be-
fore going further. In a nutshell, the HBM gives the prover P access to an ideal
random bitstring hrs = (hrs1, . . . , hrst) ∈ {0, 1}t. Next, P selects a subset I ⊆ [t]
and a proof π. Then, the verifier V is activated with I, π, the subset (hrsi)i∈I

5 Since their protocol is formulated in an ideal model of computation, it does not
contradict our remark above about the impossibility of simultaneously achieving
statistical soundness and statistical zero-knowledge. One of the two statistical prop-
erties will be lost when implementing this ideal model.

Dual-Mode NIZKs from Obfuscation 5

of hrs that is selected by I, and of course the instance x. Finally, V is supposed
to output a verdict b ∈ {0, 1}.
Two ways to implement the HBM. Note that the power of the HBM stems
from the fact that hrs is ideally random (and cannot be tampered with by P),
but only revealed in part to V . When implementing the HBM, we will necessarily
have to compromise on some of these properties. However, it will be interesting
to see what the consequences of such compromises are. Specifically, when imple-
menting the HBM in the HBM-based NIZK protocol of [22], we can observe the
following:
(a) if we implement the HBM such that hrs is truly random (or selected from a

small set of possible hrs values, each of which is individually truly random),
then the resulting NIZK protocol is statistically sound and computationally
zero-knowledge,

(b) if we implement the HBM such that the unopened bits (hrsi)i/∈I are sta-
tistically hidden from V , then the resulting NIZK protocol is statistically
zero-knowledge and computationally sound.

Known implementations of the HBM (e.g., [22,30,31]) follow (a), and thus enjoy
statistical soundness guarantees. Our main strategy will be to build a dual-mode
NIZK proof system by implementing the HBM in a way that allows to switch
(by switching public parameters) between (a) and (b).

A first approach. Our first step will be to set up the hidden string hrs as

hrs = H(X)⊕ crs

for a value X chosen freely by P , a yet-to-be-defined function H, and a truly
random “randomizing string” crs fixed in the public parameters. If H is a pseu-
dorandom generator (that admits a suitable partial opening process, see [31] for
an explicit formulation), this yields the core of existing HBM implementations.
In particular, if H has a small image, then we are in case (a) above, and the
resulting NIZK is statistically sound.

However, suppose we can switch (in a computationally indistinguishable way)
H(X) to have a large image, such that in fact H(X) ∈ {0, 1}t is close to uniformly
distributed for random X. We call such a “switchable” object a lossy function
(LF). An LF can be easily constructed, e.g., by universally hashing the output
of a lossy trapdoor function F . For suitable choices of parameters, H(X) :=
h(F (X)) is close to uniform if F is injective (and X random), and has a small
range if F does.

With H(X) close to uniform, we are in case (b) above, assuming that the
process itself of revealing hrsI does not reveal additional information about other
bit positions. Hence, we obtain a statistically zero-knowledge NIZK protocol, and
in summary even a dual-mode NIZK that can be switched between statistically
sound and statistically zero-knowledge modes of operation.

Managing the opening process. The main problem with our first approach is
that it is not clear how to partially open a subset hrsI of hrs to a verifier V . Pre-
vious HBM implementations (e.g., [22, 31]) devised elaborate ways to partially

6 Dennis Hofheinz and Bogdan Ursu

open suitably designed pseudorandom generators (in the role of H above). We
cannot use those techniques for two reasons. First, their opening process might
reveal statistical information about the unopened parts of hrs. Second, these
techniques require specific H functions, and do not appear to work with “switch-
able” functions H as we need. Hence, we use the strong ingredients mentioned
above to design our own opening process.

We will use a functional encryption scheme FE. We will publicize a truly
random crs, a statement Z from a language L′ that is hard to decide, along
with an FE public key fmpk, and a corresponding secret key skf for the following
function f:

f(X, I, z, T) :=

{
(T, I) if z is a witness to Z ∈ L′

(H(X)I , I) else.

An opening consists of an encryption

C = FE.Enc(fmpk, (X, I, 0, 0))

that will decrypt to f(X, I, 0, 0) = H(X)I under skf . The verifier will receive this
opening, retrieve H(X)I with skf , and compute hrsI = H(X)I ⊕ crsI .

Observe that this process has the following properties:
– If Z /∈ L′, then skf(C) = (H(X)I , I) always. Hence, if additionally H has a

small range, we are in case (a) above, and the corresponding NIZK protocol
is statistically sound.

– If Z ∈ L′ with witness z, then any prover who knows z can efficiently open
hrsI arbitrarily, by encrypting (0, I, z, T) for T = crsI⊕hrsI and the desired
hrsI . Furthermore, such openings obviously do not contain any information
about potential other positions of hrs. This means we are in case (b) above,
and the corresponding NIZK protocol is statistically zero-knowledge.

By using FE’s security, it is possible to show that these two types of openings
are indistinguishable to a verifier. However, as formulated, they are of course
not indistinguishable to a prover yet. Hence, we will additionally publicize an
obfuscated algorithm PC that will get as input a statement x with witness w, and
random coins r. Depending on the mode (sound or zero-knowledge), PC(x,w, r)
will then either encrypt (X, I, 0, 0) or (0, I, z, T), for pseudorandom X and T
derived from r.
A taste of the security proof. For security, we will show that the public
parameters in both modes are computationally indistinguishable. The security
proof is somewhat technical, and we would like to highlight only one interesting
theme here. Namely, observe that the prover algorithm PC is inherently proba-
bilistic. In the proof, we need to modify PC’s behavior, and in particular decouple
its output distribution from its input w. Specifically, when aiming at statistical
soundness, the output of PC will encrypt, and thus depend on w. But when
trying to achieve zero-knowledge, PC’s output should not reveal (in a statistical
sense) which witness w has been used.6

6 Formally, to achieve zero-knowledge, we must achieve witness-indistinguishability.

Dual-Mode NIZKs from Obfuscation 7

This decoupling process is particularly cumbersome to go through because
PC itself is public and can be run on arbitrary inputs. Any change that essen-
tially makes PC ignore its w input will be easily detectable. Hence, we add an
indirection that helps to remove dependencies on w. Specifically, we let PC first
compute a = LE.Enc(lpk, (x,w); r) using a lossy encryption scheme LE. If the
corresponding public key lpk is injective (i.e., leads to decryptable ciphertexts),
then a determines w. Hence, any case distinction (or hybrid argument) we make
for different values of w can alternatively be made for different values of a. On
the other hand, if lpk is lossy, then a will be statistically independent of the
plaintext (x,w).

Hence, a can be used as a single value that (a) can serve as a “fingerprint” of
(or in some sense even as a substitute for) w in the proof, but (b) can be easily
made independent of w by switching lpk into lossy mode. Equipped with this
gadget, we will structure the proof as a large hybrid argument over all values of
a (encrypted at this point with an injective lpk). In each step, we modify PC’s
behavior for one particular value of (x,w), and change the corresponding FE
ciphertext C from an encryption of (X, I, 0, 0) to (0, I, z, T) for a pseudorandom
value T derived from a.
Roadmap. After recalling some preliminaries in Sec. 2, we present our proof
system in Sec. 3, followed by its analysis in Sec. 4. The appendix contains a
schematic overview over our main proof (App. A), a proof of a technical lemma
(App. B), a recap of the HBM-based NIZK from [22] (App. C), and an analysis
of the (statistical) extractability of our scheme (App. D).

2 Preliminaries

Notation. Throughout this paper, λ denotes the security parameter. For a
natural number n ∈ N, [n] denotes the set {1, . . . , n}. A probabilistic polynomial
time algorithm (PPT, also denoted efficient algorithm) runs in time polynomial
in the (implicit) security parameter λ. A positive function f is negligible if for
any polynomial p there exists a bound B > 0 such that, for any integer k ≥ B,
f(k) ≤ 1/|p(k)|. An event depending on λ occurs with overwhelming probability
when its probability is at least 1 − negl(λ) for a negligible function negl. Given
a finite set S, the notation x ←r S means a uniformly random assignment of
an element of S to the variable x. If A is a probabilistic algorithm, y ←r A(·)
denotes the process of running A on some appropriate input and assigning its
output to y. The notation AO indicates that the algorithm A is given oracle
access to O. We denote a← A; b← B(a); . . . for running the experiment where
a is chosen from A, after which b is chosen from B, which might depend on a
and so on. This determines a probability distribution over the outputs and we
write Pr[a ← A; b ← B(a); . . . : C(a, b, . . .)] for the probability of the condition
C(a, b, . . .) being satisfied after running the experiment. For two distributions
D1, D2, we denote by ∆(D1, D2) the statistical distance. We also write D1 ≡
D2 when the distributions are identical, D1 ≈c D2 when the distributions are
computationally indistinguishable and D1 ≈ε D2 when ∆(D1, D2) ≤ ε.

8 Dennis Hofheinz and Bogdan Ursu

2.1 Puncturable Pseudorandom Function

A pseudorandom function (PRF) originally introduced in [27], is a tuple of
PPT algorithms PRF = (PRF.KeyGen,PRF.Eval). Let K denote the key space,
X denote the domain, and Y denote the range. The key generation algorithm
PRF.KeyGen on input of 1λ, outputs a random key from K and the evalua-
tion algorithm PRF.Eval on input of a key K and x ∈ X , evaluates the function
F : K×X 7→ Y. The core property of PRFs is that, on a random choice of key K,
no probabilistic polynomial-time adversary should be able to distinguish F (K, ·)
from a truly random function, when given black-box access to it. Puncturable
PRFs (pPRFs) have the additional property that some keys can be generated
punctured at some point, so that they allow to evaluate the PRF at all points
except for the punctured point. As observed in [13, 14, 36], it is possible to con-
struct such punctured keys for the original construction from [27], which can be
based on any one-way functions [34].

Definition 1 (Puncturable Pseudorandom Function [13, 14, 36]). A
puncturable pseudorandom function (pPRF) is with punctured key space Kp is
a triple of PPT algorithms (PRF.KeyGen,PRF.Puncture,PRF.Eval) such that:

– PRF.KeyGen(1λ) outputs a random key K ∈ K,
– PRF.Puncture(K,x), on input K ∈ K, x ∈ X , outputs a punctured key
K{x} ∈ Kp,

– PRF.Eval(K ′, x′), on input a key K ′ (punctured or not), and a point x′,
outputs an evaluation of the PRF.

We require PRF to meet the following conditions:

Functionality preserved under puncturing. For all λ ∈ N, for all x ∈ X ,

Pr[K ←r PRF.KeyGen(1λ),K{x} ←r PRF.Puncture(K,x) :

∀x′ ∈ X \ {x} : PRF.Eval(K,x′) = PRF.Eval(K{x}, x′)] = 1.

Pseudorandom at punctured points. For every stateful PPT adversary A
and every security parameter λ ∈ N, the advantage of A in Exp-s-pPRF
(described in Figure 2) is negligible, namely:

Advs-cPRF(λ,A) :=
∣∣Pr[Exp-s-pPRF(1λ,A) = 1]− 1

2

∣∣ ≤ negl(λ).

Sub-exponential security We say that PRF is sub-exponentially secure when it
satisfies Definition 1 and in addition it satisfies: for every PPT adversary A, the
advantage Advs-cPRF(λ,A) ≤ 1

2λε
, for some positive constant 0 < ε < 1.

Definition 1 corresponds to a selective security notion for puncturable pseudo-
random functions; adaptive security could be considered, but will not be required
in our work. For ease of notation we often write F (·, ·) instead of PRF.Eval(·, ·).

Dual-Mode NIZKs from Obfuscation 9

Experiment Exp-s-pPRF(1λ,A)
Experiment Exp-s-pPRFA(λ)
x∗ ←r A(1λ), b←r {0, 1},
K ←r PRF.KeyGen(1λ),
K{x∗} ←r PRF.Puncture(K,x∗),
y0 ← PRF.Eval(K,x∗), y1 ←r Y
b′ ←r A(K{x∗}, yb)
Return b = b′

Fig. 2. Experiment Exp-s-pPRFA(λ) for the pseudo-randomness at punctured points.

2.2 Lossy functions

We generalize the notion of LTDF (lossy trapdoor function) due to [41] and
introduce lossy functions. LTDFs (Lossy trapdoor functions) can be sampled
in two indistinguishable modes: an injective and a lossy mode. When sampling
injective functions, the setup also provides a trapdoor which can be used to
invert the function. Unlike LTDFs, for lossy functions we require that functions
can be sampled in two modes, but in which one mode is “more lossy” than the
other. Thus, instead of an injective and a lossy mode, we have a “less lossy”
and a “more lossy” mode, which we denote as “dense” and “lossy” modes. Since
we do not necessarily have injectivity in the dense setting, we also do not have
trapdoors as in LTDFs.

Definition 2 (Lossy Functions). A tuple LF = (Setup,Eval) of PPT algo-
rithms is a family of (n, k,m, i)-lossy functions if the following properties hold:

– Sampling functions: Both Setup(1λ, dense) of dense functions and Setup(1λ, lossy)
of lossy functions output a function index s. We require that Eval(s, ·) is a de-
terministic function on {0, 1}n → {0, 1}m in both cases. In the following, we
use the shorthand notation s(·) := Eval(s, ·).

– Dense functions have images statistically close to uniformly random: for all
s←r LF(1λ,dense), we have that:

∆((s(Un), s), (Um, s)) ≤ 1
2i .

– Lossy functions have small image size: The image size of lossy functions is
bounded by 2k. In particular, for all s←r Setup(1λ, lossy),

|{Eval(s, x) : x ∈ {0, 1}n}| ≤ 2k.

– Indistinguishability: The outputs of Setup(1λ, lossy) and Setup(1λ, dense) are
computationally indistinguishable, i.e. {Setup(1λ, lossy)} ≈c {Setup(1λ, dense)}

We can generalise Definition 2 even further. Instead of asking that in dense
mode the evaluation of the function is statistically close to a uniformly random,
we may instead define the dense mode as havingH∞(Eval(s, Un)) ≥ m+2 log

(
1
ε

)
.

Then, by the leftover hash lemma, we can combine LF with a 2-universal hash
function to ensure that the output is statistically close to uniformly random as
in Definition 2. For clarity, we do not use this generalization in our proofs.

10 Dennis Hofheinz and Bogdan Ursu

Concrete instantiations: The lossy trapdoor functions from [41] are also
lossy functions in the sense of Definition 2. Moreover, composed with 2-universal
hash functions, they satisfy the necessary parameters in our construction (see
Section 3). This would yield suitable lossy functions based on DDH and LWE.

2.3 Lossy Encryption

Definition 3. [5, 40]: A lossy public-key encryption scheme is a tuple LE =
(Gen,Enc,Dec) of polynomial-time algorithms such that

– Gen(1λ, inj) outputs keys (pk, sk), keys generated by Gen(1λ, inj) are called
injective keys.

– Gen(1λ, lossy) outputs keys (pklossy,⊥), keys generated by Gen(1λ, lossy) are
called lossy keys.

– Enc(pk, ·, ·) :M ×R→ C.

Additionally, the algorithms must satisfy the following properties:

1. Correctness on injective keys. For all plaintexts x ∈ X,

Pr[(pk, sk)←r Gen(1λ, inj); r ← R : Dec(sk,Enc(pk, x, r)) = x] = 1.

2. Indistinguishability of keys. Public keys pk are computationally indistinguish-
able in lossy and injective modes. Specifically, if proj : (pk, sk) → pk is the
projection map, then:

{proj(Gen(1λ, inj))} ≈c {proj(Gen(1λ, lossy))}.

3. Lossiness of lossy keys. For all (pklossy,⊥)←r Gen(1λ, lossy), and all x0, x1 ∈
M , the two distributions {r ←r R : (pklossy,Enc(pklossy, x0, r))} and {r ←r
R : (pklossy,Enc(pklossy, x1, r))} are statistically close, i.e. the statistical dis-
tance is negligible in λ.

We define a lossy encryption scheme LE to be µ-lossy if for all (pklossy,⊥) ←r

Gen(1λ, lossy) and for all x0, x1, we have that:

{r ←r R : (pklossy,Enc(pklossy, x0, r))} ≈µ {r ←r R : (pklossy,Enc(pklossy, x1, r))}

2.4 Functional Encryption

Definition 4. [12, 38, 43] A functional encryption scheme for a class of func-
tions F = F(1λ) over message spaceM =Mλ consists of four polynomial time
algorithms FE = (Setup,KeyGen,Enc,Dec):

1. Setup(1λ) – on input the security parameter λ outputs master public key mpk
and master secret key msk.

2. KeyGen(msk, f) – on input the master secret key msk and a description of
function f ∈ F and outputs a corresponding secret key skf .

3. Enc(mpk, x) – on input the master public key mpk and a string x, outputs a
ciphertext ct.

Dual-Mode NIZKs from Obfuscation 11

4. Dec(skf , ct) – on inputs the secret key skf and a ciphertext encrypting mes-
sage m ∈M , outputs f(m).

A functional encryption scheme is perfectly correct for F if for all f ∈ F and
all messages m ∈M:

Pr[(mpk,msk)←r Setup(1λ) : Dec(KeyGen(msk, f),Enc(mpk,m)) = f(m)] = 1

Definition 5 (Selectively Indistinguishable Security). A functional en-
cryption scheme FE is selectively indistinguishable secure (SEL-IND-FE-CPA)
if for all stateful PPT adversaries A, the advantage of A in the experiment
Exp-s-IND-FE-CPA described in Figure 3 is negligible, namely:

AdvFEExp-s-IND-FE-CPA(λ,A) :=
∣∣Pr[Exp-s-IND-FE-CPAFE(1λ,A) = 1]− 1

2]
∣∣ ≤ negl(λ)

Experiment Exp-s-IND-FE-CPAFE(1λ,A)
(m0,m1)←r A(1λ);
(mpk,msk)←r FE.Setup(1λ)
b←r {0, 1}
ct←r FE.Enc(mpk,mb)

b′ ←r AFE.KeyGen(msk,·)(mpk, ct)
Return b = b′

Fig. 3. Experiment Exp-s-IND-FE-CPA for the selective indistinguishable security of
FE. The queries of A to oracle FE.KeyGen(msk, ·) are restricted to functions f such
that f(m0) = f(m1).

Definition 6 (Sub-exponential Selectively Indistinguishability Security).
A functional encryption scheme FE is sub-exponentially selectively indistin-

guishability secure if it satisfies Definition 5 and in addition: for all PPT adver-
saries A:

AdvFEExp-s-IND-FE-CPA(λ,A) ≤ 1
2λε

, for some positive constant 0 < ε < 1.

2.5 Indistinguishability Obfuscation

Definition 7 ([3, 26] Indistinguishability Obfuscator). A uniform PPT
machine iO is called an indistinguishability obfuscator for a circuit class Cλ if
the following conditions are satisfied:

– For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have:

Pr[C ′(x) = C(x) : C ′ ←r iO(λ,C)] = 1

– For any (not necessarily uniform) PPT distinguisher A, for all security param-
eters λ ∈ N, for all pairs of circuits C0, C1 ∈ Cλ, we have that if C0(x) = C1(x)
for all inputs x, then:

AdviO(λ,A) := |Pr[A(iO(λ,C0)) = 1]− Pr[A(iO(λ,C1)) = 1]| ≤ negl(λ)

12 Dennis Hofheinz and Bogdan Ursu

Sub-exponential security We say that iO is sub-exponentially secure when it
satisfies Definition 7 and also it satisfies that: for every (not necessary uniform)
PPT distinguisher A, the advantage AdviO(λ,A) is bounded by 1

2λε
, for some

positive constant 0 < ε < 1.

2.6 Dual-Mode NIWI Proof Systems

A dual-mode non-interactive witness indistinguishable (DM-NIWI) proof system
[32] is a special type of non-interactive witness indistinguishable (NIWI) proof
system, in which the common reference string (CRS) generation is dual-mode.
The dual-mode property means that these systems have common reference string
algorithms which generate indistinguishable CRS in “binding” or “hiding” modes.
The system satisfies statistical soundness and extractability in binding mode and
statistical witness indistinguishability in hiding mode.

Definition 8. A binary relation R is polynomially bounded if it is decidable
in polynomial time and there is a polynomial p such that |w| ≤ p(|x|), for all
(x,w) ∈ R. For any such relation and any x we set LR = {x| ∃w s.t. (x,w) ∈ R}.

Definition 9 ([32] Dual-mode non-interactive witness indistinguish-
able proof systems). Let R be a polynomially-bounded binary relation R. A
dual-mode non-interactive witness indistinguishable (DM-NIWI) proof system
for language LR ∈ NP is a tuple of PPT algorithms DM-NIWI = (Setup,Prove,
Verify,Extract).

Setup(1λ, binding) on input the security parameter, outputs a common reference
string crs which we call binding. It also outputs the corresponding extraction
trapdoor tdext.
Setup(1λ, hiding) on input the security parameter, outputs a common reference
string crs, which we call a hiding crs.
Prove(crs, x, w), on input crs, a statement x and a witness w, outputs a proof π.
Verify(crs, x, π), on input crs, a statement x and a proof π, outputs either 1 or 0.
Extract(tdext, x, π) on input the extraction trapdoor tdext, a statement x and a
proof π, it outputs a witness w.

We require the DM-NIWI to meet the following properties:

CRS indistinguishability. Common reference strings generated via Setup(1λ,
binding) and Setup(1λ, hiding) are computationally indistinguishable. More
formally, for all non-uniform PPT adversaries A, the advantage of A in the
experiment Exp-CRS-IND described in Figure 4 is negligible, namely:

AdvDM-NIWI
Exp-CRS-IND(λ,A) :=

∣∣Pr[Exp-CRS-INDDM-NIWI
0 (1λ,A) = 1]−

Pr[Exp-CRS-INDDM-NIWI
1 (1λ,A) = 1]

∣∣ ≤ negl(λ)

Dual-Mode NIZKs from Obfuscation 13

Experiment Exp-CRS-INDDM-NIWI
b (1λ,A)

if b = 0 then
(crs, tdext)←r Setup(1λ, binding)

else
(crs)←r Setup(1λ, hiding)

b′ ←r A(crs)
Return b = b′

Fig. 4. Experiment Exp-CRS-INDDM-NIWI
b for CRS indistinguishability.

Perfect completeness in both modes. For every (x,w) ∈ R, we have that:

Pr

[
crs←r Setup(1λ, binding),
π ←r Prove(crs, x, w)

: Verify(crs, x, π) = 1

]
= 1.

The same holds when instead of crs ←r Setup(1λ, binding), we have crs ←r
Setup(1λ, hiding).

Statistical soundness in binding mode. The system is statistically sound if
for every (possibly unbounded) adversary A, we have that

Pr

[
(crs, tdext)←r Setup(1λ, binding),
(x, π)←r A(crs)

: Verify(crs, x, π) = 1 ∧ x /∈ LR
]
= negl(λ).

Statistical extractability in binding mode For any (x, π), it holds that:

Pr

[
(crs, tdext)←r Setup(1λ, binding),
w ←r Extract(crs, tdext, x, π)

:

(
Verify(crs, x, π) = 1
=⇒ (x,w) ∈ R

)]
= 1− negl(λ).

Note: In binding mode, statistical extractability implies statistical soundness.
Statistical witness-indistinguishability in hiding mode We say that the

DM-NIWI system is statistically witness-indistinguishable if for every x, w0,
w1 with both (x,w0) ∈ R and (x,w1) ∈ R, proofs of x with witness w0 are
indistinguishable from proofs of x with witness w1. More formally, for every
interactive (potentially unbounded) adversary A:∣∣∣∣∣∣∣∣Pr

crs←r Setup(1λ, hiding),
(x,w0, w1)←r A(crs),
b←r {0, 1},
π ←r Prove(crs, x, wb)

: A(crs, π) = b

− 1

2

∣∣∣∣∣∣∣∣ ≤ negl(λ),

where A is restricted to choosing (x,w0, w1), such that both (x,w0) ∈ R and
(x,w1) ∈ R.

Remark. Like with the original presentation of Groth and Sahai [32], we focus
our presentation on witness-indistinguishable (and not zero-knowledge) proof
systems. Unlike zero-knowledge, witness-indistinguishability has useful compo-
sitional properties (see [23]). If zero-knowledge is desired, however, a simple
transformation is possible: instead of proving x ∈ L, prove x ∈ L ∨ x̂ ∈ L̂ with

14 Dennis Hofheinz and Bogdan Ursu

our system, where L̂ is any fixed hard-to-decide language, and x̂ is a fixed in-
stance determined in crs. In binding mode, set up x̂ /∈ L̂, so that x ∈ L ∨ x̂ ∈ L̂
implies x ∈ L. In hiding mode, set up x̂ ∈ L̂, in which case a witness to this fact
can be used as a simulation trapdoor to efficiently simulated proofs that achieve
statistical zero-knowledge.

2.7 Hidden Bits Non-Interactive Zero-Knowledge

In our construction, we rely on a NIZK protocol in the hidden bits model. The
hidden-bits model was introduced by [22] and is an idealized setting in which
the bits of the common reference string are hidden from the verifier (but not
from the prover). We call this the hidden reference string hrs.

When the prover computes a proof, it can choose which bits of hrs to reveal
to the verifier. Denote the revealed bit set by I, then by hrsI we will refer to
the corresponding revealed bits of the hrs. Our construction can be based on
the hidden-bits NIZK from [22], which proves graph Hamiltonicity and there-
fore covers any NP statement. Nevertheless, our construction is generic enough
to be based on any hidden-bits NIZK with statistical soundness and perfect
zero-knowledge (if we only had statistical ZK then we will only get statistical
correctness of DM-NIWI). The hidden-bits NIZK from [22] satisfies both statis-
tical soundness and perfect ZK and we briefly recap it in Appendix C.

Definition 10. [22] A pair of PPT algorithms NIZKH = (PH ,VH) is a NIZK
proof system in the hidden-bits model if it satisfies the following properties:
1. Completeness: there exists a polynomial r denoting the length of the hidden

random string, such that for every (x,w) ∈ R we have that:

Pr
PH ,hrs←{0,1}t(|x|,λ)

[(π, I)← PH(x,w, hrs) : VH(x, hrsI , I, π) = 1] = 1

where I ⊆ [t(|x|, λ)] and hrsI = {hrs[i] : i ∈ I}.
2. Statistical Soundness: for every x /∈ L we have that:

Pr
hrs←{0,1}t(|x|,λ)

[∃π, I : VH(x, hrsI , I, π) = 1] < 1
2λ+|x|

.

3. Perfect Zero-Knowledge: there exists a PPT algorithm SH such that:

D0 := {(hrsI , π, I) : hrs← {0, 1}t(|x|,λ), (π, I)← PH(x,w, hrs)}(x,w)∈R ≡
≡ {SH(x)}(x,w)∈R =: D1

For ease of notation, we denote by ∆NIZKH
Zero Knowledge(λ) := ∆(D0, D1) the sta-

tistical distance between distributions D0 and D1. In the case of perfect ZK,
∆NIZKH

Zero Knowledge(λ) := ∆(D0, D1) = 0.

3 Construction

In Figure 5, we describe our DM-NIWI candidate. Our scheme uses a hidden-bits
NIZK proof system NIZKH = (PH ,VH) as a building block. To distinguish com-
mon reference strings and proofs between the two proof systems, we denote by

Dual-Mode NIZKs from Obfuscation 15

lowercase (π, hrs) the proofs and hidden reference strings for NIZKH . In contrast,
the common reference string and proofs of DM-NIWI are denoted as CRS and Π,
respectively.

The CRS of DM-NIWI contains the public key lpk of a lossy encryption scheme
LE, a lossy function H, uniformly random Z and crs, a functional decryption
function skf and an obfuscated program PC. Prover program PC(x,w, r) first
encrypts (x,w) using randomness r to obtain a = LE.Enc(lpk, (x,w); r). Then
it computes either a HidingProof or a BindingProof depending on the mode and
outputs as proof a FE ciphertext C and a hidden-bits proof π. The verifier
decrypts C using skf and then uses the hidden-bits verifier to check proof π.

Notation and parameters For security parameter λ, we denote by p(|x|+ λ)
the ciphertext size of LE. By p2(|x|, λ), we denote the size of the randomness
needed to compute FE ciphertexts, while p3(|x|, λ) denotes the size of the ran-
dom tape needed by the hidden-bits simulator SH . Recall that t(|x|, λ) is the
polynomial from Definition 10. Then LF must be a

(
p1(|x|, λ), λ, t(|x|, 2λ+ |x|),

p(|x|+ λ) + λ
)
-lossy function. Consider the subexponential security level of iO,FE

and PRF to be 1
2κε

, for some constant 0 < ε < 1. Then κ must be chosen as
(p(|x|+ λ) + λ)(1/ε).

4 Security Proof

Theorem 11. Let PRF be a subexponentially-secure puncturable pseudo-random
function, iO be a subexponentially-secure obfuscator, PRG a secure pseudo-random
generator, LE a secure lossy encryption scheme and FE a subexponentially-secure
selectively-IND-CPA functional encryption scheme, then the scheme DM-NIWI =
(DM-NIWI.Setup,DM-NIWI.Prover,DM-NIWI.Verifier) described in Figure 5 is a
secure dual-mode non-interactive witness-indistinguishable system.

4.1 Completeness

Lemma 12. The DM-NIWI system in Figure 5 is perfectly complete.

Proof. Completeness follows from the completeness of the hidden-bits NIZKH ,
the perfect ZK of NIZKH , the perfect correctness of FE and the functionality of
iO (the fact that for all programs C, we have that iO(C) is functionally equivalent
to C). Consider any (x,w) ∈ R and (C, π) = DM-NIWI.Prover(CRS, x, w, r). We
want to show that DM-NIWI.Verifier(C, π,CRS) = 1 with probability 1.

Case 1: CRS←r DM-NIWI.Setup(1λ, binding) Since (C,Π) is a proof com-
puted by the honest prover, we know that (π, I) ← PH(x,w, hrs), where hrs is
derived from a, the lossy encryption of (x,w). From the perfect correctness of FE,
we have that indeed (T ⊕ crs)I = hrsI . Therefore, from the perfect correctness
of NIZKH , it follows that VH(I, (T ⊕ crs)I , x, π) accepts with probability 1.

Case 2: CRS←r DM-NIWI.Setup(1λ, hiding) Since (C,Π) is a proof com-
puted by the honest prover, we know that (hrsI , π, I) ← SH(x; r3), where r3 is

16 Dennis Hofheinz and Bogdan Ursu

Setup(1λ,mode)
PRG←r PRG.Setup(1λ)
if mode = binding then

H←r LF.Setup(1λ, lossy)
else

H←r LF.Setup(1λ,dense)
(lpk, lsk)←r LE.Setup(1λ, lossy)
K1,K2,K3 ←r PRF.KeyGen(1κ)
(fmpk, fmsk)←r FE.Setup(1κ)
skf ←r FE.KeyGen(fmsk, f)

crs←r {0, 1}t(|x|,2λ+|x|)
z ←r {0, 1}λ
if mode = binding then

Z ←r {0, 1}2λ+|x|
else

Z ← PRG(z)
PC = iO(ProgProvmode,crs)
CRS := (H, fmpk, lpk, skf , crs, Z,PC)
if mode = binding then

Return (CRS, tdext := fmsk)
Return CRS

Prover(PC, x, w, r)
Return Π := PC(x,w, r)

Verifier(CRS, x,Π := (C, π))

(T, I)← FE.Dec(skf , C)
hrsI ← T ⊕ crsI
return VH(x, hrsI , I, π)

ProgProvmode,crs(x,w, r)

Hardcoded: Keys K1,K2,K3, z
if (x,w) /∈ R

Return ⊥
a←r LE.Enc(lpk, (x,w); r)
if mode = binding then

(C, π) = BindingProofcrs(x,w, a)
else

(C, π) = HidingProofcrs(x, a)
Return Π := (C, π)

BindingProofcrs(x,w, a)

Hardcoded : Keys K1,K2

X ← PRF(K1, a)
hrs← H(X)⊕ crs
(π, I)← PH(x,w, hrs)
r2 ← PRF(K2, a)
C = FE.Enc(fmpk, (X, I, 0, 0); r2)
Return Π := (C, π)

HidingProofcrs(x, a)

Hardcoded : Keys K2,K3

r3 ← PRF(K3, a)
(hrsI , π, I)← SH(x; r3)
T ← hrsI ⊕ crsI
r2 ← PRF(K2, a)
C = FE.Enc(fmpk, (0, I, z, T); r2)
Return Π := (C, π)

f(C = FE.Enc(fmpk, (X, I, z, T)))
Hardcoded : Parameters Z,H
if PRG(z) = Z then return (T, I).
else return (H(X)I , I)

Fig. 5. Dual-mode NIWI scheme DM-NIWI = (Setup,Prover,Verifier). LF is a class
of lossy functions, PRG.Setup outputs pseudo-random generators from {0.1}λ to
{0, 1}2λ+|x|, FE is a functional encryption scheme, LE is a lossy encryption scheme,
iO is an indistinguishability obfuscator and (PH ,VH) is the hidden-bits model NIZK
from [22]. Parameter κ is chosen so that the sub-exponential security level is sufficient.

the random tape used by the hidden-bits simulator SH . By the perfect correctness
of FE, decrypting C yields indeed hrsI⊕crsI , therefore we can recover hrsI . Now,
since NIZKH has perfect zero-knowledge, it follows that VH(I, (T ⊕ crs)I , x, π)
accepts with probability 1 (or otherwise simulated proofs would not be identi-
cally distributed to real ones).

Dual-Mode NIZKs from Obfuscation 17

4.2 Soundness

Theorem 13. When in binding mode, the DM-NIWI system in Figure 5 is sta-
tistically sound.

Proof. Here we use the soundness of the hidden-bits scheme, coupled with the
lossiness of function H.

Since crs is uniformly random, computing hrs := H(PRF(K1, a)) ⊕ crs will
yield another uniformly random string and will allow us to use the soundness of
the hidden-bits system. Moreover, we leverage the lossiness of H to ensure that
an adversary cannot influence the hrs sufficiently enough as to be able to cheat.
This is because the honest verifier applies H automatically when it functionally
decrypts ciphertext C.

More formally, fix some x ∈ {0, 1}n \ L. We prove that with overwhelming
probability over the common reference string, there is no proof Π which will
be accepted by the verifier. This is a selective notion which we later amplify to
obtain the security notion from Definition 9.

We want to bound Pr(CRS,tdext)←rSetup(1λ,binding)[∃Π : Verifier(Π,CRS) = 1].
We can rewrite this probability as:

Pr
Z ←r {0, 1}2λ+|x|
crs←r {0, 1}t(|x|,2λ+|x|)
H,PC, fmpk, fmsk, skf

[∃(π,C) : Verifier((π,C), (H, fmpk, lpk, skf , crs, Z,PC)) = 1]

Now, we condition on the event E that Z does not have a PRG preimage, which
happens with probability 1− 1

2λ+|x|
. If Z has no preimage, then from the func-

tionality of iO and the correctness of the FE scheme, the adversary must produce
a ciphertext of the form C = FE.Enc(X, I, ·, ·). Note that both the functional
equivalence of iO and the correctness of the functional encryption scheme are
statistical properties. Therefore, the probability above is less or equal than:

Pr
crs←r {0, 1}t(|x|,2λ+|x|)

[∃(π,X, I) : VH(x, (crs⊕ H(X))I , I, π) = 1]

The next step is to bound the number of possible values of hrs. Recall that
hrs := H(PRF(K1, a)) ⊕ crs. From the lossiness of H, we know that there are at
most 2k images of H, where k is the second parameter of H (see Definition 2).
Thus, we can compute an union bound over all these images H(X), bounding
the above probability by:

2k × Pr
crs←r {0, 1}t(|x|,2λ+|x|)

[∃(π, I) : VH(x, (crs⊕ H(X))I , I, π) = 1]

Now, recall that we denote crs ⊕H(X) as hrs. Since crs is uniformly randomly
distributed, so is hrs, and we can rewrite the probability above as:

2k × Pr
hrs←r {0, 1}t(|x|,2λ+|x|)

[∃(π, I) : VH(x, hrsI , I, π) = 1]

18 Dennis Hofheinz and Bogdan Ursu

Finally, by using the soundness of the hidden-bits NIZK, we know that:

Pr
hrs←r {0, 1}t(|x|,2λ+|x|)

[∃(π, I) : VH(x, hrsI , I, π) = 1] ≤ 1

22λ+|x|

Therefore, we can conclude that:

Pr(CRS,tdext)←rSetup(1λ,binding)[∃Π : Verifier(Π,CRS) = 1] ≤ 1
22λ+|x|−k

.

The only remaining step is to amplify the security from the selective variant
we have just proven to the adaptive one from Definition 9. We eliminate the
restriction that x is fixed by computing a union bound over all possible values of
x. In particular, for H parameter k = λ, we conclude that for every unbounded
adversary A:

Pr

[
(CRS, tdext)←r Setup(1λ,binding),
(x,Π)←r A(CRS)

: Verifier(CRS, x,Π) = 1 ∧ x /∈ LR
]
=

1

2λ
.

As a last check, we must ensure that event ¬E still happens with negligible
probability. If we compute the same union bound as above, the probability of
¬E is now bounded by 1

2λ
. Therefore, the system is statistically sound.

4.3 Witness Indinstinguishability

Theorem 14. In hiding mode, the DM-NIWI system from Figure 5 is statisti-
cally witness-indistinguishable.

Proof. By using the statistical lossiness of LE, we show that no (potentially
unbounded) adversary A can break the witness-indistinguishability of DM-NIWI.
Recall that the lossiness of LE implies that for all (lpk,⊥) ← LE.Gen(1λ, lossy),
and for all x,w0, w1, encryptions of (x,w0) are statistically indistinguishable
from encryptions of (x,w1). More formally:

D0 := {r ← R : (lpk, LE.Enc(lpk, (x,w0), r))} ≈ 1

2λ

≈ 1

2λ
{r ← R : (lpk, LE.Enc(lpk, (x,w1), r))} =: D1.

The goal is to show that for every hiding CRS and for every (x,w0, w1), with
both (x,w0) ∈ R and (x,w1) ∈ R, proofs for (x,w0) are statistically indistin-
guishable from proofs for (x,w1). Fix (x,w0, w1) and let D′b be the following
distribution:

D′b :=
{

CRS←r DM-NIWI.Setup(1λ, hiding) : π ←r DM-NIWI.Prove(CRS, x, wb)
}

(1)
We want to prove that we have that D′0 ≈ 1

2λ
D′1. To achieve this, we exhibit

a probabilistic function F which on input Db outputs D′b, i.e. F (Db) = D′b,
without needing to know bit b. If such an F exists, then D0 ≈ 1

2λ
D1 implies that

F (D0) ≈ 1

2λ
F (D1). Function F works as follows:

Dual-Mode NIZKs from Obfuscation 19

1. F obtains public key lpk from Db. Then F esentially computes DM-NIWI.
Setup(1λ) and chooses all the parameters itself, except for lpk which comes
from Db.
In more detail, F chooses the PRG, a dense function H, keys K1,K2,K3,
master keys (fmpk, fmsk) and functional key skf just as in DM-NIWI.Setup(1λ).
It also draws uniformly random strings z and crs. It then sets Z = PRG(z)
and uses all these parameters to construct program ProgProvhiding,crs, which
it obfuscates obtaining PC.

2. For hiding CRS, we have that PC obfuscates ProgProvhiding,crs. Therefore, F
can compute the output of DM-NIWI.Prove(CRS, x, wb) even without know-
ing bit b: F has access to ciphertext ct from distribution Db. Ciphertext ct
can originate from either (x,w0) or (x,w1). F simply computes (C, π) ←r
HidingProofcrs(x, ct) and uses (C, π) to construct distribution D′b. Observe
that this is only possible because HidingProofcrs(x, ct) crucially only has x and
ct as inputs and does not directly depend on witnesses w0, w1 themselves.

We have shown that F (D0) ≈ 1

2λ
F (D1), for every (x,w0, w1) and for all hiding

CRS←r DM-NIWI.Setup(1λ,hiding). This concludes witness-indistinguishability
as defined in Definition 9. (In Definition 9, the adversary can choose (x,w0, w1)
after seeing the CRS, but since F (D0) ≈ 1

2λ
F (D1) for every (x,w0, w1) and for

every hiding CRS, the adversary will not have advantage greater that 1
2λ
).

4.4 CRS Indistinguishability

Theorem 15. The DM-NIWI system from Figure 5 satisfies computational in-
distinguishability between common reference strings generated in binding mode
and common reference strings generated in hiding mode.

Proof. The proof proceeds by a sequence of games where G0 is defined exactly as
Exp-CRS-IND0(1

λ,A) (see Figure 4). G0 corresponds to the experiment in which
adversary A against crs indistinguishability receives common reference strings
in binding mode. A high-level summary is provided in Figure 6. For any game
Gi, we denote by Advi(A) the advantage of A in Gi, that is, Pr[Gi(1λ,A) = 1],
where the probability is taken over the random coins of Gi and A. At a high
level, we use four hybrid games G0,G1,G2 and G3. The proof is in three phases:

1. In the first phase, we transition from G0 to G1. Game G1 is defined to be the
same as G0, except for the following two changes: First, we switch the mode
of the lossy function H from lossy to dense. This is done with the end goal of
ensuring that the output of H is uniformly distributed at specific values of a.
Secondly, we use the security of the PRG to change Z from being uniformly
random to being in the image of the PRG. This is done by setting Z = PRG(z).
To anticipate, this will provide us with a trapdoor for replacing functional
ciphertext encodingX with ciphertexts encoding hrsI . The fact that G0 ≈c G1

is proven in Lemma 16.

20 Dennis Hofheinz and Bogdan Ursu

2. In the second phase, we transition from G1 to G2. Game G2 is defined to be
precisely the same as G1, except that DM-NIWI.Setup(1λ) computes PC =
iO(ProgProvhiding,crs). This transition only makes changes in the program
ProgProv. By iterating over all values of a, for each a we replace real proofs
by simulated proofs from the hidden-bits simultator SH .
We carefully leverage PRF security, the injective mode of LE and the density
of H to ensure that for a specific a∗, its corresponding hrs∗ is of the form
β ⊕ crs, for uniformly random β. Then we use functional encryption security
to replace the functional ciphertext corresponding to a∗ to one which only
leaks hrsI . But at this stage, since only hrsI is encoded in the ciphertext, we
can use the zero knowledge of the hidden-bits NIZK to replace real proofs by
simulated ones. We formally prove that G1 ≈c G2 in Theorem 18.

3. In the third stage, we define G3 to be the same as Exp-CRS-IND1(1
λ,A). The

only difference between G2 and G3 is that in the later, the public key of the
lossy encryption scheme LE is switched from injective to lossy mode. We prove
that G2 ≈c G3 in Lemma 17.

Game (lpk, lsk) H Z PC
Mode or
Remark

G0 LE.Setup(1λ, inj) LF.Setup(1λ, lossy) Z ←r {0, 1}2λ+|x| iO(ProgProvbinding) Binding

G1 LE.Setup(1λ, inj) LF.Setup(1λ, dense) Z ← PRG(z) iO(ProgProvbinding) Lemma 16

G2 LE.Setup(1λ, inj) LF.Setup(1λ, dense) Z ← PRG(z) iO(ProgProvhiding) Theorem 18

G3 LE.Setup(1λ, lossy) LF.Setup(1λ, dense) Z ← PRG(z) iO(ProgProvhiding)
Lemma 17
Hiding

Fig. 6. An overview of the games used in the proof of Theorem 15, changes between
consecutive games are highlighted with gray boxes.

.

Lemma 16 (From G0 to G1). For every PPT adversary A, it holds that
|Adv0(A)− Adv1(A)| ≤ negl(λ).

Proof. The only differences between G0 and G1 are the fact that Z is changed
from Z ←r {0, 1}2λ+|x| to Z ← PRG(z) and function H is changed from H
← LF.Setup(1λ, lossy) to H← LF.Setup(1λ, dense). The lemma follows from the
security of the PRG and from the computational indistinguishability of the modes
of the lossy function LF. Namely, if A can distinguish between G0 and G1, there
exists either a PPT adversary B1 that can break the security of the PRG or a
PPT adversary B2 that can distinguish with non-negligible advantage between
the lossy and dense modes of LF.

Lemma 17 (From G2 to G3). For every PPT adversary A, it holds that
|Adv2(A)− Adv3(A)| ≤ negl(λ).

Proof. The only change between G2 and G3 is that the (lpk, lsk) keys of LE are
changed from injective to lossy. The lemma follows directly from the fact that
{proj(LE.Gen(1λ, inj))} ≈c {proj(LE.Gen(1λ, lossy))}, where proj : (lpk, lsk) →
lpk and from the fact that lsk is not used anywhere in the construction.

Dual-Mode NIZKs from Obfuscation 21

Hybrid H1,a∗

Setup(1λ,mode)
PRG←r PRG.Setup(1λ)
H←r LF.Setup(1λ,dense)
(lpk, lsk)←r LE.Setup(1λ, inj)
K1,K2,K3 ←r PRF.KeyGen(1λ)
(fmpk, fmsk)←r FE.Setup(1λ)
skf ←r FE.KeyGen(fmsk, f)

crs←r {0, 1}t(|x|,2λ+|x|)
z ←r {0, 1}λ
Z ← PRG(z)

PC = iO(ProgProv1,a∗)

CRS := (H, fmpk, lpk, skf , crs, Z,PC)
Return CRS

ProgProv1,a∗(x,w, r)

if (x,w) /∈ R
Return ⊥

Hardcoded: Keys K1,K2,K3, z
a←r LE.Enc(lpk, (x,w); r)

if a<a∗ then
(C, π) = HidingProofcrs(x,w, a)

if a ≥ a∗

(C, π) = BindingProofcrs(x, a)

Return Π := (C, π)

Fig. 7. Hybrid H(1,a∗) for the proofs of Theorems 18 and 19. Note that the Prover,
Verifier, BindingProof, HidingProof and function f are the same as defined in Figure 5
and are not represented again for succinctness. Changes between hybrids H(1, a

∗) and
game G1 are highlighted in light gray.

Theorem 18 (From G1 to G2). For every PPT adversary A, there exist PPT
adversaries B1,B2,B3, such that:

|Adv0(A)− Adv1(A)| ≤ 2p(|x|+λ)
(
8 · AdviO(κ,B1) + 4 · Advs-cPRF(κ,B2) +

AdvFEExp-s-IND-FE-CPA(κ,B3) +∆NIZKH
Zero Knowledge(λ) +

1
2p(|x|+λ)+λ

)
.

Proof. The proof strategy is to iterate over all values of a = LE.Enc(lpk, (x,w), r)
and make changes to the obfuscation of the program ProgProv. We define a series
of hybrids H1,a∗ , for all a∗ ∈ {0, 1}p(|x|+λ) in Figure 7. Briefly, hybrid H1,a∗ is
defined as follows:

Hybrid H1,a∗ is defined in the same way as game G1, except that:

1. DM-NIWI.Setup is changed such that the computation of the public parameter
PC = iO(ProgProvbinding,crs) is replaced by PC = iO(ProgProv1,a∗).

2. Program ProgProv1,a∗ on inputs x,w, r is the program which first computes
a = LE.Enc(lpk, (x,w), r). Then it compares a with hardcoded value a∗ and
for a < a∗, it computes (C, π) = HidingProofcrs(x, a), while for a ≥ a∗ it
computes (C, π) = BindingProofcrs(x,w, a). It then returns proof (C, π).

Note that hybrid H1,0p(|x|+λ) is the same as game G1, while hybrid H1,1p(|x|+λ)

is the same as game G2 = Exp-CRS-IND1(1
λ,A). Just as before, for every hybrid

Hi, we denote by Advi(A) the advantage of A in Hi, that is, Pr[Gi(1λ,A) = 1].
In Theorem 19, we formally prove that every two consecutive hybrids H(1, a∗)
and H(1, a∗+1) are computationally indistinguishable, i.e. H(1,a∗−1) ≈c H(1,a∗),
for every a∗ ∈ [2p(|x|+λ)].

Theorem 19 (From H(1,a∗) to H(1,(a∗+1))). For every PPT adversary A, there
exist PPT adversaries B1,B2,B3, such that:

22 Dennis Hofheinz and Bogdan Ursu

Hybrid H1,a∗ , . . . ,H15,a∗

Setup(1λ,mode)
PRG←r PRG.Setup(1λ)
H←r LF.Setup(1λ,dense)
(lpk, lsk)←r LE.Setup(1λ, inj)
K1,K2,K3 ←r PRF.KeyGen(1κ)
(fmpk, fmsk)←r FE.Setup(1κ)
skf ←r FE.KeyGen(fmsk, f)

crs←r {0, 1}t(|x|,2λ+|x|)
z ←r {0, 1}λ
Z ← PRG(z)
PC = iO(ProgProvi,a∗,crs)
CRS := (H, fmpk, lpk, skf , crs, Z,PC)
Return CRS

ProgProvi,a∗,crs(x,w, r)

if (x,w) /∈ R
Return ⊥

a←r LE.Enc(lpk, (x,w); r)
if a < a∗ then

(C, π) = HidingProofcrs(x,w, a)
if a = a∗

(C, π) = HybridProofi,a∗,crs(x,w, a)
if a > a∗

(C, π) = BindingProofcrs(x, a)
Return Π := (C, π)

Fig. 8. Hybrids H(i,a∗) for the proofs of Theorems 18 and 19. Note that the
Prover, Verifier, BindingProof, HidingProof and function f are the same as defined
in Figure 5 and are not represented again for succinctness. For i = 1, subpro-
gram HybridProof1,a∗,crs = BindingProofcrs and for i = 15, HybridProof15,a∗,crs =
HidingProofcrs. All ProgProvi,a∗,crs(x,w, r) are padded so that they have equal sizes.

|Adv(1,a∗)(A)− Adv(1,(a∗+1))(A)| ≤ 8 · AdviO(κ,B1) + 4 · Advs-cPRF(κ,B2) +
AdvFEExp-s-IND-FE-CPA(κ,B3) +∆NIZKH

Zero Knowledge(λ) +
1

2p(|x|+λ)+λ
.

Proof. We prove this through a sequence of hybrids H(1,a∗) up to H(15,a∗), where
hybrid H(15,a∗) is identical to hybrid H(1,(a∗+1)). In terms of notation, hybrid
H(i,a∗) will have PC = iO(ProgProvi,a∗,crs). The proof strategy is to leverage
the properties of iO,FE,PRFs, LE and H in order to replace actual proofs com-
puted by the hidden-bits prover PH to simulated proofs computed by SH . No-
tice that in H(1,a∗), proofs corresponding to a are computed by subprogram
BindingProofcrs(x,w, a), while in H(15,a∗) they are computed by subprogram
HidingProofcrs(x,w). This is the only difference between the two hybrids. In
order to replace subprogram BindingProofcrs() by HidingProofcrs() we define a
series of subprograms HybridProofi,a∗,crs, for i ∈ [15]. As expected, every hy-
brid H(i,a∗) will be defined to be identical to H1,a∗ , except that for a = a∗,
(C, π) = HybridProofi,a∗,crs(x,w, a). The hybrids are described in Figure 7. For
a detailed decription of subprograms HybridProofi,a∗,crs, see Figures 9 to 12.

Hybrid H(2,a∗) In this hybrid game, the subprogram HybridProof2,a∗,crs is changed
so that key K1 is punctured at point a∗. This is a standard punctured pro-
gramming technique. Once we puncture the key, only K1{a∗} is hardcoded
in the program, along with the evaluation of r∗1 ← PRF(K1, a

∗), but not K1

itself. Observe that key K1 is punctured in ProgProv2,a∗,crs and all its sub-
programs as well. In H(i,a∗), i ∈ [15] subprograms BindingProofcrs(x,w, a) and
HidingProofcrs(x,w, a) are never called on inputs a 6= a∗, so they never need the
evaluation of PRF(K1, a

∗).
This puncturing can be done since a∗ is a parameter of the hybrid (we are

enumerating over all values of a). Since the programs are functionally equivalent,

Dual-Mode NIZKs from Obfuscation 23

this change is computationally indistinguishable by the security of iO. Observe
that when we hardcode a value in a subprogram HybridProofi,a∗,crs, it is under-
stood that this value is also hardcoded in ProgProvi,a∗,crs. A full description of
HybridProof2,a∗,crs can be found in Figure 9. This shows the following lemma:

Lemma 20 (From H(1,a∗) to H(2,a∗)). For every PPT adversary A, there exists
a PPT adversary B, such that: |Adv(1,a∗)(A)− Adv(2,a∗)(A)| ≤ AdviO(κ,B).

Hybrid H(3,a∗) Here subprogram HybridProof3,a∗,crs is changed so that r∗1 is
now a uniformly random value hardcoded inside our program. This change is
computationally indistinguishable by the pseudorandomness at punctured points
of PRF (we are replacing the evaluation at K1{a∗} by a uniformly random). A
full description of subprogram HybridProof3,a∗,crs can be found in Figure 9. This
shows the following lemma:

Lemma 21 (From H(2,a∗) to H(3,a∗)). For every PPT adversary A, there exists
a PPT adversary B, such that: |Adv(2,a∗)(A)−Adv(3,a∗)(A)| ≤ Advs-cPRF(κ,B).

Hybrid H(4,a∗) Subprogram HybridProof2,a∗,crs is changed so that key K2 is
punctured at point a∗. This is by the same argument as in Lemma 20 and uses
the security of iO. Once we puncture the key, only K2{a∗} is hardcoded in all
subroutines of ProgProv4,a∗,crs, along with the evaluation of r∗2 ← PRF(K2, a

∗),
but not K2 itself. This shows the following lemma:

Lemma 22 (From H(3,a∗) to H(4,a∗)). For every PPT adversary A, there exists
a PPT adversary B, such that: |Adv(3,a∗)(A)− Adv(4,a∗)(A)| ≤ AdviO(κ,B).

Hybrid H(5,a∗) Here subprogram HybridProof5,a∗,crs is changed so that r∗2 is
now a uniformly random value hardcoded inside our program. This change is
computationally indistinguishable by the pseudorandomness at punctured points
of PRF (we are replacing the evaluation at K2{a∗} by a uniformly random). The
full description of HybridProof5,a∗,crs can be found in Figure 10. This shows the
following lemma:

Lemma 23 (From H(4,a∗) to H(5,a∗)). For every PPT adversary A, there exists
a PPT adversary B, such that: |Adv(4,a∗)(A)− Adv(5,a∗)(A)| ≤ Advs-cPRF(κ,B).

Hybrid H(6,a∗) Subprogram HybridProof6,a∗,crs precomputes and hardcodes the
(C∗, π∗) corresponding to a∗. For this we make the crucial observation that for
every a, there exists only one corresponding (x,w). This follows from the perfect
correctness of the lossy encryption scheme LE, because LE is in injective mode
and because a = LE.Enc(lpk, (x,w); r). To compute this hybrid, we use lsk to
decrypt a∗ and obtain the corresponding (x∗, w∗). Thus, if a∗ is known in advance
this means (x∗, w∗) is also known in advance. Since crs is a parameter of the
circuit and also known in advance, we can compute hrs∗ ← H(r∗1)⊕crs, (π∗, I∗)←
PH(x∗, w∗, hrs∗) and C∗ = FE.Enc(fmpk, (r∗1 , I∗, 0, 0); r∗2). We hardcode (C∗, π∗)
and these are also the returned values when HybridProof6,a∗,crs is invoked on

24 Dennis Hofheinz and Bogdan Ursu

HybridProof1,a∗,crs(x,w, a)

Hardcoded: Keys K1,K2,K3, z
X ← PRF(K1, a)
hrs← H(X)⊕ crs
(π, I)← PH(x,w, hrs)
r2 ← PRF(K2, a)
C = FE.Enc(fmpk, (X, I, 0, 0); r2)
Return Π := (C, π)

HybridProof2,a∗,crs(x,w, a)

Hardcoded: Keys K1{a∗} ,K2,K3, z

r∗1 ← PRF(K1, a
∗)

hrs← H(r∗1)⊕ crs
(π, I)← PH(x,w, hrs)
r2 ← PRF(K2, a)

C = FE.Enc(fmpk, (r∗1 , I, 0, 0); r2)
Return Π := (C, π)

HybridProof3,a∗,crs(x,w, a)

Hardcoded: Keys K1{a∗},K2,K3, z

r∗1 ←r {0, 1}p1(|x|,λ)

hrs← H(r∗1)⊕ crs
(π, I)← PH(x,w, hrs)
r2 ← PRF(K2, a)
C = FE.Enc(fmpk, (r∗1 , I, 0, 0); r2)
Return Π := (C, π)

HybridProof4,a∗,crs(x,w, a)

Hardcoded: Keys K1{a∗}, K2{a∗} ,K3, z

r∗1 ←r {0, 1}p1(|x|,λ)

r∗2 ← PRF(K2, a
∗)

hrs← H(r∗1)⊕ crs
(π, I)← PH(x,w, hrs)
r2 ← PRF(K2, a)
C = FE.Enc(fmpk, (r∗1 , I, 0, 0); r2)
Return Π := (C, π)

Fig. 9. Descriptions of HybridProofi,a∗,crs, for i = 1 . . . 4. In each subprogram, the
changes relative to the previous subprogram are highlighted in gray. When we hard-
code a value in a subprogram HybridProofi,a∗,crs, it is understood that this value is also
hardcoded in ProgProvi,a∗,crs. If a key K is punctured in HybridProofi,a∗,crs, we under-
stand that it is punctured in ProgProvi,a∗,crs and all its subprograms as well. Note that
HybridProof1,a∗,crs is the same as BindingProofcrs.

(x∗, w∗, a∗). Since ProgProv6,a∗,crs is functionally equivalent to ProgProv5,a∗,crs,
this step is justified by iO security. The full description of HybridProof6,a∗,crs can
be found in Figure 10. From all the above, we have the following lemma:

Lemma 24 (From H(5,a∗) to H(6,a∗)). For every PPT adversary A, there exists
a PPT adversary B, such that: |Adv(5,a∗)(A)− Adv(6,a∗)(A)| ≤ AdviO(κ,B).

Hybrid H(7,a∗) To obtain subprogram HybridProof7,a∗,crs, we use the selec-
tive security of the functional encryption scheme FE to switch ciphertext C∗ =
FE.Enc(fmpk, (r∗1 , I∗, 0, 0); r∗2) to ciphertext C∗ = FE.Enc(fmpk, (0, I∗, z, T ∗I∗); r∗2).
We argue that these two ciphertexts are indistinguishable. Consider decryption
key skf used by the verifier, this key is associated to function f. But from the
definition of f, it holds that:

f(r∗1 , I∗, 0, 0) = f(0, I∗, z, T ∗I∗).

Since r∗2 used for encryption has been previously switched to a uniformly random,
we can therefore reduce the gap between these two games to the SEL-IND-FE-CPA
game. Also note that we are only able to use the selective security of the FE
scheme because all the values above are known in advance and are derived from
a. The full description of HybridProof7,a∗,crs can be found in Figure 10. We have
therefore proven the following lemma:

Dual-Mode NIZKs from Obfuscation 25

HybridProof5,a∗,crs(x,w, a)

Hardcoded: Keys K1{a∗},K2{a∗},K3, z

r∗1 ←r {0, 1}p1(|x|,λ)

r∗2 ←r {0, 1}p2(|x|,λ)

hrs← H(r∗1)⊕ crs
(π, I)← PH(x,w, hrs)
C = FE.Enc(fmpk, (r∗1 , I, 0, 0); r2)
Return Π := (C, π)

HybridProof6,a∗,crs(x,w, a)

Precompute: r∗1 ←r {0, 1}p1(|x|,λ)

r∗2 ←r {0, 1}p2(|x|,λ)

hrs∗ ← H(r∗1)⊕ crs

Hardcoded: Keys K1{a∗},K2{a∗},K3, z

(π∗, I∗)← PH(x∗, w∗, hrs∗)

C∗ = FE.Enc(fmpk, (r∗1 , I∗, 0, 0); r∗2)
Return Π := (C∗ , π∗)

HybridProof7,a∗,crs(x,w, a)

Precompute: r∗1 ←r {0, 1}p1(|x|,λ)

r∗2 ←r {0, 1}p2(|x|,λ)

T ∗ ← H(r∗1)

hrs∗ ← T ∗ ⊕ crs

Hardcoded: Keys K1{a∗},K2{a∗},K3, z
(π∗, I∗)← PH(x∗, w∗, hrs∗)

C∗ = FE.Enc(fmpk, (0, I∗, z , T ∗I∗); r∗2)

Return Π := (C∗, π∗)

HybridProof8,a∗,crs(x,w, a)

Precompute: r∗2 ←r {0, 1}p2(|x|,λ)

T ∗ ←r {0, 1}t(|x|,2λ+|x|)

hrs∗ ← T ∗ ⊕ crs
Hardcoded: Keys K1{a∗},K2{a∗},K3, z

(π∗, I∗)← PH(x∗, w∗, hrs∗)
C∗ = FE.Enc(fmpk, (0, I∗, z, T ∗I∗); r∗2)

Return Π := (C∗, π∗)

Fig. 10. Descriptions of HybridProofi,a∗,crs, for i = 5 . . . 8. In each subprogram, the
changes relative to the previous subprogram are highlighted in gray. A hardwired value
is understood to also be hardwired in ProgProvi,a∗,crs. If key K is punctured, we un-
derstand that it is punctured in ProgProvi,a∗,crs and all its subprograms.

Lemma 25 (From H(6,a∗) to H(7,a∗)). For every PPT adversary A, there exists
a PPT adversary B, such that:

|Adv(6,a∗)(A)− Adv(7,a∗)(A)| ≤ AdvFEExp-s-IND-FE-CPA(κ,B).

Hybrid H(8,a∗) Subprogram HybridProof8,a∗,crs is defined like HybridProof7,a∗,crs,
except that the computation of hrs∗ changes. Instead of computing hrs∗ ← T ∗⊕
crs, where T ∗ ← H(r∗1), we compute T ∗ ←r {0, 1}p1(|x|,λ) and let hrs∗ ← T ∗⊕crs.
This step is justified by the dense mode of H. From Definition 2, we know that
for uniformly random r∗1 , we have H(r∗1) statistically indistinguishable from a
uniformly random. Moreover, by choosing the security parameter in LF.Setup
(1λ,dense) to be large enough, we can offset the 2p(|x|+λ) factor coming from
enumerating over all values of a. The full description of HybridProof8,a∗,crs can
be found in Figure 10. We have therefore proven the following lemma:

Lemma 26 (From H(7,a∗) to H(8,a∗)). For every (potentially unbounded) ad-
versary A, it holds that:

|Adv(7,a∗)(A)− Adv(8,a∗)(A)| ≤ 1
2p(|x|+λ)+λ

.

Hybrid H(9,a∗) In this hybrid, we use the zero-knowledge property of the
hidden-bits NIZK system to replace real proofs by simulated ones. Subprogram
HybridProof9,a∗,crs is defined like HybridProof8,a∗,crs, but now the precomputation

26 Dennis Hofheinz and Bogdan Ursu

HybridProof9,a∗,crs(x,w, a)

Precompute: r∗2 ←r {0, 1}p2(|x|,λ)

r∗3 ←r {0, 1}p3(|x|,λ)
Hardcoded: Keys K1{a∗},K2{a∗},K3, z

(hrs∗I∗ , π
∗, I∗)← SH(x∗; r∗3)

T ∗ ← hrs∗I∗ ⊕ crsI∗

C∗ = FE.Enc(fmpk, (0, I∗, z, T ∗I∗); r∗2)
Return Π := (C∗, π∗)

HybridProof10,a∗,crs(x,w, a)

Precompute: r∗2 ← PRF(K2, a
∗)

r∗3 ←r {0, 1}p3(|x|,λ)
Hardcoded: Keys K1{a∗},K2{a∗},K3, z

(hrs∗I∗ , π
∗, I∗)← SH(x∗; r∗3)

T ∗ ← hrs∗I∗ ⊕ crsI∗

C∗ = FE.Enc(fmpk, (0, I∗, z, T ∗I∗); r∗2)
Return Π := (C∗, π∗)

HybridProof11,a∗,crs(x,w, a)

Precompute: r∗3 ←r {0, 1}p3(|x|,λ)

Hardcoded: Keys K1{a∗}, K2 ,K3, z

(hrs∗I∗ , π
∗, I∗)← SH(x∗; r∗3)

T ∗ ← hrs∗I∗ ⊕ crsI∗

r2 ← PRF(K2, a)

C = FE.Enc(fmpk, (0, I∗, z, T ∗I∗); r2)
Return Π := (C , π∗)

HybridProof12,a∗,crs(x,w, a)

Precompute: r∗3 ←r {0, 1}p3(|x|,λ)

Hardcoded: Keys K1{a∗},K2, K3{a∗} , z
(hrs∗I∗ , π

∗, I∗)← SH(x∗; r∗3)
T ∗ ← hrs∗I∗ ⊕ crsI∗

r2 ← PRF(K2, a)
C = FE.Enc(fmpk, (0, I∗, z, T ∗I∗); r2)
Return Π := (C, π∗)

Fig. 11. Descriptions of HybridProofi,a∗,crs, for i = 9 . . . 12. In each subprogram, the
changes relative to the previous subprogram are highlighted in gray. A hardwired value
is also hardwired in ProgProvi,a∗,crs. If key K is punctured, we understand that it is
punctured in ProgProvi,a∗,crs and all its subprograms.

of the program involves choosing a uniformly random r∗3 ←r {0, 1}p3(|x|,λ). Poly-
nomial p3(|x|, λ) represents the size of the random tape needed by the hidden-bits
simulator SH . Proofs are now simulated, i.e. (hrs∗I∗ , π

∗, I∗)← SH(x∗; r∗3)
We now argue that this hybrid is statistically indistinguishable from the

previous one. The reason this works is that we already used FE security to
ensure that only the revealed bits of the hrs∗I∗ are encoded in ciphertext C∗ and
also that hrs∗ is uniformly random. This, coupled with the fact that in H(9,a∗)

only the value of the real proof (C∗, π∗) is hardcoded means we can use the ZK
property of NIZKH . In HybridProof9,a∗,crs we can hardcode only the simulated
proof, and there is no need to include the simulator code in ProgProv9,a∗,crs.

The full description of HybridProof9,a∗,crs can be found in Figure 11. We have
the following lemma, which we prove in detail in Appendix B:

Lemma 27 (From H(8,a∗) to H(9,a∗)). Let a∗ = LE.Enc(lpk, (x∗, w∗); r). Then
it holds that either:

1. if (x∗, w∗) ∈ R, then H(8,a∗) and H(9,a∗) are statistically close. Namely, for
every (potentially unbounded) adversary A,

|Adv(8,a∗)(A)− Adv(9,a∗)(A)| ≤ ∆NIZKH
Zero Knowledge(λ).

2. if (x∗, w∗) /∈ R, then H(8,a∗) and H(9,a∗) are computationally indistinguishable.
Namely, for every PPT adversary A, there exists PPT adversary B, such that:

|Adv(8,a∗)(A)− Adv(9,a∗)(A)| ≤ AdviO(κ,B).

Dual-Mode NIZKs from Obfuscation 27

Hybrid H(10,a∗) In subprogram HybridProof10,a∗,crs, the only change made is
that r∗2 is changed from a uniformly random value (as in hybrid H(9,a∗)) to r∗2 ←
PRF(K2, a

∗). This change is justified by the pseudo-randomness of PRF(K2, ·)
at punctured point a∗. The full description of HybridProof10,a∗,crs can be found
in Figure 11. This shows the following lemma:

Lemma 28 (From H(9,a∗) to H(10,a∗)). For every PPT adversary A, there
exists a PPT adversary B, such that:

|Adv(9,a∗)(A)− Adv(10,a∗)(A)| ≤ Advs-cPRF(κ,B).

Hybrid H(11,a∗) In subprogram HybridProof11,a∗,crs, the only change made is
that r2 is not precomputed anymore (as in hybrid H(10,a∗)). Value r2 ← PRF(K2, a

∗)
is now compted on the fly. This means C must also be computed on the fly in this
hybrid. These changes are justified by the fact that the two programs are func-
tionally equivalent and thus their obfuscations computationally indistinguish-
able. The full description of HybridProof11,a∗,crs can be found in Figure 11. This
shows the following lemma:

Lemma 29 (From H(10,a∗) to H(11,a∗)). For every PPT adversary A, there
exists a PPT adversary B, such that:

|Adv(10,a∗)(A)− Adv(11,a∗)(A)| ≤ AdviO(κ,B).

Hybrid H(12,a∗) In subprogram HybridProof12,a∗,crs, we puncture key K3 at
K3{a∗} and only hardcode this punctured key in our programs. This change
is justified by the fact that the two programs are functionally equivalent and
thus their obfuscations computationally indistinguishable. The full description
of HybridProof12,a∗,crs is given in Figure 11. This shows the following lemma::

Lemma 30 (From H(11,a∗) to H(12,a∗)). For every PPT adversary A, there
exists a PPT adversary B, such that:

|Adv(10,a∗)(A)− Adv(11,a∗)(A)| ≤ AdviO(κ,B).

Hybrid H(13,a∗) Subprogram HybridProof13,a∗,crs is changed so that r∗3 is not a
hard-wired uniformly random value anymore, but is chosen as r∗3 ← PRF(K3, a

∗).
This change is justified by the pseudo-randomness of PRF(K3, ·) at punctured
point a∗. The full description of HybridProof13,a∗,crs is given in Figure 12. From
the above, we have shown the following lemma:

Lemma 31 (From H(12,a∗) to H(13,a∗)). For every PPT adversary A, there
exists a PPT adversary B, such that:

|Adv(12,a∗)(A)− Adv(13,a∗)(A)| ≤ Advs-cPRF(κ,B).

28 Dennis Hofheinz and Bogdan Ursu

HybridProof13,a∗,crs(x,w, a)

Precompute: r∗3 ← PRF(K3, a
∗)

Hardcoded: Keys K1{a∗},K2,K3{a∗}, z
(hrs∗I∗ , π

∗, I∗)← SH(x∗; r∗3)
T ∗ ← hrs∗I∗ ⊕ crsI∗

r2 ← PRF(K2, a
∗)

C = FE.Enc(fmpk, (0, I∗, z, T ∗I∗); r2)
Return Π := (C, π∗)

HybridProof14,a∗,crs(x,w, a)

Hardcoded: Keys K1{a∗},K2, K3 , z

r3 ← PRF(K3, a)

(hrsI , π, I)← SH(x; r3)

T ← hrsI ⊕ crsI
r2 ← PRF(K2, a)

C = FE.Enc(fmpk, (0, I, z, TI); r2)

Return Π := (C, π)

HybridProof15,a∗,crs(x,w, a)

Hardcoded: Keys K1 ,K2,K3, z

r3 ← PRF(K3, a)
(hrsI , π, I)← SH(x; r3)
T ← hrsI ⊕ crsI
r2 ← PRF(K2, a)
C = FE.Enc(fmpk, (0, I, z, TI); r2)
Return Π := (C, π)

Fig. 12. Descriptions of HybridProofi,a∗,crs, for i = 13 . . . 16. In each subprogram, the
changes relative to the previous subprogram are highlighted in gray. A hardwired value
is also hardwired in ProgProvi,a∗,crs. If key K is punctured, we understand that it is
punctured in ProgProvi,a∗,crs and all its subprograms.

Hybrid H(14,a∗) In subprogram HybridProof14,a∗,crs the key K3 is not punctured
anymore at a∗. This means that r3 ← PRF(K3, a) is not hardwired anymore. As
a consequence, the simulated proofs are also not hardcoded. Since this program
is functionally equivalent to HybridProof14,a∗,crs, we justify this change by the
security of iO. The full description of HybridProof14,a∗,crs is given in Figure 12.
From all the above, we have shown the following lemma:
Lemma 32 (From H(13,a∗) to H(14,a∗)). For every PPT adversary A, there
exists a PPT adversary B, such that:

|Adv(13,a∗)(A)− Adv(14,a∗)(A)| ≤ AdviO(κ,B).

Hybrid H(15,a∗) In subprogram HybridProof15,a∗,crs the key K1 is not punctured
anymore at a∗. Key K1 is not even used anymore in this subprogram, therefore
this program is functionally equivalent to HybridProof14,a∗,crs. We thus justify
this change by the security of iO. The full description of HybridProof15,a∗,crs is
given in Figure 12. Remark that HybridProof15,a∗,crs is the same as HidingProofcrs,
which means H(15,a∗) = H(1,(a∗+1)). From all the above, we have shown:
Lemma 33 (From H(14,a∗) to H(15,a∗)). For every PPT adversary A, there
exists a PPT adversary B, such that:

|Adv(14,a∗)(A)− Adv(15,a∗)(A)| ≤ AdviO(κ,B).
References

1. Thomas Agrikola and Dennis Hofheinz. Interactively secure groups from obfusca-
tion. In Michel Abdalla and Ricardo Dahab, editors, PKC 2018, Part II, volume
10770 of LNCS, pages 341–370. Springer, Heidelberg, March 2018.

Dual-Mode NIZKs from Obfuscation 29

2. Martin R. Albrecht, Pooya Farshim, Dennis Hofheinz, Enrique Larraia, and Ken-
neth G. Paterson. Multilinear maps from obfuscation. In Eyal Kushilevitz and
Tal Malkin, editors, TCC 2016-A, Part I, volume 9562 of LNCS, pages 446–473.
Springer, Heidelberg, January 2016.

3. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In
Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer,
Heidelberg, August 2001.

4. Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna Lysyan-
skaya, and Hovav Shacham. Randomizable proofs and delegatable anonymous
credentials. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages
108–125. Springer, Heidelberg, August 2009.

5. Mihir Bellare, Dennis Hofheinz, and Scott Yilek. Possibility and impossibility
results for encryption and commitment secure under selective opening. In Antoine
Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 1–35. Springer,
Heidelberg, April 2009.

6. Nir Bitansky and Omer Paneth. ZAPs and non-interactive witness indistin-
guishability from indistinguishability obfuscation. In Yevgeniy Dodis and Jes-
per Buus Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS, pages 401–
427. Springer, Heidelberg, March 2015.

7. Nir Bitansky, Omer Paneth, and Daniel Wichs. Perfect structure on the edge
of chaos - trapdoor permutations from indistinguishability obfuscation. In Eyal
Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part I, volume 9562 of LNCS,
pages 474–502. Springer, Heidelberg, January 2016.

8. Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from
functional encryption. In Venkatesan Guruswami, editor, 56th FOCS, pages 171–
190. IEEE Computer Society Press, October 2015.

9. Olivier Blazy, Georg Fuchsbauer, Malika Izabachène, Amandine Jambert, Hervé
Sibert, and Damien Vergnaud. Batch Groth-Sahai. In Jianying Zhou and Moti
Yung, editors, ACNS 10, volume 6123 of LNCS, pages 218–235. Springer, Heidel-
berg, June 2010.

10. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge
and its applications (extended abstract). In 20th ACM STOC, pages 103–112.
ACM Press, May 1988.

11. Alexandra Boldyreva, Serge Fehr, and Adam O’Neill. On notions of security for
deterministic encryption, and efficient constructions without random oracles. In
David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 335–359.
Springer, Heidelberg, August 2008.

12. Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions
and challenges. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages
253–273. Springer, Heidelberg, March 2011.

13. Dan Boneh and Brent Waters. Constrained pseudorandom functions and their ap-
plications. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II,
volume 8270 of LNCS, pages 280–300. Springer, Heidelberg, December 2013.

14. Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseu-
dorandom functions. In Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS,
pages 501–519. Springer, Heidelberg, March 2014.

15. Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, and
Ron Rothblum. Fiat-shamir from simpler assumptions. IACR Cryptology ePrint
Archive, 2018:1004, 2018.

30 Dennis Hofheinz and Bogdan Ursu

16. Ran Canetti, Yilei Chen, and Leonid Reyzin. On the correlation intractability of
obfuscated pseudorandom functions. In Eyal Kushilevitz and Tal Malkin, editors,
TCC 2016-A, Part I, volume 9562 of LNCS, pages 389–415. Springer, Heidelberg,
January 2016.

17. Ran Canetti and Amit Lichtenberg. Certifying trapdoor permutations, revisited.
In TCC 2018, 2018. Appears. http://eprint.iacr.org/2017/631.

18. Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Obfus-
cation of probabilistic circuits and applications. In Yevgeniy Dodis and Jes-
per Buus Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS, pages 468–
497. Springer, Heidelberg, March 2015.

19. Ran Canetti, Alex Lombardi, and Daniel Wichs. Non-interactive zero knowledge
and correlation intractability from circular-secure FHE. Cryptology ePrint Archive,
Report 2018/1248, 2018. http://eprint.iacr.org/.

20. Alex Escala and Jens Groth. Fine-tuning Groth-Sahai proofs. In Hugo Krawczyk,
editor, PKC 2014, volume 8383 of LNCS, pages 630–649. Springer, Heidelberg,
March 2014.

21. Pooya Farshim, Julia Hesse, Dennis Hofheinz, and Enrique Larraia. Graded en-
coding schemes from obfuscation. In Michel Abdalla and Ricardo Dahab, editors,
PKC 2018, Part II, volume 10770 of LNCS, pages 371–400. Springer, Heidelberg,
March 2018.

22. Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero knowledge
proofs under general assumptions. SIAM Journal on Computing, 29(1):1–28, 1999.

23. Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding proto-
cols. In 22nd ACM STOC, pages 416–426. ACM Press, May 1990.

24. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86,
volume 263 of LNCS, pages 186–194. Springer, Heidelberg, August 1987.

25. David Mandell Freeman, Oded Goldreich, Eike Kiltz, Alon Rosen, and Gil Segev.
More constructions of lossy and correlation-secure trapdoor functions. Journal of
Cryptology, 26(1):39–74, January 2013.

26. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for
all circuits. In 54th FOCS, pages 40–49. IEEE Computer Society Press, October
2013.

27. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions (extended abstract). In 25th FOCS, pages 464–479. IEEE Computer
Society Press, October 1984.

28. Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but
their validity or all languages in NP have zero-knowledge proof systems. Journal
of the ACM, 38(3):691–729, 1991.

29. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof-systems (extended abstract). In 17th ACM STOC, pages 291–304.
ACM Press, May 1985.

30. Shafi Goldwasser and Rafail Ostrovsky. Invariant signatures and non-interactive
zero-knowledge proofs are equivalent (extended abstract). In Ernest F. Brickell,
editor, CRYPTO’92, volume 740 of LNCS, pages 228–245. Springer, Heidelberg,
August 1993.

31. Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and new
techniques for NIZK. In Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of
LNCS, pages 97–111. Springer, Heidelberg, August 2006.

http://eprint.iacr.org/2017/631
http://eprint.iacr.org/

Dual-Mode NIZKs from Obfuscation 31

32. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear
groups. In Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS,
pages 415–432. Springer, Heidelberg, April 2008.

33. Gunnar Hartung, Max Hoffmann, Matthias Nagel, and Andy Rupp. BBA+: Im-
proving the security and applicability of privacy-preserving point collection. In
Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors,
ACM CCS 17, pages 1925–1942. ACM Press, October / November 2017.

34. Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseu-
dorandom generator from any one-way function. SIAM Journal on Computing,
28(4):1364–1396, 1999.

35. Gottfried Herold, Julia Hesse, Dennis Hofheinz, Carla Ràfols, and Andy Rupp.
Polynomial spaces: A new framework for composite-to-prime-order transforma-
tions. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I,
volume 8616 of LNCS, pages 261–279. Springer, Heidelberg, August 2014.

36. Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas
Zacharias. Delegatable pseudorandom functions and applications. In Ahmad-Reza
Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 13, pages 669–684.
ACM Press, November 2013.

37. Yehuda Lindell. An efficient transform from sigma protocols to NIZK with a
CRS and non-programmable random oracle. In Yevgeniy Dodis and Jesper Buus
Nielsen, editors, TCC 2015, Part I, volume 9014 of LNCS, pages 93–109. Springer,
Heidelberg, March 2015.

38. Adam O’Neill. Definitional issues in functional encryption. Cryptology ePrint
Archive, Report 2010/556, 2010. http://eprint.iacr.org/2010/556.

39. Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain)
learning with errors. IACR Cryptology ePrint Archive, 2019:158, 2019.

40. Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for effi-
cient and composable oblivious transfer. In David Wagner, editor, CRYPTO 2008,
volume 5157 of LNCS, pages 554–571. Springer, Heidelberg, August 2008.

41. Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications.
In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages 187–
196. ACM Press, May 2008.

42. Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deni-
able encryption, and more. In David B. Shmoys, editor, 46th ACM STOC, pages
475–484. ACM Press, May / June 2014.

43. Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald
Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 457–473.
Springer, Heidelberg, May 2005.

44. Claus-Peter Schnorr. Efficient identification and signatures for smart cards.
In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 239–252.
Springer, Heidelberg, August 1990.

http://eprint.iacr.org/2010/556

32 Dennis Hofheinz and Bogdan Ursu

A Summary of Theorem 18

Game hrs (π, I) C remark justification

H(a∗,1) H(PRF(K1, a))⊕ crs PH(x,w, hrs) FE.Enc(fmpk, (r1, I, 0, 0); r2) r1 ← PRF(K1, a) BindingProofcrs

H(a∗,2) H(r∗1)⊕ crs PH(x,w, hrs) FE.Enc(fmpk, (r∗1 , I, 0, 0); r2)
K1{a∗} punctured
r∗1 ← PRF(K1, a

∗)
iO security

H(a∗,3) H(r∗1)⊕ crs PH(x,w, hrs) FE.Enc(fmpk, (r∗1 , I, 0, 0); r2) r∗1 ←r {0, 1}p1(|x|,λ) PRF security

H(a∗,4) H(r∗1)⊕ crs PH(x,w, hrs) FE.Enc(fmpk, (r∗1 , I, 0, 0); r
∗
2)

K2{a∗} punctured
r∗2 ← PRF(K2, a

∗)
iO security

H(a∗,5) H(r∗1)⊕ crs PH(x,w, hrs) FE.Enc(fmpk, (r∗1 , I, 0, 0); r
∗
2) r∗2 ←r {0, 1}p2(|x|,λ) PRF security

H(a∗,6) H(r∗1)⊕ crs PH(x∗, w∗, hrs∗) FE.Enc(fmpk, (r∗1 , I
∗ , 0, 0); r∗2) iO security

H(a∗,7) T∗ ⊕ crs PH(x∗, w∗, hrs∗) FE.Enc(fmpk, (0 , I∗, z , T∗I∗); r∗2) T∗ ← H(r∗1) SEL-IND-FE-CPA

H(a∗,8) T∗ ⊕ crs PH(x∗, w∗, hrs∗) FE.Enc(fmpk, (0, I∗, z, T∗I∗); r
∗
2) T∗ ←r {0, 1}t(|x|,2λ+|x|) Statistical step

H(a∗,9) (hrs∗I∗ , π
∗, I∗)← SH(x∗; r∗3) FE.Enc(fmpk, (0, I∗, z, T∗I∗); r

∗
2)

T∗ ← hrs∗I∗ ⊕ crsI∗

r∗3 ←r {0, 1}p3(|x|,λ) ZK of NIZKH

H(a∗,10) (hrs∗I∗ , π
∗, I∗)← SH(x∗; r∗3) FE.Enc(fmpk, (0, I∗, z, T∗I∗); r

∗
2) r∗2 ← PRF(K2, a

∗) PRF security

H(a∗,11) (hrs∗I∗ , π
∗, I∗)← SH(x∗; r∗3) FE.Enc(fmpk, (0, I∗, z, T∗I∗); r2)

K2 unpunctured
r2 ← PRF(K2, a

∗)
iO security

H(a∗,12) (hrs∗I∗ , π
∗, I∗)← SH(x∗; r∗3) FE.Enc(fmpk, (0, I∗, z, T∗I∗); r2) K3{a∗} punctured iO security

H(a∗,13) (hrs∗I∗ , π
∗, I∗)← SH(x∗; r∗3) FE.Enc(fmpk, (0, I∗, z, T∗I∗); r2) r∗3 ← PRF(K3, a

∗) PRF security

H(a∗,14) (hrsI , π, I)← SH(x; r3) FE.Enc(fmpk, (0, I , z, TI); r2)
K3 unpunctured
r3 ← PRF(K3, a)

iO security

H(a∗,15) (hrsI , π, I)← SH(x; r3) FE.Enc(fmpk, (0, I, z, TI); r2) K1 unpunctured
iO security
HidingProofcrs

Fig. 13. An overview of the games used in the proof of Theorem 19. Changes be-
tween consecutive hybrids are highlighted in light gray. Starred terms represent values
hardwired in our programs.

B Proof of Lemma 27

Lemma 27 (From H(8,a∗) to H(9,a∗)) Let a∗ = LE.Enc(lpk, (x∗, w∗); r). Then it
holds that either:

1. if (x∗, w∗) ∈ R, then H(8,a∗) and H(9,a∗) are statistically close. Namely, for
every (potentially unbounded) adversary A,

|Adv(8,a∗)(A)− Adv(9,a∗)(A)| ≤ ∆NIZKH
Zero Knowledge(λ).

2. if (x∗, w∗) /∈ R, then H(8,a∗) and H(9,a∗) are computationally indistinguishable.
Namely that for every PPT adversary A, there exists PPT adversary B, such
that:

|Adv(8,a∗)(A)− Adv(9,a∗)(A)| ≤ AdviO(κ,B).

Proof. Recall that because LE is in injective mode, a∗ corresponds to a single
(x∗, w∗). The lossy encryption keys (lpk, lsk) are chosen on the fly by hybrid
games H(8,a∗) and H(9,a∗). Depending on the keys chosen, a∗ can decrypt to
either (x∗, w∗) ∈ R or (x∗, w∗) /∈ R, therefore we need to show that the hybrids
are indistinguishable in both cases:

Dual-Mode NIZKs from Obfuscation 33

Case 1: (x∗,w∗) /∈ R. Making any modifications to HybridProof8,a∗,crs does
not change the functionality of ProgProv8,a∗,crs, as this program outputs ⊥ with-
out ever executing HybridProof8,a∗,crs. Therefore, the hybrids are computation-
ally indistinguishable.

Case 2: (x∗,w∗) ∈ R. The zero-knowledge property of NIZKH (see Def-
inition 10) says that for all (x,w) ∈ R, we have that ∆NIZKH

Zero Knowledge(λ) :=
∆(E0(x,w), E1(x,w)) is negligible, where the E0 and E1 are defined as:

E0(x,w) := {(hrsI , π, I) : hrs← {0, 1}t(|x|,λ), (π, I)← PH(x,w, hrs)}

E1(x,w) := {SH(x)}

Now let E′0 be the distribution of the CRS in hybrid game H(8,a∗) and E′1 be
the distribution of the CRS in hybrid game H(9,a∗). We show that there exists a
probabilistic polynomial-time function F , such that FEb outputs the distribution
E′b without knowing bit b (Notation FEb means that F has oracle access to
Eb(x,w)). Then since E0(x,w) and E1(x,w) are close for all values of (x,w) ∈ R,
it will necessarily follow that ∆(FE0 , FE1) = ∆(E′0, E

′
1) ≤ ∆

NIZKH
Zero Knowledge(λ).

Firstly, function F generates dense H, then PRG, (fmpk, fmsk), skf , crs, z and
Z. It continues by generating and puncturing K1{a∗},K2{a∗},K3. Then F
chooses (lpk, lsk) ←r LE.Setup(1λ, inj). Remark that this choice of (lpk, lsk) de-
termines what (x∗, w∗) is encoded in a∗, if any.

Secondly, now that (x∗, w∗) is known to F , it will make an oracle call to
Eb(x

∗, w∗) and obtain a sample Π∗ = (hrs∗I∗ , π
∗, I∗). It then draws r2 ←r

{0, 1}p2(|x|,λ) and computes C∗ = FE.Enc(fmpk, (0, I∗, z, T ∗I∗); r∗2). Finally, it uses
(Π∗, C∗) to construct and obfuscate a program we call ProgProv89a∗,crs(x,w, r) to
obtain PC := iO(ProgProv89a∗,crs). Finally, F returns CRS = (H, fmpk, lpk, skf , crs,

Z,PC). Function FEb and ProgProv89a∗,crs are described in Figure 14.
To conclude, we have exhibited probabilistic polynomial-time function F ,

such that FEb = E′b. Then since ∆(E0, E1) = ∆NIZKH
Zero Knowledge(λ), it will nec-

essarily follow that ∆(FE0 , FE1) ≤ ∆NIZKH
Zero Knowledge(λ). This means that the

distributions of the CRS in H(8,a∗) and in H(9,a∗) are statistically closer than
∆NIZKH

Zero Knowledge(λ). Therefore, we can conclude that:

|Adv(8,a∗)(A)− Adv(9,a∗)(A)| ≤ ∆NIZKH
Zero Knowledge(λ).

C Hidden Bits NIZK

In this appendix, we briefly go over the hidden-bits NIZK construction from
[22]. The scheme is described in Figure 15. This NIZK system computes proofs
that graphs G contain a Hamiltonian cycle, without revealing any information
about the Hamiltonian cycle itself. Since Hamiltonian Cycle is an NP-complete
language, this proof system can be used to prove any statement in NP. Briefly,
the way the scheme works is the following: the hidden string hrs is interpreted as
a matrix M which will contain a Hamiltonian matrix A with high probability.
M will usually be larger than A and when M contains only A and its other

34 Dennis Hofheinz and Bogdan Ursu

Function F
PRG←r PRG.Setup(1λ)
H←r LF.Setup(1λ,dense)
(lpk, lsk)←r LE.Setup(1λ, inj)
K1,K2,K3 ←r PRF.KeyGen(1κ)
(fmpk, fmsk)←r FE.Setup(1κ)
skf ←r FE.KeyGen(fmsk, f)

crs←r {0, 1}t(|x|,2λ+|x|)
z ←r {0, 1}λ, Z ← PRG(z)
(x∗, w∗)← LE.Dec(a∗)
Oracle call to Eb(x∗, w∗)

Obtain (hrs∗I∗ , π
∗, I∗)

T ∗I∗ ← hrs∗I∗ ⊕ crsI∗

r2 ←r {0, 1}p2(|x|,λ)
C∗ = FE.Enc(fmpk, (0, I∗, z, T ∗I∗); r∗2)
PC = ProgProv89

a∗,crs

CRS := (H, fmpk, lpk, skf , crs, Z,PC)

ProgProv89
a∗,crs(x,w, r)

if (x,w) /∈ R
Return ⊥

a←r LE.Enc(lpk, (x,w); r)
if a < a∗ then

(C, π) = HidingProofcrs(x,w, a)
if a = a∗

Return (C∗, π∗)
if a > a∗

(C, π) = BindingProofcrs(x, a)
Return Π := (C, π)

Fig. 14. Function F and program ProgProv89
a∗,crs used in the proof of Lemma 27.K1 and

K2 are punctured at a∗ in the subprograms of ProgProv89. Also, ProgProv89
a∗,crs(x,w, r),

ProgProv8,a∗,crs(x,w, r) and ProgProv9,a∗,crs(x,w, r) are padded so that they have equal
sizes.

entries are set to 0, M is called a “good” matrix. A proof π is a permutation of
the graph G such that A ⊆ π(G). Such a proof can be computed in polynomial
time if the prover knows a Hamiltonian cycle of the graph G. A prover sends π
to the verifier and reveals all entries of A which do not correspond to edges in
π(G).

The verifier knows that with high probability, M is good, i.e. there exists
Hamiltonian matrix A embedded in hrs. And if the verifier trusts that this is the
case, then the fact that A ⊆ π(G) means that indeed G contains a Hamiltonian
cycle. Intuitively, this leaks no information about the actual cycle of G, as only
the zeros of matrix A corresponding to non-edges of G are revealed.

This hidden-bits NIZK scheme satisfies statistical soundness and perfect zero-
knowledge (note that it is impossible to obtain both statistical soundness and
perfect ZK in the standard model, but it is possible to do this in the hidden-bits
model).

Lemma 34 ([22]: Probability thatM is “good” (contains only a Hamil-
tonian matrix and nothing else)). Let hrs←r {0, 1}n

3×n3×5 log2 n and M =
Parse(hrs) (see Figure 15). For sufficiently large n, the probability that M is good
is greater than 1

dn
√
n
for some constant d.

Proof. Consider the probability that a certain row of M contains more than a
single 1 (i.e. at least two ones). This happens with probability

(
n3

2

)
× 1

(n5)2 <
1
n4 .

Then with probability greater than 1
n , every row has at most one entry set to 1.

Now, the bits of the hrs are unbiased and independent, and the the probability
that Mi,j = 1 is 1

n5 . Therefore, the probability that M has exactly n ones is

Dual-Mode NIZKs from Obfuscation 35

Setup(1λ)

hrs←r {0, 1}n
3×n3×5 log2 n

Return hrs

Prover(Graph G, Hamiltonian cycle Cycle, hrs)

M = Parse(hrs)
if M is “good” (contains Hamiltonian matrix A and all its other entries are 0) then
Reveal entries of M which are not in A
Using Cycle, compute π such that A ⊆ π(G)
Reveal Mi,j that correspond to non-edges of π(G)

Return π

Verifier(π,Revealed(hrs))

if M is not completely revealed then
For every non-edge Gi,j = 0, check if Mi,j is revealed and equal to 0.

if M is completely revealed then
check that M is indeed not “good”. Reject if M good.

Accept if all checks are succesful.

Parse(hrs)
“Parse hrs as a n3 × n3 Boolean matrix M , with Pr[Mi,j = 1] = 1

n5 , ∀i, j ∈ [n3]”
Partition hrs into blocks Bi,j of size 5 log2 n
if Bi,j is all 1s, then Mi,j = 1, else Mi,j = 0
Return M

Fig. 15. Hidden-Bits Non-Interactive ZK scheme NIZKH , due to [22]. By n we denote
the size of G.(
n6

n

)
×
(

1
n5

)n×(1− 1
n5

)n6−n ≈ n6n

n! ×
1
n5n×

(
1− 1

n5

)n6−n ≈ nn√
2πn(ne)

n
×
(
1− 1

n5

)n6−n,

which is approximately en√
2πn
×
(
1− 1

n5

)n6−n. By a series expansion of the second

term, this is approximately en√
2πn
×
(
1− 1

n5

)n6−n
> 1√

n
for sufficiently large n. By

the birthday paradox, with constant probability, each row and each column will
have exactly one entry set to 1, so the probability thatM contains a permutation
matrix and has every other entry set to 0 is greater than 1

d
√
n
, for some constant

d. Now, since there are n! permutation matrices with n rows and n columns, and
(n− 1)! of them are Hamiltonian, this means the probability that M contains a
Hamiltonian matrix and is “good” is greater than 1

dn
√
n
.

Theorem 35. [22]: The NIZK in the hidden-bits model from Figure 15 is per-
fectly zero-knowledge.

Proof. Perfect Correctness: In this case, the prover knows a Hamiltonian cycle
Cycle of G. When M is not “good”, it will be completely revealed to the verifier,
which trivially accepts. Otherwise, if M contains a Hamiltonian matrix A and
its other entries are 0, the verifier’s first check passes. Then the verifier checks
if every non-edge of π(G) corresponds to a revealed 0 in matrix A.

36 Dennis Hofheinz and Bogdan Ursu

Statistical Soundness Now we suppose that G is not Hamiltonian. By Lemma 34,
with probability at least 1

dn
√
n
, the matrix M is “good” (contains a n×n Hamil-

tonian submatrix A and has all its other entries set to 0). Then, the prover must
reveal all entries not in the submatrix A since mapping V (G) × V (G) to any
other n× n submatrix of M will reveal values of 1 in the rest of M . Therefore,
the prover must output π such that the entries of π(V (G)) × π(V (G)) corre-
spond to entries of A. Moreover, each non-edge of G must be mapped to a 0 of
A. This means that the 1s of A have preimages that correspond to edges in G,
and since A is a Hamiltonian matrix, this induces a Hamiltonian cycle in G. We
do not have perfect soundness, as when M is not “good”, all entries are revealed
and the proof is accepted for every x (verifier trivially accepts). Soundness can
be amplified by increasing the size of the hrs to encode more than one matrix
M . Namely, we amplify by parsing a larger hrs as ` matrices M1 . . .M` and the
prover outputs proof πi, . . . , π`. It is known that limα→∞

(
1− 1

α

)α
= 1

e . Consider
some desired security parameter λ. Then if ` = n2

√
nλ then with probability

(1− 1
enλ

) at least one Mi is a good matrix.
The verifier accepts if all checks pass for each (Mi, πi), i = 1 . . . `. Then

the probability that a non-Hamiltonian graph is accepted will be 1
enλ

. It is this
protocol with amplified soundness the one we use for our construction, and which
we denote as (PH ,VH) in our candidate from Figure 5.

Perfect Zero-Knowledge Now we are left to prove perfect zero-knowledge. In
Figure 16, we exhibit an efficient simulator that briefly works as follows: on
input graph G, it first chooses a permutation π, reveals the non-edges of π(G)
as zeroes and draws the positions corresponding to edges such that each entry
is 1 with probability 1

n5 , just as in the honest execution of the protocol. If M is
“good”, then the simulator outputs the corresponding proof.

Sim(Graph G)

Choose uniform permutation π
For every non-edge of π(G)
Choose r ←r {0, 1}5 log2 n \ {1 . . . 1}
Reveal r as a part of hrs and a 0 entry of M .

For unrevealed positions of M
choose entry of M by setting hrs←r {0, 1}5 log2 n

if M contains Hamiltonian cycle in unrevealed positions
Return π

else reveal everything

Fig. 16. Simulator for the Hidden-Bits NIZK [22]. An alternative way to simulate would
be to have matrix M chosen before π and then completely disregarded by revealing a
zero for every non-edge of π(G).

We show that the distribution of revealed real hrs and real proofs is identical
to the distribution of revealed simulated hrs and simulated proofs. In the real
case, matrix A (which defines the 0/1 values of M) is randomly chosen with
uniform distribution (among the (n− 1)! possibilities). Moreover, note that any

Dual-Mode NIZKs from Obfuscation 37

two different Hamiltonian cycles A and A′ determine two disjoint sets SA and SA′
of n permutations, where each permutation in SA (SA′) maps the Hamiltonian
cycle of G onto A(A′). Therefore, for any permutation in Sym(n), the probability
that V receives it is 1

n! . So the real proofs are distributed identically as the
simulated proofs.

Now, consider the probability that the hidden matrix M contains only a
Hamiltonian cycle, this is the same in both cases and the revealed portions of
the hrs are distributed identically. Note that the distributions are identical only if
G indeed contains a Hamiltonian cycle, but this is exactly where zero-knowledge
must hold.

D Statistical extractability

Theorem 36. When in binding mode, the DM-NIWI system in Figure 5 satisfies
statistical extractability.

Proof. This is a non-generic proof, we need to use fine-grained properties of
the underlying hidden bits NIZK from [22], which is described in Figure 15,
Appendix C. This proof could be made generic if we formalized some notion of
extractability of the hidden-bits NIZKH system. Nevertheless, this would be a
non-standard notion and we prefer to give a non-generic proof instead.

Consider any (x,Π = (C, π)). Our goal is to show that for every (CRS, tdext)←r
DM-NIWI.Setup(1λ, binding), for all w ←r DM-NIWI.Extract(tdext, x,Π), it holds
that if DM-NIWI.Verify(CRS, x,Π) = 1, then w is a witness for x with overwhelm-
ing probability.

DM-NIWI.Extract(tdext = fmsk, Π = (C, π))

Decrypt C = FE.Enc(fmpk, (X, I, 0, 0); r2) using fmsk to recover X.
Compute hrs← H(X)⊕ crs
Divide hrs into ` blocks hrs1 . . . hrs`

Mi ← Parse(hrsi), for every i ∈ [`]
Find block i where Mi is a good
recover Hamiltonian matrix Ai from Mi

Use πi and Ai to recover Hamiltonian Cycle w in graph x
Return w

Fig. 17. Algorithm DM-NIWI.Extract for the proof of Theorem 36. Algorithm Parse is
from the hidden-bits NIZK and is decribed in Figure 15, Appendix C.

Recall that we are in binding mode. Just as in the soundness proof Theo-
rem 13, we condition on the event E that Z does not have a PRG preimage,
which happens with probability 1 − 1

2λ+|x|
. If Z has no preimage, then from

the functionality of iO and the correctness of the FE scheme, the adversary must
produce a ciphertext of the form C = FE.Enc(X, I, ·, ·). Note that both the func-
tional equivalence of iO and the correctness of the functional encryption scheme
are statistical properties.

Then we deduce that decrypting C will indeed yield the entire X and we
know that the verifier computes hrsI = H(X) ⊕ crsI . We want to prove that

38 Dennis Hofheinz and Bogdan Ursu

VH(x, hrsI , I, π) = 1 implies that the witness extracted by Extract is valid. Recall
that H is a lossy function in lossy mode and it has only 2k images. This means
that H(x) can only influence k bits of the hidden-bits string hrs.

Let |x| = n. In Appendix C, we have shown that for an hrs of size q(n, λ) =
n8
√
nλ, the probability that hrs contains no good matrix is 1

enλ
. Then by choosing

an hrs of size (k+ 1) · q(n, λ)7, we ensure that regardless of the choice of X, the
probability that hrs contains no good matrix is 1

enλ
. Intuitively, this is because

H(X) can influence only k bits of the hidden-bits string.
Let Mj be the good matrix in hrs and Aj the Hamiltonian matrix embedded

inside it. Then this matrix cannot be revealed as a bad matrix, since then VH
will be able to detect that and reject. This means that every accepting proof
(C, π) must contain a permutation πj of the graph x such that A ⊆ πj(x). But
then, since we know hrs entirely, we can invert πj and compute a Hamiltonian
cycle w of graph x.

E Comparison with other dual-mode NIZK constructions

Discussion: relation to Groth-Sahai. The only other known dual-mode proof
system is due to Groth and Sahai [32]. Their scheme can be used to prove the
satisfiability of (systems of) multivariate quadratic equations over cyclic groups.8
In their scheme, a proof consists of a commitment comw to a witness (i.e., a
satisfying assignment) w, and helper information open that helps to recognize
comw as such. Specifically, their commitment scheme allows to homomorphically
compute a commitment comf(w) from comw for any quadratic function f . Here,
open simply contains an opening of the so-computed comfi(w) for any fi for
which fi(w) = 0 shall be proved. A verifier can then compute comfi(w) from
comw and check that open indeed opens comfi(w) to 0.

If the used commitment is statistically binding, then the corresponding NIZK
proof is statistically sound. Conversely, if the commitment is statistically hiding,
then the NIZK system is statistically zero-knowledge.9 Interestingly, the commit-
ment scheme can be switched between binding and hiding in a computationally
indistinguishable way, by tweaking its public parameters.

Our idea to switch the lossy encryption a of (x,w) between injective and
lossy is superficially similar to this step. However, in our system, this switch
helps to prove that openings of hrsI do not reveal anything beyond hrsI . The
actual switch between soundness and zero-knowledge happens when switching
the function H, as described above. Hence, we do not view our system as an
abstraction of Groth-Sahai proofs, but instead as a fundamentally different way
to obtain dual-mode features.
7 Actually, the value of this polynomial can be greatly reduced, but we choose it as
such for simplicity.

8 One interesting special case are multivariate quadratic equations over Zp for prime
p. The language of satisfiable (systems of) equations of this type is NP-complete.

9 Technically, Groth and Sahai prove only statistical witness-indistinguishability,
which can however be converted to (statistical) zero-knowledge in many cases.

Dual-Mode NIZKs from Obfuscation 39

Discussion: relation to Canetti, Lombardi and Wichs. Independently
and concurrently to this work, [19] introduced a dual-mode NIZK for NP based
on circular-secure FHE. We already know from [18] that FHE can be obtained
from sub-exponentially secure iO, subexponentially secure one-way functions
and lossy encryption (or rerandomizable encryption). We note, though, that the
FHE scheme from [18] is not known to be circular-secure, therefore using it in
the construction of [19] requires a somewhat nonstandard additional assumption
to construct dual-mode NIZKs.
Discussion: relation to [16] and [15]. Another approach to obtaining a
dual-mode NIZK is by combining the concurrent and independent work of [15]
with the one of [16]. This yields a scheme from subexponentially-secure IO,
sub-exponentially-secure one-way functions, lossy encryption and (polynomially-
secure) virtual grey-box obfuscation (VGB) for evasive circuits.

	Dual-Mode NIZKs from Obfuscation
	Introduction
	Preliminaries
	Puncturable Pseudorandom Function
	Lossy functions
	Lossy Encryption
	Functional Encryption
	Indistinguishability Obfuscation
	Dual-Mode NIWI Proof Systems
	Hidden Bits Non-Interactive Zero-Knowledge

	Construction
	Security Proof
	Completeness
	Soundness
	Witness Indinstinguishability
	CRS Indistinguishability

	Summary of thm:subexponential-hybrid-sub-theorem
	Proof of lemma:zk step in many hybrids
	Hidden Bits NIZK
	Statistical extractability
	Comparison with other dual-mode NIZK constructions

