
On the E�ciency of Privacy-Preserving Smart

Contract Systems

Karim Baghery

University of Tartu, Estonia

Abstract. Along with blockchain technology, smart contracts have
found intense interest in lots of practical applications. A smart contract is
a mechanism involving digital assets and some parties, where the parties
deposit assets into the contract and the contract redistributes the assets
among the parties based on provisions of the smart contract and inputs
of the parties. Recently, several smart contract systems are constructed
that use zk-SNARKs to provide privacy-preserving payments and inter-
connections in the contracts (e.g. Hawk [KMS+16] and Gyges [JKS16]).
E�ciency of such systems severely are dominated by e�ciency of the
underlying UC-secure zk-SNARK that is achieved using C∅C∅ frame-
work [KZM+15] applied on a non-UC-secure zk-SNARK. In this paper,
we show that recent progresses on zk-SNARKs, allow one to simplify the
structure and also improve the e�ciency of both systems with a UC-
secure zk-SNARK that has simpler construction and better e�ciency in
comparison with the currently used ones. More precisely, with minimal
changes, we present a variation of Groth and Maller's zk-SNARK from
Crypto 2017, and show that it achieves UC-security and has better ef-
�ciency than the ones that currently are used in Hawk and Gyges. We
believe, new variation can be of independent interest.

Keywords: privacy-preserving smart contracts, zk-SNARKs, UC-
security, CRS model

1 Introduction

Eliminating the need for a trusted third party in monetary transactions, con-
sequently enabling direct transactions between individuals is one of the main
achievements in the cryptocurrencies such as Bitcoin. Importantly, it is shown
that the technology behind cryptocurrencies has more potential than what only
is used in direct transactions. Di�erent blockchain-based systems such as smart
contracts [KMS+16,JKS16], distributed cloud storages [WLB14], digital coins
such as Ethereum [Woo14] are some evidence that why blockchain technology
o�ers much more functionalities than what we can see in Bitcoin. Smart con-
tracts are one of popular applications that along with blockchain technology,
have found intense interest recently. A smart contract is a generic term denot-
ing programs written in Turing-complete cryptocurrency scripting languages,
that involves digital assets and some parties. The parties deposit assets into the
contract and the contract redistributes the assets among the parties based on
provisions of the smart contract and inputs of the parties.

2 Karim Baghery

Di�erent research have shown that even if payments (e.g. in Bitcoin) or
interconnections (e.g. in smart contracts) are conducted between pseudoran-
dom addresses, but still they lack privacy of end-users. Indeed, this mostly
arises from the nature of technology that a decentralized publicly shared ledger
records list of transactions along with related information (e.g. addresses of par-
ties, transferred values, etc), and long-time monitoring and some data analysis
(e.g. transaction graph analysis) on this ledger usually reveals some informa-
tion about the identity of end-users. To address these concerns and provide
strong privacy for end-users, several alternatives to Bitcoin protocol and smart
contract systems have been proposed; e.g. con�dential assets [PBF+18], privacy-
preserving auditing [NVV18], privacy-preserving cryptocurrencies such as Zero-
cash [BCG+14] and Monero [Noe15], privacy-preserving smart contract systems
such as Hawk [KMS+16] and Gyges [JKS16].

Zerocash and Monero are two known anonymous cryptocurrencies that pro-
vide strong privacy for end-users. Each of them uses di�erent cryptographic
tools to guarantee strong privacy. Monero uses ring signatures that allow for
an individual from a group to provide a signature such that it is impossible to
identify which member of that group made the signature. On the other side, Ze-
rocash uses zero-knowledge Succinct Non-interactive Arguments of Knowledge
(zk-SNARKs [Gro10,Lip12,PHGR13,BCTV13,Gro16,GM17]) to prove the cor-
rectness of all computations inside a direct transaction, without revealing the
source, destination and values of the transferred coins. In a similar technique,
privacy-preserving smart contract system Hawk [KMS+16] and criminal smart
contract system Gyges [JKS16] use universally composable zk-SNARKs to pro-
vide anonymous interconnection and payment in a smart contract.

zk-SNARKs. Among various Non-Interactive Zero-Knowledge (NIZK) argu-
ments, zk-SNARKs are one of the most popular ones in practical systems. This
is happened because of their succinct proofs, and consequently very e�cient ver-
i�cation. A zk-SNARK proof allows one to e�ciently verify the veracity of state-
ments without learning extra information about the prover. The proofs can be
veri�ed o�ine very quickly (in few milliseconds) by possibly many independent
veri�ers. This can be very e�ective in e�ciency of large-scale distributed systems.
E�ciency of zk-SNARKs mainly comes from the fact that their construction re-
lies on non-falsi�able assumptions (e.g. knowledge assumptions [Dam91]) that
allow succinct proofs and non-black-box extraction in security proofs. On the
other hand, a zk-SNARK with non-black-box extraction cannot achieve Univer-
sally Composable Security (UC-security) which is imperative and necessary in
constructing larger cryptographic systems [Can01]. Du to this fact, zk-SNAKRs
cannot be directly adopted in larger systems that should guarantee UC-security.

Privacy-preserving smart contract systems. Recently, some elegant UC-
based frameworks are presented that allow to construct privacy-preserving smart
contracts, including Hawk [KMS+16] and Gyges [JKS16] for criminal smart
contracts. These systems record zk-SNARK proofs on ledger, instead of pub-
lic transactions between pseudonyms, which brings stronger transactional pri-

On the E�ciency of Privacy-Preserving Smart Contract Systems 3

vacy. Strictly speaking, Hawk is a system that gets a program and compiles
it to a cryptographic protocol between the contract correspondents (including
users and a manager) and the blockchain. It consists of two main blocks, where
one is responsible for private money transfers and uses a variation of Zero-
cash [BCG+14], while the second part handles other contract-de�ned operations
of the system. Similar to Zerocash, operations such as Mint, that is required in
minting a new coin, and Pour, that enables anonymous transactions, are located
in the �rst block. On the other side, contract-related operations such as Freeze,
Compute and Finalize, that are three necessary operations de�ned by Hawk for
each smart contract, are addressed in the second block. More details regard to
the mentioned operations can be found in [KMS+16] 1. To achieve anonymity in
the mentioned operations and payments, Hawk widely uses zk-SNARKs to prove
di�erent statements. As the whole system intended to achieve UC-security, so
they needed to use a UC-secure zk-SNARK in the system. Additionally, since
Zerocash also uses a non-UC-secure zk-SNARK and it is not proved to satisfy
UC-security, so to make it useable in Hawk, they needed a variation of Zerocash
that uses a UC-secure zk-SNARK and also guarantees UC-security. To this aim,
designers of Hawk have used C∅C∅ framework [KZM+15] (a framework to lift
a non-UC-secure sound NIZK to a UC-secure one; C∅C∅ stands for Composable
0-knowledge, Compact 0-knowledge) to lift the non-UC-secure zk-SNARK used
in Zerocash [BCTV13], to a UC-secure zk-SNARK, such that the lifted scheme
can be securely used in composition with the rest of system [Can01]. Then, due
to using a UC-secure zk-SNARK in Zerocash, designer of Hawk modi�ed the
structure of original Zerocash and used the customized version in their system,
which also guarantees UC-security. The lifted UC-secure zk-SNARK frequently
is used in the system and plays an essential role in the e�ciency of entire system.

Problem statement. In the performance evaluation of Hawk [KMS+16] au-
thors show that the e�ciency of their system severely depend on e�ciency of
the lifted UC-secure zk-SNARK (which is the case in Gyges [JKS16] as well). In
fact, computational complexity of both systems are dominated with complexity
of the underlying UC-secure zk-SNARK. Particularly, Kosba et al. [KMS+16]
emphasize that practical e�ciency is a permanent goal of Hawk's design, so to
get the best, they also propose various optimizations. By considering this, one
may ask, can we improve e�ciency of the underlying UC-secure zk-SNARKs
such that the e�ciency of complete systems will be improved?

Our Contribution. As the main contribution, we show that one can improve
e�ciency of Hawk (and similarly Gyges) smart contract system by improving
the e�ciency of underlying UC-secure zk-SNARK. We will see that one can use
a similar approach used by Kosba et al. (in Hawk [KMS+16]) and Juels et al.
(in Gyges [JKS16]) and construct a UC-secure version of Groth and Maller's
zk-SNARK [GM17] (refereed as GM zk-SNARK in the rest), that has simpler

1 A tutorial about the system can be found in http://cryptowiki.net/index.php?

title=Privacy_preserving_smart_contracts:_Hawk_project

http://cryptowiki.net/index.php?title=Privacy_preserving_smart_contracts:_Hawk_project
http://cryptowiki.net/index.php?title=Privacy_preserving_smart_contracts:_Hawk_project

4 Karim Baghery

construction and better e�ciency than the ones that currently are used in the
systems. To do so, we slightly modify the construction of GM zk-SNARK by
enforcing the prover to send encryption of witnesses along with the proof, and
then show that it achieves black-box simulation extractability, equivalently UC-
security, which allows to deploy in both systems to improve their e�ciency.

Both Hawk and Gyges have used C∅C∅ framework to lift a variation of Pinoc-
chio zk-SNARK [PHGR13] which is deployed in Zerocash (proposed by Ben Sas-
son et al. [BCTV13]). Later it details we show that, as GM zk-SNARK [GM17]
has better e�ciency than the mentioned variation of Pinocchio zk-SNARK, and
as our changes are lighter than the changes that are applied on Ben Sasson et
al.'s zk-SNARK in Hawk [KMS+16] and Gyges [JKS16], so we get a UC-secure
zk-SNARK that has simpler construction and better e�ciency than the ones
that currently are deployed in the systems. Indeed, we will see that our changes
are a small part of their changes, which leads to have less overload.

In the modi�ed construction, we do the changes in CRS circuit level and try to
keep the prover and veri�er procedure as original one that both are considerably
optimized in the original construction [GM17]. We believe, new constructed UC-
secure zk-SNARK can be of independent interest and it can be deployed in any
large cryptographic system that aims to guarantee UC-security and needs to use
zk-SNARKs. From a di�erent perspective, new construction also can be used as
a commit-and-proof system, as prover can send encryption (sort of commitment)
of witnesses earlier than the proof elements. In such cases, one can consider linear
commitment size and succinct proof size (proof would be 2 elements in G1 and
1 element in G2). We note that in UC-secure zk-SNARKs, the proofs are linear
in witness size but still independent of size of the circuit that encodes language.

Discussion of UC-secure NIZKs. Most of e�cient zk-SNARKs only guar-
antee knowledge soundness, meaning that if an adversary can come up with a
valid proof, there exists an extractor that can extract the witness from the ad-
versary. But in some cases, e.g. in signatures of knowledge SoKs [CL06], knowl-
edge soundness is not enough, and one needs more security guarantee. More
accurately, most of zk-SNARKs are vulnerable to the malleability attack which
allows an adversary to modify an old proof to a new valid one, that is not de-
sired in some cases. To address this, the notion of simulation exractability is
de�ned which ensures that an adversary cannot come up with a new accept-
able proof (or an argument), even if he already has seen arbitrary simulated
proofs, unless he knows the witness. In other words, simulation extractability
implies that if an adversary, who has obtained arbitrary number of simulated
proofs, can generate an acceptable new proof for a statement, there exists an
extractor that can extract the witness. Based on extraction procedure which
is categorized as Black-Box (BB) or non-Black-Box (nBB), there are various
notions of simulation extractibility [Gro06,KZM+15,GM17]. In BB extraction,
there exists a black-box (universal) extractor which can extract the witness from
all adversaries, however in the nBB extraction, for each adversary there exists
a particular extractor that can extract only if it has access to the adversary's
source code and random coins. It is already observed and proven that a NIZK

On the E�ciency of Privacy-Preserving Smart Contract Systems 5

system that achieves simulation extractibility with BB extraction, can guarantee
the UC-security [CLOS02,Gro06,GOS06].Therefore, constructing a simulation-
extractable zk-SNARK with BB extraction is equivalent to constructing a UC-
secure zk-SNARK (which the proof will be only circuit succinct). Strictly speak-
ing, in a UC-secure NIZK the simulator of ideal-world should be able to extract
witnesses without getting access to the source code of environment's algorithm,
which this is guaranteed by BB extraction.

A known technique to achieve a simulation-extractable NIZK with BB ex-
traction is to enforce the prover to send the encryption of witnesses (with a public
key given in the CRS) along with proof, so that in security proofs the extrac-
tor can use the pair secret key for extraction [Gro06]. Using this technique, the
proof (communication) size will not be succinct anymore, as impossibility result
in [GW11] con�rms, but the veri�cation will be e�cient yet and the extraction
issue that zk-SNARKs have in the UC framework [Can01] will be solved.

2 Preliminaries

Let PPT denote probabilistic polynomial-time, and NUPPT denote non-uniform
PPT. Let λ ∈ N be the security parameter, say λ = 128. All adversaries will be
stateful. For an algorithm A, let im(A) be the image of A, i.e., the set of valid
outputs of A, let RND(A) denote the random tape of A, and let r←$RND(A) de-
note sampling of a randomizer r of su�cient length for A's needs. By y ← A(x; r)
we mean given an input x and a randomizer r, A outputs y. For algorithms A
and ExtA, we write (y ‖ y′)← (A‖ExtA)(x; r) as a shorthand for "y ← A(x; r),
y′ ← ExtA(x; r)". An arbitrary negligible function is shown with negl(λ). Two
computationally indistinguishable distributions A and B are shown with A ≈c B.

In pairing-based groups, we use additive notation together with the bracket
notation, i.e., in group Gµ, [a]µ = a [1]µ, where [1]µ is a �xed generator of Gµ. A
bilinear group generator BGgen(1λ) returns (p,G1,G2,GT , ê, [1]1 , [1]2), where p
(a large prime) is the order of cyclic abelian groups G1, G2, and GT . Finally, ê :
G1 ×G2 → GT is an e�cient non-degenerate bilinear pairing, s.t. ê([a]1 , [b]2) =
[ab]T . Denote [a]1 • [b]2 = ê([a]1 , [b]2).

We bellow review Square Arithmetic Programs (SAPs) that de�nes NP-
complete language speci�ed by a quadratic equation over polynomials [GM17].

Square Arithmetic Program: Any quadratic arithmetic circuit with fan-in 2 gates
over a �nite �eld Zp can be lifted to a SAP instance over the same �nite �eld (e.g.
by considering ab = ((a + b)2 − (a − b)2)/4) [GM17]. A SAP instance contains
Sp = (Zp,m0, {uj , wj}mj=0). This instance de�nes the following relation:

RSp =

(x,w) : x = (A1, . . . , Am0)
> ∧ w = (Am0+1, . . . , Am)>∧(∑m

j=0Ajuj(X)
)2
≡
∑m
j=0Ajwj(X) (mod `(X))

where `(X) :=

∏n
i=1(X−ωi−1) = Xn−1 is the unique degree nmonic polynomial

such that `(ωi−1) = 0 for all i ∈ [1 .. n]. Alternatively, (x,w) ∈ RSp if there exists

6 Karim Baghery

a (degree ≤ n−2) polynomial h(X), s.t.
(∑m

j=0Ajuj(X)
)2
−
∑m
j=0Ajwj(X) =

h(X)`(X).

2.1 De�nitions

We use the de�nitions of NIZK arguments from [Gro06,Gro16,GM17,KZM+15].
Let R be a relation generator, such that R(1λ) returns a polynomial-time de-
cidable binary relation R = {(x,w)}. Here, x is the statement and w is the
witness. We assume one can deduce λ from the description of R. The relation
generator also outputs auxiliary information ξR that will be given to the hon-
est parties and the adversary. As in [Gro16,ABLZ17], ξR is the value returned
by BGgen(1λ). Due to this, we also give ξR as an input to the honest parties;
if needed, one can include an additional auxiliary input to the adversary. Let
LR = {x : ∃w, (x,w) ∈ R} be an NP-language.

A NIZK argument system Ψ for R consists of tuple of PPT algorithms, s.t.:
CRS generator: K is a PPT algorithm that given (R, ξR), where (R, ξR) ∈

im(R(1λ)) outputs crs = (crsP, crsV) and stores trapdoors of crs as ts. We
distinguish crsP (needed by the prover) from crsV (needed by the veri�er).

Prover: P is a PPT algorithm that, given (R, ξR, crsP, x,w), where (x,w) ∈ R,
outputs an argument π. Otherwise, it outputs ⊥.

Veri�er: V is a PPT algorithm that, given (R, ξR, crsV, x, π), returns either
0 (reject) or 1 (accept).

Simulator: Sim is a PPT algorithm that, given (R, ξR, crs, ts, x), outputs an
argument π.

Extractor: Ext is a PPT algorithm that, given (RL, ξRL
, crs, x, π, te) extracts

the w; where te is extraction trapdoor (e.g. a secret key).
We require an argument system Ψ to be complete, computationally

knowledge-sound and statistically ZK, as in the following de�nitions.

De�nition 1 (Perfect Completeness [Gro16]). A non-interactive argu-
ment Ψ is perfectly complete for R, if for all λ, all (R, ξR) ∈ im(R(1λ)), and
(x,w) ∈ R,

Pr [crs← K(R, ξR) : V(R, ξR, crsV, x,P(R, ξR, crsP, x,w)) = 1] = 1 .

De�nition 2 (Computational Knowledge-Soundness [Gro16]). A non-
interactive argument Ψ is computationally (adaptively) knowledge-sound for R,
if for every NUPPT A, there exists a NUPPT extractor ExtA, s.t. for all λ,

Pr

(R, ξR)← R(1λ), (crs ‖ ts)← K(R, ξR),

r ←r RND(A), ((x, π) ‖w)← (A‖ExtA)(R, ξR, crs; r) :
(x,w) 6∈ R ∧ V(R, ξR, crsV, x, π) = 1

 ≈λ 0 .

Here, ξR can be seen as a common auxiliary input to A and ExtA that is gener-
ated by using a benign [BCPR14] relation generator; A knowledge-sound argu-
ment system is called an argument of knowledge.

On the E�ciency of Privacy-Preserving Smart Contract Systems 7

De�nition 3 (Statistically Zero-Knowledge [Gro16]). A non-interactive
argument Ψ is statistically ZK for R, if for all λ, all (R, ξR) ∈ im(R(1λ)), and
for all NUPPT A, εunb0 ≈λ εunb1 , where

εb = Pr[(crs ‖ ts)← K(R, ξR) : AOb(·,·)(R, ξR, crs) = 1] .

Here, the oracle O0(x,w) returns ⊥ (reject) if (x,w) 6∈ R, and otherwise it returns
P(R, ξR, crsP, x,w). Similarly, O1(x,w) returns ⊥ (reject) if (x,w) 6∈ R, and
otherwise it returns Sim(R, ξR, crs, x, ts). Ψ is perfect ZK for R if one requires
that ε0 = ε1.

Intuitively, a non-interactive argument Ψ is zero-knowledge if it does not
leak extra information besides the truth of the statement. Beside the mentioned
properties de�ned in Def. 1-3, a zk-SNARK has succinctness property, meaning
that the proof size is poly(λ) and the veri�er's computation is poly(λ) and the
size of instance. In the rest, we recall the de�nitions of simulation soundness and
simulation extractability that are used in construction of UC-secure zk-SNARKs.

De�nition 4 (Simulation Soundness [Gro06]). A non-interactive argu-
ment Ψ is simulation sound for R if for all NUPPT A, and all λ,

Pr

[
(R, ξR)← R(1λ), (crs ‖ ts)← K(R, ξR), (x, π)← AO(.)(R, ξR, crs) :

(x, π) 6∈ Q ∧ x 6∈ L ∧ V(R, ξR, crsV, x, π) = 1

]
≈λ 0 .

Here, Q is the set of simulated statement-proof pairs generated by adversary's
queries to O, that returns simulated proofs.

De�nition 5 (Non-Black-Box Simulation Extractability [GM17]). A
non-interactive argument Ψ is non-black-box simulation-extractable for R, if
for any NUPPT A, there exists a NUPPT extractor ExtA s.t. for all λ,

Pr

(R, ξR)← R(1λ), (crs ‖ ts)← K(R, ξR),

r ←r RND(A), ((x, π) ‖w)← (AO(.) ‖ExtA)(R, ξR, crs; r) :
(x, π) 6∈ Q ∧ (x,w) 6∈ R ∧ V(R, ξR, crsV, x, π) = 1

 ≈λ 0 .

Here, Q is the set of simulated statement-proof pairs generated by adversary's
queries to O that returns simulated proofs. It is worth to mention that non-black-
box simulation extractability implies knowledge soundness (given in Def. 2), as
the earlier is a strong notion of the later which additionally the adversary is
allowed to send query to the proof simulation oracle. Similarly, one can observe
that non-black-box simulation extractability implies simulation soundness (given
in Def. 4) that is discussed in [Gro06] with more details.

De�nition 6 (Black-Box Simulation Extractability [KZM+15]). A non-
interactive argument Ψ is black-box simulation-extractable for R if there exists
a black-box extractor Ext that for all NUPPT A, and all λ,

Pr

(R, ξR)← R(1λ), (crs ‖ ts ‖ te)← K(R, ξR),

(x, π)← AO(.)(R, ξR, crs),w← Ext(R, ξR, crs, te, x, π) :

(x, π) 6∈ Q ∧ (x,w) 6∈ R ∧ V(R, ξR, crsV, x, π) = 1

 ≈λ 0 .

8 Karim Baghery

Similarly, Q is the set of simulated statement-proof pairs, and te is the extraction
trapdoor. A key note about Def. 6 is that the extraction procedure is black-box
and unlike the non-black-box case, the extractor Ext works for all adversaries.

2.2 C∅C∅ : a Framework for Constructing UC-secure zk-SNARKs

Kosba et al. [KZM+15] have constructed a framework with several convert-
ers which the most powerful one gets a sound NIZK and lifts to a NIZK that
achieves black-box simulation extractability (de�ned in Def. 6), or equivalently
UC-security [Gro06]. Here we review construction of the most powerful converter
that is used by both Hawk and Gyges to construct a UC-secure zk-SNARK.

Construction. Given a sound NIZK, to achieve a UC-secure NIZK, C∅C∅
framework applies several changes in all setup, proof generation and veri�cation
procedures of the input NIZK. Initially the framework de�nes a new language L′

based on the language L in underlying NIZK and some new primitives that are
needed for the transformation. Let (KGene,Ence,Dece) be a set of algorithms for
a semantically secure encryption scheme, (KGens,Sigs,Vfys) be a one-time signa-
ture scheme and (Comc,Vfyc) be a perfectly binding commitment scheme. Given
a language L with the corresponding NP relation RL, de�ne a new language L′

such that ((x, c, µ, pks, pke, ρ), (r, r0,w, s0)) ∈ RL′ i�:

(c = Ence(pke,w; r)) ∧ ((x,w) ∈ RL ∨ (µ = fs0(pks) ∧ ρ = Comc(s0; r0))) ,

where {fs : {0, 1}∗ → {0, 1}λ}s∈{0,1}λ is a pseudo-random function family. Now,
a sound NIZK argument system Ψ for R constructed from PPT algorithms
(K,P,V,Sim,Ext) can be lifted to a UC-secure NIZK Ψ ′ with PPT algorithms
(K′,P′,V′,Sim′,Ext′) as follows.

CRS and trapdoor generation K′(RL, ξRL
): Sample (crs ‖ ts) ←

K(RL′ , ξRL′); (pke, ske) ← KGene(1
λ); s0, r0←$ {0, 1}λ; ρ := Comc(s0; r0);

and output (crs′ ‖ ts′ ‖ te′) := ((crs, pke, ρ) ‖ (s0, r0) ‖ ske).
Prover P′(RL, ξRL

, crs, x,w): Parse crs′ := (crs, pke, ρ);
Abort if (x,w) /∈ RL; (pks, sks) ← KGens(1

λ); sample
z0, z1, z2, r1←$ {0, 1}λ; compute c = Ence(pke,w; r1); gener-
ate π ← P(RL′ , ξRL′ , crs, (x, c, z0, pks, pke, ρ), (r1, z1, w, z2)); sign
σ ← Sigs(sks, (x, c, z0, π)); and output π′ := (c, z0, π, pks, σ).

Veri�er V′(RL, ξRL
, crs′, x, π′): Parse crs′ := (crs, pke, ρ) and

π′ := (c, µ, π, pks, σ); Abort if Vfys(pks, (x, c, µ, π), σ) = 0; call
V(RL′ , ξRL′ , crs, (x, c, µ, pks, pke, ρ), π) and abort if it outputs 0.

Simulator Sim′(RL, ξRL
, crs′, ts′, x): Parse crs′ := (crs, pke, ρ) and

ts′ := (s0, r0); (pks, sks) ← KGens(1
λ); set µ = fs0(pks);

sample z3, r1←$ {0, 1}λ; compute c = Ence(pke, z3; r1); gener-
ate π ← P(RL′ , ξRL′ , crs, (x, c, µ, pks, pke, ρ), (r1, r0, z3, s0)); sign
σ ← Sigs(sks, (x, c, µ, π)); and output π′ := (c, µ, π, pks, σ).

Extractor Ext′(RL, ξRL
, crs′, te′, x, π′): Parse π′ := (c, µ, π, pks, σ), te

′ := ske;
extract w← Dece(ske, c); output w.

On the E�ciency of Privacy-Preserving Smart Contract Systems 9

On input a SAP instance Sp = (Zp,m0, {uj , wj}mj=0, `).

K(RSp , ξR): Pick g1 ←r G∗1, g2 ←r G∗2, (α, β, γ, χ) ←r (Z∗p)4 (such that `(χ) 6= 0),
generate crs← (crsP, crsV) and return (crs, ts); where ts = (α, β, γ, χ) and

crsP ←

RSp ,
[
α, γ`(χ), γ2`(χ)2, (α+ β)γ`(χ), (γχi, γ2`(χ)χi)n−1

i=0

]
1
,[

(γ2wi(χ) + (α+ β)γui(χ))
m
i=m0+1

]
1
,
[
γ`(χ), (γχi)n−1

i=0

]
2

 ,

crsV ←
(
[α, γ, (γwi(χ) + (α+ β)ui(χ))

m0
i=0]1 , [1, β, γ]2

)
.

P(RSp , ξR, crsP, x = (A1, . . . , Am0),w = (Am0+1, . . . , Am)):
1. Let a†(X)←

∑m
j=0Ajuj(X),

2. Let c†(X)←
∑m
j=0Ajwj(X),

3. Set h(X) =
∑n−2
i=0 hiX

i ← (a†(X)2 − c†(X))/`(X),
4. Set

[
γ2h(χ)`(χ)

]
1
←
∑n−2
i=0 hi

[
γ2χi`(χ)

]
1
,

5. Pick r ←r Zp; Set
� a←

(∑m
j=0Aj [γuj(χ)]1 + r [γ`(χ)]1

)
� b←

(∑m
j=0Aj [γuj(χ)]2 + r [γ`(χ)]2

)
� c ←

∑m
j=m0+1Aj

[
(γ2wj(χ) + (α+ β)γuj(χ)

]
1

+ r2
[
γ2`(χ)2

]
1

+

r [(α+ β)γ`(χ)]1 +
[
γ2`(χ)

(
h(χ) + 2r

∑m
j=0Ajuj(χ)

)]
1

6. Return π ← (a, b, c).
V(RSp , ξR, crsV, x = (A1, . . . , Am0), π = (a, b, c)): assuming A0 = 1, check

a • [γ]1 = [γ]2 • b ,

(a+ [α]1) • (b+ [β]2) = [α]1 • [β]2 +

+

(
m0∑
j=0

Aj [(γwj(χ) + (α+ β)uj(χ)]1

)
• [γ]2 + c • [1]2 .

Sim(RSp , ξR, crs, x = (A1, . . . , Am0), ts): Pick µ ← Z∗p, and compute π = (a, b, c)
such that

a← [µ]1 , b← [µ]2 , c←

[
µ2 + (α+ β)µ− γ

m0∑
j=0

Aj(γwj(χ) + (α+ β)uj(χ))

]
1

Fig. 1: Structure of GM zk-SNARK [GM17]

2.3 Groth and Maller's zk-SNARK

This section presents the construction of GM zk-SNARK that is presented by
Groth and Maller in [GM17] 2. It is the �rst SAP-based zk-SNARK that achieves
non-black-box simulation extractability, which makes the scheme secure against
the malleability attacks. The structure of GM zk-SNARK is shown in Fig. 1.

2 We use original construction of GM zk-SNARK that is published in Crypto
2017 [GM17] and implemented in Libsnark library https://github.com/

scipr-lab/libsnark. But one also can use the variation of GM zk-SNARK that
recently is provided in full version of paper.

https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark

10 Karim Baghery

3 An E�cient UC-secure zk-SNARK

We present a variation of GM zk-SNARK [GM17] and show that it achieves
black-box simulation extractability, and equivalently UC-security. GM zk-
SNARK is the only scheme that guarantees non-black-box simulation ex-
tractablity which is stronger than knowledge-soundness that is usually achieved
in most of pairing-based zk-SNARKs. We show that due to this strong security,
with minimal changes we can achieve a UC-secure version of GM zk-SNARK.

Intuition. The goal is to present a UC-secure version of GM zk-SNARK but
e�cient than UC-secure zk-SNARKs that are lifted by C∅C∅ framework; espe-
cially more e�cient than the ones that are deployed in [KMS+16,JKS16]. To
do so, we slightly modify GM zk-SNARK and enforce prover P to encrypt its
witnesses with a public key given in the CRS and send the ciphertext along with
the proof. In this scenario, in security proof, the secret key of encryption scheme
is given to the Ext which allows to extract witnesses in black-box manner, that
is more realistic indeed. Actually this is an already known technique to achieve
black-box extraction that also is used in C∅C∅ framework. It is undeniable that
sending encryption of witnesses leads to have non-succinct proofs in witness size
but still they are succinct in the size of circuit that encodes the language and it
is simpler and more e�cient than the ones that are lifted by C∅C∅ .

3.1 Construction

While modifying we keep internal computation of both prover and veri�er as
original one, that considerably are optimized for a SAP relation. Instead we
de�ne a new language L′ based on the language L in GM zk-SNARK that is
embedded with encryption of witness. Strictly speaking, given a language L with
the correspondingNP relationRL, we de�ne the following new language L′ such
that ((x, c, pke), (w, r)) ∈ RL′ i�:

(c = Ence(pke,w; r)) ∧ ((x,w) ∈ RL),

where (KGene,Ence,Dece) is a set of algorithms for a semantically secure en-
cryption scheme with keys (pke, ske). Accordingly, the modi�ed version of GM
zk-SNARK is given in Fig. 2. It is worth to mention that, due to the particular
structure of new language L′, all veri�cations will be done inside the circuit, and
interestingly veri�er and prover's internal computations are the same as before,
just prover needs to send encryption of witnesses along with the proof. This
is the key modi�cation in removing nBB extraction (particularly knowledge-
assumption based in zk-SNARKs) and achieving BB extraction.

3.2 E�ciency

In the modi�ed scheme, as the original one, proof is 2 elements in G1 and 1
element in G2, but along with c that is encryption of witnesses. So, proof size is
dominated with size of c that is linear in witness size.

On the E�ciency of Privacy-Preserving Smart Contract Systems 11

CRS and trapdoor generation K′(RL, ξRL): Generate key pair (pke, ske) ←
KGene(1

λ); execute CRS generator of GM zk-SNARK and sample (crs ‖ ts) ←
K(RL′ , ξRL′); output (crs

′ ‖ ts′ ‖ te′) := ((crs, pke) ‖ ts ‖ ske); where ts′ are sim-
ulation trapdoors and te′ is the extraction key.

Prover P′(RL, ξRL , crs
′, x,w): Parse crs′ := (crs, pke); Abort if

(x,w) /∈ RL; sample r←$ {0, 1}λ; compute encryption of witnesses
c = Ence(pke,w; r); execute prover P of GM zk-SNARK and generate
π ← P(RL′ , ξRL′ , crs, (x, c, pke), (w, r)); and output π′ := (c, π).

Veri�er V′(RL, ξRL , crs
′, x, π′): Parse crs′ := (crs, pke) and π

′ := (c, π); call veri�er
V(RL′ , ξRL′ , crs, (x, c, pke), π) of GM zk-SNARK and abort if it rejects.

Simulator Sim′(RL, ξRL , crs
′, x, ts′): Parse crs′ := (crs, pke) and ts′ := ts; sam-

ple z, r←$ {0, 1}λ; compute c = Ence(pke, z; r); execute simulator of GM
zk-SNARK and generate π ← Sim(RL′ , ξRL′ , crs, (x, c, pke), ts); and output
π′ := (c, π).

Extractor Ext′(RL, ξRL , crs
′, te′, x, π′): Parse π′ := (c, π) and te′ := ske; extract

w← Dece(ske, c); output w.

Fig. 2: GM zk-SNARK with black-box simulation extractability

As veri�er is untouched, so similar to GM zk-SNARK, the veri�cation pro-
cedure consists of checking that the proof contains 3 appropriate group ele-
ments and checking 2 pairing product equations which in total it needs a multi-
exponentiation G1 to m0 exponents and 5 pairings.

In the setup, in result of our change, the arithmetic circuit will be slightly
extended, but due to minimal changes (a more detailed comparison is provided
in Fig. 3), the extension is less than the case that one uses C∅C∅ framework.

3.3 Security Proof

Theorem 1 (Perfect Completeness). The protocol constructed in Sec. 3, is
a non-interactive argument of knowledge that guarantees perfect completeness.

Proof. We emphasizes that in the modi�ed version, the internal computations of
P and V are the same as original one, just they need to perform the computation
for new SAP instance that has slightly larger size (e.g. n = nold + nnew, where
n is number of squaring gates in the new circuit, and nnew is the number of
squaring gates that are added in result of new changes) and prover needs to
output some new elements that are encryption of witnesses and will be used
inside the unchanged veri�cation equations. So by considering this fact, one can
see that the completeness of modi�ed protocol follows the original protocol. ut

Theorem 2 (Computationally Zero-Knowledge). The protocol con-
structed in Sec. 3, is a non-interactive argument of knowledge that guarantees
computational zero-knowledge.

Proof. To prove the theorem, we write a series of hybrid experiments that start
from an experiment that encrypts a random value and uses the simulator, and

12 Karim Baghery

�nally gets to an experiment that uses the procedure of real prover. We show
that all experiments are indistinguishable two-by-two. Before going through the
games, recall that GM zk-SNARK scheme guarantees zero-knowledge and its
simulation procedure is given in Fig. 1. So, consider the following experiment,

EXPzk1
− Setup: (pke, ske)← KGene(1

λ); (crs ‖ ts)← K(RL′ , ξRL′); crs
′ = (crs, pke)

− O(x,w) : Abort if (x,w) 6∈ RL; Sample z, r ← {0, 1}λ; c = Ence(pke, z; r);

π ← Sim(RL′ , ξRL′ , crs, (x, c, pke), ts);

− b← AO(x,w)(crs′);
return b;fi

EXPzk2
− Setup: (pke, ske)← KGene(1

λ); (crs ‖ ts)← K(RL′ , ξRL′); crs
′ = (crs, pke)

− O(x,w) : Abort if (x,w) 6∈ RL; Sample r ← {0, 1}λ ; c = Ence(pke,w; r) ;

π ← Sim(RL′ , ξRL′ , crs, (x, c, pke), ts);

− b← AO(x,w)(crs′);
return b;fi

Lemma 1. If the used cryptosystem in the above games is semantically secure,
then for two experiments EXPzk2 and EXPzk1 , we have Pr[EXPzk2] ≈ Pr[EXPzk1].

Proof. By considering the fact that the cryptosystem Πenc =
(KGene,Ence,Dece) is a semantically secure, so no polynomial-time algo-
rithm can distinguish an oracle that encrypts randomly chosen value z and uses
simulator Sim from the case that it encrypts witness w and again uses Sim. ut

EXPzk3
− Setup:(pke, ske)← KGene(1

λ); (crs ‖ ts)← K(RL′ , ξRL′); crs
′ = (crs, pke)

− O(x,w) : Abort if (x,w) 6∈ RL; Sample r ← {0, 1}λ; c = Ence(pke,w; r);

π ← P(RL′ , ξRL′ , crs, (x, c, pke), (w, r)) ;

− b← AO(x,w)(crs′);
return b;fi

Lemma 2. For experiments EXPzk3 and EXPzk2 we have Pr[EXPzk3] ≈ Pr[EXPzk2].

Proof. As GM zk-SNARK guarantees zero-knowledge, so one can conclude that
the real proof (generated by prover) in experiment EXPzk3 is indistinguishable
from the the simulated proof (generated by simulator) in experiment EXPzk2 . ut

This completes the proof of theorem. ut

Theorem 3 (Black-Box Simulation Extractability). Assuming the en-
cryption scheme is semantically secure and perfectly correct, the modi�ed version
of GM zk-SNARK in Sec. 3, satis�es black-box simulation extractability.

On the E�ciency of Privacy-Preserving Smart Contract Systems 13

Proof. Similarly, we go through a sequence of hybrid experiences. The proof
uses a similar approach that is used in C∅C∅ framework and consequently in
Hawk and Gyges, but with considerable simpli�cations. As the �rst experiment,
consider the following experiment,

EXPSimExt1

− Setup:(pke, ske)← KGene(1
λ); (crs ‖ ts)← K(RL′ , ξRL′); crs

′ = (crs, pke)

− O(x) : Sample r, z ← {0, 1}λ; c = Ence(pke, z; r);

π ← Sim(RL′ , ξRL′ , crs, (x, c, pke), ts); output π
′ := (c, π)

− (x, π′)← AO(x)(crs′, ske);

− Parse π′ := (c, π); extract witness w← Dece(c, ske);
return 1 i� ((x, π′) 6∈ Q) ∧ (V(RL′ , ξRL′ , crs, (x, c, pke), π) = 1) ∧ ((x,w) 6∈ RL);

where Q shows the set of statment-proof pairs generated by O(x). fi

EXPSimExt2

− Setup:(pke, ske)← KGene(1
λ); (crs ‖ ts)← K(RL′ , ξRL′); crs

′ = (crs, pke)

− O(x) : Sample r ← {0, 1}λ; c = Ence(pke,w; r) ;

π ← Sim(RL′ , ξRL′ , crs, (x, c, pke), ts); output π
′ := (c, π)

− (x, π′)← AO(x)(crs′, ske);

− Parse π′ := (c, π); extract witness w← Dece(c, ske);
return 1 i� ((x, π′) 6∈ Q) ∧ (V(RL′ , ξRL′ , crs, (x, c, pke), π) = 1) ∧ ((x,w) 6∈ RL);

where Q shows the set of statment-proof pairs generated by O(x). fi

Lemma 3. If the used cryptosystem in the above games is semantically secure,
then for two experiments EXPSimExt2 and EXPSimExt1 we have Pr[EXPSimExt2] ≈
Pr[EXPSimExt1].

Proof. By the fact that the used cryptosystem is semantically secure, so no
polynomial-time algorithm can distinguish an oracle that encrypts randomly
chosen value z and uses simulator Sim′ from the one that encrypts true witness
w and again uses simulator Sim′. ut

EXPSimExt3

− Setup:(pke, ske)← KGene(1
λ); (crs ‖ ts)← K(RL′ , ξRL′); crs

′ = (crs, pke)

− O(x) : Sample r ← {0, 1}λ; c = Ence(pke,w; r);

π ← P(RL′ , ξRL′ , crs, (x, c, pke), (w, r)) ; output π
′ := (c, π)

− (x, π′)← AO(x)(crs′, ske);

− Parse π′ := (c, π); extract witness w← Dece(c, ske);
return 1 i� ((x, π′) 6∈ Q) ∧ (V(RL′ , ξRL′ , crs, (x, c, pke), π) = 1) ∧ ((x,w) 6∈ RL);

where Q shows the set of statment-proof pairs generated by O(x). fi

Lemma 4. If the underlying NIZK is simulation sound, then for two experi-
ments EXPSimExt3 and EXPSimExt2 we have Pr[EXPSimExt3] ≈ Pr[EXPSimExt2].

14 Karim Baghery

Proof. We note that if (x, π′) 6∈ Q, then the (x, c, π) (from (x, π′)) is a valid mes-
sage pair. By simulation soundness property of GM zk-SNARK, that prevents
mallability attacks, we know that (x, π′) 6∈ Q.

On the other hand, since the decrypted w is unique for all valid witnesses, so
due to the soundness of GM zk-SNARK (note that the de�nition of simulation
soundness implies standard soundness) the probability that some witness is valid
for L′ and (x,w) 6∈ RL is negl(λ). ut

We note that in all above experiments, extraction of witnesses is done uni-
versally, independent of adversarial prover's code, that is a critical issue in con-
structing the UC simulator that extracts witness form the proof sent by envi-
ronment and the adversarial prover. So, this results that the modi�ed scheme
satis�es black-box simulation extractability. Consequently, following previous re-
sult (shown in [CLOS02,Gro06,GOS06]) that a NIZK argument system with
black-box simulation extractability guarantees UC-security, we conclude that
the modi�ed construction of GM zk-SNARK in Fig. 2 achieves UC-security. ut

4 On the E�ciency of Smart Contract Systems

Hawk and Gyges [KMS+16,JKS16] frequently generate CRS and use a UC-
secure zk-SNARK to prove di�erent statements. In Hawk author discuss that
their system is dominated by e�ciency of the underlying UC-secure zk-SNARK
that are achieved from a variation of Pinocchio zk-SNARK [PHGR13] lifted by
C∅C∅ framework (the same is done in Gyges as well). In the rest, we discuss how
UC-secure construction in Sec. 3 can improve e�ciency of both smart contract
systems. Our evaluation is focused precisely on Hawk, but as Gyges also have
used C∅C∅ framework, so the same evaluation can be considered for Gyges.

Improving E�ciency of Hawk. We begin evaluation on Hawk by reviewing
the changes that are applied on Ben Sasson et al.'s zk-SNARK (to get UC-
security) before using it in Hawk. As discussed in Sec. 2.2, in order to lift any
NIZK to a UC-secure NIZK, C∅C∅ applies several changes in setup, proof gen-
eration and proof veri�cation of input NIZK. For instance, each time prover
needs to generate a pair of signing/verifying keys for a one-time secure signature
scheme, encrypt the witnesses using a given public-key, and sign the generated
proof using the mentioned one-time signing key. On the other side, veri�er needs
to do extra veri�cations than the NIZK veri�cation.

As we discussed in Sec. 3, to achieve a UC-secure version of GM zk-SNARK,
we added a key generation procedure for a public-key cryptosystem in the setup
phase, and prover only needed to encrypt the witnesses using the public-key in
CRS and then generate a proof for new language as the original zk-SNARK.
We did not add new checking to the veri�er side and it is as the non-UC-secure
version.

Left side of Fig. 3 summarizes the modi�cations applied (by using C∅C∅) on
a variation of Pinocchio zk-SNARK before using in Hawk; and right side sum-
marizes our changes on GM zk-SNARK to get BB simulation extractability and

On the E�ciency of Privacy-Preserving Smart Contract Systems 15

The modified version of Pinocchio zk-SNARK [BCTV13]
(Proof size: 8 group elements)

TRANSFORMATION WITH COCO

Changes applied on the input zk-SNARK:

- On Setup phase
• Adds a key generation for a public-key

cryptosystem
• Adds a commitment of a trapdoor
• Adds a pseudo-random function

- On Prover side
• Adds encryption of witnesses
• Adds a key generation for a one-time secure

signature scheme in each run
• Adds signing the generated proof

- On Verifier side
• Adds verifying signature of proof

A UC-secure version of modified version of Pinocchio
zk-SNARK [KMS+16]

Groth and Maller’s zk-SNARK [GM17]
(Proof size: 3 group elements)

THIS PAPER

Changes applied on the input zk-SNARK:

- On Setup phase
• Added a key generation for a public-key

cryptosystem
- On Prover side

• Added encryption of witnesses
- On Verifier side

• ___

A UC-secure version of Groth and Maller’s zk-SNARK

Fig. 3: The modi�cations applied by C∅C∅ transformation on the modi�ed ver-
sion of Pinocchio zk-SNARK [BCTV13] before using in Hawk system versus our
changes on GM zk-SNARK (shown in Fig. 2) to get a UC-secure version.

CRS Leg., Time Proof Size Prover Comp. Veri�er Comp. Ver. Equ.

6m+ n−m0 G1

m G2

7 G1

1 G2

6m+ n−m0 E1

m E2

m0 E1

12 P
5

[BCTV13]
&

in libsnark 104.8 seconds 287 bytes 128.6 seconds 4.2 millisec. �

m+ 4n+ 5 G1

2n+ 3 G2

2 G1

1 G2

m+ 4n−m0 E1

2n E2

m0 E1

5 P
2

[GM17]
&

in libsnark 100.4 seconds 127 bytes 116.4 seconds 2.3 millisec. �

Table 1: Comparison of Ben Sasson et al.'s [BCTV13] and GM [GM17] zk-
SNARKs for arithmetic circuit satis�ability with m0 element instance, m wires,
n multiplication gates. Since [GM17] uses squaring gates, so n multiplication
gates translate to 2n squaring gates. Implementations are done on a PC with
3.40 GHz Intel Core i7-4770 CPU, in single-threaded mode, for an R1CS instance
with n = 106 constraints and m = 106 variables, of which m0 = 10 are input
variables. G1 and G2: group elements, E: exponentiations and P : pairings.

equivalently UC-security. As both use encrypting of witnesses, it seems having
linear proof size on witness size currently is an undeniable issue to get black-
box extraction. So, except this unavoidable modi�cation, we applied minimal
changes in the structure of GM zk-SNARK to achieve a UC-secure version of it.

Additionally, Tab.1 compares e�ciency and practical performance of Ben
Sasson et al.'s [BCTV13] and GM [GM17] zk-SNARKs from various perspectives
before applying any changes. Empirical performance reported in libsnark library
for a particular instance3. The experiments are done on a machine equipped with

3 Based on reported implementation on https://github.com/scipr-lab/libsnark

https://github.com/scipr-lab/libsnark

16 Karim Baghery

3.40 GHz Intel Core i7-4770 CPU, in single-threaded mode, using the BN128
curve. Following Pinocchio scheme, Ben Sasson et al.'s zk-SNARK [BCTV13] is
constructed for the QAP relation, while Groth and Maller's scheme works for
the SAP relation by default. As discussed in [Gro16,GM17], a SAP instance can
be constructed based on a simpli�cation of systems on arithmetic constraints,
such that all multiplication gates are replaced with squaring gates, but with at
most two times gates.

Tab. 1 shows that GM zk-SNARK outperforms Ben Sasson et al.'s zk-SNARK
in all metrics. Beside faster running times in all algorithms, GM zk-SNARK has
only 2 veri�cation equations, instead of 5 in [BCTV13]. By considering e�ciency
report in Tab.1, and the fact that our modi�cations (summarized in Fig. 3) are
lighter than what are applied on Ben Sasson et al.'s zk-SNARK before deploying
in Hawk system, one can observe that new UC-secure zk-SNARK will simplify
the system and would be more e�cient than the one that currently is used in
Hawk (similarly in Gyges). Indeed our changes are a small part of their already
applied changes, so they will have less overload.

Hawk needs to generate CRS of zk-SNARK for each smart contract and as
the UC-secure zk-SNARK is widely deployed in various operations of the sys-
tem, so substituting current UC-secure zk-SNARK with the new one in Sec. 3,
can simplify the system and improve the e�ciency of whole system, specially in
larger scales. Moreover, in the construction of Hawk system, authors applied var-
ious e�ective optimizations to maximize the e�ciency of underlying UC-secure
zk-SNARK (Sec. V in [KMS+16]). The same techniques can work with new
construction. For instance, it is shown that in the Finalize operation of a smart
contract in Hawk, one may use non-UC-secure zk-SNARK, which similarly in
new case one can use non-UC-secure version of GM zk-SNARK that is more e�-
cient than the one that currently is used (compared in Tab. 1) and additionally it
ensures non-block-box simulation extractability. In another noticeable optimiza-
tion, Kosba et al. used some independently optimized primitives in the lifted
UC-secure zk-SNARK, that had considerable e�ect in the practical e�ciency of
Hawk. Again, by reminding that our changes are a small part of the changes ap-
plied by C∅C∅ , so a part of their optimized primitives (for encryption scheme)
can be used in this case as well, but the rest can be ignored. Based on their
experiences, such optimizations lead to have a gain of more than 10× in the
arithmetic circuit that is required for Finalize operation. We predict it should
be even more with new scheme.

5 Open Discussions

In Hawk and Gyges [KMS+16,JKS16], authors used the fact that Pinocchio zk-
SNARK and its variation by Ben-Sasson et al. [BCTV13] satis�es knowledge
soundness and consequently soundness, and then used C∅C∅ framework and
lifted a variation of Pinocchio zk-SNARK to a UC-secure one. On the other
hand, knowledge soundness of the mentioned zk-SNARKs are proven under
some knowledge assumptions, that are not clear how to use such assumptions

On the E�ciency of Privacy-Preserving Smart Contract Systems 17

in the UC framework. We used a similar technique and corollary in our security
proofs. We considered the fact that simulation extracability implies simulation-
soundness [Gro06], because if we can extract a witness from the adversary's
proof, then the statement must belong the language. So, an interesting future
direction might be reproving the soundness of Pinocchio zk-SNARK [PHGR13]
(or the variation by Ben-Sasson et al. [BCTV13]), or simulation-soundness of GM
zk-SNARK [GM17] under some di�erent non-falsi�able assumptions (di�erent
from knowledge assumptions).

Acknowledgement. The author were supported by the European Union's
Horizon 2020 research and innovation programme under grant agreement No
780477 (project PRIViLEDGE), and by the Estonian Research Council grant
(PRG49).

References

ABLZ17. Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, and Michal Zajac.
A subversion-resistant SNARK. In Tsuyoshi Takagi and Thomas Peyrin,
editors, ASIACRYPT 2017, Part III, volume 10626 of LNCS, pages 3�33.
Springer, Heidelberg, December 2017.

BCG+14. Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous
payments from bitcoin. In 2014 IEEE Symposium on Security and Privacy,
pages 459�474. IEEE Computer Society Press, May 2014.

BCPR14. Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence
of extractable one-way functions. In David B. Shmoys, editor, 46th ACM
STOC, pages 505�514. ACM Press, May / June 2014.

BCTV13. Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Suc-
cinct non-interactive arguments for a von neumann architecture. Cryptology
ePrint Archive, Report 2013/879, 2013. http://eprint.iacr.org/2013/

879.
Can01. Ran Canetti. Universally composable security: A new paradigm for crypto-

graphic protocols. In 42nd FOCS, pages 136�145. IEEE Computer Society
Press, October 2001.

CL06. Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. In
Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 78�
96. Springer, Heidelberg, August 2006.

CLOS02. Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally
composable two-party and multi-party secure computation. In 34th ACM
STOC, pages 494�503. ACM Press, May 2002.

Dam91. Ivan Damgård. Towards Practical Public Key Systems Secure against Cho-
sen Ciphertext Attacks. In Joan Feigenbaum, editor, CRYPTO 1991, vol-
ume 576 of LNCS, pages 445�456, Santa Barbara, California, USA, Au-
gust 11�15, 1991. Springer, Heidelberg, 1992.

GM17. Jens Groth and Mary Maller. Snarky signatures: Minimal signatures of
knowledge from simulation-extractable SNARKs. In Jonathan Katz and
Hovav Shacham, editors, CRYPTO 2017, Part II, volume 10402 of LNCS,
pages 581�612. Springer, Heidelberg, August 2017.

http://eprint.iacr.org/2013/879
http://eprint.iacr.org/2013/879

18 Karim Baghery

GOS06. Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero
knowledge for NP. In Serge Vaudenay, editor, EUROCRYPT 2006, volume
4004 of LNCS, pages 339�358. Springer, Heidelberg, May / June 2006.

Gro06. Jens Groth. Simulation-sound NIZK proofs for a practical language and
constant size group signatures. In Xuejia Lai and Kefei Chen, editors, ASI-
ACRYPT 2006, volume 4284 of LNCS, pages 444�459. Springer, Heidelberg,
December 2006.

Gro10. Jens Groth. Short pairing-based non-interactive zero-knowledge arguments.
In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages
321�340. Springer, Heidelberg, December 2010.

Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II,
volume 9666 of LNCS, pages 305�326. Springer, Heidelberg, May 2016.

GW11. Craig Gentry and Daniel Wichs. Separating succinct non-interactive ar-
guments from all falsi�able assumptions. In Lance Fortnow and Salil P.
Vadhan, editors, 43rd ACM STOC, pages 99�108. ACM Press, June 2011.

JKS16. Ari Juels, Ahmed E. Kosba, and Elaine Shi. The ring of Gyges: Investi-
gating the future of criminal smart contracts. In Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, ACM CCS 16, pages 283�295. ACM Press, October 2016.

KMS+16. Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos
Papamanthou. Hawk: The blockchain model of cryptography and privacy-
preserving smart contracts. In 2016 IEEE Symposium on Security and Pri-
vacy, pages 839�858. IEEE Computer Society Press, May 2016.

KZM+15. Ahmed E. Kosba, Zhichao Zhao, Andrew Miller, Yi Qian, T.-H. Hubert
Chan, Charalampos Papamanthou, Rafael Pass, Abhi Shelat, and Elaine
Shi. C∅C∅: A Framework for Building Composable Zero-Knowledge Proofs.
Technical Report 2015/1093, IACR, November 10, 2015. http://eprint.

iacr.org/2015/1093, last accessed version from 9 Apr 2017.
Lip12. Helger Lipmaa. Progression-Free Sets and Sublinear Pairing-Based Non-

Interactive Zero-Knowledge Arguments. In Ronald Cramer, editor, TCC
2012, volume 7194 of LNCS, pages 169�189, Taormina, Italy, March 18�21,
2012. Springer, Heidelberg.

Noe15. Shen Noether. Ring signature con�dential transactions for monero. IACR
Cryptology ePrint Archive, 2015:1098, 2015.

NVV18. Neha Narula, Willy Vasquez, and Madars Virza. zkledger: Privacy-
preserving auditing for distributed ledgers. In 15th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 18), pages 65�
80, 2018.

PBF+18. Andrew Poelstra, Adam Back, Mark Friedenbach, Gregory Maxwell, and
Pieter Wuille. Con�dential assets. In International Conference on Financial
Cryptography and Data Security, pages 43�63. Springer, 2018.

PHGR13. Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio:
Nearly practical veri�able computation. In 2013 IEEE Symposium on Secu-
rity and Privacy, pages 238�252. IEEE Computer Society Press, May 2013.

WLB14. Shawn Wilkinson, Jim Lowry, and Tome Boshevski. Metadisk a blockchain-
based decentralized �le storage application. Storj Labs Inc., Technical Re-
port, hal, pages 1�11, 2014.

Woo14. Gavin Wood. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper, 151:1�32, 2014.

http://eprint.iacr.org/2015/1093
http://eprint.iacr.org/2015/1093

	On the Efficiency of Privacy-Preserving Smart Contract Systems -5 mm

