
Tiny WireGuard Tweak

Jacob Appelbaum, Chloe Martindale, and Peter Wu

Department of Mathematics and Computer Science
Eindhoven University of Technology, Eindhoven, Netherlands

jacob@appelbaum.net, chloemartindale@gmail.com, peter@lekensteyn.nl

Abstract. We show that a future adversary with access to a quantum
computer, historic network traffic protected by WireGuard, and knowl-
edge of a WireGuard user’s long-term static public key can likely decrypt
many of the WireGuard user’s historic messages. We propose a simple,
efficient alteration to the WireGuard protocol that mitigates this vul-
nerability, with negligible additional computational and memory costs.
Our changes add zero additional bytes of data to the wire format of the
WireGuard protocol. Our alteration provides transitional post-quantum
security for any WireGuard user who does not publish their long-term
static public key – it should be exchanged out-of-band.

Keywords: WireGuard · post-quantum cryptography · mass surveil-
lance · network protocol · privacy · VPN · security

1 Introduction

WireGuard [12] is a recently introduced Virtual Private Network (VPN) proto-
col which is both simple and efficient. It aims to replace other protocols such
as IPsec [22] and OpenVPN [44] for point-to-point tunnels with a secure pro-
tocol design that rejects cryptographic agility. WireGuard uses a fixed set of
sound cryptographic primitives and does not negotiate them – in stark contrast
to nearly every other major VPN protocol. Unlike many protocols, WireGuard
requires out-of-band peer configuration information to be exchanged before it
may be used. All peers must exchange fixed pairwise-unique long-term static
public keys as well as Internet host name or address information out-of-band.
WireGuard optionally allows peers to fix a pairwise-unique static symmetric
value known as a Pre-Shared Key (PSK). A well-known VPN provider, Mull-
vad, has a worldwide deployment [31] of WireGuard that uses this PSK [32] as
a method of adding post-quantum transitional security to the protocol. Wire-
Guard does not require, nor use a PSK by default. A protocol is post-quantum

∗ Author list in alphabetical order; see https://www.ams.org/profession/leaders/

culture/CultureStatement04.pdf. This work was done when the third author
was a master student at Eindhoven University of Technology under the super-
vision of Jacob Appelbaum and Tanja Lange. This work was supported in part
by the Netherlands Organization for Scientific Research (NWO) under grants
639.073.005 and 651.002.004 (CHIST-ERA USEIT). Permanent ID of this docu-
ment: tue-wireguard-africacrypt-2019. Date of this document: May 11, 2019.

https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf

2 Jacob Appelbaum, Chloe Martindale, and Peter Wu

transitionally secure when it is secure against a passive adversary with a quan-
tum computer [40]. If this transitionally secure protocol is used today, it is not
possible for a quantum attacker to decrypt today’s network traffic, tomorrow.

If a future adversary has access to a quantum computer, historic network
traffic protected by WireGuard, and knowledge of one WireGuard user’s long-
term static public key, this threatens the security of the protocol for all related
WireGuard users, as explained in Section 5. In this paper we propose a tiny
tweak to the WireGuard protocol that makes WireGuard traffic flows secure
against such an adversary; if our alteration is incorporated into the WireGuard
protocol, a user’s historic traffic will not be able to be decrypted by such an
adversary if they do not release their long-term static public key to the network,
as explained in Section 6. We accomplish this with both extremely minimal costs
and minimal changes to the original protocol, as detailed in Section 6.1.

Note that our analysis applies to the current version of WireGuard [14] as
implemented in the Linux kernel [18] as opposed to the older version described
in the NDSS paper [12]. A major difference exists in the application of the PSK
during the handshake which results in two incompatible protocols.

2 Realistic adversary concerns

It is well-documented and indisputable that a number of nation-state-sponsored
adversaries are unilaterally conducting mass surveillance of the Internet as a
whole. This has created new notions of realistic threat models [35,38,3] in the
face of such pervasive surveillance adversaries. Some of these adversaries have
an openly stated interest in “collecting it all” [25] and have directly stated that
they use this data as actionable information, for example, for use in internation-
ally contested drone strikes against unknown persons. The former director of the
CIA, General Michael Hayden, famously said: “We kill people based on meta-
data” [9]. We additionally see that these adversaries target encrypted protocols
and for example seek to exploit properties of handshakes, which may allow them
to launch other subsequent attacks. These types of attacks are documented in the
publication of numerous internal documents [29,30,1] that show attacks, claims,
and results against a number of VPNs and other important cryptographic proto-
cols. Development of quantum computers for attacking cryptographic protocols
is explicitly a budget line item [4]. We consider it prudent to analyze WireGuard
as a protocol that is, among others, of interest to these adversaries.

We consider nation-state mass surveillance adversaries (for example NSA [5,7]
using XKeyscore [26]) as one of the primary adversaries to users of encrypted
network tunnels, and we find that WireGuard will be vulnerable when these ad-
versaries gain access to a quantum computer (see Section 5 for details). This is
primarily due to the fact that large-scale [27] surveillance data sets which contain
logged encrypted traffic are explicitly kept for later attempts at decryption [23].

We also consider less powerful adversaries which are directly coercive, op-
pressive, or political (COPs). These adversaries are able to take possession of
any endpoint, such as through theft or other ill-gotten means, which includes a

Tiny WireGuard Tweak 3

long-term public static cryptographic key pair. This type of attack is regularly
carried out against VPN providers and is commonly understood as a kind of
compulsion [11] attack.

3 WireGuard overview

In this section we present an overview of the WireGuard protocol, briefly consider
relevant implementations, and discuss traffic analysis considerations.

3.1 WireGuard implementations

WireGuard is implemented in multiple languages and is easy to understand.
The primary implementation is available as a patch to the Linux kernel and is
written in C [18]. Implementations targeting MacOS and iOS [19], Android [17],
and Windows [20] use the wireguard-go [15] implementation which is written
in the Go programming language. An experimental implementation in the Rust
programming language is also available, wireguard-rs [16].

The first author has implemented a user space Python implementation for
experimentation using Scapy [8] for use on GNU/Linux. The third author has im-
plemented a protocol dissector [43] for WireGuard in Wireshark [10], a software
program that can capture and analyze network traffic. Our implementations are
based on the published WireGuard paper [12] and the evolving white paper [14].

3.2 WireGuard as a tunneling protocol

WireGuard is a point-to-point protocol for transporting IP packets. It uses the
UDP protocol for transporting protocol messages. It is implemented as a device
on common operating systems and users of WireGuard route IP packets into
the WireGuard device to securely send those packets to their WireGuard peer.
WireGuard does not have state for any IP packets that it transmits and it does
not re-transmit packets if they are dropped by the network.

To start using the WireGuard protocol, a user must first generate a long-
term static Curve25519 [6] key pair and acquire the long-term static public key
of their respective peer. This precondition for running the WireGuard protocol
is different from common Internet protocols as users must exchange these keys
out of band. This is in contrast to services such as OpenVPN which may only
need to exchange a user name or password for access control reasons. Example
methods of distributing WireGuard keys include using a camera on a smart
phone to import the peer public keys with a QR code, or by manually entering
the data. This must be done before attempting to run the WireGuard protocol
and the would-be agents running the protocol are designed to not emit packets to
parties which do not have possession of previously exchanged public keys. Users
are also required to exchange a DNS name or an IP address along with a UDP
port number for at least one of the two parties. To use the WireGuard tunnel,
the peers additionally have to exchange the expected internal IP addressing

4 Jacob Appelbaum, Chloe Martindale, and Peter Wu

information for their respective WireGuard tunnel endpoints. This again is in
contrast to other VPN solutions which usually include some sort of automatic IP
addressing scheme to ease automatic configuration of internal tunnel endpoint
addresses.

Initiator Responder
Initiator packet

Responder packet

Initiator’s first data packet

Bi-directional session established

Fig. 1. Informal protocol narration of the 1.5 Round Trip Time (1.5-RTT) handshake
valid for a ninety second session; parties may change roles in subsequent sessions; for
additional information see Figure 7 and Algorithm 1

After configuring the endpoints with the respective public keys and IP ad-
dresses, peers will be able to create new cryptographic WireGuard sessions with
each other as shown in Figure 1.

3.3 WireGuard’s cryptographic handshake

The Noise Protocol framework [34] abstractly defines different Diffie-Hellman
handshakes with different security, and privacy properties for use in crypto-
graphic protocols. Protocol designers select a Noise Protocol pattern and then
select the ideal abstract handshake properties. They must then select concrete
objects such as an authenticated encryption scheme and a Diffie-Hellman prim-
itive. WireGuard’s cryptographic handshake [14] is a variant of IKpsk2 pattern
from the Noise Protocol [34, Section 9.4] framework. A WireGuard handshake
consists of the initiator sending an initiation message (see Figure 3) and the
responder replying with a corresponding responder message (see Figure 4).

WireGuard selected Curve25519 [6] for Diffie-Hellman non-interactive key
exchange messages, BLAKE2s [39] for hashing operations, HKDF [28] as the
key derivation function (KDF), and ChaCha20Poly1305 [33] for authenticated
encryption with additional data (AEAD).

WireGuard additionally augments the Noise protocol in certain areas that
weaken conventional security assumptions relating to identity hiding; WireGuard
reduces the identity hiding properties of the Noise IK protocol as part of a trade-
off strategy to reduce computational costs and to resist detection by untargeted
Internet-wide scanning. The popular Wireshark traffic analysis program displays
a peer’s identity and associates it with flows of traffic. We observe that precon-
ditions of the protocol more closely resemble the Noise KK pattern; KK assumes
that both parties know their peer’s respective long-term static public key while
IK assumes that only the responder’s long-term static public key is known by the
initiator. However, it is strictly weaker than the KK pattern in that the initiator

Tiny WireGuard Tweak 5

always reveals their own long-term static public key identity to the responder,
and thus to the network, encrypted to the responder’s long-term public key.
Unlike other protocols, the roles of initiator and responder do also reverse [14].
This happens automatically when the responder attempts to send a data packet
without a valid session.

3.4 Handshake details

The initiator’s long-term static public key is encrypted using the ChaCha20Poly1305
AEAD using a key derived from the responder’s long-term static public key and
a per-session ephemeral Curve25519 key pair generated by the initiator. The
resulting ciphertext is decrypted, and the public key of the initiator is found,
and matched to a corresponding data structure previously initialized for crypto-
graphic operations on the responder side; see Algorithm 1 for details. In 5.2, we
describe an attack based on the transmission of the encrypted long-term static
public key.

Notes on Algorithm 1:

– As in the WireGuard protocol, we use the following notation for symmetric
encryption with a nonce and additional authenticated data (AEAD):
ciphertext = aead-enc(key, nonce, message, associated data).

– Algorithm 1 gives a simplified version of the WireGuard key agreement pro-
cess; the only fundamental simplifications that we have applied are:
• We introduce Laura and Julian as parties in the role of Initiator and

Responder.
• Compressing the application of multiple hash function operations from
H(H(x)||y) to a single H(x||y).

• Omission of some constants in the initial hash and KDF salt.
• Omission of details about construction of the 96-bit nonce. This value

also serves as a counter for replay detection within a given session.
• Compressing the application of multiple KDF’s to a set of variables to

the application of a single KDF to the set of variables.

4 Traffic analysis

WireGuard traffic visible to a third party observer is subject to trivial finger-
printing and confirmation that the WireGuard protocol is in use. The protocol is
not designed to resist traffic analysis: session identifiers, sequence numbers, and
other values are visible. For any surveillance adversary, writing a comprehen-
sive network protocol dissector is quick work as evidenced in our Wireshark and
Scapy implementations. There are four message types. Three of these types have
a fixed length and each has static values which act as distinguishers or network
selectors [36]. The fourth type has variable length, it additionally has static dis-
tinguishers and is linkable to other packets in any given flow. WireGuard does

6 Jacob Appelbaum, Chloe Martindale, and Peter Wu

Algorithm 1 Simplified WireGuard key agreement process

Public Input: Curve25519 E/Fp, base point P ∈ E(Fp), hash function H, an empty
string ε, key derivation function KDFn returning n derived values index by n, and
a MAC function Poly1305.

Secret Input (Laura): secret key skL ∈ Z, public key pkL = skL ·P ∈ E(Fp), Julian’s
pre-shared public key pkJ ∈ E(Fp), shared secret s = DH(skL, pkJ), message time,
PSK Q ∈ {0, 1}256; Q = 0256 by default.

Secret Input (Julian): secret key skJ ∈ Z, public key pkJ = skJ ·P ∈ E(Fp), Laura’s
pre-shared public key pkL ∈ E(Fp), shared secret s = DH(skJ , pkL),
PSK Q ∈ {0, 1}256; Q = 0256 by default.

Output: Session keys.

1: Both parties choose ephemeral secrets: eskL ∈ Z for Laura, eskJ ∈ Z for Julian.
2: Laura publishes epkL ← eskL · P .
3: Laura computes seJL ← eskL · pkJ ; Julian computes seJL ← skJ · epkL.
4: Both parties compute (ck1, k1)← KDF2(epkL, seJL).
5: Laura computes h1 ← H(pkJ ||epkL).
6: Laura computes and transmits enc-id← aead-enc(k1, 0, pkL, h1).
7: Julian decrypts enc-id with aead-dec(k1, 0, enc-id, h1) and verifies that the resulting

value (pkL) is valid user’s public key; aborts on failure.
8: Both parties compute (ck2, k2) = KDF2(ck1, s).
9: Laura computes h2 ← H(h1||enc-id).

10: Laura computes and transmits enc-time← aead-enc(k2, 0, time, h2).
11: Both parties compute pkt← epkL||enc-id||enc-time.
12: Laura computes and transmits mac1← MAC(pkJ , pkt).
13: Julian verifies that mac1 = MAC(pkJ , pkt); aborts on failure.
14: Julian computes time = aead-dec(k2, 0, enc-time, h2); aborts on failure.
15: Julian transmits epkJ ← eskJ · P .
16: Laura computes seLJ ← skL · epkJ ; Julian computes seLJ ← eskJ · pkL.
17: Laura computes ee← eskL · epkJ ; Julian computes ee← eskJ · epkL.
18: Both parties compute (ck3, t, k3)← KDF3(ck2||epkJ ||ee||seLJ , Q).
19: Julian computes h3 ← H(h2||enc-time||epkJ ||t).
20: Julian computes and transmits enc-e← aead-enc(k3, 0, ε, h3).
21: Laura verifies that ε = aead-dec(k3, 0, enc-e, h3).
22: Both parties compute shared secrets (Ti, Tr)← KDF2(ck3, ε).
23: return (Ti, Tr).

Tiny WireGuard Tweak 7

not attempt to hide that the WireGuard protocol is in use from a surveillance
adversary, and it additionally does not attempt to hide information that allows
sessions within network flows to be distinguished. WireGuard does attempt to
resist active probing by requiring any initiating party to prove knowledge of the
long-term static public key of the responder.

4.1 Example WireGuard protocol run

To create a WireGuard session, the protocol is broken into several phases. The
initiating party is called an initiator, and the receiving party which must be
reachable, is called the responder. The first phase is a handshake protocol de-
scribed in detail in Section 3.3, and the second phase is a time-limited data-
transfer window. The third phase is reached when a time limit or a data-transfer
limit is reached, at which point a new cryptographic session is established. Unlike
other cryptographic protocols, the WireGuard protocol has no session renegoti-
ation, peers simply start again as if they have never had a session in the first
place.

After a successful handshake, once the initiator has received a responder
message, it may proceed to send transport data messages (see Figure 6) which
contain encrypted IP packets. The responder is only permitted to send data mes-
sages after successfully receiving and authenticating the transport data packet
sent by the initiator. Data messages with an encrypted empty payload act as
Keep-Alive messages. These are trivially distinguishable messages by their type
and length as shown in Figure 2.

Fig. 2. Flow graph between two WireGuard peers as seen in Wireshark

An example interaction taken from a packet capture between two WireGuard
peers can be found in Figure 2, and an informal protocol narration in Figure 1.

If either initiator or responder are under heavy computational load, they may
send a Cookie message (see Figure 5) in response to an initiation or responder
message without making further progress in completing the handshake. The
recipient of a Cookie message should decrypt the cookie value and use it to

8 Jacob Appelbaum, Chloe Martindale, and Peter Wu

calculate the MAC2 value for use in the next handshake attempt. It will not re-
transmit the same handshake message under any circumstances. If a handshake
is unsuccessful, the initiator will try to start a new handshake.

There is no explicit error or session-tear-down signaling. A session is invali-
dated after a fixed duration of time; session lifetimes are currently around ninety
seconds.

4.2 Packet formats

We display the four packet formats. The protocol includes only these four wire
message formats, though there is an implied fifth type: an empty data message
may be used as keep alive message. Each message is encapsulated entirely inside
of an IP packet with UDP payload.

WireGuardInitator
01

message type WireGuardInitator

00 00 00

reserved zero ”

00 00 00 00

sender index 0

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

unencrypted ephemeral”

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

encrypted static ”
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00

encrypted timestamp”
00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00
mac1 ”

00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00

mac2 ”

Fig. 3. 148 byte initiator packet payload

In Figure 3, the initiator message is shown. It is a fixed-size frame of 148
bytes. The MAC2 field is set to zero unless the sender has received a Cookie
message before. This message is larger than the responder’s message intentionally
to prevent misuse such as amplification attacks using forged source addresses.

WireGuardResponder
02

message type WireGuardResponder

00 00 00

reserved zero ”

00 00 00 00

sender index 0

00 00 00 00

receiver index 0

00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00

unencrypted ephemeral”

00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00

encrypted nothing ”

00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00

mac1 ”

00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00

mac2 ”

Fig. 4. 92 byte responder packet payload

In Figure 4, the responder message is shown. It is a fixed-sized frame of 92
bytes. Unlike the initiator packet, it does not contain a long term static public
key.

Tiny WireGuard Tweak 9

WireGuardCookie
03

message type WireGuardCookie

00 00 00

reserved zero ”

00 00 00 00

receiver index 0

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

nonce ”

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

encrypted cookie ”

Fig. 5. 64 byte Cookie packet payload

In Figure 5, the cookie message is shown. It is a fixed-sized frame of 64 bytes.
This is not used for each run of the WireGuard protocol. This message is only
sent by the initiator or responder when they are “under load”. The recipient
must decrypt the cookie value and store it for inclusion in future handshake
messages.

While all handshake messages (Figure 3, Figure 4, Figure 5) have fixed
lengths, the Transport Data message (Figure 6) has a variable length. At mini-
mum it is 32 bytes in length. This includes the Transport Data message headers
and the authentication tag for the encrypted payload. For any given WireGuard
protocol run, the maximum size of a generated UDP packet depends on the
maximum transmission unit (MTU) of the network interface. These are typi-
cally much smaller than the theoretical limits of an IP packet.

WireGuardData
04

message type WireGuardData

00 00 00

reserved zero ”

00 00 00 00

receiver index 0

00 00 00 00 00 00 00 00

counter 0

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

encrypted encapsulated packet”

Fig. 6. Variable length (32 up to ∞ + 16) byte data packet payload. See Table 1 for
implementation specific notes

The UDP layer has a theoretical maximum length of 216− 1, this length also
includes eight bytes of the UDP header so the actual maximum length for the
UDP payload is 216−1−8 bytes. The theoretical maximum length for Transport
Data messages is shown in Table 1.

216 − 1− 8 IPv4 with fragmentation
216 − 1− 20− 8 IPv4 without fragmentation nor IP options
216 − 1− 40− 8 IPv6 without extension headers
232 − 1− 40− 8− 8 IPv6 with Jumbograms

Table 1. Theoretical maximum sizes for UDP payloads

10 Jacob Appelbaum, Chloe Martindale, and Peter Wu

While WireGuard itself does not impose a maximum length, implementations
on various platforms might be constrained by their environment. For example,
the Linux kernel does not support IPv6 Jumbograms [21] and FreeBSD currently
does not support IPv6 Jumbograms with UDP due to the lack of a physical
medium [24].

5 Security and privacy issues

We consider both the mass surveillance adversary and the less powerful local
adversary conducting targeted attacks from Section 2.

Initial handshake message creation and processing

Laura Julian

pkL, skL, time, secret key Q pkJ , skJ

. Out-of-band key exchange: pkL, pkJ , PSK Q .

(epkL, eskL) = EphemeralKey()

Compute enc-id, enc-time, mac1

epkL, enc-id, enc-time, mac1

Initiator packet

. Responder receives initiator packet .

Compute pkt, verify mac1

Compute emphemeral DH

Decrypt enc-id to a known pk

Find session for resulting pk

Decrypt enc-time to get time

VerifyAntiReplay(time)

. Handshake continues .

Fig. 7. Informal protocol narration of sending and receiving an initiator packet. (For
definitions of terms and details on how to compute, decrypt, and verify, see Algorithm 1)

5.1 Identity hiding weakening

Throughout this section, suppose, as was justified in Section 2 to be a realistic
situation, that a WireGuard user has released its long-term static public key. We
analyze a handshake involving this user with this user in the role of responder.

Tiny WireGuard Tweak 11

The initiation packet contains the static public key of the initiator and it is
encrypted as previously described with an ephemeral key pair used in conjunction
with the responder’s static key pair. The initiation packet is augmented with
what WireGuard’s design describes as a MAC. Under our assumptions, the input,
which is an initiator or a responder packet, and the MAC key, which is the static
public key of the receiving party, are both public values.

Third party observers are able to passively confirm the identity of both peers
when their public keys are known to the observer. This is strictly worse than
NoiseIK’s identity hiding properties and allows non-sophisticated attackers to
link known static public keys to individual flows of traffic.

Ostensibly the additional MAC over the whole packet is done primarily as
a verification step: to prevent arbitrary packets (e.g. from an adversary) from
causing the responder to compute a Diffie-Hellman key-exchange. This is a known
deficiency in OpenVPN [13].

The MAC check also prevents practical Internet-wide scans from finding un-
known WireGuard responders. While a verification step may be necessary to
prevent unknown parties from exhausting resources or forcing a responder mes-
sage, this additional MAC verification method is strongly divergent from the
identity hiding properties of the Noise IK pattern; because of this identity hid-
ing property, it is easier for a quantum adversary to attack, as we show below.

A simple shared secret value, set either on a per-site or per-peer basis would
provide a similar protection without revealing the identity of one or both of the
peers.

5.2 Quantum attack

Consider an attacker capable 1 of running Shor’s algorithm [41]. Shor’s algorithm
breaks the discrete logarithm problem in any group in time polynomial in the size
of the group; observe that this includes elliptic curve groups. Suppose that the
long-term static public key of some WireGuard user U0 is known to an adversary.
We show in Algorithms 2 and 3 that in this situation, Shor’s algorithm will apply
to users of the WireGuard protocol, as given in Algorithm 1.

Recall from Section 4 that network traffic is visible to a third-party observer.
In particular, an adversary can detect when a handshake takes place between
U0 and any other WireGuard user. We describe in Algorithm 2 how to extract
the long-term static secret key of any initiator with a quantum computer when
U0 is the responder.

Of course after computing the ephemeral keys, an adversary who has access
to the static secret and public keys of both the initiator and the responder
of a WireGuard handshake can completely break the protocol (assuming the
responder U0 and the initiator use the default WireGuard settings, i.e. no PSK).

Now suppose an adversary wishes to attack some user Un. Suppose also
that there exists a traceable path from U0 to Un, that is, if by analyzing the

1 See [37] for a recent estimate of the resources needed by an attacker to carry out
such an attack using Shor’s algorithm.

12 Jacob Appelbaum, Chloe Martindale, and Peter Wu

traffic flow the adversary can find users U1, . . . , Un−1 for which every pair of
‘adjacent’ users Ui and Ui+1 have performed a WireGuard handshake. We show
in Algorithm 3 how the adversary can then compute Un’s long-term static key
pair. Recall from Section 4 that the information of which pairs of users have
performed a WireGuard handshake is freely available; if such a path exists then
an adversary can easily find it.

An important remark on this attack: if two WireGuard users do not publish
their static public keys, and both users do not interact with any other WireGuard
users, then this attack does not apply to those two users.

Algorithm 2 Extract Initiator’s Long-term Static Key Pair

Input: Long-term static public key pkJ of the responder; Ephemeral public key epkL
of the initiator (transmitted over the wire in Step 2 of Algorithm 1); enc-id as sent
over the wire by the initiator in Step 6 of Algorithm 1.

Output: Long-term static key pair skL, pkL of the initiator.
1: Using Shor’s algorithm, compute eskL from epkL.
2: Compute k1 and h1 as in Steps 4 and Steps 5 respectively of Algorithm 1.
3: Compute pkL = aead-dec(k1, 0, enc-id, h1).
4: Compute skL from pkL using Shor’s algorithm.

return skL, pkL.

Algorithm 3 Extract User Un’s Long-term Static Key Pair

Input: Long-term static public key of some WireGuard User U0; A traceable path
from U0 to WireGuard User of interest Un.

Output: Long-term static key pair of WireGuard User Un.
1: for i := 0, . . . , n− 1 do
2: Ui ← Responder (without loss of generality, c.f. Section 3.3).
3: Ui+1 ← Initiator (also without loss of generality).
4: Compute long-term static key pair of Ui+1 using Algorithm 2.
5: end for

return Long-term static key pair of Un.

5.3 A brief comment on extra security options

In Section 5.2 we analyzed the default use of the WireGuard protocol. There is
an option open to WireGuard users to also preshare another secret key, i.e., to
use a PSK Q as an additional input for the KDF in Step 18 of Algorithm 1. If
the user does not configure a PSK, the default value (Q = 0256) will be used.

Use of a secret PSK will not prevent a quantum adversary from computing
skL, pkL using the method described in Section 5.2. It does however prevent

Tiny WireGuard Tweak 13

compromise of session keys Ti and Tr in Step 22 of Algorithm 1 as the adversary
no longer has enough information to compute ck3 in Step 18 of Algorithm 1.

A prudent user may still be concerned about an adversary stealing their PSK;
the tiny protocol tweak presented in Section 6 addresses this concern as well as
protecting those who use the default mode of the WireGuard protocol.

Of course our tweak cannot protect against an adversary who steals the static
long-term public key of both the initiator and the responder in a WireGuard
handshake.

6 Blinding flows against mass surveillance

We propose a tiny tweak to the Wireguard handshake which thwarts the quan-
tum attack outlined in the previous section: In Step 6 and Step 7 of Algorithm 1,
replace pkL by H(pkL). We suggest to use BLAKE2s as the hash function H as
it is already used elsewhere in WireGuard. Naturally, the unhashed static public
key pkL of the initiator has still been exchanged out-of-band, so the responder
can still perform Diffie-Hellman operations with the initiator’s static public key
pkL, and is able to compute the hash H(pkL). In Step 7 and Step 16 of Al-
gorithm 1, the responder will use the decrypted value H(pkL) to look up the
corresponding key pkL.

The hashing process conceals the algebraic structure of the static public key
of the initiator and replaces it with a deterministic, predictable identifier. This
requires no extra configuration information for either of the peers. BLAKE2s is
a one-way hashing function and a quantum adversary cannot easily [42] deduce
the initiator’s static public or secret key from this hash value unless the hash
function is broken.

An attacker as described in Section 5.2 may confirm a guess of a known long-
term static public key. If the guess is correct, they may carry out the attack as in
the unchanged WireGuard protocol. However, the tweak protects sessions where
the public keys are not known.

We claim only transitional security with this alteration. That is, that a future
quantum adversary will not be able to decrypt messages sent before the advent
of practical quantum computers, if the messages are encrypted via an updated
version of WireGuard that includes our proposed tweak. The tweaked protocol
is not secure against active quantum attacks with knowledge of both long-term
static public keys and a known PSK value. With knowledge of zero or only
one long-term static public key, the protocol remains secure. A redesign of the
WireGuard protocol to achieve full post-quantum security is still needed.

There are of course other choices of values to replace the static public key
in Step 6 and Step 7 of Algorithm 1 to increase security. One alternative choice
of value is an empty string, as in the case with the message sent in response to
initiator packets by the responder. This would change the number of trial de-
cryptions for the responder for initiator messages to O(n) where n is the number
of configured peers. This change would allow any would-be attacker to force the

14 Jacob Appelbaum, Chloe Martindale, and Peter Wu

responder to perform many more expensive calculations. It would improve iden-
tity hiding immensely but at a cost that simply suggests using a different Noise
pattern in the first place. A second alternative choice of value is a random string
which is mapped at configuration time, similar to a username or a numbered
account, which is common in OpenVPN and similar deployments. This provides
O(1) efficiency in lookups of session structures but with a major loss in ease of
use and configuration. It would also add a second identifier for the peer which
does not improve identity hiding. Both alternative choices have drawbacks. The
first method would create an attack vector for unauthenticated consumption of
responder resources and the second method would require additional configura-
tion. Both weaken the channel binding property of Noise [34, Chapter 14] as the
encrypted public key of the initiator is no longer hashed in the handshake hash.
The major advantage of our proposed choice is that it does not complicate con-
figuration, nor does it require a wire format change for the WireGuard protocol.
Assuming collision-resistance of the hash function, the channel binding prop-
erty is also preserved. Our proposal concretely improves the confidentiality of
the protocol without increasing the computation in any handshake. It increases
the computation for peer configuration by only a single hash function for each
configured public key.

This change does not prevent linkability of flows as it exchanges one static
identifier for another, and it does preclude sharing that identifier in a known
vulnerable context.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

type reserved sender index initiator’s ephemeral public keyUnencrypted
header

{
Hash of initiator’s long-term static public key

auth tag initiator’s time stamp auth tag

auth tag (continued)

Encrypted
payload

MAC1 MAC2

Unencrypted
trailer

{
Fig. 8. Tweaked initiator packet (in bytes)

6.1 Modified protocol costs

Our modification obviously requires implementation changes. We study the effect
on the proposed Linux kernel implementation as outlined in the WireGuard
paper [14] as well as the effect on the alternative implementations.

The hash function input of the initiator’s static public key and the out-
put value have an identical length, thus the wire format and internal message
structure definitions do not need to change to accommodate the additional hash
operation.

Tiny WireGuard Tweak 15

Initiators only have a single additional computational cost, calculation of the
hash over their own static public key. This could be done during each handshake
at no additional memory cost, or during device configuration which only requires
an additional 32 bytes of memory in the device configuration data structure to
store the hash of the peer’s long-term static public key.

Responders must be able to find the peer configuration based on the initiation
handshake message since it includes the peer’s static public key, optional PSK,
permitted addresses, and so on. In the unmodified protocol, a hash table could
be used to enable efficient lookups using the static public key as table key.
At insertion time, a hash would be computed over the table key. The Linux
kernel implementation uses SipHash2-4 [2] as hash function for this table key [14,
Section 7.4]. Our modification increases the size of the per-peer data structure
by 32 bytes and requires a single additional hash computation per long-term
static public key at device configuration time. There are no additional memory
or computational costs during the handshake.

The wireguard-go [15, device/device.go] implementation uses a standard map
data type using the static public key as map key. Again, a single additional hash
computation is required at configuration time with no additional memory usage.

Recall that WireGuard is based on the Noise protocol framework. Our mod-
ification is not compatible with the current version of this framework, and thus
implementations that rely on a Noise library to create and process handshake
messages must be changed to use an alternative Noise implementation. This
affects the Rust implementation [16].

6.2 Alternative designs and future work

In theory, an alternative WireGuard implementation could accept any initia-
tor that connects to it and successfully completes the handshake. Additional
authorization could then be performed after the handshake. Our modification
would make it impossible to create such implementations as it ensures that the
assumed pre-condition of requiring an out-of-band exchange of long-term static
public key is not violated.

Our proposed modification is generic and also applies to other protocols based
on the Noise IK pattern. A new pattern modifier could be defined in the Noise
specification that enables new protocols to improve transitional post-quantum
security in the case where static public keys have been exchanged before, and
only an identity selector needs to be transmitted.

7 Conclusions

We show that a future adversary with access to a quantum computer, historic
network traffic protected by WireGuard, and knowledge of a WireGuard user’s
long-term static public key can likely decrypt many WireGuard users’ historic
messages when the optional PSK was not used or was compromised. We present
a simple solution to this problem: hashing the long-term static public key before

16 Jacob Appelbaum, Chloe Martindale, and Peter Wu

it is sent encrypted over the wire, resulting in the destruction of the algebraic
structure of the elliptic-curve point which otherwise could be exploited by quan-
tum computers via Shor’s algorithm. The resulting hashed public key is the
same size as the original public key and does not increase the size of any of the
protocol messages. The required input for a quantum adversary to run Shor’s al-
gorithm would not be available from the network flow alone and it would thwart
such an attacker from using a database of network flows to decrypt those very
same flows. Targeted quantum attacks would still be possible in the case that
the long-term keys of both parties, initiator and responder, are known. Active
quantum attacks may still be possible, but our alteration provides transitional
security. Our improvement requires zero extra bytes of data transmitted on the
wire, potentially zero or 32 extra bytes for each peer data structure in memory,
and completely negligible computational costs for cooperating honest parties.

8 Acknowledgements

We would like to thank Jason A. Donenfeld for WireGuard and for insightful dis-
cussions about possible ways to improve WireGuard against quantum adversaries
including for suggesting hashing of public keys. We would like to thank various
anonymous helpers for their reviews of earlier drafts of this paper. We would
also like to thank those in the TU/e coding theory and cryptology group and
the cryptographic implementations group including Gustavo Banegas, Daniel J.
Bernstein, and especially Tanja Lange for their valuable feedback.

References

1. Adams, A.A.: Report of a debate on Snowden’s actions by ACM
members. SIGCAS Computers and Society 44(3), 5–7 (2014).
https://doi.org/10.1145/2684097.2684099, https://doi.org/10.1145/2684097.

2684099

2. Aumasson, J., Bernstein, D.J.: Siphash: A fast short-input PRF. In: Gal-
braith, S.D., Nandi, M. (eds.) Progress in Cryptology - INDOCRYPT 2012,
13th International Conference on Cryptology in India, Kolkata, India, Decem-
ber 9-12, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7668, pp.
489–508. Springer (2012). https://doi.org/10.1007/978-3-642-34931-7 28, https:

//doi.org/10.1007/978-3-642-34931-7_28

3. Barnes, R.L., Schneier, B., Jennings, C., Hardie, T., Trammell, B., Huitema,
C., Borkmann, D.: Confidentiality in the Face of Pervasive Surveil-
lance: A Threat Model and Problem Statement. RFC 7624, 1–24 (2015).
https://doi.org/10.17487/RFC7624, https://doi.org/10.17487/RFC7624

4. Barton Gellman and Greg Miller: ’Black budget’ summary de-
tails U.S. spy network’s successes, failures and objectives (2013),
https://www.washingtonpost.com/world/national-security/

black-budget-summary-details-us-spy-networks-successes-failures-and\

-objectives/2013/08/29/7e57bb78-10ab-11e3-8cdd-bcdc09410972_story.

html, news article

https://doi.org/10.1145/2684097.2684099
https://doi.org/10.1145/2684097.2684099
https://doi.org/10.1145/2684097.2684099
https://doi.org/10.1007/978-3-642-34931-7_28
https://doi.org/10.1007/978-3-642-34931-7_28
https://doi.org/10.1007/978-3-642-34931-7_28
https://doi.org/10.17487/RFC7624
https://doi.org/10.17487/RFC7624
https://www.washingtonpost.com/world/national-security/black-budget-summary-details-us-spy-networks-successes-failures-and \ -objectives/2013/08/29/7e57bb78-10ab-11e3-8cdd-bcdc09410972_story.html
https://www.washingtonpost.com/world/national-security/black-budget-summary-details-us-spy-networks-successes-failures-and \ -objectives/2013/08/29/7e57bb78-10ab-11e3-8cdd-bcdc09410972_story.html
https://www.washingtonpost.com/world/national-security/black-budget-summary-details-us-spy-networks-successes-failures-and \ -objectives/2013/08/29/7e57bb78-10ab-11e3-8cdd-bcdc09410972_story.html
https://www.washingtonpost.com/world/national-security/black-budget-summary-details-us-spy-networks-successes-failures-and \ -objectives/2013/08/29/7e57bb78-10ab-11e3-8cdd-bcdc09410972_story.html

Tiny WireGuard Tweak 17

5. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against
mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) Advances in Cryptology -
CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 17-21, 2014, Proceedings, Part I. Lecture Notes in Computer Science,
vol. 8616, pp. 1–19. Springer (2014). https://doi.org/10.1007/978-3-662-44371-2 1,
https://doi.org/10.1007/978-3-662-44371-2_1

6. Bernstein, D.J.: Curve25519: New Diffie-Hellman Speed Records. In: Yung,
M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) Public Key Cryptography -
PKC 2006, 9th International Conference on Theory and Practice of Public-
Key Cryptography, New York, NY, USA, April 24-26, 2006, Proceedings. Lec-
ture Notes in Computer Science, vol. 3958, pp. 207–228. Springer (2006).
https://doi.org/10.1007/11745853 14, https://doi.org/10.1007/11745853_14

7. Bieker, F.: Can courts provide effective remedies against violations of fundamental
rights by mass surveillance? The case of the United Kingdom. In: Aspinall, D.,
Camenisch, J., Hansen, M., Fischer-Hübner, S., Raab, C.D. (eds.) Privacy and
Identity Management. Time for a Revolution? - 10th IFIP WG 9.2, 9.5, 9.6/11.7,
11.4, 11.6/SIG 9.2.2 International Summer School, Edinburgh, UK, August 16-21,
2015, Revised Selected Papers. IFIP Advances in Information and Communication
Technology, vol. 476, pp. 296–311. Springer (2015). https://doi.org/10.1007/978-
3-319-41763-9 20, https://doi.org/10.1007/978-3-319-41763-9_20

8. Biondi, P.: Scapy, http://www.secdev.org/projects/scapy/, website (2010)
9. Cole, D.: Michael Hayden: “we kill people based on metadata”, https://www.

justsecurity.org/10311/michael-hayden-kill-people-based-metadata/,
David Cole quoting former director of the CIA Michael Hayden (2014)

10. Combs, G., et. al.: Wireshark (1998–2019), https://www.wireshark.org/
11. Danezis, G., Clulow, J.: Compulsion resistant anonymous communications. In: In-

ternational Workshop on Information Hiding. pp. 11–25. Springer (2005), https:
//www.freehaven.net/anonbib/cache/ih05-danezisclulow.pdf

12. Donenfeld, J.A.: WireGuard: Next generation kernel network tunnel. In: 24th
Annual Network and Distributed System Security Symposium, NDSS 2017,
San Diego, California, USA, February 26 - March 1, 2017. The Internet Soci-
ety (2017), https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/
wireguard-next-generation-kernel-network-tunnel/

13. Donenfeld, J.A.: Wireguard Black Hat 2018 talk slides (2018), https://www.

wireguard.com/talks/blackhat2018-slides.pdf, see slide 41
14. Donenfeld, J.A.: WireGuard: Next generation kernel network tunnel (2018), https:

//www.wireguard.com/papers/wireguard.pdf, version 416d63b 2018-06-30
15. Donenfeld, J.A.: Source code for the Go implementation of WireGuard (2019),

https://git.zx2c4.com/wireguard-go, commit c2a2b8d739cb
16. Donenfeld, J.A.: Source code for the Rust implementation of WireGuard (2019),

https://git.zx2c4.com/wireguard-rs, commit a7a2e5231571
17. Donenfeld, J.A.: WireGuard Android application source (2019), https://git.

zx2c4.com/wireguard-android/
18. Donenfeld, J.A.: WireGuard Linux kernel source (2019), https://git.zx2c4.com/

WireGuard, tag 0.0.20190227, commit ab146d92c353
19. Donenfeld, J.A.: WireGuard MacOS and iOS application source (2019), https:

//git.zx2c4.com/wireguard-ios/
20. Donenfeld, J.A.: WireGuard Windows application source (2019), https://git.

zx2c4.com/wireguard-windows/
21. Dumazet, E.: Linux kernel patch: ipv6: Limit mtu to 65575 bytes (2014), https:

//git.kernel.org/linus/30f78d8ebf7f514801e71b88a10c948275168518

https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/978-3-319-41763-9_20
https://doi.org/10.1007/978-3-319-41763-9_20
https://doi.org/10.1007/978-3-319-41763-9_20
http://www.secdev.org/projects/scapy/
https://www.justsecurity.org/10311/michael-hayden-kill-people-based-metadata/
https://www.justsecurity.org/10311/michael-hayden-kill-people-based-metadata/
https://www.wireshark.org/
https://www.freehaven.net/anonbib/cache/ih05-danezisclulow.pdf
https://www.freehaven.net/anonbib/cache/ih05-danezisclulow.pdf
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/wireguard-next-generation-kernel-network-tunnel/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/wireguard-next-generation-kernel-network-tunnel/
https://www.wireguard.com/talks/blackhat2018-slides.pdf
https://www.wireguard.com/talks/blackhat2018-slides.pdf
https://www.wireguard.com/papers/wireguard.pdf
https://www.wireguard.com/papers/wireguard.pdf
https://git.zx2c4.com/wireguard-go
https://git.zx2c4.com/wireguard-rs
https://git.zx2c4.com/wireguard-android/
https://git.zx2c4.com/wireguard-android/
https://git.zx2c4.com/WireGuard
https://git.zx2c4.com/WireGuard
https://git.zx2c4.com/wireguard-ios/
https://git.zx2c4.com/wireguard-ios/
https://git.zx2c4.com/wireguard-windows/
https://git.zx2c4.com/wireguard-windows/
https://git.kernel.org/linus/30f78d8ebf7f514801e71b88a10c948275168518
https://git.kernel.org/linus/30f78d8ebf7f514801e71b88a10c948275168518

18 Jacob Appelbaum, Chloe Martindale, and Peter Wu

22. Dunbar, N.: IPsec networking standards – an overview. Inf. Sec. Techn. Re-
port 6(1), 35–48 (2001). https://doi.org/10.1016/S1363-4127(01)00106-6, https:
//doi.org/10.1016/S1363-4127(01)00106-6

23. Erwin, M.: The Latest Rules on How Long NSA Can Keep Americans’ En-
crypted Data Look Too Familiar (2015), https://www.justsecurity.org/19308/
congress-latest-rules-long-spies-hold-encrypted-data-familiar/, blog
entry

24. FreeBSD: Chapter 8. IPv6 Internals - Jumbo Payload, https://www.freebsd.org/
doc/en/books/developers-handbook/ipv6.html#ipv6-jumbo

25. Greenwald, G.: The crux of the NSA story in one phrase: ‘collect
it all’ (2013), https://www.theguardian.com/commentisfree/2013/jul/15/

crux-nsa-collect-it-all, news article
26. Greenwald, G.: “XKeyscore: NSA tool collects ‘nearly everything a user does

on the internet’ ” (2013), https://www.theguardian.com/world/2013/jul/31/

nsa-top-secret-program-online-data
27. Hogan, M.: Data flows and water woes: The Utah data center. Big Data & So-

ciety 2(2), 2053951715592429 (2015), https://journals.sagepub.com/doi/abs/
10.1177/2053951715592429

28. Krawczyk, H., Eronen, P.: HMAC-based Extract-and-Expand Key Derivation
Function (HKDF). RFC 5869, 1–14 (2010). https://doi.org/10.17487/RFC5869,
https://doi.org/10.17487/RFC5869

29. Landau, S.: Making sense from Snowden: What’s significant in the NSA
surveillance revelations. IEEE Security & Privacy 11(4), 54–63 (2013).
https://doi.org/10.1109/MSP.2013.90, https://doi.org/10.1109/MSP.2013.90

30. Landau, S.: Highlights from making sense of Snowden, part II: what’s sig-
nificant in the NSA revelations. IEEE Security & Privacy 12(1), 62–64
(2014). https://doi.org/10.1109/MSP.2013.161, https://doi.org/10.1109/MSP.

2013.161
31. Mullvad: Introducing a post-quantum VPN, Mullvad’s strategy

for a future problem, https://mullvad.net/en/blog/2017/12/8/

introducing-post-quantum-vpn-mullvads-strategy-future-problem/, blog
post

32. Mullvad: mullvad-wg-establish-psk, https://github.com/mullvad/oqs-rs/tree/
master/mullvad-wg-establish-psk, source code post

33. Nir, Y., Langley, A.: ChaCha20 and Poly1305 for IETF Protocols. RFC 8439, 1–46
(2018). https://doi.org/10.17487/RFC8439, https://doi.org/10.17487/RFC8439

34. Perrin, T.: The Noise protocol framework (2018), https://noiseprotocol.org/
noise.html

35. Preneel, B.: Post-Snowden Threat Models. In: Weippl, E.R., Kerschbaum,
F., Lee, A.J. (eds.) Proceedings of the 20th ACM Symposium on Access
Control Models and Technologies, Vienna, Austria, June 1-3, 2015. p. 1.
ACM (2015). https://doi.org/10.1145/2752952.2752978, https://doi.org/10.

1145/2752952.2752978
36. Privacy and Civil Liberties Oversight Board: Report on the Surveillance Pro-

gram Operated Pursuant to Section 702 of the Foreign Intelligence Surveillance
Act (2014), https://www.pclob.gov/library/702-Report.pdf, july 2nd, 2014;
see page 12

37. Roetteler, M., Naehrig, M., Svore, K.M., Lauter, K.E.: Quantum resource esti-
mates for computing elliptic curve discrete logarithms. In: Takagi, T., Peyrin, T.
(eds.) Advances in Cryptology - ASIACRYPT 2017 - 23rd International Confer-
ence on the Theory and Applications of Cryptology and Information Security, Hong

https://doi.org/10.1016/S1363-4127(01)00106-6
https://doi.org/10.1016/S1363-4127(01)00106-6
https://doi.org/10.1016/S1363-4127(01)00106-6
https://www.justsecurity.org/19308/congress-latest-rules-long-spies-hold-encrypted-data-familiar/
https://www.justsecurity.org/19308/congress-latest-rules-long-spies-hold-encrypted-data-familiar/
https://www.freebsd.org/doc/en/books/developers-handbook/ipv6.html#ipv6-jumbo
https://www.freebsd.org/doc/en/books/developers-handbook/ipv6.html#ipv6-jumbo
https://www.theguardian.com/commentisfree/2013/jul/15/crux-nsa-collect-it-all
https://www.theguardian.com/commentisfree/2013/jul/15/crux-nsa-collect-it-all
https://www.theguardian.com/world/2013/jul/31/nsa-top-secret-program-online-data
https://www.theguardian.com/world/2013/jul/31/nsa-top-secret-program-online-data
https://journals.sagepub.com/doi/abs/10.1177/2053951715592429
https://journals.sagepub.com/doi/abs/10.1177/2053951715592429
https://doi.org/10.17487/RFC5869
https://doi.org/10.17487/RFC5869
https://doi.org/10.1109/MSP.2013.90
https://doi.org/10.1109/MSP.2013.90
https://doi.org/10.1109/MSP.2013.161
https://doi.org/10.1109/MSP.2013.161
https://doi.org/10.1109/MSP.2013.161
https://mullvad.net/en/blog/2017/12/8/introducing-post-quantum-vpn-mullvads-strategy-future-problem/
https://mullvad.net/en/blog/2017/12/8/introducing-post-quantum-vpn-mullvads-strategy-future-problem/
https://github.com/mullvad/oqs-rs/tree/master/mullvad-wg-establish-psk
https://github.com/mullvad/oqs-rs/tree/master/mullvad-wg-establish-psk
https://doi.org/10.17487/RFC8439
https://doi.org/10.17487/RFC8439
https://noiseprotocol.org/noise.html
https://noiseprotocol.org/noise.html
https://doi.org/10.1145/2752952.2752978
https://doi.org/10.1145/2752952.2752978
https://doi.org/10.1145/2752952.2752978
https://www.pclob.gov/library/702-Report.pdf

Tiny WireGuard Tweak 19

Kong, China, December 3-7, 2017, Proceedings, Part II. Lecture Notes in Computer
Science, vol. 10625, pp. 241–270. Springer (2017). https://doi.org/10.1007/978-3-
319-70697-9 9, https://doi.org/10.1007/978-3-319-70697-9_9

38. Rogaway, P.: The moral character of cryptographic work. IACR Cryptology ePrint
Archive 2015, 1162 (2015), http://eprint.iacr.org/2015/1162

39. Saarinen, M.O., Aumasson, J.: The BLAKE2 cryptographic hash
and message authentication code (MAC). RFC 7693, 1–30 (2015).
https://doi.org/10.17487/RFC7693, https://doi.org/10.17487/RFC7693

40. Schanck, J.M., Whyte, W., Zhang, Z.: Circuit-extension handshakes for Tor achiev-
ing forward secrecy in a quantum world. Proceedings on Privacy Enhancing Tech-
nologies 4, 219–236 (2016), https://eprint.iacr.org/2015/287.pdf

41. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and fac-
toring. In: 35th Annual Symposium on Foundations of Computer Science, Santa
Fe, New Mexico, USA, 20-22 November 1994. pp. 124–134. IEEE Computer
Society (1994). https://doi.org/10.1109/SFCS.1994.365700, https://doi.org/10.
1109/SFCS.1994.365700

42. Wiener, M.J.: The full cost of cryptanalytic attacks. J. Cryptology 17(2), 105–124
(2004). https://doi.org/10.1007/s00145-003-0213-5, https://doi.org/10.1007/

s00145-003-0213-5

43. Wu, P.: Bug 15011 - Support for WireGuard VPN protocol (2018), https://bugs.
wireshark.org/bugzilla/show_bug.cgi?id=15011

44. Yonan, J.: OpenVPN, https://openvpn.net/, last fetched Nov 11th, 2018

https://doi.org/10.1007/978-3-319-70697-9_9
https://doi.org/10.1007/978-3-319-70697-9_9
https://doi.org/10.1007/978-3-319-70697-9_9
http://eprint.iacr.org/2015/1162
https://doi.org/10.17487/RFC7693
https://doi.org/10.17487/RFC7693
https://eprint.iacr.org/2015/287.pdf
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1007/s00145-003-0213-5
https://doi.org/10.1007/s00145-003-0213-5
https://doi.org/10.1007/s00145-003-0213-5
https://bugs.wireshark.org/bugzilla/show_bug.cgi?id=15011
https://bugs.wireshark.org/bugzilla/show_bug.cgi?id=15011
https://openvpn.net/

	Tiny WireGuard Tweak

