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Abstract. This paper describes new p2q-based OWFs and signature
schemes. The new signature schemes are interesting because they do not
belong to the two common design blueprints which are the inversion of a
trapdoor permutation and the Fiat-Shamir transform.
The signature algorithms are derived from a new OWF whose inversion
is as provably as difficult as factoring p2q. By opposition to the DLP,
Rabin or RSA, which assume that the target modulus is built into the
OWF, the new OWF does not require any built-in parameters except the
modulus’ size.
In a first (polynomial-time but impractical) signature scheme the signer
generates k ' 200 moduli ni = p2

i qi and keeps their factors secret. The
signature is a bounded-size prime whose Jacobi symbols with respect to
the nis match the message digest.
In a second variant, the resulting public-key is 300 times longer than
RSA’s and a typical signature is 1600-bytes long.
Given of their very different design the new signature schemes seem to
be an overlooked “missing species” in the corpus of known signature
algorithms.
We stress that we did not manage to prove the security of the proposed
signature schemes nor find any attacks against them.

1 Introduction

To construct secure signature scheme or public-key cryptosystem, one fundamental
building block is one-way function. Informally, a one-way function (OWF) is a
function f that is easy to compute in polynomial time (by definition) on every
input, but hard to invert given the image of a random input, theoretically that
means there cannot exist a probabilistic (or deterministic) machine that can
invert f in polynomial time. It is conjectured that the existence of a OWF
implies that P 6= NP . Conversely, in the current state of complexity theory (i.e.,
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P = NP?) it still unknown whether P 6= NP implies the existence of OWFs. For
that reason even if some OWF candidates (e.g., the Discrete Logarithm Problem
or Factoring) are known to be NP -complete, this does not necessarily imply their
one-wayness.

1.1 Cryptography Modulo p2q

p2q moduli have found a few applications in cryptography since the mid 1980s.
The most notable of which are probably the EISGN signature scheme and its
variants [OS85,FOM91,OFM98,Gra03,SPMLS02], Okamoto–Uchiyama’s cryp-
tosystem [OU98,SST05], Schmidt-Samoa’s cryptosystem [SS06] or constructions
such as [STTT03].

As stated in [???08,MQSW08]...[compléter]
Reste aussi à citer les autres réf qui sont dans mers.bib dans leur contexte.
Using p2q moduli does not seem to render factoring significantly easier.

[BDHG99] shows that it is easy to factor N = prq when r ' log p. This LLL-
based approach [LLL82] does not apply to the context of this paper where r = 2
(moduli of the form prq are rather rarely used in cryptographic constructions,
e.g. [Tak98]). We also refer the reader to [May04].

[MF17] presents two different approaches to factor p2q. The first approach
relies on Coppersmith’s method [Cop97] and factors p2q in O(q0.31) time. As a
second approach, uses [BDHG99] and achieves O( 3

√
q) assuming that p and q are

of the same size. Both approaches lag far behind the GNFS.

2 Preliminaries & Notations

We start by recalling notations used in this paper.

2.1 Number-Theoretic Definitions

P will stand for set of primes. To distinguish the first primes from the large
moduli pi used in this paper we will denote p̄1 = 2, p̄2 = 3, p̄3 = 5, . . .

P[a, b] will denote the set {p̄a, p̄a+1, . . . , p̄b}.
k# will represent the product of the first k primes starting with p̄1 = 2.
NextPrime(x) is the function associating to x ∈ N the smallest greater or

equal to x.
A boldface variable x will denote a set of elements identified by that variable,

i.e. x = (x0, . . . , xk−1).

Definition 1 (Quadratic Residues). Let p ∈ P be odd. a ∈ N is a quadratic
residue modulo p (a ∈ QRp) if a is congruent to a perfect square modulo p.
Otherwise, a is a quadratic nonresidue modulo p (a ∈ QNRp).
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Definition 2 (Legendre Symbol). Let p ∈ P be odd. The Legendre symbol is
a function of a ∈ N and p defined as

(
a

p

)
=


1 if a ∈ QRp and a 6≡ 0 mod p,

−1 if a ∈ QNRp,
0 if a ≡ 0 mod p.

+ Computing a Legendre symbol is simple:(
a

p

)
≡ a

p−1
2 mod p

Several other arithmetic rules and identities allow to considerably speed-up
computation and avoid resorting to a modular exponentiation.

The Jacobi symbol is a natural generalization of the Legendre symbol:

Definition 3 (Jacobi Symbol). ∀(a, n) ∈ N2, the Jacobi symbol (a/n) is de-
fined as the product of the Legendre symbols corresponding to the prime factors
of n: (a

n

)
=

k∏
i=1

(
a

pi

)αi

where n =

k∏
i=1

pαi
i is the prime factorization of n

+ Following the normal convention for the empty product, (a/1) = 1.
+ Interestingly, factoring n is not required for computing (a/n).
+ Legendre and Jacobi symbols are indistinguishable when n is an odd prime.
+ The Legendre symbol allows to check if a ∈ QRp, whereas the Jacobi

symbol does not allow checking this property.

Definition 4 (Jacobi Imprint). For a ∈ N and n ∈ Nk, the Jacobi Imprint
Jn(a) ∈ N is the integer:

Jn(a) = 2k−1 − 1

2
+

k−1∑
i=0

2i−1
(
a

ni

)
In essence, the imprint is an integer formed of bits representing the sequence

of Jacobi symbols where −1s are replaced by 0s and 1s are left unchanged4.
Jacobi imprints are usually considered to be pseudo-random [SS07] and were

used as such in a handful of cryptographic constructions (e.g. [?]). At times we
will indistinctively use Jn(a) to design the integer Jn(a) or the set of its bits.

Letting n = (n0, . . . , nk−1) ∈ Nk and a = (a0, . . . , ak−1) ∈ Nk we denote by
CRT(a,n) the Chinese Remainder function returning the smallest a ∈ N such
that ai = a mod ni for 0 ≤ i ≤ k − 1.

4 We ignore the case 0 inapplicable to the constructions described in this paper.
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Definition 5 (General Residues Problem (GRP)). Given k ∈ N and a
binary sequence s = (s0, . . . , sk−1) find the smallest x ∈ N such that:

JP[1,k](x) = s

If we are not interested in the smallest possible x then longer solutions can be
constructed efficiently. To do so, start by generating5 the k imprints JP[1,k](ri)
for small prime ris and express the target s as a xor of the JP[1,k](ri)s using
linear algebra modulo 2.

Because linear algebra results in a solution of Hamming density 1
2 , the expected

solution will be of size '
√

#k.David, c’est quoi
le role de ce prob-
leme dans le pa-
pier?

houda
David, c’est quoi
le role de ce prob-
leme dans le pa-
pier?

Definition 6 (Approximate GCD Problem (AGCDP)). Given a set of n
integers of the form xi = qip+ ri, where p ∈ Z and qi, ri

$←− Z. Find p.

2.2 Cryptographic Definitions

We remind the following cryptographic notions and conventions:

Classically, x $←− S denotes an x uniformly drawn from the set S.

λ denotes a security parameter (all the other parameters are function of λ).

PPT stands for probabilistic algorithms running in polynomial time.

H : {0, 1}∗ → {0, 1}k will denote a public hash-function. Typically, k = 200.

Definition 7 (Negligibility). A function in n is negligible, denoted by negl(n),
if ∀p(x) ∈ Z[x], ∃N ∈ N, such that, ∀n ≥ N ⇒ negl(n) ≤ 1

p(n) .

Definition 8 (One-Way Function (OWF)). A polynomial-time computable
function f : {0, 1}∗ → {0, 1}n is a one-way function, if ∀A ∈ PPT there is a
negligible function negl such that : Prx∈{0,1}n [InvertAdv,f (n) = 1] ≤ negl(n), where
InvertAdv,f (n) is the following experiment:

InvertAdv,f (n):

x
$←− {0, 1}n

y ← f(x)
x̃← A(1κ, y)
If f(x̃) = y return(1) else return(0)

+ A OWF f is a one-way permutation if f is bijective and length-preserving.

5 for 0 ≤ i ≤ k − 1
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2.3 Security model

We recall the strong 6 EUF-CMA security notion:

Definition 9 (Strong EUF-CMA Security). A signature scheme Σ is secure
against existential forgeries in a chosen-message attack (strongly EUF-CMA-
secure) if the advantage of any PPT adversary A against the EUF-CMA game
defined in Figure 1 is negligible: AdvEUFA,Σ(κ) = Pr

[
EUFAΣ(κ) = 1

]
∈ negl(κ).

EUFAΣ(κ):
L← ∅
(sk, pk)

$←− Σ.KeyGen(1κ)

(m∗, σ∗)← ASign(·),Verify(·,·),H(·)(1κ)
if (m∗, σ∗) 6∈ L

return Σ.Verify(pk,m∗)
return 0

Sign(m):

σ
$←− Σ.(sk,m)

L← L ∪ {m,σ}
return σ

Verify(m,σ):
return Σ.Verify(pk,m, σ)

Fig. 1. The strong EUF-CMA experiment for digital signature schemes.

3 A Provably Secure One-Way Function

The first contribution of this paper is a new, provably secure, OWF. To understand
the intuition behind the proposed function we build it in three steps. Each version
perfects the previous and addresses a specific design limitation. David est ce que

tu peux un nom
au fcts F1 et F2

c’est plus simple
pour l’appeler
plus tard dans
le papier

houda
David est ce que
tu peux un nom
au fcts F1 et F2

c’est plus simple
pour l’appeler
plus tard dans
le papier

3.1 F1: A OWF Processing Prime Inputs

Algorithm 1 The First Version F1

Input: x ∈ P and k ∈ N
Output: s ∈ N
s← JP[1,k](x)
return s

F1 operates on prime inputs only and simply return the imprint:

F1(x) = JP[1,k](x) = (

(
x

2

)
,

(
x

3

)
, . . . ,

(
x

p̄k−1

)
)

6 In contrast to the weak version, the adversary is allowed to forge for a message that
they have queried before, provided that their forgery is not an oracle response.
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for some parameter k that will be precised later.
Assume that we are given an attacker m = A1(F1(m)) inverting F1 for a k

which is large enough to characterize m beyond any reasonable doubt (a notion
formalized later), we use A1 to factor any n = p2q by calling:

A1(F1(n)) = A1(JP[1,k](n)) = A1(JP[1,k](p2q)) = A1(JP[1,k](q)) = q

Indeed F1(n) = F1(p2q) = F1(q) and because we assume that k suffices to
characterize q, A has no choice but to factor the target n.

3.2 F2: A OWF Processing All Inputs

Algorithm 2 The Second Version F2

Input: x ∈ N, k ∈ N
Output: s ∈ N
x̂← NextPrime(x)
t← x̂− x
s← Jp̄[kt,k(t+1)−1](x̂) = (

(
x̂
p̄kt

)
, . . . ,

(
x̂

p̄k(t+1)−1

)
)

return s

A OWF operating only on prime inputs is of little use. We hence extend F1

to a function F2 operating on all inputs while preserving the existence of A1.
Let x̂ = NextPrime(x) and t = x̂− x ≥ 0.
We modify the OWF’s definition to:

F2(x) = (

(
x̂

p̄kt

)
, . . . ,

(
x̂

p̄k(t+1)−1

)
)

We see that x ∈ P ⇒ F1(m) = F2(m). When x 6∈ P then F2 produces a
shifted output sequence.

Assuming that we are given an A2 inverting F2, we use A2 to factor p2q,
relying only on the A2’s capacity act as A1 on prime inputs.

3.3 F3: Quantifying “. . . Beyond Any Reasonable Doubt. . . ”

It remains to fix the function’s only parameter k.
Let k = ∆+ log2 q for some ∆ ∈ N.
[faire le calcul d’entropie de H(q|)]

4 A New Signature Scheme

We are now ready to formally describe a first signature scheme.
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4.1 Definition and Security of a new Signature

Definition 10. Our signature scheme is a tuple of algorithms (KeyGen, Sign,
and Ver), which we define as follows:

– KeyGen(pp): The key generation algorithm KeyGen takes as input the
security parameter 1κ and outputs a secret key sk = {pi, qi} and a public key
pk = q computed as follows:
The signer generates k public moduli ni = p2i qi while keeping their factors
secret. For the sake of simplicity, we assume that all secret factors (i.e. the
pi and the qi) are `-bits long.

– Sign(m, sk = q): The signing algorithm Sign takes as inputs the message m
and the secret key q and proceed as follows:
The signer hashes H(m) = (h0, . . . , hk−1) ∈ {0, 1}k and picks k random `-bit
integers ri such:

2hi − 1 =

(
ri
qi

)
for 0 ≤ i ≤ k + 1

Then, the signer generates an `-bit random ρ ∈ N such that:

s = CRT(r, q) + ρπ ∈ P where π =

k−1∏
i=0

qi

And returns s as the signature of m.
– Ver(s,m, pk = n): To verify a signature s, the verification algorithm Ver
takes as inputs the message m, the public key pk = n and proceeds as follows:
Return 1 if a signature s satisfies three criteria:

s ∈ P and s < 2(k+1)`+1 and Jn(s) = H(m)

, 0 otherwise.

Correctness: Reste à faire.

4.2 Security proof

Todo: Existential unforgeability under adaptive chosen message attacks assump-
tions: n = p2q and H is collision-resistant.

Moi j’ai aucune idée. Eric ou Houda prenez en charge sinon il n’y qu’à dire
que prouver la sécurité est un problème ouvert.

David il faut
plutot faire une
preuve de secu-
rité par reduction:
si un attaquant
arrive à casser la
signature dans le
modele UFCMA
(forge existentielle
sous une attaque
à messages choisis)
alors arrive à re-
soudre à inverser
la fonction à sens
unique F1.

houda
David il faut
plutot faire une
preuve de secu-
rité par reduction:
si un attaquant
arrive à casser la
signature dans le
modele UFCMA
(forge existentielle
sous une attaque
à messages choisis)
alors arrive à re-
soudre à inverser
la fonction à sens
unique F1.

Theorem 1 (Existential unforgeability). Our scheme is provably EUF-CMA-
secure assuming the hardness of inverting the F1, in the ROM.

Proof. To prove this result, we will show a reduction from an efficient EUF-CMA
forger to an efficient F1 inverter. For this goal we first show a sequence of
indistinguishability results between the output distributions of:

– h
– g

7



4.3 Toy Example (k = 8)

Picking the secret primes:
i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

pi 59069 54139 52639 53813 49871 41269 53653 40361
qi 62989 32917 36583 48383 36653 34963 52517 38971

We get the public moduli:
n0 = 219777865328629 n1 = 096480757993357 n2 = 101366529455143
n3 = 140109376837127 n4 = 091160286242573 n5 = 059546546811643
n6 = 151177768427453 n7 = 063484161219691

and the value:

π =

7∏
i=0

qi = 9625354820834308444301890854766785161

Consider a message whose digest is {h0, . . . , h7} and pick as ris:
i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

hi 0 1 0 0 1 0 0 1
ri 64863 58999 47120 50684 37458 57079 43135 56942

We get:
CRT(r, q) = 1395786251559231878789764535858641198

And by selecting ρ = 56195 we obtain the signature:
s = CRT(r, q) + ρπ = 540898209943035522259423546348155350763593 ∈ P

5 Shorter Signatures Without Prime Generation

5.1 Key Generation, Signing and Verifying

Definition 11. We define the Shorter Signatures Without Prime Generation as
follows:

– KeyGen(1κ): As in Section 4.1. In addition, the signer generates a secret
sk = w and publishes η = π − w as part of the public-key pk. The size of w
will be described later.

– Sign(m,w, ri): The signer hashes H(m) = (h0, . . . , hk−1) ∈ {0, 1}k and
constructs k random `-bit integers ri (the choice of the ri will be precised
later, to ease understanding the reader can temporarily assume that the ri
are random).
Using linear algebra modulo 2 find a subset of the Jn(ri) having H(m) as a
xor7:

ε0 Jn(r0)⊕ ε1 Jn(r1)⊕ . . .⊕ εk−1 Jn(rk−1) = H(m) where εi ∈ {0, 1}
7 If a solution ε0, . . . , εk−1 does not exist, refresh the ri as necessary.
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The signature is:

s = w + τ = w +
∏
εi=1

ri

– Ver(m, pk = η): To be valid, a signature s must satisfy two criteria:

s < 2k`+1 and Jn(η + s) = H(m)

Selecting w and the ri The choice of w and the ri must take into account
several considerations.

Avoid small factors in the ri: First of all, note that if the ri are chosen randomly
then half of them are expected to be even. Consequently, τ is expected to end
by ∼= k/4 trailing zeros and reveal the k/4 bits of w. Similarly, divisibility
by 3, 5, 7, . . . is expected to reveal more information on w. This means that
if countermeasures are not implemented, π is not protected by the classical
approximate GCD problem but by a modified problem in which the attacker
knows the LSB and the MSB of π whose middle bits remain masked. To prevent
this leakage, one can select ri ∈ P but this slows-down the signature process
although, as we will see next, we recommend to take ` ' 200. A heuristic way
to limit the leakage consists in constructing the ri such that gcd(ri, u#) = 1 for
some bound u.

Avoid collisions between the ri: The size of the ris is also important. Note that
the difference between two signatures (in Z) yields an integer of the form:

ζ =
∏
ε′i=1

r′i −
∏
εi=1

ri

If, for some i, j, we obtain a collision r′i = rj then by factoring (or gcd-ing)
ζs obtained from different signatures the attacker can progressively discover the
ris and retrieve w (and hence π). We hence require the ris to be sufficiently long
so as not collide and recommend ` ' 200.

Another security parameter is the hamming weight of ε. Because half of the
εis are null, τ is expected to be ∼= k`/2 bits long. Because in the event where
τ < w information about w will leak (the MSBs of w), here as well the signer
must ascertain that τ > w before releasing the signature.

Finally, a direct attack on the key consists in averaging signatures (interest-
ingly, even for diverse messages). Indeed, assuming that the ri are random:

lim
t→∞

st = lim
t→∞

1

t

t∑
i=1

si = w +
(2` − 1)k

2
= µ

We do not regard this as a threat given that convergence is very slow:

Pr(|st − µ| < ε) = 1− Pr(|st − µ| > ε) > 1− σ2

tε2
' 1− 22k`

12 t ε2
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To reveal w’s j-th digit we need ε = 2j−1 and hence:

22k`

12t22(j−1)
' 1⇒ log2 t ' 2(`k − j)− 1.58

In other words, an exponential number of signatures is required to filter-out
a linear number of bits of w.

[Houda, Eric, refaites les calculs et vérifiez ça SVP. Je pense que pour la borne
sup il faut à mon avis utiliser la Zelen’s inequality:

Pr(X − µ ≥ uσ) ≤

[
1 + u2 +

(
u2 − uθ3 − 1

)2
θ4 − θ23 − 1

]−1

with u ≥ θ3 +
√
θ23 + 4

2
, and θm =

ηm
σ

where ηm is the m-th moment. In the present case (uniform distribution),
skewness (and hence θ3) is 0 which yields u ≥ 1 and:

Pr(X − µ ≥ uσ) ≤

[
1 + u2 +

(
u2 − 1

)2
θ4 − 1

]−1

η4 =
6(b− a+ 1)2 + 1

5(b− a+ 1)2 − 1
=

6(2`) + 1

5(2`)− 1
' 6

5

σ =
(b− a+ 1)2 − 1

12
=

22k` − 1

12
⇒ θ4 =

η4
σ

=
6

5
× 12

22k` − 1
' 0

Pr(X − µ ≥ uσ) ≤
[
1 + u2 +

(
u2 − 1

)2]−1
=

1

u2(3− u2)

]

5.2 Toy Example (k = 8)

Consider the same p, q,n, π,h as in the previous example.
We select w = 91116 hence:

η = π − w = 9625354820834308444301890854766694045

Picking the following ris:
i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

ri 13 31 47 17 91 57 23 67

We get the imprints Jn(rj) matrix I below 8:

8 j is indexing the rj and i is indexing the ni
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i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 Jn(rj)
j = 0 0 0 0 0 0 1 1 0 01001100
j = 1 0 1 0 0 1 0 1 1 01001011
j = 2 0 0 1 0 1 1 0 1 00101101
j = 3 0 1 0 0 0 1 0 1 01000101
j = 4 1 1 1 0 1 1 1 1 11101111
j = 5 0 0 1 1 0 1 1 1 00110111
j = 6 1 0 1 0 1 1 0 1 10101101
j = 7 0 1 1 1 0 1 0 0 01110100

Gaussian elimination modulo 2 yields:

Iᵀε == h⇒ ε = (0, 0, 1, 0, 1, 0, 0, 1)

Indeed:

h = 10110110 = Jn(r2)⊕ Jn(r4)⊕ Jn(r7) =


00101101
⊕

11101111
⊕

01110100

This yields the signature:

s = 47× 91× 67 + 91116 = 377675

For which:

Jn(η + s) = Jn(η + 377675) = 10110110 = h

6 Security

Tout est à faire. Eric tu as des idées?

7 Open Questions

Except efficiency, proving or refuting the security of the new signature scheme
is an intriguing open question. A second interesting research direction is the
generalizing of the construction to higher residues, e.g. following [BLS13] or using
Eisenstein integers and cubic residue characters. Despite all our attempts we did
not manage to extend the idea to classical RSA moduli (i.e. n = pq).

8 A faire

We now show formally that the factoring assumption of the modulus of the form
n = p2q implies the hardness of OWFs described in section 3.

Theorem 2. If the factoring problem of n = p2q is hard, then F1 is a one-way
function.

Theorem 3. If the factoring problem of n = p2q is hard, then F2 is a one-way
function.
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