A taxonomy of pairings, their security, their complexity

Razvan Barbulescu', Nadia El Mrabet?, and Loubna Ghammam?
! CNRS, Sorbonne université, Univ Paris Diderot, France
razvan.barbulescu@imj-prg.fr
2 Mines Saint-Etienne, CEA-Tech, Centre CMP, Departement SAS, France
nadia.el-mrabet@emse.fr loubna.ghammam@itk-engineering.de

Abstract. A recent NFS attack against pairings made it necessary to increase the key
sizes of the most popular families of pairings : BN, BLS12, KSS16, KSS18 and BLS24. The
attack applies to other families of pairings but not to all. In this paper we compute the key
sizes required for more than 150 families of pairings to verify if there are any other families
which are better than BN. The security estimation is not straightforward because it is not
a mathematical formula, but rather one has to instantiate the Kim-Barbulescu attack by
proposing polynomials and parameters for each pairing friendly elliptic curve.

After estimating the practical security of an extensive list of families, we compute the complexity
of the optimal Ate pairing at 128, 192 and 256 bits of security. For some of the families the
optimal Ate has never been studied before. We show that a number of families of embedding
degree 9, 14 and 15 are very competitive with BN, BLS12 and K 5516 at 128 bits of security.
We identify a set of candidates for 192 bits and 256 bits of security.

Keywords: Discrete Logarithm Problem; Number Field Sieve; Elliptic Curves; Pairings

1 Introduction

Pairings are a crucial ingredient in a series of public-key protocols. After Joux’ [Jou00] tri-partite
Diffie-Hellman key echange and the identity-base encryption scheme of Boneh and Franklin [BF01],
it became clear that pairings can have applications which could not be obtained with any other math-
ematical primitives. Many more public-key protocols followed, including short signatures [BLS04], a
wide variety of aggregate, instance and verifier-local revocation signatures [BGLS03,BBS04,JN09],
broadcast encryption [BGWO05], cloud computing [AFGHO06], privacy enhancing environments [She10],
deep package inspection over encrypted traffic [SLPR15,CDK'17] and many others. The NIST [MC11]
pilots a project dedicated to pairings. Efficient implementations of pairings [BLM*09], [BGDM™10],
[GAL'12], [UW14], [KNG*17] made them interesting for industrial development [Tea05,Cha08].

At a high level, a pairing is a non-degenerated and bilinear map, e : G; X Gy — Gg3, where G,
and G are subgroups of an elliptic curve and Gg is a sub-group of a finite field.

The security of pairing-based cryptography relies on one side on the discrete logarithm problem
(DLP) over Gy (and consecutively over G3) which are elliptic curves, we call this the curve side security
and note that it is very well understood on the classical computers (pairing-based cryptography is
not resisting to quantum computers, whose feasibility is not known to this day). On the other side,
it relies on the discrete logarithm problem over Gg which is the multiplicative group of a finite field,
this is the field side security.

The hardness of computing discrete logarithms in a finite field is difficult to evaluate. In a first
time one used the approximation that its cost is the same as of that of factoring, which is done

with a variant of the same algorithm : the number field sieve (NFS). Hence, the first key sizes
proposed for pairings [Len01] were such that log, #G3 matches the required bitsize for an RSA
module offering the same security level (the RSA hypothesis). In a second time, one computed the
cost using a theoretical upper bound [MSS16],[SG18] (the asymptotic hypothesis). In a recent article,
Barbulescu and Duquesne [BD18] made a precise real-life analysis with no theoretical assumption
(this is practical estimation). Hence, they found the optimal parameters for each variant of NFS
and obtained key sizes which can be used in a future standardization for 5 families of pairing
friendly elliptic curves. Many more families exist and our article, together with very recent other
works [GS19],[GMT19], extends these key evaluations to other families.

The use of approximations was not a problem before 2013. Indeed, the difficulty of the DLP in
fields IF, with p prime is the same as that of factoring an RSA module of the same bit size as p. The
NFS variants used to attack pairings were either analogies of the one used for F,, as the function field
sieve for the pairings of small characteristic, or cumbersome adaptations of NF'S to the case of Fx
when p is non-small and k£ > 1. However, the small characteristic pairings are now forbidden [Eurl3,
page 32] because of a series of attacks culminating with a quasi-polynomial algorithm [BGJT14]. A
series of new variants of NF'S between 2013 and 2016 [JP13,BGGM15,BGK15] showed that the finite
fields F,» can actually be easier than the prime case, from an asymptotic point of view. Kim and
Barbulescu proposed a variant of NFS which either encompass the previous variants or it improves
on them [KB16]. The Kim-Barbulescu attack depends highly on two specific pairing-friendly elliptic
curves parameters: on one side on the parametrization of the characteristic and on the other side on
the embedding degree. The precise estimation of Barbulescu and Duquesne [BD18] concluded that
also from a practical point of view, certain pairings require a larger bitsize than prime fields for the
same level of security. In this work we extend the list of pairing families from 5 in [BD18] to over
150 families.

The starting point of our work is the remark that the fastest pairings before the Kim-Barbulescu
attack, as BN, KSS and BLS, are precisely those which are the most affected by the attack. Indeed,
the complexity of the NFS variants is well-expressed using the L-notation:

L[= exp((¢/9)3 (log N)3 (loglog N) 3)1+,

The constant ¢ takes various values depending on the variant of NFS, a list of these variants being
made in Section 3.2. We have then four situations for the DLP in a field Fgx, represented in Figure 1:

— When £ is prime and ¢ doesn’t have a polynomial form, at a constant bit size of ¢¥, ¢ is 64 when
k is small (TNFS or NFS-GJL) and 96 when k is large (NFS-Conj).

— When k is prime and ¢ has a special form, at a constant bit size of ¢*, ¢ is 32 when k is small
(STNFS or Joux-Pierrot) and 64 otherwise (Joux-Pierrot).

— When k is composite and ¢ doesn’t have a polynomial form, at a constant it size of ¢, ¢ is 64
when £ is small (NFS-GJL or TNFS) and 48 when k is large (exTNFS-Conj).

— When k is composite and ¢ has a polynomial form, ¢ is always 32 (STNFS or Joux-Pierrot if k
is small and SexTNFS otherwise).

Hence, the most popular pairings (BN, KSS16, KSS18, BLS12 and BLS24) have q of polynomial
form and k composite, so they correspond to the value ¢ = 32, which is the lowest in the diagram.
Note that the Appendix B of [BD18] gives arguments to support that no variant of NFS can have a
lower value of c.

Our main purpose is to analyze the efficiency of the new attack [KB16] when applied to less
popular pairings. We identify families where the real-life cost of the Kim-Barbulescu attack is higher

k prime
q non-polynomial

c € [64,96]
k composite
q non-polynomial
c € [48,64] k prime
q polynomial
c € [32,64]

k composite
q polynomial
c=32

Fig. 1: Representation of the four cases of finite fields F x with respect to the constant ¢ such that
the complexity of the fastest NFS attack is L[c].

than for BN, KSS and BLS and hence one can use smaller key sizes for the same security level.
Further, smaller key sizes correspond to shorter computation loops and faster real-life timings.

Our contribution

We make an extensive literature inspection to find as many pairing-friendly families as possible.
The main reference is the taxonomy [FST10] whose title we copy, but we discovered some fam-
ilies [DCCO5],[LZZWO08] which weren’t included in that work. We also add a small number of
families which were published after the taxonomy : [Dryl1],[SG18]. Before the key sizes had to
be corrected, the BN family was much faster and received much more attention than the other
families in the taxonomy, some of which remained to the status of theoretical formulae. Three recent
works [FK18,ZX18,FM18] tackle the problem of proposing numerical examples of elliptic curves
from each family which correspond to classical levels of security (128, 192 and 256). However, they
still make the asymptotic hypothesis that we explained above. We make an extensive analysis of
more than 150 families and find the exact parameters for each of them. We emphasize that for some
families of high embedding degree it is impossible to find small parameters so one cannot have 128
bits of security without having a larger number, say 150 bits. With the precise key sizes in hand
we proposed precise implementation algorithms for all the afore mentioned families. For some of
them, for example of prime embedding degree, we are in virgin territory as these families have been
considered to be slow; we concluded that they still are. For many families the asymptotic hypothesis
gives sizes which are close to being enough and it is no problem to slightly increase the parameters
in order to fill the contract of the security level. For other families, like BLS k=27, the corrected key
sizes with the practical estimation are smaller than the ones obtained with the RSA hypothesis or
the asymptotic hypothesis. This allows us to find a series of families which are faster than BN.

The article is organized as follows. In Section 2, we recall the basic notations on pairings, present
the classical optimizations of the implementation and recall the various constructions of pairings. In
Section 3, we draw the big lines of the NFS algorithm, recall what are the choices for an attacker
and compute the updated key sizes for a large number of families. For each family, we construct
pairings and evaluate the cost of Miller’s loop, first in arithmetic then in binary operations, at 128
bits (Section 4) and respectively 192 and 256 bits of security (Section 5). Then, in Section 6 we
present the final exponentiation complexity for the Optimal Ate pairings in some of proposed curves,
and obtain the overall cost. We conclude in Section 7.

2 Some background on pairings

2.1 Definition of pairings

We briefly recall here elementary definition on pairings [Wei40]. Let E be an elliptic curve defined
over a finite field F,, with ¢ a large prime integer. We denote by O the neutral element of the
additive group law over E. The elliptic curve is described in the Weierstrass model:

EF,) ={(z,y),y*> =2 + ax + b,a,b € F,}.

Let r be a large prime divisor of the group order §E(F,) and k the embedding degree of E with
respect to r, i.e. the smallest integer k such that r divides ¢* — 1.

The Weil [Wei40] and the Tate [Tat63] pairings are constructed using the Miller algorithm [Mil04].
For the Ate, twisted Ate [HSVO06], optimal pairing [Verl0] and pairing lattices [Hes08], the most
efficient pairings are constructed on the Tate model. Hence, we only recall here the definition of the
reduced Tate pairing, a more complete definition being given in [BSS99, §IX.5].

Definition 1 (Tate pairing). Let E(F,) be an elliptic curve over the finite field Fy for q a large
prime number. Let v be a prime divisor of card(E(F,)). Let k be the embedding degree of E relatively
tor. Let Gy = E(Fy)[r], Go = E(F)/rE(F) and G3 = {pn € Fye such that p” = 1}. The reduced
Tate pairing is defined as

€T2G1XG2—>G3,

k

(P.Q) = 1@
where fr p(Q) is the Miller function defined by the divisor D = r(P) — (rP) — (r — 1)(O).

The Miller function is computed through the Miller’s algorithm [Mil04], which is constructed on
the double and add scheme using the construction of P and based on the notion of divisors. We
only give here the essential elements for the pairing computation.

The Miller algorithm constructs the rational function f, p associated to the point P, where P is
a generator of G1; and at the same time, it evaluates f,. p(Q) for a point Q € Gy C E(Fx).

The final exponentiation is used to ensure the uniqueness of the resulting value of two equal
pairing computations (e.g. e(P, [2]Q) = e([2]P, Q)). The final exponentiation maps the result of the
Miller algorithm into the group formed by the r** roots of unity in Fo-

2.2 Optimizations for pairings

The optimisations of pairings rely on an accurate choice of the embedding degree, the parametrization
family of elliptic curves, the use of a twist for E(F«), the research for particular curves inside the
chosen family.

Choice of the embedding degree The most general optimisations for a pairing implementation
are obtained when k is chosen to have only small prime factors, more particularly when k is a product
of powers of 2 and 3 [EJ17]. This property allows the extension field F x to be constructed using
tower field extensions. The interest of using tower field extensions is an optimization of the arithmetic.
In particular, the multiplication over .« can be constructed using intermediate multiplications on
the floor of the tower field extension.

The pairing friendly elliptic curves which are the most interesting for implementation purposes
are obtained from families, a taxonomy of which was made by Freeman, Scott and Teske in [FST10],
to which we add a very recent construction [SG18].

Existence of twisted elliptic curve An important trick when computing a Tate-like pairing is
the elimination of denominators. This is possible when k is a multiple of 2 [KMO05] or 3 [BELL10]
together with the use of a twisted elliptic curve. An elliptic curve E/F, of embedding degree k is
said to have a twist of degree d if d is a factor of k and there exists an elliptic curve E’/F /4 which
is IFx-birationally isomorphic to E/F /a. The larger d is, the faster the pairing is because one
can replace the operations over E(IF;) by operations over E(IF /a) using the embedding map into
E(F). The existence of a twist relies on the value of the DM discriminant A (if D is the squarefree
part of t> — 4q we set A= —D if D =1 (mod 4) and —4D otherwise; D il also call discriminant
abusively). If A =3 and 3 (resp. 6) divides k, we can use a twist of degree 3 (resp. 6). If A =4 and
4 divides k, then we can use a quartic twist d = 4. Else, if k is even, we can use a quadratic twist
d=2.

Choice of parameters inside a family A family of pairing friendly elliptic curves with embed-
ding degree k is given by a triple (¢(z),r(z),t(x)) of polynomials with coefficients in Q. In this
representation, ¢(x) is the characteristic of the finite field, 7(x) a prime factor of Card(E(F,)) and
t(x) is the trace of the elliptic curve. If u is an integer such that ¢(u) and r(u) are prime numbers,
then there exists an elliptic curve with embedding degree k and parameters (q(u),r(u),t(u)). The
integer u is used in the exponent in the Miller loop, in the final exponentiation, and it can have
a great impact on the F x arithmetic [DEHR18]. For this reason, u should have a NAF weight as
small as possible in order to improve the efficiency of the pairing computation. Once we have found
an integer u such that ¢(u) and r(u) are prime integers, we have to construct the equation of the
elliptic curve. This can be done thanks to the complex multiplication (CM) method [FST10]. There
exists several models for elliptic curves, but the most efficient computation of pairings are obtained
using Weierstrass model: F : y = 2® 4+ ax + b with a € {0, —3} and b € F,,.

As the final exponentiation is the same for every pairings, the goal is to obtain the shortest
Miller loop. In practice, the reduction of Miller’s loop is performed using the definition of optimal
pairing [Ver10]. For example, the best results of implementation were obtained for the optimal Ate
pairing over BN curves and parameters of Hamming weight at most four [UW14,KNG*17,AFG*17].
When different curves made difficult the decision of which one is more efficient, we discuss on logs(¢*).
Indeed, this value is the size of the extension field in which we perform the final exponentiation, but
it is also a rough estimation of the size of the exponent. As a consequence, the smaller size should
be the better.

Last but not least, when choosing the elliptic curve, one must take into consideration the subgroup
security problem [BCM™*15]. This can demand to modify the value of the parameter u and doesn’t
modify the performances.

2.3 Construction of pairing-friendly elliptic curves

The construction of pairing-friendly elliptic curve is difficult. An elliptic curve E/F, is pairing-
friendly when the the embedding degree is not too large and #E(F,) admits a large prime divisor.
Furthermore, in order to resist to the subgroups attack, the order of the elliptic curve should
not admit small prime factors [BCM™15]. Such elliptic curves are rare and needs very specific
construction. The article [FST10] is a nice survey and, to our knowledge, the only complements in
the literature are [Dryl1] and [SG18].

Let us briefly recall the existing constructions. In order to construct pairings of embedding degree
k one starts by searching for integers ¢, r, ¢t and D such that ¢ and r are primes, there exists integers
t and y such that 4¢ = Dy? + t? and r divides both @ (¢t + 1) and ¢ + 1 — t. These integers are
used to compute the equation of an elliptic curve E/F, which has a point of order r over F, and
embedding degree k using the CM method [Mor91]. Since the cost of this last step grows rapidly
with D one usually fixes D to integer values in [—3, 3]. Hence all the pairings in the taxonomy fits
in one of the following categories:

— Supersingular curves (Sec. 3 of the taxonomy). k < 2 or small characteristic and k € {4,6,12}.

— Cocks-Pinch and Dupont-Enge-Morain (Sec 4. of the taxonomy) One can use it for any pair
(k,D), but for security levels between 128 and 256 the number of pairings is small and there
might be no pairing for certain values of k. Note also that logq ~ 2logr.

— Sparse families (Sec. 5 of the taxonomy and Drylo [Dry11]). One can use it for k € {2,3,4,6,8,9,
10,12,15,28,30} but the values of D are either restricted or are different for each pairing.

— Complete families (Sec. 6 of the taxonomy [FST10] and the work of Scott and Guillevic [SG18]).
Any pair (k,D) is possible, the generation is fast. The prime ¢ is equal to ¢(u) where ¢ is a
polynomial. The values u which give pairings become more rare when k increases.

2.4 Existence of twists

As recalled in Section 2.2, twists determine the speed of Miller’s algorithm. The number of twists is
given by the following rules (cf. Prop 2 in [HSV06]):

A =3 and 3 (resp. 6) divides k, we can use a twist of degree 3 (resp. 6).

— A =4 and 4 divides k, then we can use a quartic twist d = 4.

when k£ is even, we can at least use a quadratic twist d = 2, otherwise a quartic or sextic.

— For others combination we cannot use a twist, in particular for prime embedding degree.

construction in [FST10] embedding degree k CM discriminant twist degree d

construction 6.2 k = 2[4] A=4 d=2
k=1[4] A=4 d=1

construction 6.3 k = 2[4] A=4 d=2
k=1[4] A=14 d=1

construction 6.4 k =48] A=4 d=14
construction 6.6(BLS) k = 0[6] A=3 d=6
k = 3[6] A=3 d=3

ke = 2, 4[6] A=3 d=2

k=1,56] A=3 d=1

construction 6.7 k= 0[6] A=8 d=2

k = 3[6] A=38 d=1

construction 6.8 (BN) k=12 A=3 d=6
construction 6.11 (KSS16) k=16 A=4 d=4
construction 6.12 (KSS16) k=18 A=3 d=6
construction 6.13 (KSS32) k=32 A=4 d=4
construction 6.14 (KSS36) k=36 A=3 d=6
construction 6.15 (KSS40) k=40 A=4 d=4
Scott-Guillevic (KSS54) k =54 A=3 d=6
construction 6.20 k=14 A¢{3,4} d=1
construction 6.24 k=0[4 A& {3,4} d=2
construction 5.3 k=10 A& {3,4} d=2
Drylo [Dryl1] k € {10,12,28, 30} Ag¢ {34} d=2

k€ {9,15} Ad{3,4) d=1

3 Overview of the NFS attacks

The extended tower number field sieve (exTNFS) encompasses all the variants of NFS. Let us present
briefly the algorithm with a special care on the choices that can be made by an attacker.

3.1 Big lines of the algorithm

At a high level, exXTNFS on FF » proceeds as follows. Let x and 7 be two divisors of k so that k = k1.
Let h(t) be a polynomial in Z[t] which is irreducible modulo ¢ of degree 1, and call w a root of h(t)
in F,[t]/(h). Then select two polynomials f(¢,z) and g(¢,z) in Z[t, z] such that f(w,z) and g(w, x)
have a common irreducible factor of degree in Fy(w) = Fyn. This step, called polynomial selection,
takes a negligible time but determines the cost of the whole algorithm.

In the sieving stage, for a given parameter A, one considers the pairs (a(t),b(t)) € Z[t]* of
degree less than 7 such that max(||a||ec, ||b]|cc) < A. We call norms of (a,b) the integers N¢(a,b) =
Res;(Resg (a(t) — zb(t), f(t,z)), h(t)) and Ny(a,b) = Res;(Resy(a(t) — zb(t), g(t,x)), h(t)). Given a
parameter B, the sieving stage outputs the list of (almost) all pairs (a,b) such that N;(a,b) and
Ngy(a,b) are B-smooth, i.e. all their prime factors are less than B.

In the linear algebra stage, the goal is to solve a linear system having twice as many elements as
primes less than B (the number of prime ideals in the number fields of f and g of norm less than B).
This is done in two steps : filtering where the size of the matrix is greatly reduced and the proper
linear algebra computations where the obtained linear system is solved. Due to heuristic arguments
in [BD18], the filtering stage reduces the size of the matrix by a factor log, B and the cost of the
linear algebra is 27 B?/(log(B) log, B)?.

The results of the linear algebra allow to compute any discrete logarithm in Fgx. Since this step
is much faster than the sieving and the linear algebra stages, we neglect it in the complexity analysis.
3.2 Identifying the best attacks

According to Barbulescu and Duquesne [BD18], the cost of (S)exTNFS is described by the following
equation:

ot — 2B (1og2(Nf))‘1 (mgg(z\rg B2 W

) -1
Alog B "\ Tog,(B) 10%2(3)> +27A2(10g3)2(10g2(3))2’

where p is Dickman’s function and A is the number of automorphisms of A multiplied by the number
of commun number of automorphisms of f and g (which can be upper bounded by nx/ ged(n, &)).
The validity condition is that the number of relations is larger than the cardinality of the factor
base, which is as follows:

(244 1) logy(Ny) logy(Ny) 2B
wo (log2) (1og2>Zlog’

where w is the half of the number of roots of unity of h.
We are almost done except that we didn’t see how to select f, g and h. The values of A and w
are a consequence and their choice is explained in [BD18].

(2)

Polynomial selection The choice of the polynomials f and g for NFS in F,» was the object of
many works. When ¢ has a polynomial form one can obtain a product NN, which is much smaller
than in the general case. This is emphasized by putting an S, for special, before the name of each
version of NFS : SNFS, STNFS or SexTNFS.

The special case Let P € Z[z] and u € Z be such that ¢ = P(u) and || Pl = O(log(¢*). When
k is small or prime one can use STNFS [BGK15], i.e. h an irreducible polynomial of degree k,
f = P(z) and g = x — u, or Joux-Pierrot [JP13], i.e. h = x (no tower), f = P(z* + S(x)) and
g = 2* + S(x) — u where S(z) is a polynomial of degree less than k. When k is large and can be
written as k = k1, one can use SexTNFS [KB16]: one choses h to be an irreducible polynomial of
degree n, f(t,x) = P(z" + S(z) + t) and g(t,x) = 2" 4+ S(z) + t — u. When ged(k,n) = 1 one can
drop t in the definition of f and g.

The case of arbitrary finite fields All primes g, of polynomial or non-polynomial form, must withstand
the variants of NFS for the general case. When k is small or prime one uses either TNFS [BGK15],
i.e. h is an irreducible polynomial of degree k and f and g are chosen by the “base m” method or
the two algorithms of Kleinjung [Kle06],[Kle08], or one uses a classical variant, i.e. h = z (no tower)
and any of the methods of polynomial selection: GJL [BGGM15, Sec. 3.2],[Mat06], JLSV; [JLSV06,
Sec 3.2], JLSVy [JLSVO06, Sec 3.1], Sarkar and Singh’s algorithms A,B,C,D [SS16a,SS16¢,SS16b] and
the Conjugation method [BGGM15, Sec 3.3]. When k is large and can be written as k = s, one
uses exTNFS [KB16]: one selects f and g adequated for DLP computations in Fy« using the afore
mentioned methods and then sets h equal to an irreducible polynomial of degree n. If ged(k,n) # 1,
one follows [JK16] and replaces the polynomials with f(z + ¢) and g(x + ¢).

Optimizing parameters of for NFS attacks For each construction of pairings and for each
of the security levels 128, 192 and 256, we generated pairings which guarantee that security on
the curve side. Then, for each possible choice of h, f and g, we solved the optimization problem
consisting in minimizing the cost in Equation (1) under the validity condition of Equation (2). For
each value of logy(A) and log,(B) up to a precision of 0.01 we estimated experimentally Ny and N,
on a sample of 3000 pairs (a,b) chosen randomly in the sieving space. If the field side security is not
sufficient, we increase the size of log, r and start over. The complete computations took more than 1
CPU year. We summarize the results in the electronic complement (not included in the submitted
version for anonymity reasons), as well as in the next section in the tables associated to each family.

3.3 An example of key size computations : MINT of embedding degree 6

Let us consider the family of Section 3.3 of the taxonomy [FST10] : the base field is F, where
q is a prime of the form q(u) = 4u® — 1, the elliptic curve order #E(F,) is r(u) = 4u® — 2u + 1
and the embedding degree equals 6, so the target of the pairing is the multiplicative group of Fs.
The polynomial form of ¢ is important, and we must compute all the manners to write g(u) as a
polynomial with small coefficients. In the case of MNT 6 we take, v = 2u and P(v) = v? + 1 so that
P(v) =0 (mod g(u)). For many families one takes v = u® or v = u+ 1 but the only manner to find
all the possibilities is to compute the subfields of the number field of g(u).

Given a security level s, e.g. 128 bits, we compute the real roots of the polynomial r(u) — 2%. For
integers u close to such a root, we compute integers ¢(u) until we find primes. For the families of
large embedding degree, the bit size of u might be increased in order to find primes; this is not the
case for MNT. Then we test all the possible choices of polynomials f, g, h. For example, at 128
bits of security, we find that the best choice is h =t —t — 1, f = P(23) and g = x — v(u). For
each bit size of log,(A) and log,(B) up to a precision of 0.1, we compute the size of logy(Ny) and
logy(N,) using a sample of 3000 pairs (a(t),b(t)) € Z[z] with coefficients bounded by A and degree
less than deg h. We obtain that log,(A) = 31.2 and log, B = 54 corresponds to log,(Ny) = 369.8
and log, (IV,) = 439.8, which satisfies Equation (2). Plugging everything in Equation (1), we find a
cost 29517 Since the security on the field side is not enough, we increase the security level on the
curve side until we find a security of 2!?8. This occurs when the field size log,(¢%) equals 4032, or
equivalently log,(q) = 672 and log,(u) = 334. This corresponds perfectly with the results in the
seminar talk of Guillevic [GS19].

For the larger security levels one can use the same choice of polynomials. One can tune the
parameters in an automatic manner and obtain for example that SexTNFS with these polynomials
on a field of 9216 bits has a cost of 2192 (this is also in accordance with Guillevic and Singh’s results).
However, one can also use a different choice : h =t (no tower), f = P(2%) and g = 2% — v which is a
Joux-Pierrot construction. We obtain that a field of 9216 bits has 190.5 bits of security. We need to
increase a bit the field size and obtain that 9742 is enough. The situation is once again different for
256 bits of security, where the best choice is the Conjugation method with x =6 and h =t —t — 1 :
the key size is 20770.

Among the more than 150 families studied, almost no two were the same : each has a different
combination of polynomials h, f and g to be used. Instead of a blind program to guess the polynomials
automatically, we made all the choices manually using our experience on computation records of
discrete logarithms. It is a good research project to write a programme which reproduces our choices.

3.4 Security results

We keep the model of security of Barbulescu and Duquesne [BD18] which is conservative in that
it assumes perfect conditions for an attacker (sieving in TNFS for which no computation record
is available, perfect matrix reduction in the filtering step, no memory limitation, ECM having the
same performances for slightly larger smoothness bounds). The results are more precise than these
obtained by forgetting the o(1) term in the complexity as in [FK18] and [DGS17] because we don’t
omit any term in Equation (1). The analysis is also more precise than that of Menezes, Sarkar and
Singh [MSS16] because we evaluate numerically the size of the norms Ny and N, instead of using
the mathematical upper bound.

In the following table we list the known families of pairings with 9 < k < 54, which is a safety
margin since the choices among BN, BLS and KSS have k between 12 and 24. The labels follow
the format k, value of k,m, a two or three digits number which designs the construction number
in the taxonomy [FST10], e.g. k9m62 denotes the family having & = 9 in the section 6.2 of the
taxonomy, whereas k11m620 denotes the family of £ = 11 of section 6.20 in the taxonomy. The sizes
of the Dupont-Enge-Morain (DEM) construction also apply for Cocks-Pinch (CP). To verify the
results one has to use Equation 1 and compute the best values of log, A and log, B (we provide
our results and scripts on demand and we will maintain an online taxonomy together with the files
which determine the security results).

security level

family 128 bits [192 bits [256 bits

log,(¢"), field side security when min(field,curve) security level = required level, algorithm, &

k9DEM 8622. 185 exTNFS-Conj k=3 |9234. 192 exTNFS-Conj k=3 [16070. 256 exTNFS-Conj k=3
k10DEM 5100. 161 exTNFS-Conj k=2 |7660. 200 exTNFS-Conj k=2 |11980. 257 exTNFS-Conj k=2
k11DEM 5610. 179 TNFS-base m k=1 [8426. 226 TNFS-base m k=1 [11240. 272 TNFS-base m k=1
k12DEM 6120. 163 exTNFS-Conj k=4 |10540. 194 exTNFS-Conj k=4(16010. 256 exTNFS-Conj k=3
k13DEM 6630. 200 TNFS-base m k=1 [9958. 240 TNFS-base m k=1 |13290. 294 TNFS-base m k=1
k14DEM 7140. 195 exTNFS-Conj k=2 |10720. 241 exTNFS-Conj k=2|14310. 285 exTNFS-Conj k=2
k15DEM 7650. 182 exTNFS-Conj k=5 |11490. 200 exTNFS-Conj k=5|20370. 258 exTNFS-Conj k=5
k16DEM 8160. 193 exTNFS-Conj k=4 |12260. 230 exTNFS-Conj k=4{17250. 257 exTNFS-Conj k=4
k17DEM 8670. 243 TNFS-base m k=1 [13020. 300 TNFS-base m k=1{17370. 339 TNFS-base m k=1
k18DEM 9180. 211 exXTNFS-Conj k=3 |13790. 252 exTNFS-Conj k=3[18400. 269 exTNFS-Conj k=6
k19DEM 9690. 261 TNFS-base m k=1 [14550. 330 TNFS-base m k=1|19420. 371 TNFS-base m k=1
k20DEM 10200. 219 exTNFS-Conj k=4[15320. 257 exTNFS-Conj k=4{20440. 292 exTNFS-Conj k=4

k9method62 [4356. 134 SNFS k=1 13460. 194 SNFS k=1 25340. 257 SNFS k=1
k10method62 |4460. 133 SNF'S k=1 14400. 196 SexTNF'S k=2 27980. 256 SexTNFS k=2
kllmethod62 |3697. 173 SNFS k=1 7128. 192 SNFS k=1 24860. 256 SNF'S k=1
k13method62 |4265. 325 SNFS k=1 6216. 210 SNFS k=1 16350. 259 SNF'S k=1
kl4method62 |5516. 159 SNF'S k=1 9800. 195 SNF'S k=1 19120. 256 SNF'S k=1
k15method62 |8131. 207 SNFS k=1 12210. 263 SNFS k=1 16290. 280 SNFS k=1
k17method62 |5152. 254 SNFS k=1 7776. 291 SNFS k=1 10300. 281 SNFS k=1
k18method62 |8677. 197 SNF'S k=1 12640. 225 SNF'S k=1 16990. 304 SNF'S k=1
k19method62 |6709. 245 SNFS k=1 8740. 329 SNFS k=1 11940. 292 SNFS k=1

k21method62 [10680. 257 exTNFS-Conj k=3[15420. 294 exTNFS-Conj k=3|21210. 315 exTNFS-Conj k=3
k22method62 |7394. 253 exTNFS-Conj k=2 [11400. 284 exTNFS-Conj k=2|14830. 293 TNFS-base m k=1
k23method62 [9778. 279 TNFS-base m k=1 [10370. 289 TNFS-base m k=1{13770. 305 TNFS-base m k=1
k25method62 [11820. 268 exTNFS-Conj k=5[13490. 303 exTNFS-Conj k=5|17590. 309 exTNFS-Conj k=5
k26method62 |8528. 228 exTNFS-Conj k=2 [12430. 297 exTNFS-Conj k=2|17110. 322 exTNFS-Conj k=2

10

security level

family 128 bits [192 bits [256 bits

log,(¢"), field side security when min(field,curve) security level = required level, algorithm, %

k27method62 [14810. 289 exTNFS-Conj k=3[17200. 317 exXTNFS-Conj k=3|23460. 409 exTNFS-Conj k=3
k29method62 [10920. 338 TNFS-base m k=1{15960. 372 TNFS-base m k=1{18580. 406 TNFS-base m k=1
k30method62 [16260. 181 exTNFS-GJL k=5|24420. 233 exTNFS-GJL k=5 |32580. 398 exTNFS-GJL k=6
k31method62 |[11870. 273 TNFS-base m k=1|16430. 384 TNFS-base m k=1{18650. 419 TNFS-base m k=1
k33method62 |19600. 387 exTNFS-Conj k=3|23490. 389 exTNFS-Conj k=3|30140. 453 exTNFS-Conj k=3
k34method62 [10300. 248 exTNFS-Conj k=2{15550. 372 exTNFS-Conj k=2|20610. 430 exTNFS-Conj k=2
k35method62 [17250. 374 exTNFS-Conj k=5[24210. 425 exTNFS-Conj k=5|29560. 437 exTNFS-Conj k=5
k37method62 [14960. 327 TNFS-base m k=1{19140. 455 TNFS-base m k=1{23660. 499 TNFS-base m k=1
k38method62 [13420. 285 exTNFS-Conj k=2{17480. 388 exTNFS-Conj k=2|23880. 465 exTNFS-Conj k=2
k39method62 [20530. 427 exTNFS-Conj k=3[29920. 446 exTNFS-Conj k=3|35220. 459 exTNFS-Conj k=3
k41lmethod62 [18290. 359 TNFS-base m k=1{18290. 381 TNFS-base m k=1{29050. 515 TNFS-base m k=1
k42method62 [21370. 459 exTNFS-Conj k=>5[30840. 488 exTNFS-GJL k=6 |42420. 503 exTNFS-Conj k=3
k43method62 |31020. 477 TNFS-base m k=1[31020. 413 TNFS-base m k=1(31020. 515 TNFS-base m k=1
k45method62 [31000. 361 exTNFS-Conj k=>5[34740. 448 exTNFS-Conj k=5|47120. 496 exTNFS-Conj k=5
k46method62 [19560. 408 exTNFS-Conj k=2{20740. 435 exTNFS-Conj k=2|27540. 472 exXTNFS-Conj k=2
k47method62 [33070. 510 TNFS-base m k=1|33070. 459 TNFS-base m k=1|33070. 515 TNFS-base m k=1
k49method62 [23110. 547 exXTNFS-Conj k=7{34720. 574 exTNFS-Conj k=7|42560. 654 exTNFS-Conj k=9
k50method62 [23640. 418 exTNFS-Conj k=5[26970. 632 exTNFS-Conj k=5|35180. 519 exTNFS-Conj k=5

k10method63 |4460. 134 SexTNFS k=2 12580. 192 SexTNF'S k=2 23080. 256 SexTNFS k=2
kl4method63 |5516. 148 SNF'S k=1 8036. 206 SNF'S k=1 21640. 258 SexTNFS k=2
k18method63 |8676. 294 SexTNFS k=2 12640. 275 SNFS k=1 16990. 292 SexTNF'S k=2
k22method63 |7409. 387 SexTNFS k=2 11400. 273 exTNFS-Conj k=2|14830. 351 SexTNF'S k=2
k26method63 |8568. 416 SNF'S k=1 12440. 288 exTNFS-Conj k=2|17110. 347 exXTNFS-Conj k=2
k30method63 |16270. 547 SNF'S k=1 24420. 351 exTNFS-GJL k=6 [32580. 434 exTNFS-GJL k=6
k34method63 |10460. 670 SNFS k=1 15560. 348 exTNFS-Conj k=2|20680. 409 exTNFS-Conj k=2

k38method63 |13530. 316 exTNFS-Conj k=2|17560. 393 exTNFS-Conj k=2|23940. 459 exTNFS-Conj k=2
k42method63 |21340. 411 exTNFS-Conj k=6{30920. 470 exTNFS-Conj k=6|42500. 515 exTNFS-GJL k=7
k46method63 |13900. 332 exTNFS-Conj k=2|21450. 405 exTNFS-Conj k=2|27740. 452 exTNFS-Conj k=2
k50method63 |22680. 415 exTNFS-GJL k=5 [27080. 462 exTNFS-Conj k=5|35170. 486 exTNFS-GJL k=5

k54method63 [25130. 476 exTNFS-Conj k=6{34870. 18380 SNF'S k=1 46980. 570 exTNFS-GJL k=9
k12method64 |9192. 172 SNF'S k=1 24460. 192 SexTNF'S k=2 43180. 258 SexTNFS k=2
k20method64 |7640. 208 SNF'S k=1 11480. 227 SNF'S k=1 19160. 257 SNF'S k=1
k28method64 [9800. 412 SexTNFS k=2 14280. 345 SNF'S k=1 19210. 310 SNFS k=1
k36method64 |[15770. 517 SexTNFS k=2 22970. 368 SNFS k=1 30890. 379 SNFS k=1
k44method64 |13650. 412 SNF'S k=1 21030. 431 SNFES k=1 27370. 436 SNFS k=1
k52method64 [15920. 575 SNFS k=1 23200. 502 exTNFS-Conj k=4|31930. 594 SNFS k=1
k9method66 [4810. 129 SNFS k=1 6178. 196 SNFS k=1 20070. 258 SNFS k=1
k10method66 |5104. 166 SNF'S k=1 12780. 192 SNF'S k=1 25420. 261 SNFS k=1
kllmethod66 |[3421. 339 exTNFS-GJL k=1 [5263. 216 TNFS-base m k=1 |6846. 241 SNFS k=1
k12method66 |[5525. 128 SexTNFES k=2 12580. 192 SexTNFS k=2 26120. 256 SexTNF'S k=2
k13method66 [4008. 155 TNFS-base m k=1 [5806. 229 TNFS-base m k=1 [11990. 259 TNFS-base m k=1
kl4method66 [4906. 175 SNFS k=1 7594. 197 exTNFS-Conj k=7 [9610. 232 SNFS k=1
k15method66 [5736. 175 SNFS k=1 8616. 192 SNF'S k=1 11500. 222 SNF'S k=1
k16method66 |5608. 258 SNF'S k=1 8422. 202 exTNFS-Conj k=4 |15810. 256 exTNFS-Conj k=4

k17method66 [5914. 202 TNFS-base m k=1 [7426. 237 TNFS-base m k=1 |9784. 259 exTNFS-Conj k=2
k19method66 [6411. 217 TNFS-base m k=1 [8397. 233 TNFS-base m k=1 [11390. 274 TNFS-base m k=1
k20method66 [7013. 331 SNFS k=1 14050. 244 exTNFS-Conj k=4[17130. 257 exXTNFS-Conj k=4

11

family

security level

128 bits

192 bits

256 bits

log,(¢"), field side security when min(field,curve) security level = required level, algorithm, %

k21method66
k22method66
k23method66
k24method66
k25method66
k26method66
k27method66
k28method66
k29method66
k30method66
k31method66
k32method66
k33method66
k34method66
k35method66
k37method66
k38method66
k39method66
k40method66
k41method66
k42method66
k43method66
k44method66
k45method66
k46method66
k47method66
k48 method66
k49method66
k50method66
k52method66
k53method66
k9method67
k12method67
k15method67
k18method67
k21method67
k24method67
k27method67
k30method67
k33method67
k36method67
k39method67
k42method67
k45method67
k48method67
k51method67
k54method67

7359. 250 SNFS k=1

8008. 136 exTNFS-Conj k=2
9614. 236 TNFS-base m k=1
7642. 171 SNFS k=1

12160. 249 exTNFS-Conj k=5
7972. 226 exTNFS-Conj k=2
8062. 249 exTNFS-GJL k=9
10460. 289 exTNFS-Conj k=7
18650. 363 TNFS-base m k=1
11470. 216 exTNFS-Conj k=3
14600. 347 TNFS-base m k=1
8984. 355 exTNFS-Conj k=2
10260. 267 exTNFS-Conj k=3
12050. 355 exTNFS-Conj k=2
20780. 381 exTNFS-Conj k=5
20320. 404 TNFS-base m k=1
13550. 355 exTNFS-Conj k=2
12020. 273 exTNFS-Conj k=3
14780. 371 exXTNFS-Conj k=5
33370. 485 TNFS-base m k=1
14720. 297 exTNFS-Conj k=3
17050. 399 TNFS-base m k=1
14910. 335 exTNFS-Conj k=2
15800. 357 exTNFS-Conj k=5
14590. 335 exTNFS-Conj k=2
26130. 466 TNFS-base m k=1
13750. 304 exTNFS-Conj k=3
29930. 496 TNFS-base m k=1
21820. 433 exTNFS-Conj k=5
20800. 387 exTNFS-Conj k=2
48570. 582 TNFS-base m k=1
4564. 266 SNF'S k=1

5340. 148 SNF'S k=1

14520. 217 SNFS k=1

7540. 192 exTNFS-Conj k=3
12560. 259 exTNFS-Conj k=3
9144. 324 SexTNFS k=2
14360. 220 exTNFS-Conj k=5
16510. 263 exTNFS-Conj k=6
21880. 310 exTNFS-Conj k=3
13540. 260 exTNFS-Conj k=3
29090. 354 exTNFS-Conj k=3
28040. 365 exTNFS-Conj k=3
40400. 444 exTNFS-Conj k=3
16760. 301 exTNFS-Conj k=3
64050. 553 exTNFS-Conj k=3
23080. 356 exTNFS-Conj k=3

10720.
12320.
11160.
12440.
14220.
11610.
11840.
15190.
18650.
17230.
14600.
13010.
15790.
16280.
20780.
20320.
16800.
17420.
22490.
33370.
21440.
30940.
20640.
22980.
22560.
26130.
20660.
29930.
26420.

227 exTNFS-Conj k=3
269 exTNFS-Conj k=2
293 TNFS-base m k=1
195 SNFS k=1

257 exXTNFS-Conj k=5
267 exTNFS-Conj k=2
259 exTNFS-Conj k=3
261 exTNFS-Conj k=4
382 TNFS-base m k=1
256 exTNFS-Conj k=5
362 TNFS-base m k=1
414 exTNFS-Conj k=2
302 exTNFS-Conj k=3
328 exTNFS-Conj k=2
344 exTNFS-Conj k=5
422 TNFS-base m k=1
339 exTNFS-Conj k=2
327 exTNFS-Conj k=3
383 exTNFS-Conj k=5
503 TNFS-base m k=1
356 exTNFS-Conj k=3
499 TNFS-base m k=1
379 exTNFS-Conj k=2
386 exTNFS-Conj k=5
401 exTNFS-Conj k=2
485 TNFS-base m k=1
366 exTNFS-Conj k=3
518 TNFS-base m k=1
445 exTNFS-Conj k=2
27500. 460 exTNFS-Conj k=2
48570. 610 TNFS-base m k=1
6598. 198 exTNFS-GJL k=9
8028. 199 SexTNFS k=2
14520. 217 SNF'S k=1

10900. 273 exTNFS-GJL k=1
15190. 276 exTNFS-Conj k=3
13750. 357 SexTNFS k=2
18360. 315 exTNFS-Conj k=3
20900. 292 exTNFS-Conj k=6
21880. 352 exTNFS-Conj k=3
19480. 348 exTNFS-Conj k=3
29090. 406 exTNFS-Conj k=3
28040. 423 exTNFS-Conj k=3
40400. 522 exTNFS-Conj k=3
25200. 426 exTNFS-Conj k=3
64050. 725 exTNFS-Conj k=3
32600. 499 exTNFS-Conj k=3

12

14410.
16020.
13500.
24680.
16880.
15980.
15620.
20900.
18650.
22990.
21780.
17360.
20540.
21730.
31060.
22680.
22740.
23960.
29380.
33370.
28830.
30940.
26340.
31610.
29000.
29360.
27570.
34520.
33820.
33620.
48570.

262 exTNFS-Conj k=3
314 exTNFS-Conj k=2
340 TNFS-base m k=1
259 SNFS k=1

294 exTNFS-Conj k=5
319 exTNFS-Conj k=2
349 exTNFS-GJL k=3
300 exTNFS-Conj k=4
370 TNFS-base m k=1
297 exTNFS-Conj k=5
410 TNFS-base m k=1
305 exTNFS-Conj k=4
328 exTNFS-Conj k=3
391 exTNFS-Conj k=2
390 exTNFS-Conj k=5
442 TNFS-base m k=1
405 exTNFS-Conj k=2
361 exTNFS-Conj k=3
406 exTNFS-Conj k=5
522 TNFS-base m k=1
398 exTNFS-Conj k=3
516 TNFS-base m k=1
453 exTNFS-Conj k=2
431 exTNFS-Conj k=5
476 exTNFS-Conj k=2
523 TNFS-base m k=1
404 exTNFS-Conj k=3
566 TNFS-base m k=1
459 exTNFS-Conj k=5
491 exTNFS-Conj k=2
631 TNFS-base m k=1

9081. 287 SNFS k=1

20120.
15810.
14990.
19910.
18360.
24770.
27760.
30310.
26820.
35570.
36340.
67960.
33650.
64050.
46960.

256 SexTNFS k=2

431 SNF'S k=1

276 exTNFS-Conj k=3
312 exTNFS-Conj k=3
499 SexTNFS k=2

346 exTNFS-Conj k=3
375 exTNFS-GJL k=6
395 exTNFS-Conj k=3
383 exTNFS-Conj k=3
438 exTNFS-Conj k=3
450 exTNFS-Conj k=3
587 exTNFS-GJL k=6
451 exTNFS-Conj k=3
644 exTNFS-Conj k=3
516 exXTNFS-Conj k=6

security level
family 128 bits 192 bits 256 bits
log,(¢"), field side security when min(field,curve) security level = required level, algorithm, %
BN 5534. 128 SexTNFS k=2 13120. 192 SexTNF'S k=3 25310. 256 SexTNFS k=3

k16methodKSS [5281. 154 SNFS k=1 8161. 192 SNFS k=1 18240. 257 SNFS k=1
k18methodKSS [6401. 156 SNFS k=1 11730. 195 SNFS k=1 26270. 260 SexTNFS k=2
k32methodKSS [11030. 395 SNFS k=1 14870. 370 SNFS k=1 19470. 394 SNFS k=1
k36methodKSS [11560. 370 exTNFS-GJL k=6 [17110. 421 exTNFS-GJL k=6 |22150. 521 exTNFS-GJL k=6
k40methodKSS [15070. 411 exTNFS-GJL k=6 |22080. 400 exTNFS-GJL k=8{29120. 531 exTNFS-GJL k=6
k1lmethod620 |5258. 128 SNFS k=1 16870. 192 SNFS k=1 32980. 256 SNF'S k=1
k15method620 |7650. 171 SNFS k=1 11490. 209 SNFS k=1 33330. 256 SNFS k=1
k26method624 |8546. 191 SNFS k=1 12180. 212 SNF'S k=1 17270. 260 SNFS k=1
k34method624 |10740. 289 SNFS k=1 15650. 270 SNFS k=1 20490. 315 SNFS k=1

k3MNT 4127. 128 exXTNFS-Conj k=3 |9191. 192 exTNFS-Conj k=3 [16120. 256 SexTNFS k=3

k4MNT 4240. 128 exTNFS-Conj k=4 |10520. 192 exTNFS-Conj k=4{19040. 256 exTNFS-Conj k=4

k6MNT 4620. 128 SexTNFS k=3 15000. 192 SexTNF'S k=6 20760. 256 exTNFS-Conj k=6
k9methodLZZW|5314. 128 SNFS k=1 11510. 192 SNFS k=1 20650. 256 SNFS k=1
k12methodDCC|10790. 177 SexTNFS k=2 14390. 199 SexTNF'S k=2 25910. 262 SexTNFS k=2
k15methodDCC |5745. 285 SNFS k=1 8985. 192 exTNFS-Conj k=3 |20140. 256 exTNFS-Conj k=5
k24methodDCC |7656. 196 SNFS k=1 11500. 248 exTNFS-Conj k=3[15340. 269 exTNFS-Conj k=6
k48methodDCC |13780. 352 exTNFS-Conj k=3|20690. 523 exTNFS-Conj k=6{27600. 560 exTNFS-Conj k=6

k2rhol 3460. 129 exTNFS-Conj k=2 [7200. 195 exTNFS-Conj k=2 [12200. 259 exTNFS-Conj k=2

Our results can be downloaded at:

https://webusers.imj-prg.fr/~razvan.barbaud/Pairings/Pairings.html

4 Complexity of the Miller’s algorithm at 128 bits of security

In this section, we make an extensive comparison among a large number of families in the literature.
Our comparison is not optimized enough to be directly implemented for each of the over 150 families,
but is optimized enough to make apparent the good families of pairings. The criterion of comparison
is the binary cost of the Ate pairing computation (Miller loop and final exponentiation.

For each family, we compute parameters u with a small NAF weight, if it is possible. Otherwise,
we use random parameters u of the required bit size, but in some cases of large embedding degree
even this is impossible. Indeed, some of the families, for example those of prime degree have never
been investigated numerically, e.g. BLS-26.

4.1 Notation and arithmetic

In the following we use the classical notations M, Si and I, for the binary cost of the multiplication,
squaring and respectively inversion over F,. We denote by My, S, and Ij, the binary cost of the
multiplication, squaring and inversion in the field F . For our level of optimization, the crude
estimation M, = S, is enough. When a multiplication by an element of F, is necessary (for instance
a multiplication by a, denoted d,, in the doubling of points) we make the coarse estimation that
do = M,.

13

https://webusers.imj-prg.fr/~razvan.barbaud/Pairings/Pairings.html

In any case one can use the estimation My < k*M,, but when ¢ is a prime of 500 to 5000 bits
we use the formulae of multiplication in tower fields:

— when k = 2 Karatsuba’s trick [Knu97] gives My = 3Mj;

— when k = 3 Toom-Cook’s trick [Knu97| gives Mg = 5M;

— when k = 5,6,7, we use the formulae in [EGI11]: M5 = 9M,, Mg = 11M, and M; = 13M,
as the implementations in [EGI11] demonstrate that the arithmetic in this article is the more
efficient.

— when we use a twist of degree d = 2 (resp. 3, 4, 6) we count My = 3M, (resp. My = 5M,,
My, =9M,, My, = 11M,) for e = k/d [Knu97,EGI11];

— when k = 22,26, 34,46 and we have a twist of degree d = 2, we consider that M, = (k/2)?M,
where e = k/d.

We use the

We go from the arithmetic complexity to the binary complexity using the estimate that M,
counts for w? word multiplications, where w is the number of machine words of g. We denote by
m3o (resp. mgq) the cost of a word multiplication on a 32-bit (resp 64-bit machine). A comparison
of hardware implementation is beyond the scope of this article because it is much more difficult to
take into account the dedicated architectures.

4.2 Construction 6.2 from [FST10]

In this metafamily of curves we can construct curves whose embedding degree is either odd or twice
an odd. All the curves admit a discriminant D = —1 (we abusively replace D in the sequel by its
absolute value), so we have a twist of degree d = 2 when the embedding degree is even and no twist
otherwise (d = 1).

The general expression of Ate pairing for construction 6.2 is defined as follow:
k

L, 2n(P)\ 7
G1 x G — Ga(P.Q) = (fr.0(P) x ;2222)

The complexity depends on whether d =2 or d = 1.

Curves admitting a twist of degree d = 2 Note that D = 1 and the equation of the elliptic
curve is y? = 23 + az. We use the formulas from [CLN10].

The Ate pairing computation is composed of one execution of the Miller algorithm, which has
logy (u?) iterations using the denominator elimination. The vertical line v(,244)o(P) belongs to F /2
and is eliminated by the final exponentiation. The Ate pairing expression is simplified into:

(fr2.0(P) % lygra(P) 7.

Its complexity is equal to logy(u?) doubling steps, plus HW (u?) (the Hamming weight of w)
addition steps and an extra doubling step for the evaluation of ;g ,20(P). As we do not need
the coordinates of the point (z? +)@, this line evaluation (Le) is cheaper than a full doubling
step [BD18]3. We recall these complexities in Table 2. We use the projective coordinates, which are
better than the affine ones at 128 bits of security [CLN10,ZL12].

The Table 3 presents the complexity of the Miller computation at 128 bits of security. Note that
the embedding degree k = 14 offers the best arithmetic complexity and the smallest target field.

3 We count 5M. in the evaluation of Le instead of 4M, as presented in [BD18] because when we wrote
down the equation we do not see how to save one more M,

14

Operation Complexity
Doubling step [CLN10] |(2k/d)Mq + 2M. + 8Se + 1da + My, + Sk

Addition step [CLN10] (2k/d)My + 12M, + 7Se + My,
Mixed addition [CLN10] (2k/d)Mg + 9M. + 5Se + M;,
Final line evaluation [BD18] 5M. + 2k/dM,

Table 2: Complexity of Miller’s steps using quadratic twist and D =1

k |min(log,(q))|min(log, (u)) u (log,(q)) Miller’s cost ~

10 446 31,8 1424425428199 ol5,930 446 64DBL+6Madd+Le+M; | 10 971M,
14 394 22 —1424425 426 21112154 522 394 44DBL+9Madd+Le+M;, | 12 032M,
18 482 22 14202942124 2134 915 4 91749204 521 482 |44DBL+10Madd+Le+My, | 23 059 M,
22 336 12,9 1-26429 212 314 24DBL+9Madd+Le+M;, | 66 5961,
30 542 15,9 14242742124 2131 515 524 31DBL+9Madd+Le+M,, | 30 T81M,
38 353 8 1+22 425426428 429 408 20DBL+8Madd+Le+My, | 19 179M,
42 508 11 14223427 428 4211 515 23DBL+8Madd+Le+M;, | 34 582M,
46 425 8,5 —1+423 424427 211 553 22DBL+8Madd+Le+M,;, [263 303M,
50 473 8,7 —1423 4244264294212 657 24DBL+9Madd+Le+M,, | 45 T88 M,

26, 34 no value for u below 2!

Table 3: Method 6.2, 128 bits of security, quadratic twist, practical value

Curves without twists The Ate pairing computation is composed of one execution of the Miller
algorithm for log,(u?) iterations, without the denominator elimination. The Ate pairing expression
cannot be simplified:

qk—l
G1 X Gz = G, (P,Q) = (fur g(P) x y2222000) 7

U(e249)Q(P)
Its complexity is log,(u?) doubling step, plus HW (u?) addition step and an extra doubling step
for the evaluation of ~s@=2@(")
Va2 4q)Q(P)

To our knowledge, there is no reference in the literature to pairing computations without twists.
We computed new formulae and we obtain the arithmetic cost of each step in Table 5.

We use the estimation My, = Sy and find that the doubling step in projective coordinates has a
cost of 3kM, + 19M},. Compare this to that in Jacobian coordinates which is 3kM, 4+ 18M},. For the
addition step, the difference between the two types of coordinates is more important : in projective
coordinates we obtain 3kM; + 18 M), and in Jacobina ones we get 3kM, + 33M},. As our goal is to
give a first estimation of the pairing complexity, we do not search especially for parameters with
very small Hamming weight. Note that the affine coordinates could be more interesting than the
projective ones if the complexity of the inversion in Fyx is smaller than 20My. This coarse estimation
is obtained by considering that M) = S;, and kM, = M. The expected gain is not important
enough, so we don’t continue with a precise estimation in this case.

Best choice for the method 6.2 According to the results in Table 6, the curves of embedding
degree 9 are the champion among the curves of construction 6.2 without twists. Yet, they are no
match for the family of embedding degree k = 14. The prime embedding degrees are interesting
when one desires a small target field and a short Miller’s loop, in this case one might prefer k£ = 11.
However, the denominator elimination together with the works improving the arithmetic for the

15

k| (logy(q))|ms2 words|~ Miller’s cost|| k |(log,(q))|mes words|a Miller’s cost
14| 394 13 2 150 316ms2 ||14| 394 7 537 579mea
22| 314 10 6 659 600ms2 (22| 314 5 1 664 900me4
38| 408 13 3 241 251mas2 (|38 408 7 939 771mes

Table 4: Method 6.2, Comparison between k = 14,22 and 38

Operation |Complexity affine|Complexity projective| Complexity jacobien
Doubling step| 2My + Sk + I | 3kMq + 12My, + 7Sk | 3kMy + 10M}, + 85k
Addition step| 5Mj + 25k + Ik 3kMg 4+ 16 My, + 25k |3kMg + 19M}, + 145k

Table 5: Complexity of Miller’s steps without twist

tower field extensions make imply that the best choice for this metafamily should be the curve with
embedding degree 14.

4.3 Construction 6.3 from [FST10]

Using this construction, we obtain elliptic curve having an embedding degree k = 2k’, for k' an odd

number. Those curves have a discriminant D = 1, they admit a twist of degree 2.
k

The expression of the optimal Ate pairing for this family is the following: (fng (P) x l_q0.220 (P)) =

The optimal Ate pairing for curves constructed using method 6.3 consists in one Miller’s algorithm
indexed over x2, plus an extra line evaluation.

The Table 7 presents the value that we find by a quick research and using very large estimation
for the cost of arithmetic in the tower field. We used the estimation cost from Table 2 as we are
working on elliptic curve with discriminant 1 and quadratic twist.

The smallest number of iterations for Miller’s algorithm could be reached for the curve with
k = 38, but unfortunately, in practice, we do not find a value of u that makes p and ¢ prime below
15 bits.

The smallest size for IF, is theoretically obtained for the curve with embedding degree 26, 34 and
46. Together with the theoretically smallest number of iterations during the Miller algorithm. In
practice, the less expensive Miller’s algorithm corresponds to k = 14. For this value we also have the
smallest finite field F,. As a consequence, the best choice for the method 6.3 using a quadratic twist
at the 128 bits of security should be the curve with k = 14.

4.4 Construction 6.4 from [FST10]

In this metafamily of curves, we construct curves with embedding degrees 4k’ where k' is an odd
integer. The discriminant is D = 1, consequently, curves in this family admit a twist of degree 4.

The expression of the optimal Ate pairing for this family is the following:
OptAt66_4 : Gl X G2 — Gg, .

gk —1

(P,Q) — (fx,Q(P) x —Uél(}é’ﬁ,’(ZQ,iizp)) 7

As we can use a quadratic twist, the denominator v¢,(P)v(,—¢)q(P) vanishes during the final
exponentiation. Thus the expression of the optimal Ate pairing can be simplified as:
OptAteGA : Gl X GQ — G3, .

g~ -1

(P,Q) - (fx,Q(P) X l—qQ,wQQ(P)))

16

l k ‘min(log2 (q))‘min(logQ(u))‘ u ‘ (log, (q))‘ Miller’s cost R~

9 484 22 — 1423424425409 910,922 482 44DBL+20Add+1DBL+My+1;, | 31 155My + I,
11 336 13 —1+285+21 363 28DBL+4Add+1DBL+My+I, | 65 316 M, + I
13 328 142423 424428 4210 9144 520 599 20DBL+14Madd+1DBL+M+1;,|110 085My + I,
15,17,19, 21,23, 25,27,29, 31, 33, 35 complexity higher than 203 985M, + I}

37,39,43,45 [no value for u below 2™

Table 6: Method 6.2, 128 bits of security, no twist, pairing estimation

| k [u [(logQ(q))[Miller’s cost [~ M, ‘
10 1425 —25 4210 1 218 4 93 432 [62DBL+14Madd+Le+ M| 11 938
14 1-22426429_212_915_519 922 390 22DBL+7Madd+Le+M, | 6 894
18| 142423425427 42842104 9124913 922 482 44DBL+11Madd+Le+M;, | 23 458
22 1+2422 424 2oF 403 | 30DBL+9Madd+Let My, | 78 423
26 1428+ 212 360 | 24DBL4+5Madd+LetM;, | 81 248
30] 1422425204 ot olf 552 [32DBL+11Madd+LetM;| 26 687
34 1—2%T 42104 oM 533 | 28DBL+6Madd+Le+M; |165 138
38 1425 +279 42T 4 217 713 |34DBL+11Madd+ Let My |268 200
42] 1427427428 4210 4 ol 539 | 24DBL4+7Madd+Le+My, |225 150
46 1424294210403 660 |26DBL+9Madd+LetM;, |315 415
500 142 — 27210 4 ot 4 o2 746 | 28DBL+9Madd+Le+M;, | 50 603
54 14+ 2425 +2° + 28 429 4 ot 664 | 23DBL+9Madd+LetM,, | T4 466

Table 7: Method 6.3, 128 bits of security

The optimal Ate pairing for curves constructed using method 6.4 is composed by one Miller’s
algorithm indexed over z, plus an extra line evaluation. The Table 8 presents some examples of
values for u that minimize the number of addition steps during Miller’s algorithm. In this Table, we
do not include the column giving the number of bits of u, as it can be deduced by the number of
doubling step we count.

We compare the curves with approximately 10 000 M, (k = 12,20,28) and the curve with the
smallest field Fy (k = 44). On a 32 bits architecture, it seems that the curves constructed by method
6.4 with k = 28 provides the most efficient pairing, on a 64 bits architecture, it should be the curve
with k& = 20. Of course, those results highly depends on the architecture and the implementation.

4.5 Construction 6.6 from [FST10]

In this metafamily of curves, also called BLS, we can construct curves with discriminant D = 3.
Hence, in this case the elliptic curves can admit a twist of degree 3 or 6. The method of construction
depends on the residue of k£ modulo 6, and we studied all the families from k£ = 9 to k = 53, all
being possible except those for which 18 divides k, i.e. 18, 36 and 54.

Curves admitting a twist of degree 6 When & = 0 mod 6, then the elliptic curve admits a twist

of degree 6. The corresponding embedding degrees are k € {12 (i.e. BLS12),24 (i.e. BLS24), 30, 36,42, 48}.

The expression of the optimal Ate pairing is the following:
()pt/4t66.6d6 G x Gy — (}3,

ak-1
fo,@(P)xl_q@z@(P)) 7~
(P.Q) — (Lsappiaesi)

17

l k ‘min(logQ(q))‘min(log2 (u))‘ u ‘(log2 (q))‘ Miller’s cost ‘ ~ M, ‘

12 510 63,7 1+2+25 4285 +29 4211 1 2591 510 [64DBL+6MaddtLetn, |10 141
20 382 31,8 14274216 4232 383 [32DBL+3Madd+Letn;| 9 116
28 350 21,8 14+2+22+274+2854+2% 4222 350 |22DBL+6Madd+Let+M, |10 278
36 438 21,9 1427 4210 1 211 1 916 4 922 438 |22DBL+5Madd+Let ;|18 901
44 310 12,9 14+ 2742842124 21 342 [14DBL+4Madd+Le+ M, | 59480
52 306 10,9 1-20 412942124 908 380 |13DBL+4Madd+Le+M;| 81134

Table 8: Method 6.4, 128 bits of security, twist of degree 4

k |logs,(g)| Miller’s in maz |logg, (¢)| Miller’s in mea
12| 16 2 596 096 8 649 024
20| 12 1 312 704 6 328 176
28| 11 1243 638 6 370 008
44 11 7 197 080 6 2 141 280

Table 9: Method 6.4, Comparison of the best candidates

Since these curves admit a twist of degree 6, we can use the denominator elimination in order to
simplify the expression of the pairing:
OptAt66_6d6 G x Gy — Gg,

gk -1
(P, Q) = (fo.o(P) X lq@aq(P)) 7
We use the most efficient formulas in the literature in order to estimate the algebraic complexity
of a Miller’s execution. We recall them in Table 10.

Operation Complexity
Doubling step [CLN10] | (2k/d)Mg + 3Me + 5Se + My, + Sk
Addition step [CLN10] |(2k/d)Mq + 14M, + 2Se + 1d. + My,
Mixed addition [CLN10]|(2k/d)M, + 10M. + 2Se + 1d. + M,
Final line evaluation 2k/dM, + 5M.

Table 10: Complexity of Miller’s steps using sextic twist

The smallest number of operation over [y is obtained for £ = 12, but the smallest field is obtained
for k = 24.

In order to compare those two curves, we have to estimate the complexity of the Miller algorithm
in terms of machine word. The Table 12 presents our estimation. We consider that a multiplication
over [, is computed using the schoolbook multiplication.

According to our estimation, the optimal Ate pairing seems to be more efficient on BLLS24 than
on BLS12 curves.

Curves admitting a twist of degree 3 Among the elliptic curves constructed by method 6.6,
those for which k£ = 3 mod 6 admit a twist of degree 3. The expression of the optimal Ate pairing
depends on the embedding degree. For each embedding degree k € {15,21,27,33,39,45,51}, we
obtain a different short vector that should be used in order to compute the pairing. The expression

18

k |min(log,(q))|min(log, (u)) u (log,(q)) Miller’s cost ~ M,
12 461 64 —277 4 250 4 933 460 |77DBL+2Madd+LetM,;| 7 438
24 318 32 —2%7 4 978 4 of? 319 [32DBL+2Madd+Le+r,| 9 381
30 383 32 4294971136 383 |32DBL+4Madd+Le+M; | 9 887
42 350 22 —272 L oT8 4 oF 349 |22DBL+2Madd+LetM;,| 9 738
48 286 16 26 4 2T 4 o135 4 21T L 161 996 [17DBL+4Madd+Let,, |17 042

Table 11: Method 6.6 (BLS), 128 bits of security, twist of degree 6
l k llog32 (q)l Miller’s in m32110g64(q)l Miller’s in m64‘

12| 15 1673 550 8 476 032
24| 10 938 100 5 234 525

Table 12: Method 6.6, Comparison of the best candidates

of the pairing follows a common pattern for k € {15,33, 51}, respectively for k € {27,45}; and for
k € {21,39}.

For k € {15, 33,51} using the construction 6.6, we obtain the same pattern for a short vector:
[z,—1,0,...0,—1,0,...,0].

We give here the definition of an optimal Ate pairing for k& = 15.

We choose [z,—1,0,0,0,0,—1,0,...,0] as short vector. The expression of the optimal Ate pairing
using this vector is the following;:
OptAtegis.643 : G1 X Gg — G,

(P,Q) — ((U{Iﬁ% ls;:i';Q lSQUCi’l_QQQ)(P) , where s =2 —q—¢%, s1 = —¢ — ¢% and sy = —¢5.

When using a twist of degree 3, the vertical line does not vanish during the final exponentiation.
We can however simplify the pairing expression. Zhang and Lin in [Z1.12] proposes the latest record
for the computation of pairings over curves with a twist of degree 3. They barely improve the result
of [CLN10] but the method is very helpful for the simplification of the optimal Ate pairing in our
case. We use Zhang and Lin formulas for the complexity of Miller’s algorithm’s step 13.

Applying the method developed by Zhang and Lin in [ZL12], we can make the following
XQ+XQZQ’EP+’E
Z2
Indeed, using the method developed by Zhang and Lin in [ZL12], we can transform the fraction
ls1Q.2Q
VsoQ

. 1 _
transformation (TQ)(P) =

into

X2 0= Z5,0220(Z5,0X0q — X56,0220)*(Z5,0Yaq — Y5,020q) Yeoq — ZsoQyp)+

XS()QZS()Q:EP + Zgon?I
which correspond to an extra addition step so@Q = s1Q + Q. We can apply the same method
to the other fraction ls"’fi’;w The Miller algorithm output the point z@). We remark that s1Q =
52Q + (—Q7), thus the evaluation of L};’Q correspond to the addition step between s5Q and —Q9.
s1

We also can notice that so@Q = s1Q + @, we then obtain that ”QZJQ correspond to the addition

step between s1Q and zQ the output of Mlller s algorithm.In order to perform these computatlons,

we have to precompute the points s5Q) = —Qq , 510 = —Q1 +Qq and sp@ = Q) — Q7+ Qq . Those
computations correspond to two Frobenius Q¢ and Qqs. We follow the example of [BD18] the coarse
estimation that a Frobenius evaluation cost (k — 1)M,.

19

We want to simplify the evaluation of . The power ¢+ ¢° could be split into two Frobenius

)q+q

evaluation. We will modify the expressmn of wo) by the following way:

o) P) = we begin with affine coordinates
VQ T —Tp

(g —v2)
(wq —2p)(yg —v3)’
B mé +zorp + :cg
vy

Using a twist of degree 3, we have that yé — yg belongs to F x/a and as a consequence will vanish
during the final exponentiation.

In [ZL12], the authors made the assumption that affine coordinates should be more efficient than
projective one as long as I < 5.6Mj. In order to be the more general, we will consider only the
projective coordinates. We than transform the affine expression into the following projective one:

1 (P) = X3+ XqZqwy +
(vq) z3 '

When using a twist, the coordinates Zg belongs to Fgx/a.
As a consequence, the evaluation of @ is composed by S, + kM, + Sy /q + My, /q operations.

We need two Frobenius maps (one by p and one by ¢°®) plus M}, in order to compute W.

fo.9 Ls1@.20 lsy0,—a@
vg;rqﬁ UspQ Vs1Q)(P)
plus (5k —4)My + Sy + Sk/q + My q +2Madd + 2M),. We present in Table 14 the estimation of the
Miller algorithm when &k € {15, 33,51}.

Finally the total complexity of (is the computation of Miller’s algorithm

Operation Complexity in projectives coordinates
Doubling step [ZL12] Mszp + kMg 4+ 3Me + 95 + My, + Sk
Mixed addition [ZL12] kMg + 12M. + 55 + M,
Final line evaluation |(5k —4)My 4 Sy + Sk/a + My q +2Madd

Table 13: Complexity of Miller’s steps using twist of degree 3
For k € {27,45} we obtain a short vector on the pattern [z,0,...0,1,0,...,0]. The optimal Ate

ak-1

pairing expression is then (fa, Q%(P)) " . An alternative family for the BLS 27 family was
z+q P Q

proposed by Zhang and Lin [ZL12]. They used a substitution of x by —1/z. The optimal Ate pairing

expression is simplified into (f, Q) . Another advantage to the Zhang and Lin family for BSL27
is the existence of x such that ¢ and r are both prime.

1
For k = 45, the fraction is U“wﬂ.
(z+4q16Q)
As a consequence, for k € {27,45} the pairing complexity is one Miller execution, plus one

addition step.

20

For k = 21, we obtain this short vector [0,0,0,0,0,0, 22, —x,1,0,0,0] and for k = 39 this one
[0,0,0,0,0,0,0,0,0,0,0,0,22, —z,1,0,0,0,0,0,0,0,0, 0.

q

6 s
. f Lo, g @ —a
We obtain the following expressions for the pairings (22,0 [+1@.02Q les@.—20@ _vQ (P)) ,

;ZQ”Z:Q VsgQ VspQ Vsg@
-1
fq12 . =
z2 s 22Q s ,— v
where 56 = 22¢% —2¢" +¢%, s7 = —xq" +¢° and 53 = ¢% and | Gy LT Q Qg 00 7
2.QVz0 512Q s13Q 514Q
where s19 = 22¢"? — 2q"® + ¢!, 515 = —2¢"® + ¢'* and s14 = ¢

The pairing computation consists in one Miller execution as its result, f; g, is an intermediate
step of the computation of f;2 ¢. The point @ can also be saved during the execution of f,2 ¢.

!
The output is the point 22Q. We must perform 6 Frobenius. The computation of 511)3@”2;@ lsl{jQ'ZQ
s12 513

are two extra addition steps. The denominators v, ,q and vs,,q cost 2(S; + kMg + Sija + My q)-
The complexity of the pairing computation for £ = 21 and k = 39 is then one Miller execution f;2 ¢
plus the extra computations 26(k — 1) My +2Madd 4 2(S, + kMg + Sijq + My /q) + 5My + I

k |min(log,(q))|min(logs(u)) u (log,(q)) Miller’s cost ~
15 382,4 31,8 142242124216 4232 383 32DBL+4Madd+Le+My, 8 216