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Abstract. We present a new generic construction of multi-client functional encryption (MCFE) for
inner products from single-input functional inner-product encryption and standard pseudorandom func-
tions. In spite of its simplicity, the new construction supports labels, achieves security in the standard
model under adaptive corruptions, and can be instantiated from the plain DDH, LWE, and Paillier
assumptions. Prior to our work, the only known constructions required discrete-log-based assumptions
and the random-oracle model. Since our new scheme is not compatible with the compiler from Abdalla
et al. (PKC 2019) that decentralizes the generation of the functional decryption keys, we also show
how to modify the latter transformation to obtain a decentralized version of our scheme with similar
features.
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1 Introduction

Functional encryption [BSW11,O’N10] is a generalization of standard encryption which allows for a more
fine-grained control over the decryption capabilities of third parties. In these schemes, the owner of a master
secret key can derive secret keys for specific functions via a key derivation algorithm. Then, given the
encryption of a message x, the holder of a secret decryption key skf for a function f can compute f(x) using
the decryption algorithm. Informally, a FE scheme is deemed secure if it is infeasible for an adversary to
learn any information about x other than what it can be computed using the secret keys at its disposal.
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Multi-input functional encryption [GGG+14] is an extension of the functional encryption in which the
function can be computed over several different inputs that can be encrypted independently. More precisely,
the decryption algorithm of such schemes takes as input a secret key skf for a function f together with
n different ciphertexts Enc(x1), . . . ,Enc(xn) and outputs the value of the function f applied to underlying
plaintexts (x1, . . . , xn).

In the setting in which each ciphertext of a multi-input functional encryption scheme is generated by a
different party or client Pi. we often refer to these schemes as multi-client functional encryption (MCFE)
schemes [CDG+18,GGG+14]. In this setting, it is natural to assume that the adversary can corrupt these
parties and learn their secret encryption keys. The master secret key, however, is still assumed to be owned
by a trusted third party.

Another important property of multi-client functional encryption considered by Chotard et al. [CDG+18]
is the inclusion of labels in the encryption process. More precisely, in a labeled MCFE scheme, the individual
encryption algorithms each take a label as an additional parameter and decryption should only be possible
when using ciphertexts generated with respect to the same label. That is, labels allow the users to have
more control over the mix-and-match capabilities, as opposed to MCFE without labels, where the owner of
a functional decryption key can mix and match all the ciphertexts.

Note that labels can be obtained without loss of generality for MCFE for all functions; however, this is
not the case of the practical constructions for restricted classes of functions, such as inner products, which
is the focus of this paper. Reciprocally, any MCFE with labels can be turned into a label-free MCFE for the
same functionality, simply by setting the labels used by the encryption algorithm to be always a fixed value
⊥. Put simply, labels are an extra feature that offers a better control over the information leaked by each
generated functional decryption key.

For instance, suppose we want to use MCFE to allow teachers to grade their students in a way that
the students can use these grades in different college applications and that colleges only learn the average
grades of the students with weights of their choice. In this scenario, each teacher would encrypt the grade of
each student for their subject. Each college would have a functional decryption key to compute the weighted
average of all the grades of each student. It is very important that the teachers use the student ID as a label,
otherwise colleges would be able to compute weighted average of a mix of multiple students (like Maths from
student A and Physics from student B), which significantly hinders privacy.

Prior work. As remarked in [AGRW17], most of the prior work in the multi-input setting are either
feasibility results for general functionalities (e.g,. [GGG+14,BGJS15,AJ15,BKS18]) or efficient constructions
for particular functionalities (e.g.,[AGRW17, ACF+18, CDG+18, DOT18, ?, ABKW19]). In the latter case,
which is the setting in which we are interested in this paper, the main functionality under consideration is
the inner-product functionality, in which functions are associated to a collection y of n vectors y1, . . . ,yn.
In particular, on input a collection x of n vectors x1, . . . ,xn, it outputs fy(x) =

∑n
i=1〈xi,yi〉 = 〈x,y〉.

As noted in prior works [ABDP15,AGRW17,CDG+18], inner-product functionalities can be quite useful for
computing statistics or performing data mining on encrypted databases.

Among the constructions of multi-input functional inner-product encryption schemes without labels, the
work of Abdalla et al. in [ACF+18] is the one requiring the weakest assumptions since it can be built from
any single-input functional encryption scheme satisfying some mild properties (recalled in Section 3). In
particular, by instantiating it with the public-key functional inner-product encryption schemes in [ALS16],
one can obtain constructions based on the DDH, Paillier, and LWE assumptions. Moreover, as recently shown
in [ABKW19], their schemes remain secure even when the secret encryption keys can be adaptively corrupted
by the adversary. Unfortunately, as we further discuss below, we do not know how to generalize the ACFGU
scheme to the labeled setting. In fact, the construction from [ACF+18] relies on an information-theoretic
multi-input FE (as they put it, the functional encryption equivalent of a one-time pad) to obtain security
in the restricted context of one challenge ciphertext per input slot. Then, they bootstrap security to many
challenge ciphertexts using an extra layer of single-input FE. That information-theoretic approach cannot be
emulated, since we need to hide messages for arbitrarily many labels in our case. Thus, an entropy argument
can be used to show that we need to resort to a computational assumption, even for proving security in the
context of one challenge ciphertext per input slot and label. In our case, we use PRFs.
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Among the constructions of multi-input functional inner-product encryption schemes with labels, the
works of Abdalla et al. [ABKW19] and Chotard et al. [?] currently represent the state of the art in this
area. In particular, both schemes provide labeled MCFE schemes in the random-oracle model in discrete-
log-based groups. The main advantage of the work of Chotard et al. is that its ciphertexts are shorter and
that it allows for multiple ciphertexts under the same label. However, it requires pairing groups. The main
advantage of the work of Abdalla et al. is that it can be instantiated in pairing-free groups. However, its
ciphertexts are longer and it only allows for one ciphertext per label, a restriction inhereted from [CDG+18].
As in the case of other discrete-log-based constructions of functional inner-product encryption schemes (e.g,
[ABDP15,BJK15,ALS16,AGRW17]), the size of supported messages is restricted for both schemes since the
decryption algorithm needs to compute discrete logarithms.

Contributions. In order to address the shortcomings of previous labeled MCFE schemes, the main con-
tribution of this paper is to provide the first construction of labeled MCFE schemes in the standard model
from more general assumptions than discrete-logarithm-based ones. As in the work of Abdalla et al. in
[ACF+18], our constructions can be built from any single-input public-key functional encryption scheme
satisfying some mild properties (recalled in Section 3). In particular, by instantiating it with the schemes in
[ALS16], one can obtain constructions based on the DDH, Paillier, and LWE assumptions. Our constructions
have no restriction on the number of ciphertexts per label and are proven secure with respect to adaptive
corruptions.

In order to achieve our main result, our security proof proceeds in two parts. First, we prove the security
of our MCFE scheme in a setting in which the adversary is required to query the encryption oracle in all n
positions for each label. Then, in a second step, we apply the compiler suggested in [ABKW19] to remove
this requirement. Since the proof for the latter transformation given in [ABKW19] is in the random-oracle
model, an additional contribution of our work is to provide an alternative proof for it in Section 4 which
does not require random oracles.

Finally, since our main construction is not compatible with the transformation from [ABKW19] that
decentralizes the generation of the functional decryption keys, we also show how to modify the latter to
obtain a decentralized version of our scheme with similar features. As a result, we obtain the first decentralized
labeled MCFE schemes in the standard model based on the DDH, Paillier, and LWE assumptions.

Independent work. In a recent work [?], the authors define multi-input functional encryption schemes
with decentralized key generation and setup, in which users can join the system dynamically. They give a
feasibility result for general functions, and also provide a construction for inner products, from a standard
assumption (LWE). However, their construction does not handle labels.

Overview of our construction. Following the proof strategy first used in [AGRW17] in the context of
multi-input FE for inner products, we start with a scheme whose security only holds when there is only
one challenge ciphertext per input slot. The novelty compared to multi-input FE is that we have to handle
arbitrarily many labels, even if there is only one challenge ciphertext per slot and label.

One-time security with labels. We modify the scheme from [ACF+18], where the one-time secure MIFE is
simply obtained using a one-time pad of the messages. The functional decryption keys are simply the linear
combination of these pads. Namely, for any input slot i, we have cti := xi + ti, and for sky :=

∑n
i=1〈ti,yi〉,

where ti ← ZmL , m denotes the dimension of individual messages xi, and everything is computed modulo
L, for some specified integer L. Here, we write y := (y1‖ . . . ‖yn), the concatenation of n vectors, each of
dimension m. To decrypt the set of ciphertext {cti}i, one simply compute

∑
i〈cti,yi〉, and subtract by the

key sky to get
∑
i〈xi,yi〉. Security follows by a perfect statistical argument.

The technical challenge is to emulate this idea to a setting where ciphertexts can be generated for many
labels. Since the number of label is not a priori bounded, we cannot resort to a perfectly statistical argument:
the master secret key (which in the previous scheme contains all the vectors ti) is simply too small to contain
all possible pads ti,` for all labels ` ∈ Labels that would required to perform such an argument. We must
resort to a computation argument. A natural but flawed idea would to generate the pads ti,` using a PRF
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applied on a label ` ∈ Labels. This approach faces two issues: first, if one slot is corrupted, then the security
of the entire system is compromised, since each input slot needs the PRF key to encrypt. Second, since the
labels are only known at encryption time, the generation of functional decryption keys is unable to produce
the value

∑
i〈yi, ti,`〉.

To circumvent these issues we generate the pads ti,` :=
∑
j 6=i

(−1)j<iPRFKi,j (`), where for all i < j ∈ [n],

the keys Ki,j ← {0, 1}λ, and Kj,i = Ki,j , and (−1)j<i denotes −1 if j < i, 1 otherwise. This construction
has first been used in [KDK11] to decentralize the computation of the sum of private values in a non-
interactive way. Each input slot i ∈ [n] needs the set of keys {Ki,j}j∈[n] to encrypt. Assuming the security
of the PRF, it produces pseudorandom pads, which will be able to mask the messages xi simultaneously
for all used label ` ∈ Labels. Thus, we prove that this holds even when some users i ∈ [n] are corrupted (in
fact, up to n − 2 can be corrupted). This solves the first issue mentioned above. To solve the second issue,
namely, ensuring correctness holds for all possible labels, we use the structure property that holds for all
label ` ∈ Labels:

∑
i∈[n] ti,` = 0, where 0 denotes the zero vector. Otherwise stated, these pads are shares

of a perfect n out of n secret sharing of 0. We use this by setting the ciphertext for slot i ∈ [n] and label
` ∈ Labels to be an encryption of the vector wi,` := (0‖ . . . ‖0‖xi‖0‖ . . . ‖0) + ti,` ∈ ZmnL . This way, we
have 〈wi,`,y〉 = 〈xi,yi〉 + 〈ti,`,y〉 for all slots i ∈ [n], therefore:

∑
i∈[n]〈wi,`,y〉 =

∑
i∈[n]〈xi,yi〉. The last

step is to encrypt the vector wi,` using any single-input, public-key FE for inner products. The functional
decryption key is simply the functional decryption key of the single-input inner-product FE for the associated
vector y. Correctness is preserved, since the decryption only needs to compute the inner product between
wi,` and y.

Full-fledged security. To obtain security with many challenge ciphertexts per input slot and label, we use
similar techniques to those used in [ACF+18] in the context of multi-input inner-product FE. However,
these can only be applied when the adversary does not make use of the information revealed by partial
ciphertexts {cti,`}i∈[n]\{missing}, where {missing} denotes the set of missing slots for label `. Prior works
[?,ABKW19] provides generic compilers that precisely avoid partial ciphertexts to leak any information about
the underlying plaintext (decryption is only successful when ciphertexts for all slots are present), but they
are only proven secure in the random oracle model, and for [?], use additional assumptions (pairings). Since
our focus it to build simple MCFE schemes from weak assumptions, we give a new generic transformation
(in Section 4) that avoids the leakage of information of partial ciphertexts, with no extra assumption (only
PRFs, in the standard model), and that handles adaptive corruptions.

Decentralizing MCFE. In order to decentralize the generation of functional decryption keys, we adapt the
construction from [ABKW19]. The main idea is to secret share the master secret key, since computing the
functional secret key is a linear operation, it can be done non-interactively from these shares.

Outline. The rest of the paper is organized as follows. After giving the relevant technical preliminaries and
definitions in Section 2, we give our new construction of MCFE from single-input FE for inner products
in Section 3. In Section 4, we show how to generically strengthen the security of our MCFE construction,
thereby removing any artificial restrictions on the security model. Finally, in Section 5, we show how to
decentralize our MCFE to obtain a DMCFE.

2 Definitions and Security Models

Notation. We use [n] to denote the set {1, . . . , n}. We write x for vectors and xi for the i-th element. For
security parameter λ and additional parameters n, we denote the winning probability of an adversary A in a
game or experiment G as WinGA(λ, n), which is Pr[G(λ, n,A) = 1]. The probability is taken over the random
coins of G and A.
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2.1 Multi-Client Functional Encryption

In this section, we recall the definition of MCFE [GGG+14]. It is taken almost verbatim from [ABKW19],
with the following differences: the use of a stronger security definition (see Remark 2.3) and the introduction
of a master public key mpk, so that public-key functional encryption becomes a particular case of MCFE.

Definition 2.1. (Multi-Client Functional Encryption) Let F = {Fρ}ρ be a family (indexed by ρ) of
sets Fρ of functions f : Xρ,1×· · ·×Xρ,nρ → Yρ.5 Let Labels = {0, 1}∗ or {⊥} be a set of labels. A multi-client
functional encryption scheme (MCFE) for the function family F and the label set Labels is a tuple of five
algorithms MCFE = (Setup,KeyGen,KeyDer,Enc,Dec):

Setup(1λ, 1n): Takes as input a security parameter λ and the number of parties n, and generates public
parameters pp. The public parameters implicitly define an index ρ corresponding to a set Fρ of n-ary
functions (i.e., n = nρ).

KeyGen(pp): Takes as input the public parameters pp and outputs n secret keys {ski}i∈[n], a master secret
key msk, and a master public key mpk.

KeyDer(pp,msk, f): Takes as input the public parameters pp, the master secret key msk and a function
f ∈ Fρ, and outputs a functional decryption key skf .

Enc(pp,mpk, ski, xi, `): Takes as input the public parameters pp, a master public key mpk, a secret key ski,
a message xi ∈ Xρ,i to encrypt, a label ` ∈ Labels, and outputs ciphertext cti,`.

Dec(pp, skf , ct1,`, . . . , ctn,`): Takes as input the public parameters pp, a functional key skf and n ciphertexts
under the same label ` and outputs a value y ∈ Yρ.

A scheme MCFE is correct, if for all λ, n ∈ N, pp ← Setup(1λ, 1n), f ∈ Fρ, ` ∈ Labels, xi ∈ Xρ,i, when
({ski}i∈[n],msk,mpk)← KeyGen(pp) and skf ← KeyDer(pp,msk, f), we have for x = (x1, . . . , xn):

Pr [Dec(pp, skf ,Enc(pp,mpk, sk1, x1, `), . . . ,Enc(pp,mpk, skn, xn, `)) = f(x)] = 1.

When ρ is clear from context, the index ρ is omitted. Note that the case of (single-input) functional
encryption as defined in [BSW11, O’N10] corresponds to the case n = 1, and Labels = {⊥}. For such
schemes, we also consider the public-key variant, where sk1 =⊥, that is, the encryption algorithm only
requires the public parameters pp and the master public key mpk to encrypt the message x1. In this setting,
sk1 is omitted.

Except for public-key single-input functional encryption, the master public-key can be included in each
secret key ski and we omit it.

We follow the notation of [ABKW19] here, where the algorithm Setup only generates public param-
eters that determine the set of functions for which functional decryption keys can be created, and the
secret/encryption keys and the master secret keys are generated by another algorithm KeyGen, while the
functional decryption keys are generated by KeyDer.

In the following, we define security as adaptive left-or-right indistinguishability under both static (sta),
and adaptive (adt) corruption. We also consider two variants of these notions (any, pos+) related to the
number of encryption queries asked by the adversary for each slot.

Definition 2.2. (Security of MCFE) Let MCFE be an MCFE scheme, F = {Fρ}ρ a function family
indexed by ρ and Labels a label set. For xx ∈ {sta, adt}, yy ∈ {any,pos+}, and β ∈ {0, 1}, we define the
experiment xx-yy-INDMCFE

β in Fig. 1, where the oracles are defined as:

Corruption oracle QCor(i): Outputs the encryption key ski of slot i. We denote by CS the set of corrupted
slots at the end of the experiment.

Left-Right oracle QLeftRight(i, x0i , x
1
i , `): Outputs cti,` = Enc(pp, ski, x

β
i , `) on a query (i, x0i , x

1
i , `). We

denote by Qi,` the number of queries of the form QLeftRight(i, ·, ·, `).
Encryption oracle QEnc(i, xi, `): outputs cti,` = Enc(pp,mpk, ski, xi, `) on a query (i, xi, `).

5 All the functions inside the same set Fρ have the same domain and the same range.
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Key derivation oracle QKeyD(f): Outputs skf = KeyDer(pp,msk, f).

and where Condition (*) holds if all the following conditions hold:

– If i ∈ CS (i.e., slot i is corrupted): for any query QLeftRight(i, x0i , x
1
i , `), x0i = x1i .6

– For any label ` ∈ Labels, for any family of queries {QLeftRight(i, x0i , x1i , `) or QEnc(i, xi, `)}i∈[n]\CS , for
any family of inputs {xi ∈ Xρ,i}i∈CS , for any query QKeyD(f), we define x0i := xi and x1i := xi for any
slot i ∈ CS and any slot queried to QEnc(i, xi, `), and we require that:

f(x0) = f(x1) where xb = (xb1, . . . , x
b
n) for b ∈ {0, 1} .

We insist that if one index i /∈ CS is not queried for the label `, there is no restriction.
– When yy = pos+: for any slot i ∈ [n] and ` ∈ Labels, if Qi,` > 0, then for any slot j ∈ [n] \ CS, Qj,` > 0.

In other words, for any label, either the adversary makes no left-right encryption query or makes at least
one left-right encryption query for each slot i ∈ [n] \ CS.

We define the advantage of an adversary A in the following way:

Advxx-yy-IND
MCFE,A (λ, n) =

∣∣Pr[xx-yy-INDMCFE
0 (λ, n,A) = 1]− Pr[xx-yy-INDMCFE

1 (λ, n,A) = 1]
∣∣ .

A multi-client functional encryption scheme MCFE is xx-yy-IND secure, if for any n, for any polynomial-time
adversary A, there exists a negligible function negl such that: Advxx-yy-IND

MCFE,A (λ, n) ≤ negl(λ).

We omit n when it is clear from the context. We also often omit A from the parameter of experiments
or games when it is clear from the context.

Remark 2.3 (The role of the oracle QEnc). The security definitions we give are slightly stronger than those
given in [ABKW19], since the oracle QEnc gives out information that is not captured by Condition (*), for
pos+, hence the use of the notation pos+ instead of pos in [ABKW19]. For any, this addition of QEnc has
no effect, as QEnc queries can be simulated using QLeftRight. But for pos+/pos, there is no equivalence in
general between the security definition with and without the encryption oracle. We add this oracle QEnc so
that we can reduce the security with respect to one label to the security with respect to multiple queried
labels, via a simple hybrid argument (which would not be valid without the QEnc oracle), as done in [?].
This will be used in our generic compiler from pos+ to any security, in Section 4.

Now we define a seemingly weaker security notion than xx-yy-IND, which we call xx-yy-IND-1-label,
since the adversary is restricted to query the oracle QLeftRight on at most one label, and it cannot query
the oracle QEnc oracle on that label. Using a standard hybrid argument (cf Lemma 2.5), we show that this
is equivalent to the original xx-yy-IND security defined above. These restrictions will make the proofs easier
in the rest of the paper.

Definition 2.4. (1-label Security) Let MCFE be an MCFE scheme, F = {Fρ}ρ a function family indexed
by ρ and Labels a label set. For xx ∈ {sta, adt}, yy ∈ {any, pos+}, and β ∈ {0, 1}, we define the experiment
xx-yy-IND-1-labelMCFE

β exactly as in Fig. 1, where the oracles are defined as for Definition 2.2, except:

Left-Right oracle QLeftRight(i, x0i , x
1
i , `): Outputs cti,` = Enc(pp, ski, x

β
i , `) on a query (i, x0i , x

1
i , `). This

oracle can be queried at most on one label. Further queries with distinct labels will be ignored.
Encryption oracle QEnc(i, xi, `): outputs cti,` = Enc(pp,mpk, ski, xi, `) on a query (i, xi, `). If this oracle

is queried on the same label that is queried to QLeftRight, the game ends and return 0.

6 We could define a stronger security notion without this restriction. However, in this paper, as in the prior works
on MCFE, we add this restriction. In particular, we allow the secret key for the slot i to decrypt ciphertexts for
the slot i. We leave achieving stronger security as an interesting open problem.
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Condition (*) is defined as for Definition 2.2.
We define the advantage of an adversary A in the following way:

Advxx-yy-IND-1-label
MCFE,A (λ, n) =

∣∣Pr[xx-yy-IND-1-labelMCFE
0 (λ, n,A) = 1]

− Pr[xx-yy-IND-1-labelMCFE
1 (λ, n,A) = 1]

∣∣ .
Lemma 2.5 (From one to many labels). Let MCFE be a scheme that is xx-yy-IND-1-label secure, for
xx ∈ {sta, adt} and yy ∈ {pos+, any}. Then it is also secure against PPT adversaries that query QLeftRight on
many distinct labels (xx-yy-IND security). Namely, for any PPT adversary A, there exists a PPT adversary
B such that:

Advxx-yy-IND
MCFE,A (λ, n) ≤ qEnc · Advxx-yy-IND-1-label

MCFE,B (λ, n),

where Advxx-yy-IND-1-label
MCFE,B (λ, n) denotes the advantage of B against an experiment defined as above, except

QLeftRight can be queried on at most one label and QEnc must not be queried on that label. By qEnc we denote
the number of distinct labels queried by A to QLeftRight in the original security game.

Proof (Sketch).
First, let us consider the case of yy = any security. The proof uses a hybrid argument which goes over all

the labels `1, ...`Q queried to both the oracles QEnc and QLeftRight. In the k’th hybrid, the queries for the
first k’th labels to the QLeftRight oracle are answered with the right plaintext, and the the last Q− k labels
are answered with the left plaintext. To go from hybrid k − 1 to k, B uses its own QEnc oracle to answer
A’s queries to QLeftRight for labels `j for j < k, and j > k (using the right and left plaintext respectively),
and uses its own oracle QLeftRight for label `k. The queries made by A to QEnc and QCor are answered
straightforwardly by B from its own oracles. Note that the queries made by B satisfy the 1-label restriction,
since QLeftRight is only queried on `k, and QEnc is not queried on `k.

For the case of yy = pos+ security, to go from hybrid k − 1 to k, B uses the QEnc oracle to answer
QLeftRight queries for labels `j for j < k and j > k (using the right and left plaintext respectively). For
the label `k, B uses its own oracle QLeftRight to answer A’s queries to both QLeftRight and QEnc. So far,
the reduction works as for the case of yy = any security. However, the difference is yy = pos+ security
requires additional conditions on the queries made to QLeftRight, in particular, if one honest slot is queried
to QLeftRight for `k, then all honest slots should be queried. Thus, we need to distinguish two cases: case 1)
`k is queried to QEnc, but never on QLeftRight, in which case B uses its own QEnc oracle; case 2) `k is queried
to QLeftRight at some point (and by definition of pos+ security, that means it’s queried to all honest slots).
In case 2, the queries of B to QLeftRight will satisfy the condition required by the yy = pos+ security game,
namely, if QLeftRight is queried on `k for some honest input slot, then it has to be queried on the same label
`k for all honest input slots. Note that this restriction doesn’t apply to the queries made to QEnc. In case
1, we use the fact that the two hybrid games k − 1 and k are exactly the same. Therefore, at the end of the
simulation, B checks whether case 1 occurs, and if it does, simply outputs 0 to its own experiment, ignoring
A’s output. Otherwise, it means it is case 2, and B forwards the output from A to its own experiment.

ut

We summarize the relations between the six security notions in Fig. 2, where xx-pos-IND is the notion
defined in [ABKW19] (i.e., it is like xx-pos+-IND without the QEnc oracle).

2.2 Decentralized Multi-Client Functional Encryption

Now, we introduce the definition of decentralized multi-client functional encryption (DMCFE) [CDG+18].
As for our definition of MCFE, we separate the algorithm Setup which generates public parameters defining
in particular the set of functions, from the algorithm KeyGen. We do not consider public-key variants of
DMCFE and hence completely omit the master public key mpk.
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sta-yy-INDMCFE
β (λ, n,A)

CS ← A(1λ, 1n)

pp← Setup(1λ, 1n)

({ski}i∈[n],mpk,msk)← KeyGen(pp)

α← AQEnc(·,·,·),QLeftRight(·,·,·,·),QKeyD(·)(pp,mpk, {ski}i∈CS)
Output: α if Condition (*) is satisfied, 0 otherwise.

adt-yy-INDMCFE
β (λ, n,A)

pp← Setup(1λ, 1n)

({ski}i∈[n],msk,mpk)← KeyGen(pp)

α← AQCor(·),QEnc(·,·,·),QLeftRight(·,·,·,·),QKeyD(·)(pp,mpk)

Output: α if Condition (*) is satisfied, 0 otherwise.

Fig. 1. Security games for MCFE

sta-pos-IND sta-pos+-IND sta-any-IND

adt-pos-IND adt-pos+-IND adt-any-IND

Fig. 2. Relations between the MCFE security notions (arrows indicate implication or being “a stronger security notion
than”)

Definition 2.6. (Decentralized Multi-Client Functional Encryption) Let F = {Fρ}ρ be a family
(indexed by ρ) of sets Fρ of functions f : Xρ,1 × · · · × Xρ,nρ → Yρ.Let Labels = {0, 1}∗ or {⊥} be a set of
labels. A decentralized multi-client functional encryption scheme (DMCFE) for the function family F and the
label set Labels is a tuple of six algorithms DMCFE = (Setup,KeyGen,KeyDerShare,KeyDerComb,Enc,Dec):

Setup(1λ, 1n) is defined as for MCFE in Definition 2.1.
KeyGen(pp): Takes as input the public parameters pp and outputs n secret keys {ski}i∈[n].
KeyDerShare(pp, ski, f): Takes as input the public parameters pp, a secret key ski from position i and a

function f ∈ Fρ, and outputs a partial functional decryption key ski,f .
KeyDerComb(pp, sk1,f , . . . , skn,f ): Takes as input the public parameters pp, n partial functional decryption

keys sk1,f , . . . , skn,f and outputs the functional decryption key skf .
Enc(pp, ski, xi, `) is defined as for MCFE in Definition 2.1.
Dec(pp, skf , ct1,`, . . . , ctn,`) is defined as for MCFE in Definition 2.1.

A scheme DMCFE is correct, if for all λ, n ∈ N, pp ← Setup(1λ, 1n), f ∈ Fρ, ` ∈ Labels, xi ∈ Xρ,i, when
{ski}i∈[n] ← KeyGen(pp), ski,f ← KeyDerShare(ski, f) for i ∈ [n], and skf ← KeyDerComb(pp, sk1,f , . . . , skn,f ),
we have

Pr [Dec(pp, skf ,Enc(pp, sk1, x1, `), . . . ,Enc(pp, skn, xn, `)) = f(x1, . . . , xn)] = 1 .

We remark that there is no master secret key msk. Furthermore, similarly to [CDG+18], our definition
does not explicitly ask the setup to be decentralized. Our DMCFE construction based on DDH (Section 5)
however has a setup which can be easily decentralized.

We consider a similar security definition for the decentralized multi-client scheme. We point out that
contrary to [CDG+18], we do not differentiate encryption keys from secret keys. This is without loss of
generality, as corruptions in [CDG+18] only allow to corrupt both keys at the same time.
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Definition 2.7. (Security of DMCFE) The xx-yy-IND security notion of an DMCFE scheme (xx ∈
{sta, adt} and yy ∈ {any, pos+}) is similar to the one of an MCFE (Definition 2.2), except that there is no
master secret key msk and the key derivation oracle is now defined as:

Key derivation oracle QKeyD(f, i): Given as input f ∈ F and a client i ∈ [n], it returns ski,f :=
KeyDerShare(pp, ski, f).

Remark 2.8 (Weaker security definition for DMCFE). Some prior works, including [ABKW19], give a weaker
security definition for DMCFE, where the adversary can only get access to all the shares of functional
decryption keys at once. This fails to capture the scenario where the adversary get some, but not all, shares
of functional decryption keys. In that case, the adversary should not be able to recover any meaningful
information. For instance, consider the following scenario: all clients except client 1 want to learn the input
of client 1. Client 1 will not participate in the generation of such functional decryption key, since that would
clearly violate her privacy. Thus, the scheme should not reveal any information on her encrypted value as long
there are some missing shares of functional decryption keys. This is not addressed by the security definition
of [ABKW19] since the adversary gets all the shares at the same time. Instead, we allow the adversary
to corrupt functional decryption keys share by share, as in the security definition originally introduced in
[CDG+18].

2.3 Inner-Product Functionality

We describe the functionalities supported by the constructions in this paper. The index of the family is
defined as ρ = (R, n,m,X, Y ) where R is either Z or ZL for some integer L, and n,m,X, Y are positive
integers. If X,Y are omitted, then X = Y = L is used (i.e., no constraint).

This defines F ip
ρ = {fy1,...,yn : (Rm)

n → R} where

fy1,...,yn(x1, . . . ,xn) =

n∑
i=1

〈xi,yi〉 = 〈x,y〉 ,

where the vectors satisfy the following bounds: ‖xi‖∞ < X, ‖yi‖∞ < Y for i ∈ [n], and where x ∈ Rmn
and y ∈ Rmn are the vectors corresponding to the concatenation of the n vectors x1, . . . ,xn and y1, . . . ,yn
respectively.

2.4 Pseudorandom Functions (PRF)

We make use of a pseudorandom function PRFK(`), indexed by a key K ∈ {0, 1}λ, that takes as input a
label ` ∈ Labels, and outputs a value in the output space Z. For a uniformly random key K← {0, 1}λ, this
function is computationally indistinguishable from a truly random function from Labels to Z.

Definition 2.9 (PRF). For any PRF from Labels to Z, any bit β ∈ {0, 1}, any security parameter λ, and
any adversary A, we define the experiment INDPRF

β as follows.

INDPRF
β (λ,A)

K← {0, 1}λ

α← AOPRF(·)(1λ)

Output: α

Fig. 3. Security games for PRF. The oracle OPRF(`) returns PRFK(`) if β = 0; RF(`) otherwise, where RF denotes a
random function computed on the fly.
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We define the advantage of an adversary A in the following way:

AdvPRF,A(λ) =
∣∣Pr[INDPRF

0 (λ,A) = 1]− Pr[INDPRF
1 (λ,A) = 1]

∣∣ .
A PRF is secure, if for any any polynomial-time adversary A, there exists a negligible function negl such

that: AdvPRF,A(λ) ≤ negl(λ).

2.5 Symmetric-Key Encryption (SE)

A symmetric encryption with key space K consists of the following PPT algorithms:

– Enc(K,m): given a symmetric key K and a message m, outputs a ciphertext.
– Dec(K, ct): given a symmetric key K and a ciphertext ct, outputs a message (or ⊥ if it fails to decrypt).

For all message in the message space, we have Pr[Dec(k,Enc(k,m)) = m] = 1, where the probability is
taken over the random choice of K ← K. We say a symmetric-key encryption with key space K is compatible
with a PRF with output space Z if K = Z.

Definition 2.10 (SE). For any SE with key space K, any bit β ∈ {0, 1}, any security parameter λ, and
any adversary A, we define the experiment INDPRF

β as follows.

INDSE
β (λ,A)

K← K

α← AOSE(·)(1λ)

Output: α

Fig. 4. Security games for SE. The oracle OSE(m0,m1) returns Enc(K,mβ).

We define the advantage of an adversary A in the following way:

AdvSE,A(λ, n) =
∣∣Pr[INDPRF

0 (λ,A) = 1]− Pr[INDSE
1 (λ,A) = 1]

∣∣ .
A SE is secure, if for any any polynomial-time adversary A, there exists a negligible function negl such

that: AdvSE,A(λ) ≤ negl(λ).

3 MCFE from Public-Key Single-Input FE

In this section, we build a multi-client FE for inner products generically from any public-key single-input
FE and a standard PRF.

3.1 Construction

The construction resembles the multi-input FE from [ACF+18], where an inner layer of information-theoretic
one-time FE is combined with an outer layer of single-input FE. We manage to extend this paradigm to the
setting where the encryption additionally takes a label as input: the one-time pads are replaced by pads which
are pseudorandom for all used labels `, using techniques similar to those used in [ABKW19] to decentralize
the generation of functional secret keys.

The underlying single-input FE is required to satisfy simple structural properties, originally defined in
[ACF+18] and recalled below (converted to the public-key setting), which are satisfied by all known existing
single-input FE for inner products.
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Setup(1λ, 1n) :

ppipfe ← Setup?ipfe(1
λ, 1n), with L implicitly defined from ppipfe

Return pp = ppipfe

KeyGen(pp) :

(mskipfe,mpkipfe)← KeyGenipfe(ppipfe);msk := mskipfe

For i ∈ [n], j > i : Ki,j = Kj,i ← {0, 1}λ

Return {ski = (mpk, {Ki,j}j∈[n])}i∈[n] and msk

Enc(pp, ski,xi ∈ Rm, ` ∈ Labels) :

Parse ski = (mpkipfe, {Ki,j}j∈[n])

ti,` :=
∑
j 6=i

(−1)j<iPRFKi,j (`) ∈ ZmnL

wi := (0‖ . . . ‖0‖xi‖0‖ . . . ‖0) + ti,` mod L

cti ← Encipfe(ppipfe,mpkipfe,wi)

Return cti

KeyDer(pp,msk,y ∈ Rmn) :

Return sky ← KeyDeripfe(ppipfe,mskipfe,y)

Dec(pp, sky, {cti}i∈[n]) :

For i ∈ [n], E(〈wi,y〉 mod L, noisei)← Decipfe,1(ppipfe, sky, cti)

Return Decipfe,2(ppipfe, E(〈w1,y〉 mod L, noise1)) ◦ · · · ◦ E(〈wn,y〉 mod L, noisen))

Fig. 5. Inner-Product MCFE for Fρ, ρ = (Z, n,m,X, Y ) built from a public-key FE FE :=
(Setupipfe,Encipfe,KeyDeripfe,Decipfe) for Fρipfe , ρipfe = (Z, 1, n · m, 2X,Y ). We assume FE satisfies the two-step de-
cryption property (see Definition 3.1), hence the existence of PPT algorithms Setup?ipfe, Decipfe,1 and Decipfe,2. Here,
for any K ∈ {0, 1}λ, PRFK : Labels→ ZmnL is a pseudorandom function (see Section 2.4).

11



Definition 3.1 (Two-step decryption [ACF+18]). A public-key FE scheme FE = (Setup,KeyGen,
KeyDer,Enc,Dec) for the function ensemble F ip

ρ , ρ = (Z, 1,m,X, Y ) satisfies the two-step decryption property
if it admits PPT algorithms Setup?, Dec1,Dec2 and an encoding function E such that:

1. For all λ ∈ N,Setup?(1λ, 1n) outputs pp where pp includes ρ = (Z, 1,m,X, Y ) and a bound B ∈ R+, as
well as the description of a group G (with group law ◦) of order L > n · m · X · Y , which defines the
encoding function E : ZL × Z→ G.

2. For all (msk,mpk)← KeyGen(pp),x ∈ Zm, ct← Enc(pp,mpk,x),y ∈ Zm, and sk← KeyDer(msk,y), we
have

Dec1(pp, sk, ct) = E(〈x,y〉 mod L, noise) ,

for some noise ∈ Z that depends on ct and sk. Furthermore, it holds that Pr[|noise| < B] = 1− negl(λ),
where the probability is taken over the random coins of KeyGen and KeyDer. Note that there is no
restriction on the norm of 〈x,y〉 here.

3. The encoding E is linear, that is: for all γ, γ′ ∈ ZL, noise, noise′ ∈ Z, we have

E(γ, noise) ◦ E(γ′, noise′) = E(γ + γ′ mod L, noise+ noise′) .

4. For all γ < n ·m ·X · Y , and |noise| < n ·B, Dec2(pp, E(γ, noise)) = γ.

Definition 3.2 (Linear encryption [ACF+18]). A secret-key FE scheme FE = (Setup,KeyGen,KeyDer,
Enc,Dec) is said to satisfy the linear encryption property if there exists a deterministic algorithm Add that
takes as input a ciphertext and a message, such that for all x,x′ ∈ Zm, the following are identically dis-
tributed:

Add(Enc(pp,msk,x),x′), and Enc
(
pp,msk, (x+ x′ mod L)

)
.

Recall that the value L ∈ N is defined as part of the output of the algorithm Setup? (see the two-step decryption
property above).

Correctness. The correctness of the scheme in Fig. 5 follows from (i) the correctness and Definition 3.1
(two-step decryption) of the single-input scheme, and (ii) the fact that for all ` ∈ Labels,

∑
i∈[n] ti,` = 0, by

definition of the vectors ti,`. Thus, writingwi := (0‖ . . . ‖0‖xi‖0‖ . . . ‖0)+ti,` mod L, we have
∑
i∈[n] wi mod

L = x mod L ∈ ZmnL , where x ∈ Rnm denotes the concatenation of the n vectors x1, . . . ,xn.
More precisely, consider any vector x := (x1‖ · · · ‖xn) ∈ (Zm)n, y ∈ Zmn, such that ‖x‖∞ < X,

‖y‖∞ < Y and let pp ← Setup(1λ), ({ski}i∈[n],msk) ← KeyGen(pp), sky ← KeyDer(pp,msk,y), and cti ←
Enc(pp, ski,xi, `) for all i ∈ [n].

By (2) of Definition 3.1, the decryption algorithm Dec(pp, sky, {cti}i∈[n]) computes E(〈wi,y〉 mod L, noisei)

← Decipfe,1(pp, ski, cti) where for all i ∈ [n], |noisei| < B with probability 1 − negl(λ), where B ∈ R+ is the
bound output by Setup?ipfe.

By (3) of Definition 3.1 (linearity of E) we have:

E(〈w1,y〉 mod L, noise1) ◦ · · · ◦ E(〈wn,y〉 mod L, noisen)

= E

〈∑
i∈[n]

wi,y〉,
∑
i∈[n]

noisei

 = E

〈x,y〉 mod L,
∑
i∈[n]

noisei

 .

Since 〈x,y〉 < n ·m ·X · Y < L and
∣∣∣∑i∈[n] noisei

∣∣∣ < n ·B, we have

Decipfe,2
(
E(〈x,y〉 mod L,

∑
i∈[n]

noisei)
)
= 〈x,y〉,

by (4) of Definition 3.1.
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3.2 Static Security

Now we proceed to prove the sta-pos+-IND-security of the scheme, that is, security with static corruption,
which serves as a warm up to the more complicated proof of adt-pos+-IND-security, that we give later. Using
the generic transformation in Section 4, we can remove the pos+ restriction, and obtain adt-any-IND security.

Theorem 3.3 (sta-pos+-IND-security). If the FE scheme FE = (Setupipfe,KeyGenipfe,KeyDeripfe,Encipfe,

Decipfe) is an any-IND-secure FE scheme for the inner product functionality defined as F ip
ρipfe

, ρipfe = (Z, 1,m,
2X,Y ), and PRF is secure, then MCFE from Fig. 5 is sta-pos+-IND-secure for the functionality defined as
F ip
ρ , ρ = (Z, n,m,X, Y ). Namely, for any PPT adversary A, there exist PPT adversaries B and B′ such that:

Advsta-pos+-IND
MCFE,A (λ, n) ≤ 2qEnc · Advany-IND

FE,B (λ) + 2(n− 1)qEnc · AdvPRF,B′(λ),

where qEnc denotes the number of distinct labels queried to QLeftRight.

G0, G1, G2 , G3 , G4 :

CS ← A(1λ, 1n)
({ski}i∈[n],msk)← KeyGen(pp)

α← AQLeftRight(·,·,·,·),QEnc(·,·,·),QKeyD(·)(pp, {ski}i∈CS)
Output: α if Condition (*) is satisfied, or 0 otherwise.

QKeyD(y):
Return sky ← KeyDer(pp,msk,y)

QEnc(i,xji , `):
ti,` ← Gen(i, `)
wi := (0‖ . . . ‖0‖xji‖0‖ . . . ‖0) + ti,` mod L
cti ← Encipfe(ppipfe,mpkipfe,wi)
Return cti

QLeftRight(i,xj,0i ,xj,1i , `?):
ti,`? ← Gen(i, `?)

wi := (0‖ . . . ‖0‖xj,0i + x1,1
i − x1,0

i ‖0‖ . . . ‖0) + ti,`? mod L

wi := (0‖ . . . ‖0‖xj,1i ‖0‖ . . . ‖0) + ti,`? mod L

cti ← Encipfe(ppipfe,mpkipfe,wi)
Return cti

Gen(i, `):
Parse ski = {Ki,j}j∈[n]
ti,` :=

∑
j 6=i(−1)

j<iPRFKi,j (`) ∈ ZmnL
If i ∈ HS := {i1, . . . , ih}, then:
• If i = i1, ti,` :=

∑
j∈CS(−1)

j<iPRFKi,j (`) +
∑h
t=2 RF(t, `).

• If i = it, for t ∈ [2, . . . , h], ti,` :=
∑
j∈[n]\{it,i1}(−1)

j<iPRFKi,j (`)− RF(t, `).

Return ti,`

Fig. 6. Games for the proof of Theorem 3.3. Here, HS := [n] \ CS. Condition (*) is given in Definition 2.1. Here, RF
denotes a random function that is computed on the fly. WLOG, QLeftRight is only queried on label `?, and QEnc
isn’t queried on `?.
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Proof. For simplicity, we consider the case where A only queries QLeftRight on one label `?, and never queries
QEnc on `?. We build PPT adversaries B and B′ such that: Advsta-pos+-IND-1-label

MCFE,A (λ, n) ≤ 2 · Advany-IND
FE,B (λ) +

2(n − 1) · AdvPRF,B′(λ), where Advsta-pos+-IND-1-label
MCFE,A (λ, n) is defined as Advsta-pos+-IND

MCFE,A (λ, n), except with the
limitations mentioned above, namely, A can query QLeftRight on at most one label, which cannot be queried
to QEnc. Then we use Lemma 2.5 to obtain the theorem.

First, consider the case where there is only one honest user. In this case, the security follows di-
rectly from the any-IND security of FE. Namely, in that case we build a PPT adversary B such that
Advsta-pos+-IND-1-label

MCFE,A (λ, n) ≤ Advany-IND
FE,B (λ). Given ppipfe, B first samples the keys Ki,j for all i, j ∈ [n],

thanks to which it can compute pp, {ski}i∈[n], and send (pp, {ski}i∈CS) to A. B can answer all queries to
QEnc(i,xji , `), by returning Enc(pp, ski,x

j
i , `), since it know ski for all i ∈ [n]. Call i? the only honest slot. B

can answer all queries to QEnc(i, ·, ·, ·) and QLeftRight(i, ·, ·, ·) for i 6= i?, using pp and {ski}i∈[n]. Whenever
A queries QLeftRight(i?,xj,0i? ,x

j,1
i? , `

?), B queries its own left right oracle on (0‖ . . . ‖0‖xj,0i? ‖0‖ . . . ‖0), (0‖
. . . ‖xj,1i? ‖0‖ . . . ‖0), to receive cti := Encipfe(ppipfe,mpkipfe, ski? , (0‖ . . . ‖x

j,β
i? ‖0‖ . . . ‖0)), where β ∈ {0, 1}, de-

pending on the experiment B is interacting with. Then, B computes ti?,`? as described in Fig. 5, and returns
Add(cti? , ti?,`?) to A, which, according to the property from Definition 3.2 (linear encryption), is identically
distributed to Encipfe(ppipfe,mpkipfe, (0‖ . . . ‖x

j,β
i? ‖0‖ . . . ‖0) + ti?,`? mod L). Whenever A queries QKeyD on

input y, B queries its own QKeyD on the same input, and forwards the output to A. For all y queried to
QKeyD, we have 〈(0‖ . . . ‖xj,0i? ‖0‖ . . . ‖0),y〉 = 〈(0‖ . . . ‖x

j,1
i? ‖0‖ . . . ‖0),y〉, by Condition (*). Moreover, for all

β ∈ {0, 1}, ‖(0‖ . . . ‖xj,βi? ‖0‖ . . . ‖0)‖∞ < 2X. Thus, the queries B sends to its left-right oracle are legitimate.
This concludes the case where there is only one honest user.

Second, we consider the case where there is more than one honest user. For this case, we proceed via a
hybrid argument, using the games described in Fig. 6. Note that G0 corresponds to sta-pos+-IND

MCFE
0 (λ, n,A),

and G4 corresponds to sta-pos+-INDMCFE
1 (λ, n,A), with the one label restriction. Thus, we have:

Advsta-pos+-IND-1-label
MCFE,A (λ, n) =

∣∣WinG0

A (λ, n)−WinG4

A (λ, n)
∣∣.

Game G1. In game G1, we change the way the vectors ti,` used by QEnc and QLeftRight are generated,
switching the values PRFKi1,it (`) to RF(t, `), for all t ∈ [2, h], where we write the set of honest users
HS := {i1, . . . , ih}, and RF denotes a random function, computed on the fly (see Fig. 6). The transition
from G0 to G1 is justified by the security of the PRF. Namely, in Lemma 3.4, we exhibit a PPT adversary
B0 such that: ∣∣WinG0

A (λ, n)−WinG1

A (λ, n)
∣∣ ≤ (h− 1) · AdvPRF,B0

(λ),

where h ≤ n denotes the number of honest users.
Game G2. In game G2, the vectors wi used to generate the challenge ciphertexts contain an additional

vector (0‖ . . . ‖0‖x1,1
i −x1,0

i ‖0‖ . . . ‖0). The transition from G1 to G2 is justified by the any-IND security
of FE. Namely, in Lemma 3.5, we exhibit a PPT adversary B1 such that:∣∣WinG1

A (λ, n)−WinG2

A (λ, n)
∣∣ ≤ Advany-IND

FE,B1
(λ).

Game G3. In game G3, the vectors wi used in the challenge ciphertexts are of the form: wi := (0‖ . . . ‖0‖
xj,1i ‖0‖ . . . ‖0). The transition from G2 to G3 is justified by the any-IND security of FE. Namely, in
Lemma 3.6, we exhibit a PPT adversary B2 such that:∣∣WinG2

A (λ, n)−WinG3

A (λ, n)
∣∣ ≤ Advany-IND

FE,B2
(λ).

Game G4. This game is sta-pos+-INDMCFE
1 (λ, n,A). The transition from G3 to G4 is symmetric to the tran-

sition from G0 to G1, justified by the security of the PRF. Namely, it can be proven as in Lemma 3.4
that there exists a PPT adversary B3 such that:∣∣WinG3

A (λ, n)−WinG4

A (λ, n)
∣∣ ≤ (h− 1) · AdvPRF,B3(λ),

where h ≤ n denotes the number of honest users. We defer to the proof of Lemma 3.4 for further details.
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Putting everything together, we obtain the theorem. ut

Lemma 3.4 (Transition from G0 to G1). There exists a PPT adversary B′ such that
∣∣WinG0

A (λ, n) −
WinG1

A (λ, n)
∣∣ ≤ (h− 1) · AdvPRF,B′(λ).

Proof. We can use the security of the PRF on all keys Ki,j where i, j ∈ HS, since these are hidden from the
adversary A. We show that using the security of the PRF on h− 1 carefully chosen such keys is sufficient to
transition from G0 to G1. Namely, if we write HS := {i1, . . . , ih}, where the indices i1 < i2 < · · · < ih are
ordered, we use the security of the PRF on keys of the form Ki1,j for all j ∈ HS \ {i1}.

We build the adversary B′ as follows. Given CS sent by A, it samples ppipfe ← Setup?ipfe(1
λ, 1n) and

mskipfe ← KeyGenipfe(ppipfe). For all i ∈ [n] \ {i1}, for all j > i, B′ samples Ki,j = Kj,i ← {0, 1}λ, thanks to
which it can compute ski := {Ki,j}j∈[n] for all i ∈ CS and send them to A. B′ can simulate the oracle QKeyD
using mskipfe, and answers the queries to QEnc(i,xji , `) for i ∈ CS, and QLeftRight(i,xj,0i ,xj,1i , `?) for i ∈ CS
using ski.

To answer QEnc(i1,x
j
i1
, `) or QLeftRight(i1,x

j,0
i1
,xj,1i1 , `

?), B′ computes

ti1,` :=
∑
j∈CS

(−1)j<i1PRFKi1,j
(`) +

h∑
t=2

RF(t, `).

To answer QEnc(it,x
j
it
, `) or QLeftRight(it,x

j,0
it
,xj,1it , `

?), for t ∈ [2, . . . , h], B′ computes

tit,` :=
∑

j∈[n]\{it,i1}

(−1)j<itPRFKit,j
(`)− RF(t, `).

Here, RF(t, `) is either a truly random function, or PRFKi1,it
(`), depending on the experiment B′ is

interacting with. In fact, we implicitly use a hybrid argument which goes over all t ∈ [2, . . . , h] here, in order to
switch the values PRFKi1,it

(`) to RF(t, `). Thus, we obtain
∣∣WinG0

A (λ, n)−WinG1

A (λ, n)
∣∣ ≤ (h−1)·AdvPRF,B′(λ).

ut

Lemma 3.5 (Transition from G1 to G2). There exists a PPT adversary B1 such that
∣∣WinG1

A (λ, n) −
WinG2

A (λ, n)
∣∣ ≤ Advany-IND

FE,B1
(λ).

Proof. The adversary B1 works as follows. Given CS sent by A, and ppipfe from its own experiment, B1
samples Ki,j = Kj,i ← {0, 1}λ for all i < j ∈ [n], thanks to which it can send the ski for all i ∈ CS, together
with ppipfe to A. Since B1 knows the ski for all i ∈ [n], it can answer the oracle QEnc as described in Fig. 6.

Whenever A queries QKeyD on input y, B1 queries its own oracle on the same input, and forwards the
answer to A.

Since we are considering pos+-IND security, we know A queries all honest slots on QLeftRight(·, ·, ·, `?) and
we denote by it? the last honest slot queried on QLeftRight(·, ·, ·, `?). We call ∆x := (x1,1

1 − x1,0
1 , . . . ,x1,1

n −
x1,0
n ), where for all i ∈ HS, (i,x1,0

i ,x1,1
i , `?) is the first query of the form QLeftRight(i, ·, ·, `?), and for all

i ∈ CS, we define x1,1
i − x1,0

i := 0 ∈ Zm (note that QLeftRight can be queried on a corrupted slot, but by
Condition (*), that means the query is of the form (i,x1,0

i ,x1,1
i , `?)).

Whenever A queries QLeftRight(i,xj,0i ,xj,1i , `?), B1 computes the vectors ti,`? for all i ∈ [n], using
ski and computing the random function RF on the fly, as described in Fig. 6. Then, if i 6= it? , it com-
putes wi := (0‖ . . . ‖0‖xj,0i ‖0‖ . . . ‖0) + ti,`? mod L, and returns Encipfe(ppipfe,mpkipfe,wi) to A. If i =
it? , then B1 queries its left-right oracle on input (0, ∆x) to get cti := Encipfe(ppipfe,mpkipfe,0) or cti :=
Encipfe(ppipfe,mpkipfe, ∆x), depending on the experiment B1 is interacting with. Note that at this point, ∆x

is entirely known to B1, since it? is the last honest slot to be queried to QLeftRight(·, ·, ·, `?). Then, B1 com-
putes wi := (0‖ . . . ‖0‖xj,0i ‖0‖ . . . ‖0) + ti,`? mod L and returns ct′i := Add(cti,wi), which, according to the
property from Definition 3.2 (linear encryption), is identically distributed to Encipfe(ppipfe,mpkipfe,wi mod L)
or Encipfe(ppipfe,mpkipfe,wi+∆x mod L), (again, depending on which experiment B1 is interacting with). For
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all y queried to QKeyD, we have 〈∆x,y〉 = 0, by Condition (*). Moreover, ‖∆x‖∞ < 2X. Thus, the queries
B1 sends to its left-right oracle are legitimate. Finally, B1 returns ct′i to A.

To conclude, we show that when B1 is interacting with any-INDFE
0 (λ, 1,A), then it simulates the game

G1, whereas it simulates the game G2 when it is interacting with any-INDFE
1 (λ, 1,A). It is clear for the case

any-INDFE
0 (λ, 1,A). For the case any-INDFE

1 (λ, 1,A), we consider the vectors {ut}t∈[h], where we write
HS := {i1, . . . , ih} and we denote by u1 := −

∑h
t=2 RF(t, `

?) and ut := RF(t, `?), for all t ∈ [2, . . . , n]. These
are shares of a perfect h out of h secret sharing of 0, that is, they are uniformly random conditioned on∑
t∈[h] ut = 0. Thus, {ut}t∈[t]\{t?}∪{ut?+∆x} is a set of shares for a secret sharing of the vector ∆x. Thus,

the following distributions are identical:

{ut}t∈[h]\{t?} ∪ {ut? +∆x}

and
{ut + (0‖ . . . ‖x1,1

it
− x1,0

it
‖0‖ . . . ‖0)}

t∈[h],

where for all t ∈ [h], ut ← ZmnL such that
∑
t∈[h] ut = 0. The uppermost distribution corresponds

to the simulation by B1 when it is interacting with any-INDFE
1 (λ, 1,A), while the lowermost distribution

corresponds to the game G1.ρ. This concludes the proof. ut

Lemma 3.6 (Transition from G2 to G3). There exists a PPT adversary B2 such that
∣∣WinG2

A (λ, n) −
WinG3

A (λ, n)
∣∣ ≤ Advany-IND

FE,B (λ).

Proof. We build an adversary B2 against the any-IND security of FE as follows.
Given CS sent by A, and ppipfe from its own experiment, B2 samples Ki,j = Kj,i ← {0, 1}λ for all

i < j ∈ [n], thanks to which it can send the ski for all i ∈ CS, together with ppipfe to A, and answer the
oracle queries to QEnc as described in Fig. 6.

Then, whenever A queries QKeyD on input y, B2 queries its own oracle on the same input, and forwards
the answer to A. Whenever A queries QLeftRight(i,xj,0i ,xj,1i , `?), B2 computes ti,`? using ski and computing
the random function RF on the fly, as described in Fig. 6. Then, B2 queries its left-right oracle on input
(0‖ . . . ‖0‖xj,0i − x1,0

i ‖0‖ . . . ‖0), (0‖ . . . ‖0‖x
j,1
i − x1,1

i ‖0‖ . . . ‖0) to get

cti := Encipfe(ppipfe,mpkipfe(0‖ . . . ‖0‖x
j,β
i − x1,β

i ‖0‖ . . . ‖0)),

where β ∈ {0, 1}, depending on the experiment B2 is interacting with. Finally, B2 computes vi := (0‖ . . . ‖0‖
x1,1
i ‖0‖ . . . ‖0) + ti,`? mod L, and returns ct′i := Add(cti,vi) to A, which, according to the property from

Definition 3.2, is identically distributed to Encipfe(ppipfe,mpkipfe, (0‖ . . . ‖0‖x
j,β
i − x1,β

i + x1,1
i ‖0‖ . . . ‖0) +

ti,`? mod L). For all y queried to QKeyD, Condition (*) implies that 〈(0‖ . . . ‖0‖xj,0i − x1,0
i ‖0‖ . . . ‖0),y〉 =

〈(0‖ . . . ‖0‖xj,1i −x1,1
i ‖0‖ . . . ‖0),y〉 for all queries (i,x

j,0
i ,xj,1i , `?) to QLeftRight. Moreover, for all β ∈ {0, 1},

we have ‖(0‖ . . . ‖0‖xj,βi − x1,β
i ‖0‖ . . . ‖0)‖∞ < 2X. Thus, the queries B2 sends to its left-right oracle are

legitimate. ut

3.3 Adaptive Security

Now we proceed to prove the adt-pos+-IND-security of the scheme, that is, security with adaptive corruption.
As before, using the generic transformation in Section 4, we can remove the pos+ restriction, and obtain adt-
any-IND security.

Theorem 3.7 (adt-pos+-IND-security). If the FE scheme FE = (Setupipfe,KeyGenipfe,KeyDeripfe,Encipfe,

Decipfe) is an any-IND-secure FE scheme for the inner product functionality defined as F ip
ρipfe

, ρipfe = (Z, 1,m,
2X,Y ), and PRF is secure, then MCFE from Fig. 5 is adt-pos+-IND-secure for the functionality defined as
F ip
ρ , ρ = (Z, n,m,X, Y ). Namely, for any PPT adversary A, there exist PPT adversaries B and B′ such that:

Advadt-pos+-IND
MCFE,A (λ, n) ≤ 2(n+ 1)n(n− 1)2qEnc · AdvPRF,B(λ) + 2(n+ 1)qEnc · Advany-IND

FE,B′ (λ) ,

where qEnc denotes the number of distinct labels queried to QLeftRight.
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G?0, G?1, G?2 , G?3 , G?4 :

κ? ← {0, . . . , n}, β ← {0, 1}, for all t ∈ [2, . . . , κ?], ut ← ZmnL
({ski}i∈[n],msk)← KeyGen(pp)

α← AQEnc(·,·,·,·),QKeyD(·),QCor(·)(pp)
Output α if Condition (*) is satisfied AND the guess κ? is correct; 0 otherwise.

QEnc(i,xji , `):
Return Enc(pp, ski,x

j
i , `)

QKeyD(y):
Return sky ← KeyDer(pp,msk,y)

QCor(i):
Return ski

QLeftRight(i,xj,0i ,xj,1i , `?):
Parse ski := {Ki,j}j∈[n], vi,` :=

∑
j 6=i(−1)

j<iPRFKi,j (`) ∈ ZmnL , ti,` := vi,`.

We write {i1, . . . , iκ} the set of explicitly honest slots, in the order
they are revealed (that is, i1 is the first revealed, i2 is the second, and so forth).
If κ? ≥ 2 then do the following.
• If i = i1, then ti,` := vi,` +

∑κ?

t=2 ut.
• If i = it, for t ∈ [2, . . . , κ?], then ti,` := vi,` − ut.
• If i = it, for t > κ?, that means κ > κ?, the guess was incorrect.
Ends the game and output 0.

wi := (0‖ . . . ‖0‖xj,0i ‖0‖ · · · ‖0) + ti,` mod L

If κ? ≥ 2: wi := (0‖ . . . ‖0‖xj,0i + x1,1
i − x1,0

i ‖0‖ · · · ‖0) + ti,` mod L

wi := (0‖ . . . ‖0‖xj,1i ‖0‖ . . . ‖0) + ti,` mod L

cti ← Encipfe(ppipfe,wi)
Return cti

Fig. 7. Games for the proof of Theorem 3.7. We say the guess κ? is correct if it equals the size of Q, the set of
explicitly honest slots.
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Proof. WLOG, we can assume that adversary A only queries QLeftRight on one label `?, that isn’t queried
to QEnc. Namely, we show that there exist PPT adversaries B and B′ such that:

Advadt-pos+-IND-1-label
MCFE,A (λ, n) ≤ 2(n+ 1)n(n− 1)2 · AdvPRF,B(λ) + 2(n+ 1) · Advany-IND

FE,B′ (λ) .

The theorem then follows from Lemma 2.5. We proceed via a hybrid argument, using the games described
in Fig. 7. In this proof, we use the fact that any slot i that is queried on QLeftRight(i,x1,0

i ,x1,1
i , `?) with

x1,0
i 6= x1,1

i cannot be corrupted (otherwise Condition (*) from Definition 2.4 would be violated). We call
such a slot explicitly honest (note that a slot can be honest without being explicitly honest, if it is only
queried on QLeftRight(i,xj,0i ,xj,1i , `?) with xj,0i = xj,1i for instance). That is, a slot i ∈ [n] is explicitly honest
if the first query on this slot, QLeftRight(i,x1,0

i ,x1,1
i , `?), is such that x1,0

i 6= x1,1
i . In the adaptive setting,

the challenger does not know in advance which slot is going to be honest; and simply guessing the set of such
slots would incur an exponential security. Instead, we use a more sophisticated proof strategy that relies on
a hybrid argument on the number of explicitly honest slots (this number needs to be known in advance by
the challenger, which can simply guess it, incurring only a polynomial security loss).

Game G?0: is as xx-yy-IND-1-label0, except the size of Q, which denotes the set of explicitly honest slots, is
initially guessed by the experiment, by choosing a uniformly random κ? ← {0, . . . , n}. The game behaves
exactly as xx-yy-IND-1-label0, except it ignores the A’s output α, and outputs 0 instead, in case the
guess κ? was incorrect. Since this guess is correct with probability 1

n+1 , we have

Win
G?0
A (λ, n) =

1

n+ 1
·Win

xx-yy-IND-1-label0
A (λ, n) .

Game G?1: in this game, we change the distribution of the ciphertexts output by QLeftRight, for the case
κ? ≥ 2. For these, the vector (0‖ . . . ‖0‖xj,0i ‖0‖ . . . ‖0) to be encrypted is added a share of a perfect κ?
out of κ? secret sharing of 0. This game is similar to the game G1 from Fig. 6 for the proof of Theorem 3.3.
We justify this transition using the security of the PRF, as in Lemma 3.5, with the crucial difference that
corruptions are adaptive here. Thus, the set of explicitly honest slots Q is not known in advance by the
reduction. As explained above, guessing the entire set would incur an exponential security loss. Instead
we introduce gradually the shares, starting with a 2 out of 2 perfect secret sharing, then 3 out of 3, and
so forth, via a hybrid argument, until we reach the κ? out of κ? secret sharing among all queried slots.
To go from one hybrid to another, we only require to guess a pair of users (i, j) (as opposed to guessing
the entire set of honest users) to use the security of the PRF on the key Ki,j . Namely, in Lemma 3.8, we
show that there exists a PPT adversary B0 such that:∣∣Win

G?0
A (λ, n)−Win

G?1
A (λ, n)

∣∣ ≤ n(n− 1)2 · AdvPRF,B0
(λ)

Game G?2: in this game, the vectors wi used to generate the ciphertexts output by QLeftRight contain an
additional vector (0‖ . . . ‖0‖x1,1

i − x1,0
i ‖0‖ . . . ‖0). The transition from G?1 to G?2 is justified by the any-

IND security of FE, similarly than the transition from G1 to G2 in Fig. 6 for the proof of Theorem 3.3.
Namely, in Lemma 3.9, we exhibit a PPT adversary B1 such that:∣∣Win

G?1
A (λ, n)−Win

G?2
A (λ, n)

∣∣ ≤ Advany-IND
FE,B1

(λ).

Game G?3: in this game, the vectors wi used in the ciphertexts output by QLeftRight are of the form:
wi := (0‖ . . . ‖0‖xj,1i ‖0‖ . . . ‖0) + ti,`? mod L. The transition from G?ρ−1.2 to G?ρ−1.3 is justified by the
any-IND security of FE, similarly than the transition from G2 to G3 in Fig. 6 for the proof of Theorem 3.3.
Namely, in Lemma 3.10, we build a PPT adversary B2 such that:∣∣Win

G?2
A (λ, n)−Win

G?3
A (λ, n)

∣∣ ≤ Advany-IND
FE,B2

(λ).
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Game G?4. The transition from G?3 to G?4 is symmetric to the transition from G?0 to G?1, justified by the
security of the PRF. Namely, it can be proven as in Lemma 3.8 that there exists a PPT adversary B3
such that: ∣∣Win

G?3
A (λ, n)−Win

G?4
A (λ, n)

∣∣ ≤ n(n− 1)2 · AdvPRF,B3
(λ).

We defer to the proof of Lemma 3.8 for further details. Since G?4 is exactly as the game xx-yy-INDMCFE
0

except it guesses κ? ← {0, . . . , n}, we have

Win
G?4
A (λ, n) =

1

n+ 1
·Win

xx-yy-IND-1-label1
A (λ, n).

Putting everything together, we obtain the theorem. ut

Lemma 3.8 (Transition from G?0 to G?1). There exists a PPT adversary B0 such that
∣∣Win

G?0
A (λ, n) −

Win
G?1
A (λ, n)

∣∣ ≤ n(n− 1)2 · AdvPRF,B0(λ).

G?0.µ, for µ ∈ {0, . . . , n}:
κ? ← {0, . . . , n}, for all t ∈ [2, . . . , κ?], ut ← ZmnL
({ski}i∈[n],msk)← KeyGen(pp)

α← AQEnc(·,·,·,·),QKeyD(·),QCor(·)(pp)
Output α if Condition (*) is satisfied AND the guess κ? is correct; output 0 otherwise.

QEnc(i,xji , `):
Return Enc(pp, ski,x

j
i , `)

QKeyD(y):
Return sky ← KeyDer(pp,msk,y)

QCor(i):
Return ski

QLeftRight(i,xj,0i ,xj,1i , `?):
Parse ski := {Ki,j}j∈[n], vi,`? :=

∑
j 6=i(−1)

j<iPRFKi,j (`
?) ∈ ZmnL . We denote by {i1, . . . , iκ} the set of explicitly

honest slots in the order the are revealed, and we write θ := min(κ?, µ).
If θ ≥ 2, then do the following:

– If i = i1, then ti,`? := vi,`? +
∑θ
t=2 ut.

– If i = it, for t ∈ [2, . . . , θ], then ti,`? := vi,`? − ut.
– If i = it, for t ∈ [θ + 1, . . . , κ?], then ti,`? := vi,`? .
– If i = it, for t > κ?, that means κ > κ?, the guess was incorrect. Ends the game and output 0.

If θ < 2, then ti,`? := vi,`? .
wi := (0‖ . . . ‖0‖xj,0i ‖0‖ · · · ‖0) + ti,`? mod L
cti ← Encipfe(ppipfe,wi)
Return cti

Fig. 8. Games for the proof of Lemma 3.8. We say the guess κ? is correct if it equals the number of explicitly honest
slots.

Proof. The proof uses a sequence of hybrid games defined in Fig. 8. Note that G?0.0 is the same as G?0, and
G?0.n is the same as G?1.
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We show that for all µ ∈ [n] there exists a PPT adversary B0.µ−1 such that:

|Pr[G?0.µ−1 = 1]− Pr[G?0.µ = 1] ≤ n(n− 1) · AdvPRF,B0.µ−1(λ).

First, we show we show that there exists a PPT adversary B′0 such that:

|Pr[G?0 = 1]− Pr[G?0.2 = 1] ≤ n(n− 1) · AdvPRF,B′0(λ).

Note that we go directly from G?0 to G?0.2 since the games G?0 and G?0.1 are the same. If κ? < 2, the two
games G?0 and G?0.2 are the same. We consider the case where κ? ≥ 2.

The simulation guesses the first and second explicitly honest slots i? and j?, by sampling random i?, j? ←
[n], with i? < j?. This guessing incurs a security loss of n(n−1)2 . If the guess is incorrect, then, the simulation
ends and returns 0. If the guess is correct, then, we can use the security of the PRF on the key Ki?,j? to
switch PRFKi?,j? (`

?) to a uniformly random value RF(`?) over ZmnL . Then, we argue that RF(`?) is identically
distributed to RF(`?) +u2, where u2 ← ZmnL . Note that the former distribution corresponds to G?0, whereas
the latter distribution corresponds to G?0.2. Then, we switch RF(`?) back to PRFKi?,j? (`

?), using the security
of the PRF on Ki?,j? once again.

We can argue similarly that for all µ ∈ [3, . . . , n], there exists a PPT adversary B′0.µ−1 such that:

|Pr[G?0.µ−1 = 1]− Pr[G?0.µ = 1] ≤ n(n− 1) · AdvPRF,B0.µ−1(λ).

This is proved in the same way as above, except the simulation guesses the first and θ’th explicitly honest
slots, where θ := min(κ?, µ), and uses the security of the PRF to add the vector uθ ← ZmnL .

Summing up for all µ ∈ [2, . . . , n], we obtain a PPT adversary B0 such that: |Pr[G?0 = 1]− Pr[G?1 = 1] ≤
n(n− 1)2 · AdvPRF,B0

(λ).
ut

Lemma 3.9 (Transition from G?1 to G?2). There exists a PPT adversary B1 such that Win
G?1
A (λ, n) −

Win
G?2
A (λ, n) ≤ Advany-IND

FE,B1
(λ).

Proof. We build a PPT adversary B1 such that:

Pr [G?1(λ, n,A) = 1]− Pr [G?2(λ, n,A) = 1] ≤ Advany-IND
FE,B1

(λ).

Given ppipfe from its own experiment, B1 samples κ? ← {0, . . . , n} and Ki,j = Kj,i ← {0, 1}λ for all
i < j ∈ [n]. If κ? ≤ 2, then B1 samples ({ski}i∈[n],msk) ← KeyGen(pp), and simulate the game G?1(λ, n,A)
as described in Fig. 7 (note that G?1 is the same as G?2 when κ? < 2).

If κ? ≥ 2, B1 does the following. It answers the queries QCor and QEnc using {ski}i∈[n], as described in
Fig. 7. Whenever A queries QKeyD on input y, B1 queries its own oracle on the same input, and forwards
the answer to A.

Whenever A queries QLeftRight(i,xj,0i ,xj,1i , `?), B1 computes the vectors ti,`? , using ski and computing
the vectors u1, . . . ,uκ? on the fly, as described in Fig. 7. Then, if the slot i queried is not the κ?’th explicitly
honest slot, then B1 computes wi := (0‖ . . . ‖0‖xj,0i ‖0‖ . . . ‖0) + ti,`? mod L, and returns Encipfe(ppipfe,wi)

to A. If i is the κ?’th explicitly honest slot, then B1 computes ∆x := (x1,1
1 − x1,0

1 , . . . ,x1,1
n − x1,0

n ), where
for all explicitly honest slots i, (i,x1,0

i ,x1,1
i , `?) is the first query to QLeftRight(i, ·, ·, `?), and for the others

slots i, x1,1
i − x1,0

i = 0 ∈ Zm. Note that if the guess κ? is correct, at this point, all the explicitly honest
slots have been revealed. Then, it queries its left-right oracle on input (0, ∆x) to get cti := Encipfe(ppipfe,0)

or cti := Encipfe(ppipfe, ∆x), depending on the experiment B1 is interacting with. Then, B1 computes wi :=

(0‖ . . . ‖0‖xj,0i ‖0‖ . . . ‖0)+ti,`? mod L and returns ct′i := Add(cti,wi), which, according to the property from
Definition 3.2, is identically distributed to Encipfe(ppipfe,wi mod L) or Encipfe(ppipfe,wi+∆x mod L), (again,
depending on which experiment B1 is interacting with). Finally, B1 returns ct′i to A. If B1 later discovers that
the guess κ? was incorrect (if there are newly revealed explicitly honest slots), then it ends the simulation
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and returns 0 to its own experiment. Since we consider pos+-IND security, all honest slots are queried to
QLeftRight(·, ·, ·, `?). Thus, Condition (*) implies that for all y queried to QKeyD, we have 〈∆x,y〉 = 0.
Moreover, ‖∆x‖∞ < 2X. Thus, the queries B1 sends to its left-right oracle are legitimate.

To conclude, we show that when B1 is interacting with any-INDFE
0 (λ, 1,A), then it simulates the

game G?1, whereas it simulates the game G?2 when it is interacting with any-INDFE
1 (λ, 1,A). The case

any-INDFE
0 (λ, 1,A) is clear. To prove the case any-INDFE

1 (λ, 1,A), we consider the vectors {ut}t∈[κ?],
where ut ← ZmnL for all t ∈ [2, . . . , κ?], and u1 := −

∑κ?

t=2 ut. These are shares of a perfect κ? out of
κ? secret sharing of 0, that is, they are uniformly random conditioned on

∑
t∈[κ?] ut = 0. Thus, the set

{ut}t∈[κ?−1] ∪ {uκ? + ∆x} is a set of shares for a secret sharing of the vector ∆x. Thus, the following
distributions are identical:

{ut}t∈[κ?−1] ∪ {uκ? +∆x}

and
{ut + (0‖ . . . ‖x1,1

it
− x1,0

it
‖0‖ . . . ‖0)}

t∈[κ?],

where for all t ∈ [κ?], ut ← ZmnL such that
∑
t∈[κ?] ut = 0. The uppermost distribution corresponds to

the simulation by B1 when it is interacting with pos+-INDFE
1 (λ, 1,A), while the lowermost distribution

corresponds to the game G?2.
Summarizing, we have: Win

G?1
A (λ, n)−Win

G?2
A (λ, n) ≤ Advany-IND

FE,B1
(λ). ut

Lemma 3.10 (Transition from G?2 to G?3). There exists a PPT adversary B2 such that Win
G?2
A (λ, n) −

Win
G?3
A (λ, n) ≤ Advany-IND

FE,B2
(λ).

Proof. We build an adversary B2 against the any-IND security of FE as follows. Given ppipfe from its own
experiment, B2 forwards ppipfe to A and samples Ki,j = Kj,i ← {0, 1}λ for all i < j ∈ [n], thanks to which it
can answer the queries to QCor and QEnc. It also samples κ? ← {0, . . . , n}.

Then, whenever A queries QKeyD on input y, B2 queries its own oracle on the same input, and forwards
the answer to A. Whenever A queries QLeftRight(i,xj,0i ,xj,1i , `?), B2 computes ti,`? as described in Fig. 7.
If κ? < 2, then B2 queries its left-right oracle on input (0‖ . . . ‖0‖xj,0i ‖0‖ . . . ‖0), (0‖ . . . ‖0‖x

j,1
i ‖0‖ . . . ‖0) to

get
cti := Encipfe(ppipfe, (0‖ . . . ‖0‖x

j,b
i ‖0‖ . . . ‖0)),

where b ∈ {0, 1}, depending on the experiment B2 is interacting with. If κ? ≥ 2, then B2 queries its left-right
oracle on input (0‖ . . . ‖0‖xj,0i − x1,0

i ‖0‖ . . . ‖0), (0‖ . . . ‖0‖x
j,1
i − x1,1

i ‖0‖ . . . ‖0) to get

cti := Encipfe(ppipfe, (0‖ . . . ‖0‖x
j,b
i − x1,b

i ‖0‖ . . . ‖0)),

where b ∈ {0, 1}, depending on the experiment B2 is interacting with. Then, B2 returns ct′i := Add(cti, ti,`?)
to A. Since we are considering pos+-IND security, all honest slots are queried on QLeftRight(·, ·, ·, `?), thus
for κ? = κ < 2, for all y queried to QKeyD, Condition (*) implies that 〈(0‖ . . . ‖0‖xj,0i ‖0‖ . . . ‖0),y〉 =
〈(0‖ . . . ‖0‖xj,1i ‖0‖ . . . ‖0),y〉 for all queries (xj,0i ,xj,1i ) to QLeftRight(i, ·, ·, `); for κ? = κ ≥ 2, it implies
〈(0‖ . . . ‖0‖xj,0i − x1,0

i ‖0‖ . . . ‖0),y〉 = 〈(0‖ . . . ‖0‖x
j,1
i − x1,1

i ‖0‖ . . . ‖0),y〉. Moreover, for all b ∈ {0, 1}, we
have ‖(0‖ . . . ‖0‖xj,bi ‖0‖ . . . ‖0)‖∞ < X and ‖(0‖ . . . ‖0‖xj,bi − x1,b

i ‖0‖ . . . ‖0)‖∞ < 2X. Thus, the queries
B2 sends to its left-right oracle are legitimate. When b = 0, B2 simulates G?2, whereas it simulates G?3 when
b = 1.

ut

4 From pos+-IND to any-IND Security

In this section, we give a compiler that generically transforms any adt-pos+-IND secure (D)MCFE into
an adt-any-IND secure (D)MCFE. Our construction builds upon the compiler from [ABKW19, Section
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4.1], which does not support labels. Our technical contribution is to handle multiple labels, many challenge
ciphertexts per label and input slots, and adaptive corruptions, without resorting to the random oracle model,
as opposed to [ABKW19, Section 4.2]. This is the first generic transformation to support such features, and
when combined with our MCFE from Section 3, it gives the first MCFE for inner products whose adt− any-
IND security is proven in the standard model. Our construction is given in Fig. 9. It is stated in terms of
DMCFE, but a similar transformation works for MCFE.

Setup′(1λ, 1n) :

Return pp← Setup(1λ, 1n)

KeyGen′(pp) :

{ski}i∈[n] ← KeyGen(pp)

For i, j ∈ [n] : ki,j ← {0, 1}λ

Return {sk′i = (ski, {ki,j , kj,i}j∈[n])}i∈[n]

Enc′(pp, sk′i, xi, `) :

Parse sk′i = (ski, {ki,j , kj,i}j∈[n])

cti ← Enc(pp, ski, xi)

For all j ∈ [n] : ki,j(`) := PRFki,j (`)

Ki(`) := ⊕j∈[n]ki,j(`)
ct′i ← EncSE(Ki(`), cti)

Return (ct′i, {kj,i(`)}j∈[n])

KeyDerShare′(pp, sk′i, f) :

Parse sk′i = (ski, {ki,j , kj,i}j∈[n])

Return sk′i,f ← KeyDerShare(ski, f)

KeyDerComb′(pp, {sk′i,f}i∈[n]) :

skf := KeyDerComb(pp, {sk′i,f}i∈[n])

Return skf

Dec′(pp, skf , ct
′′
1 , . . . , ct

′′
n) :

Parse {ct′′i = (ct′i, {kj,i(`)}j∈[n])}i∈[n]
For i ∈ [n] :

Ki(`) = ⊕j∈[n]ki,j(`)
cti ← DecSE(Ki(`), ct

′
i)

Return Dec(pp, skf , ct1, . . . , ctn).

Fig. 9. Compiler from an xx-pos+-IND DMCFE, DMCFE, into an xx-any-IND DMCFE, DMCFE′, using an IND-CPA
symmetric-key encryption scheme SE.

Theorem 4.1 (Security). Let the tuple DMCFE = (Setup,KeyGen,KeyDerShare,KeyDerComb,Enc,Dec) be
an adt-pos+-IND-secure DMCFE scheme for a family of functions F . Let SE = (EncSE,DecSE) be an IND-
CPA symmetric-key encryption scheme. Let PRF be a pseudorandom function. Then the DMCFE scheme
DMCFE′ = (Setup′,KeyGen′,KeyDerShare′,KeyDerComb′,Enc′,Dec′) described in Fig. 9 is adt-any-IND se-
cure. Namely, for any PPT adversary A, there exist PPT adversaries B, B′, and B′′ such that:

Advadt-any-IND
DMCFE′,A (λ, n) ≤ qEnc · Advadt-pos+-IND

DMCFE,B (λ, n) + qEncn
2 · AdvIND-CPA

SE,B′ (λ) + 2qEncn
2 · AdvPRF,B′′(λ),

where qEnc denotes the number of distinct labels queried to QLeftRight.

Proof. WLOG, we can consider the security where only one label is queried to QLeftRight, and that label is
not queried to QEnc. Namely, we show there exist PPT adversaries B, B′ and B′′ such that:

Advadt-any-IND-1-label
DMCFE′,A (λ, n) ≤ Advadt-pos+-IND

DMCFE,B (λ, n) + n2 · AdvIND-CPA
SE,B′ (λ) + 2n2 · AdvPRF,B′′(λ).

The theorem follows from Lemma 2.5 (from one to many labels). We call `? the unique label queried to
QLeftRight (if QLeftRight is not queried, the security follows trivially).

Intuitively, the proof uses the adt-pos+-IND security of DMCFE for the case where all honest slots are
queried to QLeftRight(·, ·, ·, `?), and the security of the PRF together with the IND-CPA security of SE for
the case where not all honest slots are queried to QLeftRight(·, ·, ·, `?).
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Formally, for all b ∈ {0, 1}, we define G?b as adt-yy-IND
DMCFE′

1 (λ, n,A), except the game guesses an honest
slot that is not going to be queried to QLeftRight(·, ·, ·, `?), by sampling uniformly at random i? ← {0, ..., n},
where i? = 0 means that all honest slots are queried to QLeftRight(·, ·, ·, `?). The output of G?b is the same
adt-yy-INDDMCFE′

b (λ, n,A), unless the guess is unsuccessful, in which case, G?b outputs 0. Clearly, we have
Pr[G?b(λ, n,A) = 1] = 1

n+1 · Pr[adt-yy-IND
DMCFE′

b (λ, n,A) = 1].
When i? = 0, we can rely on the adt-pos+-IND security of DMCFE. Namely, we have a PPT adversary B

such that: ∣∣Pr[G?0(λ, n,A) = 1|i? = 0]− Pr[G?1(λ, n,A) = 1|i? = 0]
∣∣ ≤ Advadt-pos+-IND

DMCFE,B (λ, n).

For all j ∈ [n], we prove that there exist PPT adversaries B′ and B′′ such that:∣∣Pr[G?0(λ, n,A) = 1|i? = j]− Pr[G?1(λ, n,A) = 1|i? = j]
∣∣ ≤ n · AdvIND-CPA

SE,B′ (λ, n) + 2n · AdvPRF,B′′(λ, n).

To prove the statement above, we use the fact that if there is a query QLeftRight(i,xj,0i ,xj,1i , `?) with
xj,0i 6= xj,1i , then the slot i ∈ [n] cannot be corrupted without violating the Condition (*) from the se-
curity definition given in Definition 2.2. We call such a slot explicitly honest, and such a query explic-
itly honest. We define hybrid games Hρ for all ρ ∈ {0, . . . , n}, defined as G?0, except that every explicitly
honest query QLeftRight(i,xj,0i ,xj,1i , `?) is answered by Enc′(pp, sk′i,x

j,1
i , `?) if i ≤ ρ, and is answered by

Enc′(pp, sk′i,x
j,0
i , `?) if i > ρ. The game H0 is the same as G?0, and Hn is the same as G?1. We prove that for

all j ∈ [n], for all ρ ∈ [n], there exist PPT adversaries Bρ and B′ρ such that:∣∣Pr[Hρ−1(λ, n,A) = 1|i? = j]− Pr[Hρ(λ, n,A) = 1|i? = j]
∣∣ ≤ AdvIND-CPA

SE,Bρ (λ, n) + 2 · AdvPRF,B′ρ(λ, n).

The transition from H?ρ−1 and H?ρ−1 is justified as follows. If the slot ρ is never queried on an explicitly
honest query, then the two games are the same by definition. Otherwise, we use the security of the PRF to
switch the key kρ,i?(`

?) to uniformly random (note that we can do so since the slots ρ and i? are known
beforehand by the reduction). If the guess i? is correct (i.e i? is honest but never queried to QLeftRight),
then the key kρ,i?(`

?) := PRFkρ,i? (`
?) only appears in the output QLeftRight(ρ, ·, ·, `?). So, for these challenge

ciphertexts, we have a uniformly random key Kρ(`
?), which allows us to use the IND-CPA security of SE,

and changes encryption of xj,0ρ as in G?ρ−1 into encryption of xj,1ρ , as in G?ρ. Then we switch back the key
kρ,i? from uniformly random to pseudo-random, using the security of the PRF once again. Summarizing, we
have:

Pr[H?ρ−1(λ, n,A) = 1|i? = j]− Pr[H?ρ(λ, n,A) = 1|i? = j] = AdvIND-CPA
SE,Bρ (λ, n) + 2 · AdvPRF,B′ρ(λ, n).

Summing up for all ρ ∈ [n], we obtain the following for all j ∈ [n]:∣∣Pr[G?0(λ, n,A) = 1|i? = j]− Pr[G?1(λ, n,A) = 1|i? = j]
∣∣ ≤ n · AdvIND-CPA

SE,B′ (λ, n) + 2n · AdvPRF,B′′(λ, n).

Thus, we have:∣∣Pr[G?0(λ, n,A) = 1]− Pr[G?1(λ, n,A) = 1]
∣∣

≤ 1

n+ 1
Advadt-pos+-IND

DMCFE,B (λ, n) +
n2

n+ 1
· AdvIND-CPA

SE,B′ (λ, n) +
2n2

n+ 1
· AdvPRF,B′′(λ, n) .

Therefore, we obtain:∣∣Pr[adt-yy-INDDMCFE′

0 (λ, n,A) = 1]− Pr[adt-yy-INDDMCFE′

1 (λ, n,A) = 1]
∣∣

≤ Advadt-pos+-IND
DMCFE,B (λ, n) + n2 · AdvIND-CPA

SE,B′ (λ, n) + 2n2 · AdvPRF,B′′(λ, n) .

ut
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5 Decentralized Multi-Client Function Encryption

In this section, we modify the generic construction of Section 3 to make it decentralized. Since our con-
struction makes generic use of any single-input inner-product FE, we cannot directly use directly the trans-
formation from [ABKW19], because the master secret key msk may be arbitrary, and not necessarily the
concatenation of the parties’ secret keys ski (for i ∈ [n]), as required by [ABKW19]. Moreover, the functional
decryption keys skf may not be computed just from ski. We present a different generic transformation that
decentralizes any MCFE assuming the underlying single-input FE has an additional structural property,
that is fulfilled by most known constructions of single-input inner FE for inner products. This property is
called special key derivation (see below), and is very similar to special key derivation for MCFE defined
in [ABKW19].

We obtain a stronger security notion than [ABKW19], in the sense that the adversary is able to corrupt
functional decryption key share by share, and can try to infer information from incomplete functional de-
cryption keys (see Remark 2.8 for more details on the difference between the security notions). This is the
same security as in the original DMCFE from [CDG+18], except we achieve the decentralization with no
extra assumption, simply by performing an additive secret sharing of the master secret key of the underlying
single-input FE.

Definition 5.1 (FE with Special Key Derivation). Let FE = (Setup,KeyGen,KeyDer,Enc,Dec) be a
public-key FE scheme for the inner product functionality F ip

ρ , where ρ = (Z, 1, n ·m,X, Y ) where n,m,X, Y
are positive integers. FE is said to have special key derivation modulo M if:

– The algorithm KeyGen(pp) generates a master secret key of the form msk := U ∈ Zκ×mnM , for some
constant κ (which can depend on pp).

– sky ← KeyDer(pp,msk,y) outputs sky = (y,U · y ∈ ZκM ).

For our security proof, we require M to be a prime number.

Instantiations. All the stateless IPFE constructions in [ALS16] satisfy the special key derivation property.
More precisely, the DDH construction has special key derivation modulo p, the prime order of the underlying
cyclic group, and κ = 2 (using notations from [ALS16], the matrix U is defined by U1,i = si and U2,i = ti).
The Paillier and LWE constructions have special key derivation modulo any large enough prime number M
so that U ·y is the same modulo M and over the integers with overwhelming probability over the generation
of msk. For Paillier, κ = 1 and U1,i = si, while for LWE, κ = m and U = Z (using notations from [ALS16]).

Construction. The construction is provided in Fig. 10.

Correctness. The only remaining part of correctness to be proven for the scheme in Fig. 10 is to show that
the key computed by the algorithms KeyDerShare and KeyDerComb corresponds to the one that would have
been computed by KeyDer. This follows from the following fact:

sky =

n∑
i=1

ski,y =

n∑
i=1

Ui · y = U · y .

Theorem 5.2 (adt-pos+-IND-security). If the FE scheme FE = (Setupipfe,KeyGenipfe,KeyDeripfe,Encipfe,

Decipfe) is an any-IND-secure FE scheme for the inner product functionality defined as F ip
ρipfe

, ρipfe = (Z, 1,m,
2X,Y ), if FE has the special key derivation property modulo the prime number M , and if PRF is secure,
then DMCFE from Fig. 10 is adt-pos+-IND-secure for the functionality defined as F ip

ρ , ρ = (Z, n,m,X, Y ).
Namely, for any PPT adversary A, there exist PPT adversaries B and B′ such that:

Advadt-pos+-IND
MCFE,A (λ, n) ≤ 2n2(n− 1)qEnc · AdvPRF,B(λ) + 2qEnc · Advany-IND

FE,B′ (λ),

where qEnc denotes the number of distinct labels queried to QLeftRight.
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KeyGen(pp) :

(mskipfe,mpkipfe)← KeyGenipfe(ppipfe);msk := mskipfe := U ∈ Zκ×mnM

For i ∈ [n], j > i : Ki,j = Kj,i ← {0, 1}λ

For i ∈ [n− 1] : Ui ← Zκ×mnM

Un := U−
n−1∑
i=1

Ui ∈ Zκ×mnM

Return {ski = (mpkipfe,Ui, {Ki,j}j∈[n])}i∈[n] and msk

KeyDerShare(pp, ski,y ∈ Rmn) :

Return ski,y := Ui · y ∈ ZκM

KeyDerComb(pp, sk1,y, . . . , skmn,y) :

Return sky :=

n∑
i=1

ski,y ∈ ZκM

Fig. 10. Algorithms KeyGen, KeyDerShare and KeyDerComb making the inner-product MCFE from Fig. 5 a DMCFE,
assuming that FE := (Setupipfe,Encipfe,KeyDeripfe,Decipfe) has the special key derivation property modulo a prime
number M .

:::
G0, ::

G3:

({ski}i∈[n],msk)← KeyGen(pp)

α← AQCor(·)QEnc(·,·,·,·),QKeyD(·)(pp)
Output: α if Condition (*) is satisfied,

or a 0 otherwise.

QCor(i):
Return ski = (Ui, {Ki,j}j∈[n])

QKeyD(y):
For any i ∈ [n], ski,y := Ui · y ∈ ZκM
Return {ski,y}i∈[n]

:::
G0, :::

G1,:::::::
G2, G3 :

QEnc(i,xj,0i ,xj,1i , `):
xji := xj,0i

xji := xj,1i

Return Enc(pp, ski,x
j
i , `)

:::
G1, ::

G2:

({ski}i∈[n],msk)← KeyGen(pp)
except the {Ui}i∈[n] are not generated

α← AQCor(·),QEnc(·,·,·,·),QKeyD(·)(pp)
∀i ∈ [n], Si := ∅
Output: α if Condition (*) is satisfied,

or 0 otherwise.

QCor(i):
Pick Ui uniformly under the constraint
∀y ∈ Si, ski,y = Ui · y

Return ski := (Ui, {Ki,j}j∈[n])

QKeyD(y, i):
Add y to Si. Then, do the following.

– If i ∈ CS, return ski,y := Ui · y.
– If y ∈ Sj for all j ∈ [n]\{i}, then compute

sky := U · y = KeyDeripfe(ppipfe,mskipfe,y)
and return ski,y = sky −

∑
j∈[n]\{i} skj,y.

– If y ∈ Vect(Si), with {µy′ ∈ ZM}y′∈Si
s.t. y =

∑
y′∈Si µy′ · y′, return ski,y :=∑

y′∈Si µy′ · ski,y′ .
– If y /∈ Vect(Si), return ski,y ← Zκ×nmM .

Fig. 11. Games for the proof of Theorem 5.2. Condition (*) is given in Definition 2.1.
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Proof. Let A be a PPT adversary against the security of MCFE. We proceed via a hybrid argument, using
the games described in Fig. 11. Note that G0 corresponds to the game adt-pos+-INDDMCFE

0 (λ, n,A), and G3

corresponds to the game adt-pos+-INDDMCFE
1 (λ, n,A). Thus, we have: Advadt-pos+-IND

DMCFE,A (λ, n) =
∣∣WinG0

A (λ, n)−
WinG3

A (λ, n)
∣∣.

Game G1. In game G1, we change the way the oracles QCor and QKeyD answer: instead of using each
individual share Ui, they generate their answers on-the-fly to be consistent with previous answers and
KeyDeripfe(ppipfe,mskipfe,y) in the case of QKeyD. The transition from G0 to G1 is justified by linear
algebra: the two games are identically distributed. This comes from the fact that in both games, the
partial functional decryption keys ski,y are uniformly random over Zκ×nmM subject to:
– ∀i ∈ [n],y,y′ ∈ Znm, α ∈ ZM : ski,y + α · ski,y′ = ski,y+α·y′ , and
– ∀y ∈ Znm,

∑
i∈[n] ski,y = Uy.

These keys can be efficiently sampled on-the-fly subject to these constraints, as described in Fig. 11.
Game G2. In game G2, the challenge ciphertexts encrypts xj,1i instead of xj,0i . The transition from G1 to

G2 is justified by the adt-pos+-IND security of MCFE proven in Theorem 3.7.
Game G3. In game G3, we change back the way the oracles QCor and QKeyD answer to match

adt-pos+-INDDMCFE
1 (λ, n,A). The transition from G2 to G3 is similar to the one from G1 to G0: G3 and

G2 are perfectly indistinguishable.

Putting everything together, we obtain the theorem. ut
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