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Abstract. Key encapsulation mechanism (KEM) variants of the Fujisaki-
Okamoto (FO) transformation (CRYPTO 1999 and Journal of Cryptol-
ogy 2013) that turn a weakly-secure public-key encryption (PKE) into
an IND-CCA-secure KEM, were proposed by Hofheinz, Hövelmanns and
Kiltz (TCC 2017) and widely used among the KEM submissions to the
NIST Post-Quantum Cryptography Standardization Project. The secu-
rity reductions for these variants in the quantum random oracle model
(QROM) were given by Hofheinz, Hövelmanns and Kiltz (TCC 2017)
and Jiang et al. (Crypto 2018). However, under standard CPA security
assumptions, i.e., OW-CPA and IND-CPA, all these security reductions
are far from desirable due to the quadratic security loss.
In this paper, for KEM variants of the FO transformation, we show
that a typical measurement-based reduction in the QROM from break-
ing standard OW-CPA (or IND-CPA) security of the underlying PKE
to breaking the IND-CCA security of the resulting KEM, will inevitably
incur a quadratic loss of the security, where “measurement-based” means
the reduction measures a hash query from the adversary and uses the
measurement outcome to break the underlying security of PKE. In par-
ticular, all currently known security reductions in (TCC 2017 and Crypto
2018) are of this type, and our results suggest an explanation for the lack
of progress in improving the reduction tightness in terms of the degree
of security loss. We emphasize that our results do not expose any post-
quantum security weakness of KEM variants of FO transformation.

Keywords: non-tightness · quantum random oracle model · key encap-
sulation mechanism

1 Introduction

Indistinguishability against chosen-ciphertext attacks (IND-CCA) [1] has been
considered as a standard security notion for a key encapsulation mechanism



(KEM) [2]. For designing efficient cryptographic protocols, an idealized model
called Random oracle model (ROM) [3] is usually used, where a hash function is
idealized to be a publicly accessible random oracle (RO). Generic constructions
of an IND-CCA-secure KEM in the ROM were well studied by Dent [4] and
Hofheinz, Hövelmanns and Kiltz [5].

Essentially, the generic constructions in [5] are KEM variants of the Fujisaki-

Okamoto (FO) transformation [6, 7], including FO⊥, FO⊥m, FO�⊥, FO�⊥m, QFO⊥m
and QFO�⊥m, and KEM variants of the REACT/GEM transformation [8, 9], in-

cluding U�⊥, U⊥, U�⊥m, U⊥m, QU�⊥m and QU⊥m, where FO denotes the class of trans-
formations that turn a public-key encryption (PKE) with standard security (one-
wayness against chosen-plaintext attacks (OW-CPA) or indistinguishability a-
gainst chosen-plaintext attacks (IND-CPA)) into an IND-CCA KEM, U denotes
the class of transformations that turn a PKE with non-standard security (e.g.,
OW-PCA, one-way against plaintext checking attack [8, 9]) or a deterministic P-
KE (DPKE, where the encryption algorithm is deterministic) into an IND-CCA-
secure KEM, m (without m) means K = H(m) (K = H(m, c)), �⊥ (⊥) means
implicit (explicit) rejection5 and Q means an additional Targhi-Unruh hash [10]
(a length-preserving hash function that has the same domain and range size) is
appended to the ciphertext. The modular analysis of FO transforms by Hofheinz
et al. [5] suggests that the FO transform implicitly contains the GEM/REACT
transform at least the proof technique. Thus, in what follows, we just call these
variants FO-like KEM constructions for brevity.

In modern cryptography, cryptosystem constructions are usually proposed
together with a proof of security. Typically, when proving a security of a cryp-
tographic scheme S under a hardness assumption of an underlying problem P ,
one usually constructs a reduction algorithm RA that runs an adversary A a-
gainst S as a subroutine to break the underlying hardness assumption of P .
Let (TA, εA) and (TR, εR) denote the running times and advantages of A and
RA, respectively. The reduction is said to be tight if TA ≈ TR and εA ≈ εR.
Otherwise, if TR � TA or εR � εA, the reduction is non-tight. Generally, the
tightness gap, (informally) defined by TAεR

TRεA
[11], is used to measure the quality

of a reduction. Tighter reductions with smaller tightness gap are desirable for
practice cryptography especially in large-scale scenarios, since the tightness of
a reduction determines the strength of the security guarantees provided by the
security proof.

In the ROM, if an adversary queries m to a random oracle H, the reduction
can see this query and learn m. This is sometimes called extractability. When
proving the IND-CCA security of a PKE/KEM under various standard assump-
tions in the ROM, one usually constructs a query-based6 reduction that uses a
hash query from the adversary to beak the underlying hard problem, such as the
proofs for FO transformation [6, 7], REACT/GEM transformation [8, 9], Bellare-
Rogaway [3], OAEP [13, 14], and the hashed ElGamal encryption scheme [15]. A

5 In implicit (explicit) rejection, a pseudorandom key (an abnormal symbol ⊥) is
returned for an invalid ciphertext.

6 This name comes from Guo et al.’s paper [12].
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query-based reduction is also used in getting a tight security proof for a unique
signature [12]. In particular, for FO-like KEM constructions from standard CPA
assumptions (in what follows, standard CPA assumptions refer to OW-CPA and
IND-CPA), currently known security reductions [4, 5, 16–19] in the ROM are all
query-based.

Recently, post-quantum security of these FO-like KEM constructions has
gathered great interest [5, 16–23] due to their widespread adoption [17, Table 1]
in KEM submissions to the NIST Post-Quantum Cryptography Standardization
Project [24], of which the goal is to standardize new public-key cryptographic
algorithms with security against quantum adversaries. Motivated by the fact
that quantum adversaries can execute all offline primitives such as hash func-
tions on arbitrary superpositions, Boneh et al. [25] introduced quantum random
oracle model (QROM), where the adversary can query the random oracle with
a quantum state, and argued that to prove post-quantum security one needs to
prove security in the QROM.

Unfortunately, aforementioned query-based reduction in the ROM can not
carry over to the QROM setting offhand due to the fact that the extractability
might be problematic [25] when the query is a quantum state, which can be a
superposition of exponentially many classical states. In a quantum world, mea-
surement allows us to extract classical information from a quantum state and
thus is a way that we can “read out” information. Thus, naturally, a QROM
version of aforementioned query-based reduction can be a reduction that mea-
sures a hash query from the adversary and uses the measurement outcome to
beak the underlying hard problem. In this paper, we call this type of reductions
a measurement-based reduction.

Particularly, all currently known security reductions in the QROM for FO-
like KEM constructions from standard CPA assumptions in [5, 16–19] are of this
type, and have the tightness, (1) TR is about TA; (2) εR ≈ κετA, where κ and
τ in the following are respectively denoted as the factor and degree of security
loss7. Let q be the total number of adversarial queries (including quantum and
classical) to various oracles.

– In [5], Hofheinz et al. presented security reductions for QFO�⊥m and QFO⊥m
from the OW-CPA security of the underlying PKE with κ = q−6 and τ = 4,

for QU�⊥m and QU⊥m from the OW-PCA security of the underlying PKE with
κ = q−2 and τ = 2.

– In [16], Saito, Xagawa and Yamakawa presented a tight security reduction

(i.e., κ = 1 and τ = 1) for U�⊥m from a new non-standard security called
disjoint simulatability (DS) of the underlying DPKE, and also provided a

security reduction for a variant of FO�⊥m from standard IND-CPA security of
the underlying PKE with κ = q−2 and τ = 2.

– In [17], Jiang et al. first presented security reductions for FO�⊥ and FO�⊥m
from standard OW-CPA security of the underlying PKE with κ = q−2 and

7 When comparing the tightness of different reductions, we assume perfect correctness
of the underlying scheme for brevity.
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τ = 2. Then, they presented security reductions for U�⊥ (U⊥, resp.) from

OW-qPCA (OW-qPVCA, resp.) of the underlying PKE, U�⊥m (U⊥m, resp.)
from OW-CPA (OW-VA, resp.) of the underlying DPKE with κ = q−2 and
τ = 2, where OW-qPCA and OW-qPVCA are new non-standard securi-
ty notions of PKE introduced by [17] and called one-way against quantum
plaintext checking attacks and one-way against quantum plaintext and (clas-
sical) validity checking attacks respectively, OW-VA is also a non-standard
security notion of DPKE called one-way against validity checking attacks in
[5].

– In [18, 19], using the semi-classical oracle technique in [26], Jiang et al. im-
proved the tightness of security reductions in [17]. Precisely, from standard

IND-CPA security of the underlying PKE, security reductions for FO�⊥,

FO�⊥m, and their variants with explicit rejection have tightness with κ = q−1

and τ = 2. For U�⊥, U⊥, U�⊥m and U⊥m, the security reductions are improved
with κ = q−1 and τ = 2 with the same security assumptions as in [17].

As seen above, all currently known security reductions in the QROM for FO-
like KEM constructions from standard CPA assumptions, are far from desirable
due to the quadratic security loss (at least). This is quite different from the ROM
setting, where security reductions with linear security loss [4, 5] can be achieved.
Recently, to better assess the security of lattice-based submissions, Ducas and
Stehlé [27] suggested 10 questions that NIST should be asking the community.
The 10-th question [27, Problem 10] is on this non-tightness of security reductions
for FO-like KEM constructions in the QROM. To better understand this non-
tightness, they asked that

Is QROM non-tightness an artifact or is it meaningful? Can the tightness of
those reductions be improved?

1.1 Our Contributions

In this paper, we consider a “typical” class8 of reductions that have black-box
access to the adversary and run the adversary once and without rewinding. Given
a real p (0 ≤ p ≤ 1) and a FO-like KEM construcion,

1. We first construct an unbounded quantum adversary A that breaks the IND-
CCA security of the resulting KEM by querying the random oracle with a
well-designed quantum state and solving a discrimination problem between
two quantum states (refer to Subsection 1.2 for details). The advantage of
A is at least

√
p, i.e., εA '

√
p.

8 At first sight we heavily constrain the class of reductions to that our results apply.
However, all currently known security reductions in the QROM for FO-like KEM
constructions [5, 16–23] belong to this typical class. Moreover, most reductions of
cryptographic security proofs in the QROM are of this type. This seems to be mostly
due to the hardness of quantum rewinding [28].

4



2. Then, using the meta-reduction methodology [29, 30], we bound the advan-
tage εR of a typical measurement-based reduction RA that takes above A
as a subroutine to break the OW-CPA (IND-CPA, resp.) security of the
underlying PKE. In particular, the advantage εR can not substantially ex-
ceed p, i,e, εR / p, unless there exists an algorithm breaking the OW-CPA
(IND-CPA, resp.) security of the underlying PKE efficiently.

Thus, for FO-like KEM constructions, our results show that a typical measurement-
based reduction in the QROM from breaking standard OW-CPA (or IND-CPA)
security of the underlying PKE to breaking the IND-CCA security of the result-
ing KEM, will inevitably incur a quadratic loss of the security.

1.2 Technique overview

In FO-like KEM constructions, the (session) key K is derived by H(m) (or
H(m, c)) and the ciphertext c = Enc(pk,m;G(m)) (or Enc(pk,m) if Enc is
deterministic) is the corresponding encapsulation of the key K, where Enc is the
encryption algorithm of the underlying PKE, m is uniformly picked at random,
G and H are random oracles. In this section, for a concise presentation, we just

take KEM−U�⊥m (see Fig. 3 for details) as an example, and thus K = H(m) and
c = Enc(pk,m). It is easy to extend the techniques here to other FO-like KEM
constructions, see Sec. 6.1.

When attacking the IND-CCA security of KEM−U�⊥m, an adversaryA(pk, c∗,
Kb) needs to distinguish K0 = H(m∗) from a uniformly random key K1, where
c∗ = Enc(pk,m∗) for a uniformly random m∗, the coin b ∈ {0, 1} is uniformly
random. We note that the random oracle H has a useful property that if m∗ has
not been queried to H by A, then the value H(m∗) is uniformly random in A’s
view. Thus, A’s distinguishing advantage is negligible when making no queries
to H with m∗. Intuitively, to achieve a non-negligible distinguishing advantage,
A has to query m∗ to H.

In the ROM, A can only make classical queries to H. For any p (0 ≤ p ≤ 1), if
A queries m∗ to H with probability p, he will learn K0 = H(m∗) with probability
p and break the IND-CCA security with advantage approximately p by testing
whether K0 = Kb. For a reduction RA against the OW-CPA security of the
underlying DPKE, a natural way is to take A’s query as a return. Then, with
probability p, RA will return the m∗ and break the OW-CPA security of the
underlying DPKE. That is, the advantages of RA and A are approximately
equal, which is consistent with currently known tight reduction in [5].

Unbounded quantum adversary A. In the QROM, a quantum adversary A
can make a query to H with a quantum state. Consider the following quantum
state

|ψ−1〉 :=
√
p|m∗〉|0〉+

√
1− p|m′〉|Σ〉,
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where m′ 6= m∗, |Σ〉 =
∑
k∈K

1√
|K|
|k〉 and K is the (session) key space. For a

quantum query with |ψ−1〉, the random oracle H will return

|ψ0〉 : =
√
p|m∗〉|K0〉+

√
1− p|m′〉|Σ〉.

We remark that if the adversary A directly measures |ψ0〉 in standard compu-
tational basis, he will obtain K0 with probability p and break the IND-CCA
security with the advantage (approximately) p by testing whether K0 = Kb as
the adversary in the ROM described above.

Here, we construct an unbounded quantum adversary A(pk, c∗,Kb) that first
determines m∗ such that c∗ = Enc(pk,m∗) by exhaustive search (if none is
found, outputs 1) and randomly selects a uniform m′ such that m′ 6= m∗, then
queries |ψ−1〉 to H, lastly guesses b by testing whether |ψ0〉 = |ψb〉, where

|ψb〉 : =
√
p|m∗〉|Kb〉+

√
1− p|m′〉|Σ〉.

Testing whether |ψ0〉 = |ψb〉 can be converted into a discrimination problem
between quantum states |ψ0〉 and |ψ1〉. The advantage of A against the IND-
CCA security is about the distinguishing advantage of a distinguisher D against
the discrimination problem between |ψ0〉 and |ψ1〉.

Quantum state discrimination [31–33] traces a long history of several decades,
and underlies various applications in quantum information processing tasks. Al-
though there are several well-known distinguishers [33–35], they do not serve
as a satisfactory solution due to the restricted conditions or low distinguishing
advantages, see Sec. 3 for details.

Therefore, exploiting the algebraic property of |ψ0〉 and |ψ1〉, we develop a
new distinguisher such that the distinguishing advantage is at least

√
p. Thus,

with this new distinguisher, quantum adversary A can break the IND-CCA
security with advantage (approximately) at least

√
p. That is, εA '

√
p.

In currently known proofs for KEM−U�⊥m in [17], the reduction algorithm
RA against the OW-CPA security of the underlying DPKE just randomly mea-
sures one of A’s queries to H in standard computational basis and takes the
measurement outcome as a return. The security bound is given by εA / q

√
εR.

We note that above unbounded quantum adversary A makes no queries to
the decapsulation oracle, and just reveals one quantum query |ψ−1〉 to H and
a guessing of b. Thus, the total number of A’s queries to various oracles is one,
i.e., q = 1. We also note that the advantage of the reduction algorithm RA in
[17] is exactly the probability of the measurement outputting m∗, which is equal
to p. That is, εR = p. Thus, for above unbounded quantum adversary A, the
advantage can match the bound εA / q

√
εR in [17].

The advantage of a typical measurement-based reduction Here, we con-
sider a typical measurement-based reduction RA that runs A (once and without
rewinding), measures A’s query |ψ−1〉 and uses the measurement outcome to
break the OW-CPA security of the underlying DPKE. We say a reduction R is
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efficient if the running time of R (excluding the running time of the adversary
A) is polynomial in the security parameter. We make a convention that RA

measures |ψ−1〉 in standard computational basis9.

Meta-reduction methodology. Since the introduction by Boneh and Venkate-
san in [29], the meta-reduction methodology has proven to be a versatile tool in
deriving impossibility results and tightness bounds of security proofs for many
cryptosystem constructions [29, 30, 36–44], please see the review [45, Figure 1].
Let R be a reduction that breaks the underlying hard problem P with access to
an adversary A against a scheme S. Roughly speaking, a meta-reduction MRR
simulates the adversarial part A, runs R as a subroutine, and break the un-
derlying hard problem P directly without reference to an allegedly successful
adversary. That is, a meta-reduction MRR treats the reduction R as an adver-
sary itself and reduce the existence of such a reduction R to a presumably hard
problem.

Consider the advantage of RA in following three cases, where Ine (Exi,
resp.) is the event that the exhaustive search returns no (a, resp.) m∗ such that
Enc(pk,m∗) = c∗, and Good (Bad, resp.) is the event that the measurement
outcome is (not, resp.) m∗.

Case 1: Ine. In this case, A just outputs 1 without queries to H. Thus, exhaus-
tive search for m∗ in this case is vain, and A can be replaced by an adversary
A1 that always outputs 1 without the search for m∗ and the query to the
random oracle H. Therefore, we can easily construct a meta-reduction MRR1
that simulates A1 and takes RA1 as a subroutine to break the OW-CPA se-
curity of the underlying DPKE such that the running time of MRR1 is about
the running time of R, and under the condition Ine the advantage of MRR1
is about the advantage of R.

Case 2: Exi ∧Good. Since Pr[Good|Exi] = p, we can bound the advantage
of R in this case by p.

Case 3: Exi ∧ Bad. In this case, R gets m′ 6= m∗. Let A2 be an adversary
that queries a quantum state

∑
m,k

1√
|M|·|K|

|m〉|k〉 and outputs 1 without

the search for m∗. Thus, the advantage of R under the condition Exi∧Bad
remains unchanged when A is replaced by A2. As in the case 1, we can
also construct a meta-reduction MRR2 against the OW-CPA security of the
underlying DPKE that simulates A2 and takes RA2 as a subroutine such
that the running time of MRR2 is about the running time of R, and under
the condition Exi ∧ Bad the advantage of MRR2 is about the advantage of
R.

Under the assumption that the advantage of any efficient algorithm break-
ing the OW-CPA security of the underlying DPKE is negligible, we have that
both advantages of MRR1 and MRR2 are negligible since the running time of R

9 For |ψ−1〉, the semi-classical measurement in [26] is equivalent to the standard com-
putational basis measurement since |ψ−1〉 is the superposition of two terms, |m∗〉|0〉
and |m′〉|Σ〉.
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(excluding the running time of the adversary A) is polynomial in the security pa-
rameter. Thus, both advantages of R in Case 1 and Case 3 are negligible, which
implies that the upper bound of R’s advantage is approximately p. That is, the
advantage of a typical measurement-based reduction against the OW-CPA secu-
rity of the underlying DPKE can not substantially exceed p unless there exists
an algorithm breaking the OW-CPA security of the underlying DPKE efficiently.

1.3 Discussion

Although certain quantum cases of rewinding are handled by [46–48], the rewind-
ing problem in general quantum case remains elusive [28]. Thus, it is an interest-
ing open problem for FO-like KEM constructions that whether one can derive
tighter QROM security proofs by rewinding, or extend our results to the reduc-
tions with rewinding.

We also note that we just consider a measurement-based reduction that mea-
sures a hash query from the adversary and uses the measurement outcome to

break the underlying hard problem. For KEM−U�⊥m from a non-standard as-
sumption, DS security, [16] gave a tight non-measurement-based reduction al-
gorithm, where adversary’s guessing of the coin b instead is used to break the
DS security of the underlying DPKE. Thus, it is also an interesting problem
whether one can develop a tight non-measurement-based reduction for FO-like
KEM constructions from standard CPA assumptions.

2 Preliminaries

Symbol description. A security parameter is denoted by λ. We use the stan-
dard O-notations: O, Θ, Ω and ω. The abbreviation PPT stands for probabilistic
polynomial time. A function f(λ) is said to be negligible if f(λ) = λ−ω(1). We
denote a set of negligible functions by negl(λ). K, M, C and R are denoted as
key space, message space, ciphertext space and randomness space, respectively.
Given a finite set X, we denote the sampling of a uniformly random element

x by x
$← X. Denote the sampling from some distribution D by x←D. x =?y

is denoted as an integer that is 1 if x = y, and otherwise 0. Denote determin-
istic (probabilistic) computation of an algorithm A on input x by y = A(x)
(y ← A(x)). Let |X| be the cardinality of set X. AH means that the algorithm
A gets access to the oracle H. Time(R) is the running time of an algorithm R.
Time(RA) = Time(R) + kTime(A) is the running time of an algorithm RA that
takes A as a subroutine10, where k is the number of times A is invoked by R.

2.1 Cryptographic Primitives

Definition 2.1 (Public-key encryption). A public-key encryption scheme
PKE = (Gen,Enc,Dec) consists of a triple of polynomial time (in the secu-
rity parameter λ) algorithms and a finite message space M.

10 Here, in this paper, A is forbidden to call R as a subroutine.
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– Gen(1λ)→ (pk, sk): the key generation algorithm, is a probabilistic algorith-
m which on input 1λ outputs a public/secret key-pair (pk, sk). Usually, for
brevity, we will omit the input of Gen.

– Enc(pk,m)→ c: the encryption algorithm Enc, on input pk and a message
m ∈ M, outputs a ciphertext c ← Enc(pk,m). If necessary, we make the
used randomness of encryption explicit by writing c := Enc(pk,m; r), where

r
$← R (R is the randomness space).

– Dec(sk, c)→ m: the decryption algorithm Dec, is a deterministic algorithm
which on input sk and a ciphertext c outputs a message m := Dec(sk, c) or
a rejection symbol ⊥/∈M.

A PKE is deterministic if Enc is deterministic. We denote DPKE to stand for
a deterministic PKE.

Definition 2.2 (Correctness). A public-key encryption scheme PKE is per-
fectly correct if for any (pk, sk)← Gen and m ∈M, we have that

Pr[Dec(sk, c) = m|c← Enc(pk,m)] = 1.

Definition 2.3 (OW-CPA-secure PKE). Let PKE = (Gen,Enc,Dec) be a
public-key encryption scheme with message space M. Define OW − CPA game
of PKE as in Fig. 1. Define the OW − CPA advantage of an adversary A against
PKE as

AdvOW-CPA
PKE (A) := Pr[OW-CPAAPKE = 1].

Game OW-CPA

1 : (pk, sk)← Gen;m∗
$←M

2 : c∗ ← Enc(pk,m∗)

3 : m′ ← A(pk, c∗)

4 : return m′ =?m∗

Game IND-CPA

1 : (pk, sk)← Gen; b← {0, 1}
2 : (m0,m1)←A(pk); c∗ ← Enc(pk,mb)

3 : b′ ← A(pk, c∗)

4 : return b′ =?b

Fig. 1: Game OW-CPA and game IND-CPA for PKE.

Definition 2.4 (IND-CPA-secure PKE). Let PKE = (Gen,Enc,Dec) be a
public-key encryption scheme with message spaceM. Define IND− CPA game of
PKE as in Fig. 1, where m0 and m1 have the same length. Define the IND− CPA
advantage 11 of an adversary A against PKE as

AdvIND-CPA
PKE (A) :=

∣∣2 Pr[IND-CPAAPKE = 1]− 1
∣∣ .

Definition 2.5 (Key encapsulation). A key encapsulation mechanism KEM
consists of three algorithms Gen, Encaps and Decaps.

11 The IND− CPA advantage is also defined by
∣∣Pr[IND-CPAAPKE = 1]− 1

2

∣∣ in the
literature. Here, to make the advantage for OW-CPA and IND-CPA have the same
range [0, 1], we choose such a definition.
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– Gen(1λ) → (pk, sk): the key generation algorithm Gen outputs a key pair
(pk, sk). Usually, for brevity, we will omit the input of Gen.

– Encaps(pk) → (K, c): the encapsulation algorithm Encaps, on input pk,
outputs a tuple (K, c), where K ∈ K and c is said to be an encapsulation of
the key K.

– Decaps(sk, c) → K: the deterministic decapsulation algorithm Decaps, on
input sk and an encapsulation c, outputs either a key K := Decaps(sk, c) ∈
K or a rejection symbol ⊥/∈ K.

Game IND-CCA

1 : (pk, sk)← Gen; b
$← {0, 1}

2 : (K∗0 , c
∗)← Encaps(pk);K∗1

$← K

3 : b′ ← ADecaps(pk, c∗,K∗b )

4 : return b′ =?b

Decaps(sk, c)

1 : if c = c∗

2 : return ⊥
3 : else return

4 : K := Decaps(sk, c)

Fig. 2: Game IND-CCA for KEM.

Definition 2.6 (IND-CCA-secure KEM). We define the IND− CCA game
as in Fig. 2 and the IND− CCA advantage of an adversary A against KEM as

AdvIND-CCA
KEM (A) :=

∣∣2 Pr[IND-CCAAKEM = 1]− 1
∣∣ .

2.2 Quantum Computation

Here, we just briefly review some basics of quantum computation used in this
paper. For a more thorough discussion, please refer to [34].

A quantum system A is a complex Hilbert spaceH with an inner product 〈·|·〉.
The state of a quantum system is given by a vector |Ψ〉 of unit norm (〈Ψ |Ψ〉 = 1).
Given quantum systems A and B over spacesHA andHB , respectively, we define
the joint or composite quantum system through the tensor product HA ⊗ HB .
The product state of |ϕA〉 ∈ HA and |ϕB〉 ∈ HB is denoted by |ϕA〉 ⊗ |ϕB〉
or simply |ϕA〉|ϕB〉. A n-qubit system lives in the joint quantum system of n
two-dimensional Hilbert spaces. The standard computational basis B = {|x〉}
for such a system is given by |x1〉 ⊗ · · · ⊗ |xn〉 for x = x1 · · ·xn. Any (classical)
bit string x is encoded into a quantum state by |x〉.

Quantum measurement. Quantum measurements are usually described by a col-
lection {Mx} of measurement operators, which satisfy the completeness equation,∑
xM

†
xMx = I. The index x refers to the measurement outcomes that may oc-

cur in the experiment. If the state of the quantum system is |ϕ〉 immediately
before the measurement then the probability that result x occurs is given by
Pr(x) = 〈ϕ|M†xMx|ϕ〉, and the state of the system after the measurement is
Mx|ϕ〉√

Pr(x)
. We say a measurement is in the standard computational basis B = {|x〉}
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if the measurement operator Mx is |x〉〈x|. For a measurement of |ϕ〉 in standard

computational basis B, x is obtained with probability |〈x|ϕ〉|2.

Quantum algorithm. A quantum algorithm A over a Hilbert space H with a
standard orthonormal basis B is specified by unitary transformation U. The in-
put to A is the initial state |x0〉. Then U is applied to the system, and the final
state is obtained |ϕ〉 = U|x0〉. At last, A’s output is obtained by performing a
measurement on |ϕ〉. We say that a quantum algorithm is efficient if U is com-
posed of a polynomial number of universal basis gates (the Hadamard, CNOT,
and phase shift gates are commonly used).

Quantum random oracle model. Following [25, 49], we view a quantum oracle
O : {0, 1}n → {0, 1}m as a mapping that takes basis state |x〉|y〉 into basis state
|x〉|y ⊕ O(x)〉 for x ∈ {0, 1}n and y ∈ {0, 1}m, and model quantum adversaries
with access to O by the sequence U ◦ O, where U is a unitary transformation.
The quantum random oracle model (QROM) [25] is an idealized model where
hash functions are modeled as quantum random oracles, and the adversaries are
given quantum access to these random oracles and classical access to all other
oracles (e.g., decapsulation oracle).

3 Discrimination of quantum states

Quantum state discrimination [31–33] essentially describes the distinguishability
of quantum systems in different states, and has many applications in quantum in-
formation field, such as quantum key distribution scheme based on discrimination
between non-orthogonal quantum states [50, 51], the study on the foundation of
quantum theory [52–55].

The best strategy adopted for quantum state discrimination depends largely
on the figures of merit used, for instance, see reviews [31–33]. The three most
common figures of merit are minimum-error discrimination, unambiguous state
discrimination, and maximum confidence discrimination. Optimal quantum state
discrimination is generally difficult apart from the case of two state discrimina-
tion. Fortunately, here, we focus on minimum-error discrimination between two
pure states.

For two pure states (TPS) |ψ0〉 and |ψ1〉 with algebraic property

|ψ0〉 =
√
p|a〉+

√
1− p|c〉 and |ψ1〉 =

√
p|b〉+

√
1− p|c〉,

such that 〈a|b〉 = 〈a|c〉 = 〈b|c〉 = 0, we consider following game.

Discrimination game DIST for a distinguisher D.

– Pick a uniform bit b, i.e., b
$← {0, 1},

– The distinguisher D on input |ψb〉 outputs b′ as a guessing of b,
– Return b′ =?b.

11



Define the distinguishing advantage of a distinguisher D against DIST game as

AdvDIST
TPS (D) :=

∣∣∣2 Pr[DISTD
TPS = 1]− 1

∣∣∣ = |Pr[D⇒ 1|b = 0]− Pr[D⇒ 1|b = 1]| .

The goal of minimum-error discrimination here is to maximize above advantage
by optimizing the distinguisher.

To discriminate quantum states, one natural approach is to perform a mea-
surement. Let positive operator M0 and M1 be two measurement operators as-
sociated with a binary measurement M such that M0 + M1 = I. Let P ji =

〈ψi|M†jMj |ψi〉 be the probability that the outcome j occurs when measuring

|ψi〉. Then, AdvDIST
TPS (D) =

∣∣P 1
0 − P 1

1

∣∣. According to [34, Theorem 9.1], the upper

bound of the distinguishing advantage
∣∣P 1

0 − P 1
1

∣∣ is exactly the trace distance
between |ψ0〉 and |ψ1〉, D(|ψ0〉, |ψ1〉), and there exists an optimal measurement
M that attains this bound. For our specific case,

D(|ψ0〉, |ψ1〉) =

√
1− |〈ψ0|ψ1〉|2 =

√
p(2− p) ≥ √p.

The optimal measurement M attaining above bound can be found by spec-
tral decomposition of operator X = 1

2 (|ψ0〉〈ψ0| − |ψ1〉〈ψ1|) into positive and
negative parts [33]. Write the spectral decomposition of the operator by X =
λ+X+ − λ−X− with positive (negative) projector X+ (X−) and positive (neg-
ative) eigenvalue λ+ (λ−). Then, the optimal measurement M can be given by
M1 = X+,M0 = X−. We note that such a spectral decomposition requires dis-
tinguisher D knowing both |ψ0〉 and |ψ1〉. However, the distinguisher D used in
Sec. 4 can only know |ψ0〉 or |ψ1〉.

Before giving an elaborate measurement, we first present two typical con-
structions of distinguisher D knowing one of |ψ0〉 and |ψ1〉. Without loss of
generality, assume |ψ0〉 is known.

One tests wether |ψb〉 is equal to |ψ0〉 by a simple but important procedure
known as the swap test introduced by [35]. In the test, take |ψ0〉 and |ψb〉 as
input, attach an ancilla qubit in state |0〉, then apply a Hadamard gate to the an-
cilla, followed by a controlled-SWAP gate (controlled on the ancilla), and another
Hadamard gate. Finally, measure the ancilla qubit in standard computational ba-
sis. The measurement outputs 1 with probability 0 if b = 0 and 1

2 (1−|〈ψ0|ψ1〉|2)
if b = 1. Thus, using this swap test, one can just have distinguishing advantage∣∣∣ 12 (1− |〈ψ0|ψ1〉|2)

∣∣∣ = 1
2p(2− p).

Another distinguisher [34] can be constructed by directly performing a mea-
surement with M1 = |ψ0〉〈ψ0| and M0 = I −M1. Then, the measurement pro-

duces outcome 1 with probability 1 if b = 0 and |〈ψ0|ψ1〉|2 if b = 1. Thus, the
distinguishing advantage is |p(2− p)| = p(2− p).

As we have seen, the distinguishing advantages of above two typical distin-
guishers are far from D(|ψ0〉, |ψ1〉) =

√
p(2− p). Taking the algebraic property

into consideration, we give an improved distinguisher of which the distinguishing
advantage is at least

√
p.
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Lemma 3.1. Let |ψ0〉 =
√
p|a〉 +

√
1− p|c〉 and |ψ1〉 =

√
p|b〉 +

√
1− p|c〉,

where 〈a|b〉 = 〈a|c〉 = 〈b|c〉 = 0. Let M1 = |ψ〉〈ψ| and M0 = I −M1, where

|ψ〉 = sin(x)|a〉+ cos(x)|c〉 and x = 1
2 arccos(−

√
p√

4−3p
) (sin(2x) ≥ 0). For a dis-

tinguisher D that performs a binary measurement with operators M0 and M1,
the distinguishing advantage has a lower bound

√
p, i.e., AdvDIST

TPS (D) ≥ √p.

Proof. Let sin(θ) =
√
p and cos(θ) =

√
1− p. Then sin(2θ) = 2

√
p(1− p) and

cos(2θ) = 1−2p. Since x = 1
2 arccos(−

√
p√

4−3p
) and sin(2x) ≥ 0, sin(2x) = 2

√
1−p√
4−3p

and cos(2x) = −
√
p√

4−3p
. The distinguishing advantage

AdvDIST
TPS (D) =

∣∣∣〈ψ0|M†1M1|ψ0〉 − 〈ψ1|M†1M1|ψ1〉
∣∣∣

=
∣∣(sin(x) sin(θ) + cos(x) cos(θ))2 − (cos(x) cos(θ))2

∣∣
=
∣∣sin2(x) sin2(θ) + 2 sin(x) sin(θ) cos(x) cos(θ)

∣∣
=

1− cos(2x)

2
· 1− cos(2θ)

2
+

1

2
sin(2x) sin(2θ)

= p
1− cos(2x)

2
+
√
p(1− p) · sin(2x)

=
√
p(

√
p+
√

4− 3p

2
)

It is easy to verify that
√
p+
√

4− 3p ≥ 2 for 0 ≤ p ≤ 1. Thus, we have

AdvDIST
TPS (D) ≥ √p.

ut

4 An unbounded quantum adversary against the
IND-CCA security of KEM

In this section, we will construct an unbounded quantum adversary against the

IND-CCA security of KEM−U�⊥m = U�⊥m[DPKE,H,f ] shown by Fig. 3, where
DPKE = (Gen′, Enc′, Dec′), a hash function H :M→K, and a pseudorandom

function (PRF) f with key space Kprf . The IND-CCA game of KEM−U�⊥m is
given by Fig. 4.

Let A(1λ, pk, c∗,Kb) be a quantum adversary against the IND-CCA game of

KEM−U�⊥m that does as follows,

1. Search a m∗ ∈M such that Enc′(pk,m∗) = c∗. If no one (or more than one)
is found, output 1 and terminate the procedure.

2. Pick a real p such that 0 ≤ p ≤ 1.

13



3. Sample a m′ according to the uniform distribution over {m′ ∈ M : m′ 6=
m∗}.

4. Query the random oracle H with quantum state |ψ−1〉 :=
√
p|m∗〉|0〉 +√

1− p|m′〉|Σ〉, where |Σ〉 =
∑
k∈K

1√
|K|
|k〉 can be derived by H⊗ log |K||0〉.

The random oracle returns |ψ0〉 :
(∗)
=
√
p|m∗〉|K0〉+

√
1− p|m′〉|Σ〉.

5. Perform a binary measurement M on |ψ0〉 with operators M1 = |Ψ〉〈Ψ |
and M0 = I −M1, where |Ψ〉 = sin(x)|m∗〉|Kb〉 + cos(x)|m′〉|Σ〉 and x =
1
2 arccos(−

√
p√

4−3p
) (sin(2x) ≥ 0).

6. Output the measurement outcome.

Gen

1 : (pk, sk)← Gen′

2 : k
$← Kprf

3 : sk′ := (sk, k)

4 : return (pk, sk′)

Encaps(pk)

1 : m
$←M

2 : c := Enc′(pk,m)

3 : K := H(m)

4 : return (K, c)

Decaps(sk′, c)

1 : Parse sk′ = (sk, k)

2 : m′ := Dec′(sk, c)

3 : if Enc′(pk,m′) = c

4 : return K := H(m′)

5 : else return

6 : K := f(k, c)

Fig. 3: IND-CCA-secure KEM−U�⊥m = U�⊥m[DPKE,H,f ]

IND-CCA game of KEM−U�⊥m

1 : (pk, sk′)← Gen;H
$← ΩH

2 : m∗
$←M; c∗ := Enc′(pk,m∗)

3 : K∗0 := H(m∗)

4 : K∗1
$← K; b

$← {0, 1}

5 : b′ ← AH,Decaps(pk, c∗,K∗b )

6 : return b′ =?b

Decaps (c 6= c∗)

1 : Parse sk′ = (sk, k)

2 : m′ := Dec′(sk, c)

3 : if Enc′(pk,m′) = c

4 : return K := H(m′)

5 : else return

6 : K := f(k, c)

Fig. 4: IND-CCA game of KEM−U�⊥m

Remark: The equation (∗) is derived by

|ψ0〉 = OH |ψ−1〉 =
√
p|m∗〉|H(m∗)〉+

√
1− p|m′〉|(

∑
k∈K

1

|K|
|k ⊕H(m′)〉)

=
√
p|m∗〉|K0〉+

√
1− p|m′〉|(

∑
k∈K

1

|K|
|k〉)

=
√
p|m∗〉|K0〉+

√
1− p|m′〉|Σ〉.
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Theorem 4.1 (The advantage of A in the QROM.). If the underlying
DPKE is perfectly correct, the advantage of A against the IND-CCA security of

KEM−U�⊥m is at least
√
p(1− 1

|K| ).

Proof. In the IND-CCA game of KEM−U�⊥m, c∗ = Enc′(pk,m∗), where m∗
$←

M, thus there exists at least one m∗ ∈ M such that Enc′(pk,m∗) = c∗. S-
ince DPKE is perfectly correct, there exists no more than one m∗ such that
Enc′(pk,m∗) = c∗. Thus, the m∗ that A gets is exactly the one chosen by the
challenger.

Let |ψ1〉 :=
√
p|m∗〉|K1〉+

√
1− p|m′〉|Σ〉. Let |a〉 = |m∗〉|K0〉, |b〉 = |m∗〉|K1〉,

and |c〉 = |m′〉|Σ〉 Then, |ψ0〉, |ψ1〉, |Ψ0〉 and |Ψ1〉 can be rewritten as |ψ0〉 =√
p|a〉 +

√
1− p|c〉, |ψ1〉 =

√
p|b〉 +

√
1− p|c〉, |Ψ0〉 = sin(x)|a〉 + cos(x)|c〉 and

|Ψ1〉 = sin(x)|b〉 + cos(x)|c〉. The probability Pr[A ⇒ 1] that A outputs 1 is

|〈ψ0|Ψ0〉|2 if b = 0, and |〈ψ0|Ψ1〉|2 if b = 1. Thus,

AdvIND-CCA

KEM−U�⊥m
(A) =

∣∣∣|〈ψ0|Ψ0〉|2 − |〈ψ0|Ψ1〉|2
∣∣∣ .

When K0 = K1, |Ψ0〉 = |Ψ1〉 and the advantage of A is 0. In the following,
we consider the case K0 6= K1. It’s easy to verify that when K0 6= K1, 〈a|b〉 =

〈a|c〉 = 〈b|c〉 = 0 since m∗ 6= m′. Thus, |〈ψ0|Ψ1〉|2 = |〈ψ1|Ψ0〉|2. Therefore, the
advantage of A will become

AdvIND-CCA

KEM−U�⊥m
(A) =

∣∣∣|〈ψ0|Ψ0〉|2 − |〈ψ1|Ψ0〉|2
∣∣∣ .

That is, the advantage function AdvIND-CCA

KEM−U�⊥m
(A) of A is exactly the distinguish-

ing advantage AdvDIST
TPS (D) of a distinguisher D that distinguishes quantum s-

tate |ψ0〉 from quantum state |ψ1〉 by a binary measurement M ′ with operators
M ′1 = |Ψ0〉〈Ψ0| and M ′0 = I −M ′1. Thus, according to Lemma 3.1, if K0 6= K1,
we have AdvIND-CCA

KEM−U�⊥m
(A) ≥ √p. Note that K0 6= K1 with probability 1 − 1

|K| .

Thus, we have

AdvIND-CCA

KEM−U�⊥m
(A) ≥ √p(1− 1

|K|
) ≈ √p.

ut

In the ROM, A can only classically query the random oracle H. That is,
before querying H, the input state is measured in standard computational basis.
Then, with probability p (1−p, resp.), A will query m∗ (m′, resp.) to H and get a
return hash value H(m∗) (H(m′), resp.). Note that classical states (orthogonal
quantum states) can be perfectly distinguished. Thus, by testing the equality
between the return hash value and Kb, A can break the IND-CCA security of

KEM−U�⊥m with advantage 1− 1
K if m∗ is queried, and 0 if m′ is queried. Thus,

in the ROM, the advantage of A will become p(1− 1
|K| ).
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5 The advantage of a typical measurement-based
reduction

In this section, we will bound the advantage of a measurement-based reduction
that runs the quantum adversary A (described in Sec. 4), measures A’s hash
query and uses the measurement outcome to break the OW-CPA security of the
underlying DPKE. Note that the quantum adversary A in Sec. 4 just makes
a single query to the random oracle H and no queries to the Decaps oracle.
Thus, the total number q of A’s queries to various oracles is one, i.e., q = 1.

First, consider a natural measurement-based reduction RA(pk, c∗) that sam-
ples a k ∈ K, runs A(pk, c∗, k), measures A’s query to H in computational
basis and outputs the measurement outcome. It is apparent that for this natural
measurement-based reduction RA(pk, c∗), the advantage against the OW-CPA
security of the underlying DPKE is p, that is AdvOW-CPA

DPKE (RA) = p. Actually, the

proof in [17] for KEM−U�⊥m from the OW-CPA security of the underlying DP-
KE exactly adopted this natural measurement-based reduction. Thus, through
the adversary A, we have demonstrated that natural measurement-based reduc-
tion in [17] inevitably has a quadratic security loss, AdvIND-CCA

KEM−U�⊥m
(A) '

√
p =√

AdvOW-CPA
DPKE (RA), which matches the bound given by [17].

Next, we will bound the advantage of a typical class of measurement-based
reductions. Precisely, we consider a reduction RA(pk1, c

∗
1) that runsA(pk, c∗,Kb)

once and without rewinding (we do not require (pk, c∗) = (pk1, c
∗
1)), measures

A’s query input in computational basis, use the measurement outcome to break
the OW-CPA security of the underlying DPKE.

Theorem 5.1. If the underlying DPKE is perfectly correct, for any above de-
scribed measurement-based reduction RA, there exist two meta-reductions MRR1
and MRR2 against the OW-CPA security of the underlying DPKE such that

AdvOW-CPA
DPKE (RA) ≤ p+ AdvOW-CPA

DPKE (MRR1 ) +
|M|
|M| − 1

AdvOW-CPA
DPKE (MRR2 ),

and Time(R) ≈ Time(MRR1 ) ≈ Time(MRR2 ).

Since the underlying DPKE is perfectly correct, there exists no more than
one m∗ such that Enc′(pk,m∗) = c∗. Let Exi (Ine) be the event that there
exists a (no) m∗ such that Enc′(pk,m∗) = c∗. Thus,

AdvOW-CPA
DPKE (RA) = Pr[RA ⇒ m∗ ∧Exi] + Pr[RA ⇒ m∗ ∧ Ine]

≤ Pr[Exi] · Pr[RA ⇒ m∗|Exi] + Pr[RA ⇒ m∗ ∧ Ine]. (1)

Denote Good (Bad, resp.) as the event that the measurement of A’s query re-
turns (no, resp.)m∗ such that Enc(pk,m∗) = c∗. It’s apparent that Pr[Good|Exi] =
p and Pr[Bad|Exi] = 1− p. Thus, we have

Pr[RA ⇒ m∗|Exi] = Pr[RA ⇒ m∗|Exi ∧Good] Pr[Good|Exi]
+ Pr[RA ⇒ m∗|Exi ∧Bad] Pr[Bad|Exi]

≤ p+ Pr[RA ⇒ m∗|Exi ∧Bad]. (2)
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Combining the equations (1) and (2), we have

AdvOW-CPA
DPKE (RA) ≤ p+ Pr[RA ⇒ m∗ ∧ Ine] + Pr[Exi] ·Pr[RA ⇒ m∗|Exi∧Bad].

We give upperbounds of Pr[RA ⇒ m∗ ∧ Ine] and Pr[Exi] · Pr[RA ⇒ m∗|Bad ∧
Exi] by following Lemmas 5.1 and 5.2.

Lemma 5.1. There exists a meta-reduction MRR1 such that Pr[RA ⇒ m∗ ∧
Ine] ≤ AdvOW-CPA

DPKE (MRR1 ), and Time(R) ≈ Time(MRR1 ).

Proof. Let A1(pk, c∗,Kb) be a trivial adversary against the IND-CCA game

of KEM−U�⊥m that always returns 1 and does nothing else. It is obvious that
when Ine happens, both A and A1(pk, c∗,Kb) just outputs 1, and Pr[RA ⇒
m∗ ∧ Ine] = Pr[RA1 ⇒ m∗ ∧ Ine].

Construct a meta reduction MRR1 (pk1, c
∗
1) against the OW-CPA security of

DPKE as follows,

1. Run RA1(pk1, c
∗
1).

2. Simulate A1(pk, c∗,Kb) for RA1(pk1, c
∗
1).

3. Return RA1 ’s output.

It’s easy to see that AdvOW-CPA
DPKE (MRR1 ) = AdvOW-CPA

DPKE (RA1). Since AdvOW-CPA
DPKE (RA1) ≥

Pr[RA1 ⇒ m∗ ∧ Ine], we have

Pr[RA ⇒ m∗ ∧ Ine] ≤ AdvOW-CPA
DPKE (MRR1 ).

Since Time(A1) ∈ negl(λ), Time(MRR1 ) ≈ Time(R) + Time(A1) ≈ Time(R). ut

Lemma 5.2. There exists a meta-reduction MRR2 such that Pr[Exi] ·Pr[RA ⇒
m∗|Exi ∧Bad] ≤ |M|

|M|−1Adv
OW-CPA
DPKE (MRR2 ), and Time(R) ≈ Time(MRR2 ).

Proof. LetA2(pk, c∗,Kb) be an adversary against the IND-CCA game of KEM−U�⊥m
as follows,

1. Pick a real p such that 0 ≤ p ≤ 1.
2. Query the random oracleH with quantum state ψ′−1 =

∑
m,k

1√
|M|·|K|

|m〉|k〉.
3. After the return of the random oracle H, output 1 with probability 1.

We note that under the condition Exi∧Bad, both measurement outcomes of A’s
query and A2’s query obey the uniform distribution over {m′ ∈M : m′ 6= m∗}.
Thus, Pr[RA ⇒ m∗|Exi∧Bad] = Pr[RA2 ⇒ m∗|Exi∧Bad] due to the fact that
R just uses the information of the measurement outcome to break the OW-CPA
sucurity.

Construct a meta reduction MRR2 (pk1, c
∗
1) against the OW-CPA security of

the underlying DPKE as follows,

1. Run RA2(pk1, c
∗
1).

2. Simulate A2(pk, c∗,Kb) for RA2(pk1, c
∗
1).

3. Return RA2 ’s output.
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It is easy to see that for above A2 and MRR2 , Pr[Good|Exi] = 1
|M| and

Pr[Bad|Exi] = 1− 1
|M| . Then, we have

AdvOW-CPA
DPKE (MRR2 ) = AdvOW-CPA

DPKE (RA2) ≥ Pr[RA2 ⇒ m∗|Exi] · Pr[Exi]

≥ (1− 1

|M|
) Pr[RA2 ⇒ m∗|Exi ∧Bad] · Pr[Exi]

= (1− 1

|M|
) Pr[RA ⇒ m∗|Exi ∧Bad] · Pr[Exi]

as we wanted. Since Time(A2) ∈ negl(λ), Time(MRR2 ) ≈ Time(R) +Time(A2) ≈
Time(R). ut

6 Main results

Combing Theorems 4.1 and 5.1, we can directly obtain following main Theorem.

Theorem 6.1. If the underlying DPKE is perfectly correct, there exists a quan-

tum adversary A against the IND-CCA security of KEM−U�⊥m such that for
any measurement-based reduction RA that runs A (once and without rewind-
ing), measures A’s query and uses the measurement outcome to break the OW-
CPA security of the underlying DPKE, there exist two meta-reductions MRR1
and MRR2 which take R as a subroutine to break the OW-CPA security of the
underlying DPKE such that AdvIND-CCA

KEM−U�⊥m
(A) ≥

(1− 1
|K| )

√
AdvOW-CPA

DPKE (RA)− AdvOW-CPA
DPKE (MRR1 )− |M|

|M|−1Adv
OW-CPA
DPKE (MRR2 ),

and Time(R) ≈ Time(MRR1 ) ≈ Time(MRR2 ).

Assuming that no PPT adversary can break the OW-CPA security of the
underlying DPKE with non-negligible probability, we must have that AdvOW-CPA

DPKE

(MRR1 ) ≈ AdvOW-CPA
DPKE (MRR2 ) ∈ negl(λ) since Time(MRR1 ) ≈ Time(MRR2 ) ≈

Time(R) is polynomial12, and the message space M is exponentially large due
to the brute-force attack. For real-world applications, the key space K is also

exponentially large. Thus, 1− 1
|K| ≈

|M|
|M|−1 ≈ 1.

Informally, Theorem 6.1 shows the existence of a quantum adversary A a-

gainst the IND-CCA security of KEM−U�⊥m with advantage εA = AdvIND-CCA

KEM−U�⊥m
(A)

such that for any typical measurement-based reduction RA that takes A as a
subroutine to break the OW-CPA security of the underlying DPKE, the advan-
tage εR = AdvOW-CPA

DPKE (RA) is approximately at most εA
2, i.e., εR / εA

2. Namely,

for KEM−U�⊥m from a OW-CPA-secure PKE, typical measurement-based reduc-
tions inevitably have a quadratic security loss.

12 We remark that Time(RA) = Time(R) + Time(A) is exponential since A is an un-
bounded adversary.
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As discussed in Sec. 5, the advantage of currently known reductions, like [17],
can approximately attain above bound εR ≈ εA

2. Thus, Theorem 6.1 also sug-
gests an explanation for the lack of progress in improving the reduction tightness
in terms of the degree of security loss.

Remark: One way to hiding (OW2H) lemma [56, Lemma 6.2] is a practical
tool to prove the indistinguishability between games where the random ora-
cles are reprogrammed. Essentially, the OW2H lemma gives a generic reduction
from a hiding-style property (indistinguishability security) to a one-wayness-
style property (unpredictability) with quadratic loss. It is not hard to expand
the proof of Theorem 6.1 to show that when arguing the indistinguishability
between games where the random oracles are reprogrammed, a reduction from
a hiding-style property to a one-wayness-style property will inevitably have
a quadratic security loss. That is, the bound derived by the OW2H lemma is
optimal in terms of the degree of loss.

6.1 Extension to other (modular) FO transformations

U⊥m, U⊥, U�⊥, QU�⊥m and QU⊥m are variants of U�⊥m, where m (without m, resp.)
means K = H(m) (K = H(m, c), resp.), �⊥ (⊥, resp.) means implicit (explicit,
resp.) rejection13 and Q means adding an additional Targhi-Unruh hash to the

ciphertext. It is easy to see that our main results for U�⊥m can also apply to above
variants from one-wayness security assumption. That is, typical measurement-
based reductions for these variants from one-wayness security assumption will
inevitably have a quadratic security loss.

FO�⊥, FO⊥, FO�⊥m, FO⊥m, QFO�⊥m and QFO⊥m in [5] are KEM variants of FO
transformation [6, 7], and widely used in the NIST KEM submissions. Following

the same analysis for KEM−U�⊥m, we can also show that for these KEM variants
of FO transformation from standard OW-CPA security (and even IND-CPA
security) of the underlying PKE, quadratic security loss is also inevitable for
typical measurement-based reductions.

Theorem 6.2. If the underlying PKE is perfectly correct, there exists a quan-

tum adversary A against the IND-CCA security of KEM− FO�⊥m (see Fig. 5)such
that for any measurement-based reduction RA that runs A (once and without
rewinding), measures A’s query in computational basis, and uses the measure-
ment outcome to break the IND-CPA security (OW-CPA security, resp.) of the
underlying PKE, there exist two meta-reductions MRR1 and MRR2 which take R
as a subroutine to break the IND-CPA security (OW-CPA security, resp.) of the
underlying PKE such that AdvIND-CCA

KEM-FO�⊥m
(A) ≥ (1− 1

|K| )√
AdvIND-CPA

PKE (RA)− AdvIND-CPA
PKE (MRR1 )− |M|

|M|−1Adv
IND-CPA
PKE (MRR2 )− 1

|M|−1

((1− 1
|K| )

√
AdvOW-CPA

PKE (RA)− AdvOW-CPA
PKE (MRR1 )− |M|

|M|−1Adv
OW-CPA
PKE (MRR2 ),

resp.) and Time(R) ≈ Time(MRR1 ) ≈ Time(MRR2 ).

13 In implicit (explicit) rejection, a pseudorandom key (an abnormal symbol ⊥) is
returned for an invalid ciphertext.
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Gen

1 : (pk, sk)← Gen′

2 : k
$← Kprf

3 : sk′ := (sk, k)

4 : return (pk, sk′)

Encaps(pk)

1 : m
$←M

2 : c = Enc′(pk,m;G(m))

3 : K := H(m)

4 : return (K, c)

Decaps(sk′, c)

1 : Parse sk′ = (sk, k)

2 : m′ := Dec′(sk, c)

3 : if Enc′(pk,m′;G(m′)) = c

4 : return K := H(m′)

5 : else return

6 : K := f(k, c)

Fig. 5: KEM− FO�⊥m = FO�⊥m[PKE,G,H,f ], where PKE = (Gen′, Enc′, Dec′) with
message space M and randomness space R, G : M → R, H : M → K are hash
functions, and f is a PRF with key space Kprf .

Remark: It is not hard to extend above results to other KEM variants of the FO
transformation, including FO�⊥, FO⊥, FO⊥m, QFO�⊥m and QFO⊥m, we just omit
them in this paper.

Proof. The proof of Theorem 6.2 is similar to the proof of Theorem 6.1. We first

construct a quantum adversaryA against the IND-CCA security of KEM− FO�⊥m
with advantage at least (1− 1

|K| )
√
p, and then bound the advantage of a typical

measurement-based reduction against the IND-CPA security (OW-CPA security,
resp.) of the underlying PKE by running A and measuring A’s query to utilize
the measurement outcome.

Let A(1λ, pk, c∗,Kb) be a quantum adversary against the IND-CCA security

of KEM− FO�⊥m that does as follows,

1. Search a m∗ ∈ M and r∗ ∈ R such that Enc′(pk,m∗; r∗) = c∗. If none (or
more than one) is found, output 1 and terminate the procedure.

2. Pick a real p such that 0 ≤ p ≤ 1.

3. Sample a m′ according to the uniform distribution over {m′ ∈ M : m′ 6=
m∗}.

4. Query the random oracle H with quantum state |ψ−1〉 :=
√
p|m∗〉|0〉 +√

1− p|m′〉|Σ〉, where |Σ〉 =
∑
k∈K

1
|K| |k〉. The random oracle returns |ψ0〉 :=

√
p|m∗〉|K0〉+

√
1− p|m′〉|Σ〉.

5. Perform a binary measurement M on |ψ0〉 with operators M1 = |Ψ〉〈Ψ |
and M0 = I −M1, where |Ψ〉 = sin(x)|m∗〉|Kb〉 + cos(x)|m′〉|Σ〉 and x =
1
2 arccos(−

√
p√

4−3p
) (sin(2x) ≥ 0).

6. output the measurement outcome.

In the IND-CCA game of KEM− FO�⊥m, c∗ = Enc′(pk,m∗;G(m∗)) for some
m∗ ∈ M, thus there exists at least one m∗ ∈ M and r∗ = G(m∗) such that
Enc′(pk,m∗; r∗) = c∗. Since the underlying PKE is perfectly correct, there exist
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no more than one m∗ such that Enc′(pk,m∗; r∗) = c∗ for some r∗. Thus, the
m∗ that A gets is exactly the one chosen by the challenger. Then, following the
proof of Theorem 4.1, we have

AdvIND-CCA

KEM-FO�⊥m
(A) ≥ √p(1− 1

|K|
). (3)

Then, we use Lemma 6.1 to bound the advantage of a typical measurement-
based reduction R which runs A once without rewinding, measures A’s query
input in computational basis and uses the measurement outcome to break the
underlying security assumption. Collecting the inequalities (3), (4) and (5) in
Lemma 6.1, we can derive the bound as we want in Theorem 6.2.

Lemma 6.1. If PKE is perfectly correct, for any above typical measurement-
based reduction RA, there exist two meta-reductions MRR1 and MRR2 that break
the IND-CPA (OW-CPA) security of PKE such that AdvIND-CPA

PKE (RA) ≤

p+ AdvIND-CPA
PKE (MRR1 ) +

|M|
|M| − 1

AdvIND-CPA
PKE (MRR2 ) +

1

|M| − 1
, (4)

(AdvOW-CPA
PKE (RA) ≤ p+ AdvOW-CPA

PKE (MRR1 ) +
|M|
|M| − 1

AdvOW-CPA
PKE (MRR2 )), (5)

and Time(R) ≈ Time(MRR1 ) ≈ Time(MRR2 ).

Proof of Lemma 6.1 The proof for the case of OW-CPA security is the same
as the one of Theorem 5.1. Here, we just consider the reductions RA against the
IND-CPA security of PKE, see Fig. 6.

Game IND-CPA for PKE

1 : (pk1, sk1)← Gen; b̄← {0, 1}; (m0,m1)←RA(pk1)

2 : c∗b̄ ← Enc(pk1,mb̄); b̄
′ ← RA(pk1, c

∗
b̄); return b̄′ =?b̄

Fig. 6: IND-CPA game for PKE.

Since the underlying PKE is perfectly correct, there exists no more than one
m∗ such that Enc′(pk,m∗; r∗) = c∗ for some r∗ ∈ R. Let Ine (Exi, resp.) be
the event that there exists no (a, resp.) m∗ such that Enc′(pk,m∗; r∗) = c∗ for
some r∗ ∈ R. Thus,

AdvIND-CPA
PKE (RA) =

∣∣2 Pr[RA ⇒ b̄]− 1
∣∣

=
∣∣Pr[Exi](2 Pr[RA ⇒ b̄|Exi]− 1) + Pr[Ine](2 Pr[RA ⇒ b̄|Ine]− 1)

∣∣
≤
∣∣Pr[Exi](2 Pr[RA ⇒ b̄|Exi]− 1)

∣∣+
∣∣Pr[Ine](2 Pr[RA ⇒ b̄|Ine]− 1)

∣∣ (6)

Denote Good (Bad, resp.) as the event that the measurement of A’s query
returns (no, resp.) m∗ such that Enc(pk,m∗; r∗) = c∗ for some r∗ ∈ R. It’s
apparent that

Pr[Good|Exi] = p and Pr[Bad|Exi] = 1− p.
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Thus, we have∣∣2 Pr[RA ⇒ b̄|Exi]− 1
∣∣

= | (2 Pr[RA ⇒ b̄|Exi ∧Good]− 1) Pr[Good|Exi]
+(2 Pr[RA ⇒ b̄|Exi ∧Bad]− 1) Pr[Bad|Exi] |

≤ p
∣∣2 Pr[RA ⇒ b̄|Exi ∧Good]− 1

∣∣+
∣∣2 Pr[RA ⇒ b̄|Exi ∧Bad]− 1

∣∣
≤ p+

∣∣2 Pr[RA ⇒ b̄|Exi ∧Bad]− 1
∣∣ . (7)

Combining the equations (6) and (7), we have AdvIND-CPA
PKE (RA) ≤

p+ | Pr[Ine](2 Pr[RA ⇒ b̄|Ine]− 1) | +|Pr[Exi](2 Pr[RA ⇒ b̄|Exi ∧Bad]− 1)|.

By Lemmas 6.2 and Lemma 6.3, we bound
∣∣Pr[Ine](2 Pr[RA ⇒ b̄|Ine]− 1)

∣∣
and | Pr[Exi](2 Pr[RA ⇒ b̄|Exi ∧Bad]− 1) |.

Lemma 6.2. There exists a meta-reduction MRR1 such that | Pr[Ine](2 Pr[RA ⇒
b̄|Ine]− 1) |≤ AdvIND-CPA

PKE (MRR1 ), and Time(R) ≈ Time(MRR1 ).

Proof. Define A1(pk, c∗,Kb) as a trivial adversary that always returns 1 and
does nothing else. It is obvious that when Ine happens, both A and A1 just
outputs 1, and Pr[RA ⇒ b̄|Ine] = Pr[RA1 ⇒ b̄|Ine].

Construct a meta reduction MRR1 (pk1) against the IND-CPA security of
PKE as follows,

1. Run RA1(pk1).
2. Simulate A1(pk, c∗,Kb) for RA1(pk1).
3. Output RA1 ’s output (m0,m1).
4. Send the challenge ciphertext c∗

b̄
to RA1 .

5. Return RA1 ’s output b̄′.

Since the output of A1 is independent of Exi and Ine, Pr[RA1 ⇒ b̄|Exi] =
Pr[RA1 ⇒ b̄|Ine]. Then we have

AdvIND-CPA
PKE (MRR1 ) = AdvIND-CPA

PKE (RA1) =
∣∣2 Pr[RA1 ⇒ b̄]− 1

∣∣
=
∣∣Pr[Exi](2 Pr[RA1 ⇒ b̄|Exi]− 1) + Pr[Ine](2 Pr[RA1 ⇒ b̄|Ine]− 1)

∣∣
(∗)
≥
∣∣Pr[Ine](2 Pr[RA1 ⇒ b̄|Ine]− 1)

∣∣
=
∣∣Pr[Ine](2 Pr[RA ⇒ b̄|Ine]− 1)

∣∣ .
The inequality (∗) uses the fact for any reals a · b ≥ 0, we have |a+ b| ≥ |a|.

Since Time(A1) ∈ negl(λ), Time(MRR1 ) ≈ Time(R) + Time(A1) ≈ Time(R).
ut

Lemma 6.3. There exists a meta-reduction MRR2 such that | Pr[Exi](2 Pr[RA ⇒
b̄|Exi∧Bad]−1) |≤ |M|

|M|−1Adv
IND-CPA
PKE (MRR2 )+ 1

|M|−1 , and Time(R) ≈ Time(MRR2 ).

Proof. Define A2(pk, c∗,Kb) as follows,
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1. Pick a real p such that 0 ≤ p ≤ 1.
2. Query the random oracleH with quantum state ψ′−1 =

∑
m,k

1√
|M|·|K|

|m〉|k〉.
3. After the return of the random oracle H, return 1 with probability 1.

It is apparent that Pr[RA ⇒ b̄|Exi∧Bad] = Pr[RA2 ⇒ b̄|Exi∧Bad] due to the
fact that R just uses the measurement outcome to break the IND-CPA sucurity.

Construct a meta reduction MRR2 (pk1) against the IND-CPA security of the
underlying PKE as follows,

1. Run RA2(pk1).
2. Simulate A2(pk, c∗,Kb) for RA2(pk1).
3. Output RA2 ’s output (m0,m1).
4. Send the received challenge ciphertext c∗

b̄
to RA2 .

5. Return RA2(pk1, c
∗
b̄
)’s output b̄′.

Since the output of A2 is independent of Exi and Ine, Pr[RA2 ⇒ b̄|Exi] =
Pr[RA2 ⇒ b̄|Ine]. It is easy to see that for above A2 and MRR2 , Pr[Good|Exi] =

1
|M| and Pr[Bad|Exi] = 1− 1

|M| . Thus, we have

AdvIND-CPA
PKE (MRR2 ) = AdvIND-CPA

PKE (RA2) =
∣∣2 Pr[RA2 ⇒ b̄]− 1

∣∣
=

∣∣Pr[Exi](2 Pr[RA2 ⇒ b̄|Exi]− 1) + Pr[Ine](2 Pr[RA2 ⇒ b̄|Ine]− 1)
∣∣

(∗∗)
≥

∣∣Pr[Exi](2 Pr[RA2 ⇒ b̄|Exi]− 1)
∣∣

= Pr[Exi] | Pr[Good|Exi](2 Pr[RA2 ⇒ b̄|Exi ∧Good]− 1)

+ Pr[Bad|Exi](2 Pr[RA2 ⇒ b̄|Exi ∧Bad]− 1) |
(∗∗∗)
≥ Pr[Exi]

∣∣Pr[Bad|Exi](2 Pr[RA2 ⇒ b̄|Exi ∧Bad]− 1)
∣∣

− Pr[Exi]
∣∣Pr[Good|Exi](2 Pr[RA2 ⇒ b̄|Exi ∧Good]− 1)

∣∣
≥ Pr[Exi](1− 1

|M|
)
∣∣2 Pr[RA2 ⇒ b̄|Exi ∧Bad]− 1

∣∣− 1

|M|

= (1− 1

|M|
)
∣∣Pr[Exi](2 Pr[RA ⇒ b̄|Exi ∧Bad]− 1)

∣∣− 1

|M|

as we wanted, where the inequality (∗∗) uses the fact |a+ b| ≥ |a| for any reals
a · b ≥ 0, and the inequality (∗ ∗ ∗) uses the fact |a+ b| ≥ |a| − |b| for any any
reals a, b.

Since Time(A2) ∈ negl(λ), Time(MRR2 ) ≈ Time(R) + Time(A2) ≈ Time(R).
ut
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40. Dagdelen, Ö., Fischlin, M., Gagliardoni, T.: The Fiat-Shamir transformation in a
quantum world. In: Advances in Cryptology – ASIACRYPT 2013, Springer (2013)
62–81
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54. Brunner, N., Navascués, M., Vértesi, T.: Dimension witnesses and quantum state
discrimination. Physical Review Letters 110(15) (2013) 150501

55. Konig, R., Renner, R., Schaffner, C.: The operational meaning of min-and max-
entropy. IEEE Transactions on Information theory 55(9) (2009) 4337–4347

56. Unruh, D.: Revocable quantum timed-release encryption. Journal of the ACM
62(6) (2015) 49:1–49:76

27


