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Abstract. The k-xor or Generalized Birthday Problem aims at finding,
given k lists of bit-strings, a k-tuple among them XORing to 0. If the
lists are unbounded, the best classical (exponential) time complexity has
withstood since Wagner’s CRYPTO 2002 paper. If the lists are bounded
(of the same size) and such that there is a single solution, the dissection
algorithms of Dinur et al. (CRYPTO 2012) improve the memory usage
over a simple meet-in-the-middle.
In this paper, we study quantum algorithms for the k-xor problem. With
unbounded lists and quantum access, we improve previous work by Grassi
et al. (ASIACRYPT 2018) for almost all k. Next, we extend our study
to lists of any size and with classical access only.
We define a set of “merging trees” which represent the best known strate-
gies for quantum and classical merging in k-xor algorithms, and prove
that our method is optimal among these. Our complexities are confirmed
by a Mixed Integer Linear Program that computes the best strategy for
a given k-xor problem. All our algorithms apply also when considering
modular additions instead of bitwise xors.
This framework enables us to give new improved quantum k-xor algo-
rithms for all k and list sizes. Applications include the subset-sum prob-
lem, LPN with limited memory and the multiple-encryption problem.

Keywords: Generalized Birthday Problem, quantum cryptanalysis, list-merging
algorithms, k-list problems, approximate k-list problem, multiple encryption,
MILP, LPN, subset-sum.

1 Introduction

As constant progress is being made in the direction of quantum computing de-
vices with practical applications, the inherent threat to cryptography has led to
massive amounts of research in designing secure post-quantum primitives. To de-
sign these cryptosystems and justify their parameters, one must rely on generic
levels of quantum security. Therefore a precise study of the query and time com-
plexities of quantum algorithms for relevant problems is needed. Furthermore,
improved quantum algorithms may increase the vulnerabilities of some cryp-
tosystems. In this work, we study, from a quantum point of view, an ubiquitous
generic problem with many variants and applications: the Generalized Birthday
Problem, or k-xor problem.



Generalized Birthday Problem. The birthday problem, or collision problem, may
be formulated as the following: given a random oracle H : {0, 1}n → {0, 1}n,
find a collision pair, i.e. x, y ∈ {0, 1}n such that H(x) = H(y). It is well-known
that Ω(2n/2) classical queries are necessary and sufficient. In a seminal paper,
Wagner [34] generalized a method credited to Camion and Patarin [15] to solve
a variant of this problem for k-tuples:

Given some lists L1, . . . , Lk of n-bit strings, find a k-tuple x1, . . . xk
of L1 × . . .× Lk such that x1 ⊕ x2 ⊕ . . .⊕ xk = 0.

Although Wagner studied the case of unbounded lists, many cryptographic
applications are concerned with lists of limited size. For example, if the lists (of
uniformly random n-bit strings) have size 2bn/kc, we expect a single solution with
constant probability. The best classical algorithms for this case are given in [18],
and apply e.g. to the multiple-encryption or subset-sums problems. Alternatively,
if the lists have size 2bn/(k−1)c we may want to find all the expected 2bn/(k−1)c

solutions.

Extension to Other Operations. We choose to focus on the bitwise XOR opera-
tion ⊕ for simplicity. In all algorithms studied throughout this paper, it can be
replaced by modular additions. We provide more details in Appendix A.3.

Classical Complexity of k-xor. Intuitively, increasing k can only make the prob-
lem easier on average, since new degrees of freedom are available. The optimal
query complexity of k-xor is Ω̃(2n/k) queries: with them it is possible to build
O (2n) k-tuples, and retrieve a XOR to zero with constant probability. The main
contribution of Wagner in [34] is to give an algorithm which, although far from
optimal in queries, reaches an efficient time complexity for any k. Its time com-
plexity is Õ

(
2n/(blog2(k)c+1)

)
, using k lists of size 2n/(blog2(k)c+1).

Quantum Complexity. The optimal quantum query complexity of k-xor is known
to be Ω

(
2n/(k+1)

)
[5]. In [20] some quantum algorithms for the solving the k-xor

problem with quantum oracle access are given. For a general k, a time complexity
of Õ

(
2n/(blog2(k)c+2)

)
is obtained in the MNRS quantum walk framework [28]. As

for Wagner’s algorithm, the exponent decreases only at powers of 2. However, the
authors also observed an exponential separation between the quantum collision
and 3-xor time complexities. While collision search requires provably Ω(2n/3)
quantum queries, they present a 3-xor algorithm running in time O

(
23n/10

)
. A

natural question is whether this extends to all k.
Furthermore, this previous work for general k covers only the case of un-

bounded lists. As highlighted above, in many applications we would like to con-
sider a general k and lists of bounded size, as in [18,29].

This paper. In this work, we first answer the open questions stated in [20], which
were far for intuitive or trivial as explained in section 3. We introduce for this the
“merging trees”, that describe in a systematic way merging strategies to solve
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the quantum k-xor problem. This enables us to reach better exponential time
complexities than [20], with exponents that decrease strictly at each new value
of k. With poly(n) qubits and without qRAM, we give quantum speedups for
half of the values of k. We prove that our results are optimal among all merging
trees.

While [20] studied the problem with quantum oracle access, we extend our
framework to classically given lists and lists of limited size, up to the case where
k lists of size only 2n/k are given as input, improving the best algorithms for
most values of k. We give the first quantum k-list algorithms applicable for
all bicomposite problems as defined in [18]. We obtain also the first quantum
time-memory product below 2n/2 for a generic k-list problem with lists of size
2n/k.

We provide several applications of these algorithms, improving the best known
quantum algorithms for subset sums, the BKW algorithm, multiple-ecryption
and the approximate k-list problem.

Outline. In Section 2, we recall some preliminaries of quantum computing, state
the different problems that we will solve and recall previous results. Section 3
summarizes our main algorithmic results. Sections 4 and 5 concern the case of
unbounded lists. In Section 4, we present Wagner’s algorithm and show how to
generalize its idea with the concept of merging trees, which can be adapted to
the quantum setting. These strategies cover all the previously known quantum
algorithms for k-xor and the new ones in this paper. Our results were first
obtained experimentally with the help of Mixed Integer Linear Programming, as
the complexity of a merging tree appears naturally as the solution to a simple
linear optimization problem. This is why our definition focuses on variables and
constraints. In Section 5, we give the optimal merging trees for quantum k-
xor and prove their optimality among all strategies of our framework. We also
compare our new results with the ones from [20]. Next, in Section 6, we extend
to limited input domains, i.e. smaller lists. Finally, in Section 7, we give some
applications, using our new k-list algorithms as black boxes: subset-sums, LPN,
the approximate k-list and multiple-encryption problems. We conclude the paper
with some open questions.

2 Preliminaries

In this section we introduce the problems under study, cover some basic required
notions of quantum computing and summarize the state-of-the-art of algorithms
for these k-xor problems.

2.1 Variants of the k-xor Problem

All algorithms in this paper have exponential time complexities in n, written
Õ (2αkn) for some αk depending only on k. We consider k as a constant and
neglect the multiplicative factors in k and n.
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The k-xor problem has two main variants: the input data can be accessed via
input lists or via an oracle. Classically, this does not make any (more than con-
stant in k) difference. Quantumly, it implicitly determines whether we authorize
quantum access or only classical access to the data.

Problem 1 (k-xor with lists). Given L1, . . . Lk lists of uniformly random n-bit
strings, find x1, . . . xk ∈ L1× . . . Lk such that x1⊕ . . .⊕xk = 0 in minimal time.

Problem 1 is the original problem solved by Wagner in [34], in which the sizes
of the lists is arbitrary, and not a concern. In that case, there exists an optimal
list size, which is exponential in n (otherwise we wouldn’t expect a solution) and
the same for all lists (otherwise we could increase the size of the non-maximal
lists and simply drop the additional elements). The oracle version of this problem
is as follows.

Problem 2 (k-xor with an oracle). Given oracle access to a random n-bit to n-bit
function H, find x1, . . . xk ∈ L1 × . . . Lk such that H(x1)⊕ . . .⊕H(xk) = 0.

Alternatively, one can define Problem 2 with k different random functions,
or Problem 1 with a single input list. These formulations are equivalent up to a
constant factor in k and both will be used in the rest of this paper.

Problem 2 is the one studied in [20], when quantum oracle access to H is
allowed. In that case, instead of querying H for a fixed input x, we are allowed
superposition queries to a quantum oracle OH . This models a situation in which
the production of the lists is entirely controlled by the adversary, and can be
easily implemented on a quantum computer.

Finally, we will allow a limitation of the domain of H, or alternatively, of the
sizes of the lists Li. The limit case happens when there is on average a single
k-tuple with a XOR to zero. We name these problems “unique k-xor”.

Problem 3 (Unique k-xor with an oracle). Given query access to a random dn/ke-
bit to n-bit function H, expecting that there exists a single k-tuple x1, . . . xk such
that H(x1)⊕H(x2)⊕ . . . H(xk) = 0, find it.

Although we choose to focus on these limit cases, our framework will encom-
pass all intermediate cases where the domain size of H (or the size of Li) is
restricted to 2d with

⌈
n
k

⌉
≤ d ≤ n.

Problem 4 (Unique k-xor with lists). Given classical data as k lists L1, . . . ,
Lk of uniformly random n-bit strings, of size 2n/k, find a k-tuple x1, . . . xk ∈
L1 × . . .× Lk such that x1 ⊕ . . .⊕ xk = 0, if it exists.

2.2 Quantum Computing Model and Preliminaries

We use the quantum circuit model. However, as we are only interested in expo-
nential time complexities, we allow ourselves a level of abstraction which should
make our algorithms and complexities understandable even for a non-expert au-
dience. For the interested reader, a thorough introduction to quantum computing
can be found in [31].
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The quantum circuit model is a universal way of describing a quantum com-
putation. We compute with a set of qubits, which are two-dimensional quantum
systems. Their state is described by a vector in a Hilbert space H, of the form
α |0〉+β |1〉, where |0〉 , |1〉 is the canonical basis of H (named the computational
basis), α, β are complex numbers and |α|2 + |β|2 = 1. A quantum circuit starts
with a system of (possibly many) qubits in the state |0〉; then a sequence of
unitary operators (formed of operators known as quantum gates), possibly in-
terleaved with oracle calls, is applied. At the end of the computation, the qubits
are measured. Measurement is destructive: it allows to extract information from
a superposition, but causes it to collapse. For example, measuring α |0〉 + β |1〉
gives 0 with probability |α|2 while setting the state to |0〉.

A widely known example of quantum algorithm is Grover’s algorithm [21].
From a uniform superposition over a search space X, it creates the superposition
over the subset G = {x ∈ X, f(x) = 1} for some function f , assuming that a
superposition oracle for f is given: Of (|x〉 |b〉) = |x〉 |b⊕ f(x)〉. As this procedure

consists in iterating
√
|X|2−t times the same unitary, we speak of “iterations”.

Lemma 1 (Grover Search, from [21]). Let X be a search space, whose ele-
ments are represented on dlog2(|X|)e qubits, such that the uniform superposition

1√
|X|

∑
x∈X |x〉 is computable in Õ (1) time. Assume that we can implement

a superposition oracle Of for f in Õ (1) time. Let G = {x ∈ X, f(x) = 1}.
Then there exists a quantum algorithm using dlog2(|X|)e qubits, running in time

Õ
(√
|X|/|G|

)
that returns some x ∈ G. In particular, if |G| = 1, the running

time is Õ
(√
|X|
)

.

Grover search is known to be optimal when the test f is a black-box oracle [6].

Amplitude Amplification. A generalization of Grover search given in [12] enables
to run a search with a structured search space: if there are 2t partial solutions
amongst the search space X, and if the superposition of elements of X can be
constructed with a quantum algorithm A of complexity |A|, we can recover the

superposition of all preimages of 1 with total time Õ
(√
|X|2−t(|A|+ |Of |)

)
.

In the rest of this paper, we use Grover search as a subroutine. We perform
sequences of Grover searches, and also, nested instances, using Amplitude Am-
plification. We do the complexity estimates as if Grover’s algorithm ran in exact
time

√
|X|/|G| and with success probability 1. More justification is provided in

Appendix A.2.

Benchmarking. We focus on the single-processor model, and count the asymp-
totic quantum time complexity (the number of gates in the circuit), quantum
space complexity (the number of qubits in the circuit) and, when necessary,
classical time and space. This is contrary to works which focus primarily on
quantum query complexity (e.g. [24]), or detailed quantum gate counts.When an
oracle is given, we consider oracle calls in time O (1) and suppose a constant
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quantum space overhead. Asymptotically, we consider that one quantum gate
is equivalent to one classical gate. In practice, there should be a massive (but
constant) factor in-between.

qRAM Models. Classical random-access memory authorizes a constant-time ac-
cess to memory cell whose indices are known only at runtime. However, during
a quantum computation, the index register of such a query, since it depends
on previous computations, is likely to be in superposition. This is why many
quantum algorithms require quantum RAM.

A qRAM authorizes superposition access to its contents, using so-called
“qRAM gates”, an add-on to a traditional universal gate set. Assume that the
quantum circuit holds qubit registers x0 . . . x2n−1 . Then on input: ⊗

j∈{0,1}n
|xj〉

⊗ |i〉 |0〉 we compute

 ⊗
j∈{0,1}n

|xj〉

⊗ |i〉 |xi〉
in a single time step, realizing superposition access to the qubit registers. Using
qRAM gates, it is possible to obtain quantum data structures with fast lookups
(for example the combination of a skip list and a hash table in [2] or the radix
trees of [7]). The access time is generally logarithmic and often neglected as a
global multiplicative factor.

In this paper, we will extensively refer to three settings.

• “Low-qubits”: the quantum computation uses only O (n) qubits and there
are no qRAM gates. The quantum computer can still make use of a classical
memory of exponential size, by performing classically controlled operations.
This model was already considered in [20] and [16].

• QACM (quantum-accessible classical memory): there are qRAM gates, but
the data accessed must be classical. This is the model required by the
collision-finding algorithm of [13] or the QBKW algorithm of [19]. Some
authors [27] consider it more relevant than the QAQM model.

• QAQM (quantum-accessible quantum memory): the quantum computation
can use as many qubits as needed. The data accessed in superposition can be
quantum. This model is obviously the most powerful. The unique collision-
finding algorithm of [2] and the quantum algorithms for subset-sum of [7,23]
require QAQM, as do all cryptographic applications of the MNRS quantum
walk framework [28].

2.3 Overview of Previous Related Work

Classical Algorithms for the k-xor Problem. In Section 4, we will describe
in detail Wagner’s algorithm [34], that provides the current best classical expo-

nential time complexity of Õ
(
2n/(blog2(k)c+1)

)
for any k (there are logarithmic

improvements for non-powers of 2). Many subsequent works have improved the
memory consumption and given new trade-offs [8,32].
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Minder and Sinclair [29] study the success probability and limit the sizes of
the lists at the first level of Wagner’s k-tree. This corresponds to taking an oracle
H : {0, 1}dn → {0, 1}n with d < 1. The authors use MILP to derive the optimal
list sizes depending on the domain restriction. Their optimal algorithms roughly
run in two steps: in the first levels of the binary tree, all pairs of elements are
produced, increasing the list sizes; after that, classical merging is used. They also
perform a precise estimation of the success probability of Wagner’s algorithm.

In [18], the authors study a family of bicomposite problems with a single
solution, which include hard knapsacks, multiple-encryption, and k-xor with a
single solution. They generalize the technique of Schroeppel and Shamir [33]
to improve the memory complexity of these problems. Their method consists
in guessing some intermediate values, then producing efficiently lists of partial
guesses, before matching them. A bigger meet-in-the-middle instance is broken
down into smaller ones.

Later on, more generalized frameworks have appeared, like [3] in the context
of the Short Integer Solution problem, or [17], in which Dinur gives a memory
improvement for some values of k and better time-memory tradeoffs in gen-
eral, by combining parallel collision search, which is used in [32], with dissec-
tion [33,18]. Although we have considered various potential improvements, our
best algorithms for k-xor combine merging (as done by Wagner in [34]) and
guessing intermediate values (as done in [18]), which is why we focus only on
these techniques.

Quantum Algorithms for k = 2. The first algorithm to find quantum colli-
sions was found by Brassard, Høyer and Tapp in 1998 [14,13]. With a two-to-one

function H : {0, 1}n → {0, 1}n, it runs in time Õ
(
2n/3

)
, using as much quantum

queries. The bound Ω
(
2n/3

)
was later proven to be optimal [1] and extended to

random functions [35]. This corresponds to the 2-xor problem with no bound on
the list size. This algorithm also requires a QACM of size 2n/3.

When all 2n outputs of H are distinct, except two of them, Ambainis’ cele-
brated algorithm [2], based on a quantum walk, finds the pair in time Õ

(
22n/3

)
using 22n/3 QAQM. This corresponds to the 2-xor problem with a single solu-
tion. In the QACM model, there is, to date, no quantum algorithm with better
time than the classical meet-in-the-middle.

Chailloux et al. [16] showed that the unbounded 2-xor problem could be
solved in quantum time O

(
22n/5

)
in the low-qubits setting. The uses a classical

memory of size 2n/5. Indeed, a superposition query to a QACM of size 2n/5 can
be emulated by 2n/5 sequential quantum computations. The cost of these queries
is mitigated by the fact that the algorithm makes only 2n/5 of them.

Quantum Algorithms for bigger k. Given a random function H : {0, 1}n →
{0, 1}n, the classical (information-theoretic) query lower bound of the k-xor
problem is Ω(2n/k). The quantum query lower bound is Ω(2n/(k+1)) [5].
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Unbounded Domain Size. Grassi et al. [20] proposed quantum algorithms for
solving the k-xor problem with a quantum oracle for a random function H :
{0, 1}n → {0, 1}n, hence in the case of unbounded lists, as in [34]. They proposed
a quantum analogue of Wagner’s algorithm based on a quantum walk, running

in the QAQM model, in time Õ
(

2
n 1

2+blog2 kc
)

and obtained some quantum time

speedups in the low-qubits model. They also obtained a 3-xor QACM algorithm
of quantum time complexity Õ

(
20.3n

)
, with an exponential improvement over

quantum collision search. In this paper, we subsume and improve all these results.
Notably, our new algorithms in this case require QACM only.

Restricted Domain and Unique k-xor. To the best of our knowledge, the k-xor
problem with limited domain size, including Problem 3, has never been studied
for a general k from a quantum algorithmic perspective. For k = 4, a quantum
walk algorithm (originally designed for solving subset sums) is given in [7]. It

solves Problem 3 in time Õ
(
20.3n

)
, using Õ

(
20.2n

)
QAQM. This represents an

exponential quantum time and memory improvement with respect to k = 2.
However, for other values of k, e.g. k = 5, we must revert to a simple meet-in-
the-middle strategy using Ambainis’ algorithm.

Moreover, while Ambainis’ algorithm gives a general meet-in-the-middle re-
sult, the 4-list algorithm of [7] is not a general 4-dissection algorithm; it does
not apply to 4-encryption (we will explain this in Section 7).

3 Summary of our Main Results

In this section we summarize the optimal time complexities, in our merging tree
framework, for solving Problems 1, 2, 3 and 4, with XORs and modular additions.
The details will be given in the following sections.

The origin of this work was realizing that for some values of k, we were able to
obtain merging algorithms that were more efficient than the ones from [20]. This
could be done by decomposing the original k-xor problem on n bits in smaller
problems, with smaller values of k′ and a smaller number of bits, and merging
them together. At the beginning, we did not find an intuitive way to predict the
best merging strategies for a given k. We decided to implement a Mixed Integer
Linear programa that gave us the best possible algorithms for k ≤ 20. From
these results, we were able to understand the optimal methods and extrapolate
the results given below.

New quantum algorithms for LPN, subset-sums, multiple-encryption and the par-
ity check problem. Whenever a classical algorithm makes use of a black-box k-
xor procedure, we can replace this inner machinery with a quantum merging
algorithm and optimize the strategy using MILP. We have identified various
cryptographic applications of our framework. However, we defer the details to
Section 7 and concentrate here only on the black-box k-xor problems.

a Our code is available at https://project.inria.fr/quasymodo/files/2019/05/

merging_kxor_eprint.tar.gz
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3.1 Quantum Algorithms for Problem 2

In the QACM setting, we prove Theorem 1 and, answering one of the open ques-
tions of [20], show that the time complexity exponent of our method decreases
strictly for each k (see Figure 1 for a comparison).

Theorem 1. Let k ≥ 2 be an integer and κ = blog2(k)c. The best quantum

merging tree finds a k-xor on n bits in quantum time and memory Õ (2αkn)
where αk = 2κ

(1+κ)2κ+k . For c ≤ 1, the same method finds 2nc k-xor with a

quantum (time and memory) complexity exponent of nmax (αk + 2αkc, c).

5 10 15 20
0.1

0.2

0.3

0.4

0.5

k

α
k

[20]
Classical

New

The complexities

are Õ (2αkn)

Fig. 1: Comparison of time complexity exponents between the classical case, the
algorithms of [20] and our new results, in the QACM setting.

In the low-qubits setting, we find the following. Except in the cases k = 3
and k = 5, quantum optimal merging trees give an exponential time speedup for
half of the values of k, where the merging is mostly done classically. This also
answers a question in [20] (see Figure 2 for a comparison).

Theorem 2. Let k > 2, k 6= 3, 5 be an integer and κ = blog2(k)c. The best
quantum merging tree finds a k-xor on n bits in quantum time and classical
memory Õ (2αkn) where:

αk =

{ 1
κ+1 if k < 2κ + 2κ−1

2
2κ+3 if k ≥ 2κ + 2κ−1

The same method finds 2nc k-xor with a (quantum time and classical memory)
complexity exponent of nmax (αk + αkc, c).
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are Õ (2αkn)

Fig. 2: Comparison of time complexity exponents between the classical case, the
algorithms of [20] and our new results, with O (n) qubits only.

3.2 Quantum Algorithms for Unique k-xor

For Problems 4 and 3, we give algorithms in the QAQM model starting from
k = 3. We improve over the previously known techniques for all k that are not
multiples of 4. Our time complexity is given by Theorem 3.

Theorem 3. Let k > 2 be an integer. The best merging tree finds, given k
lists of uniformly distributed n-bit strings, of size 2n/k each, a k-xor on n bits

(if it exists) in quantum time Õ
(
2βkn

)
where βk = 1

k
k+dk/5e

4 . In particular, it
converges towards a minimum 0.3, which is reached by multiples of 5.

3.3 k-xor with Classical Lists

In the QAQM setting, we give the first quantum speedups for Problem 1 for a
general k. We prove Proposition 1. The details are given in Appendix D.

Proposition 1. Let k > 2 which is not a power of 2, let κ = blog2 kc. The

quantum time complexity of k-xor with classical lists is Õ (2αkn) with αk ≤
1

2+blog2 kc
.

4 Introducing the k-Merging trees

In this section, we first present Wagner’s algorithm [34] in two ways: first, as
introduced in [34], second, as an alternative way, which will appear much more
compliant with quantum exhaustive search.

Wagner’s algorithm is a recursive generalization of an idea introduced by
Camion and Patarin [15]. The description in [34] uses lists, but to emphasize
the translation to a quantum algorithm, we will start by considering Problem 2
instead, with a random function H : {0, 1}n → {0, 1}n.
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We will next introduce and define the context of k-merging trees. They pro-
vide a unified framework for merging quantumly (and classically) and enable
automatic search of optimal merging strategies. We will show how to use these
trees in the quantum case, and how to optimize them.

4.1 Wagner’s Binary Tree in a Breadth-first Order

We now fix the constant k. Wagner notices that given two sorted lists L1 and
L2 of random n-bit elements, it is easy to “merge” L1 and L2 according to some
prefix of length u. Let Lu be the lists of pairs x1 ∈ L1, x2 ∈ L2 such that x1⊕x2

has its first u bits to zero. We say that such x1 and x2 partially collide on u bits.
Then Lu can be produced in time max (|Lu|,min(|L1|, |L2|)).

For example, if L1 and L2 contain 2u elements and we want the merged list
of partial collisions on the first u bits, then this list will have a size of around 2u

and can be obtained in time 2u.

If k is given, and if H is a random oracle, Wagner’s algorithm is a strategy
of successive merges which builds a sequence of lists of partial `-xor on u bits,
for increasing values of u < n and ` < k, culminating into a single k-xor.

Example: 4-xor. The strategy for 4-xor is depicted on Figure 3. We start from
4 lists of 2n/3 random elements each. At the second level of the tree, we build
two lists of 2n/3 partial n3 -bit collision (2-xors on u = n/3 bits), by merging the

two pairs of lists in time 2n/3. The root is obtained by merging the two lists of
collisions, expecting a single result since there are 22n/3 4-tuples to form, with
2n/3 remaining bits to put to zero.

Single 4-xor
on n bits

List of 2n/3 collisions
on n/3 bits

List of 2n/3

elements
List of 2n/3

elements

List of 2n/3 collisions
on n/3 bits

List of 2n/3

elements
List of 2n/3

elements

Fig. 3: Structure of Wagner’s 4-xor-tree

General k. If k is a power of 2, we write k = 2κ. In the remaining of this paper,
when k is an integer, we write κ = blog2(k)c for ease of notation. In the context
of Wagner’s algorithm, if k is not a power of 2, we first take k − 2κ arbitrary
elements z1, . . . zk−2κ and then find a 2κ-xor on their sum. So assume without
loss of generality that k = 2κ. All the lists in the tree will have size 2

n
κ+1 .
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• At the lowest level of the tree (level 0), we build k lists of 2
n
κ+1 single ele-

ments, making random queries to H.
• At level 1, we merge the lists by pairs, obtaining 2κ−1 lists, each one con-

taining 2
n
κ+1 collisions on n

κ+1 bits.

• At level i (0 ≤ i ≤ κ − 1), we have 2κ−i lists of 2i-tuples which XOR to
zero on in

κ+1 bits: each level puts n
κ+1 new bits to zero. Notice that all these

bit-positions are arbitrary and fixed, for example prefixes of increasing size.
• At the final level, we merge two lists of 2κ−1-tuples which XOR to zero on

(κ−1)n
κ+1 bits, both lists having size 2

n
κ+1 . We expect on average one 2κ-tuple

to entirely XOR to zero.

4.2 Building a k-tree in a Depth-first Order

To build a node of the tree, it suffices to have built its children; not necessarily
all nodes of bigger depth. Wagner [34] already remarks that this allows to reduce
the memory requirement of his algorithm from 2κ lists (all the leaves of the tree)
to κ.

On Figure 4, we highlight the difference between these two strategies, by
considering the 4-xor tree of Figure 3. In a breadth-first manner, we go from one
level to the other by building all the nodes (the new nodes are put in bold). Four
lists need to be stored (the whole lower level). In a depth-first manner, only two
lists need to be stored.

List of 2n/3

elements
List of 2n/3

elements
List of 2n/3

elements
List of 2n/3

elements

List of 2n/3

elements
List of 2n/3

elements
List of 2n/3

elements
List of 2n/3

elements

(a) Step 1

List of 2n/3 collisions
on n/3 bits

List of 2n/3

elements
List of 2n/3

elements

List of 2n/3 collisions
on n/3 bits

List of 2n/3

elements
List of 2n/3

elements

List of 2n/3 collisions
on n/3 bits

List of 2n/3

elements
List of 2n/3

elements
List of 2n/3

elements
List of 2n/3

elements

(b) Step 2

Single 4-xor
on n bits

List of 2n/3 collisions
on n/3 bits

List of 2n/3

elements
List of 2n/3

elements

List of 2n/3 collisions
on n/3 bits

List of 2n/3

elements
List of 2n/3

elements

Single 4-xor
on n bits

List of 2n/3 collisions
on n/3 bits

List of 2n/3

elements
List of 2n/3

elements

List of 2n/3 collisions
on n/3 bits

List of 2n/3

elements
List of 2n/3

elements

(c) Step 3

Fig. 4: Building the 4-xor tree of Figure 3 in a breadth-first (above) or depth-first
manner (below). At each new step, new lists are built (in bold). We put in dotted
the lists which are either discarded at this step, or do not need to be stored.

Example: 4-xor. We illustrate this depth-first tree traversal with the 4-xor ex-
ample of before. Lists are numbered as in Figure 5.

1. We build and store the list L0 of 2n/3 elements.
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Single 4-xor
on n bits

New collisions

New queries
to H

List L2 of 2n/3

elements

List L1 of 2n/3 collisions
on n/3 bits

New queries
to H

List L0 of 2n/3

elements

Fig. 5: Depth-first order in which to build the lists.

2. We build the list L1 of pairs x, x0 such that x0 ∈ L0, x is a new queried
element, and x ⊕ x0 is 0 on n/3 bits. To build a list of 2n/3 elements, we
need time 2n/3, as each new x has on average one partial collision (n/3-bit
condition) with some x0 in L0 (2n/3 elements).

3. We discard the list L0. We build and store the list L2 of 2n/3 elements.
4. We find a 4-xor on n bits as follows: we make new queries x. Given an

element x, we expect a partial n/3-bit collision with some x2 ∈ L2 (if there
is none, abort for this x). Given the value x⊕ x2, we expect a partial 2n/3-
bit collision with some (x′ ⊕ x0) ∈ L1 (if there is none, abort). Then value
x⊕ x2 ⊕ (x′ ⊕ x0) has 2n/3 bits to zero. It remains to nullify n/3 remaining
bits, which is why we repeat this operation for 2n/3 values of x.

Ensuring a Success Probability of 1. Minder and Sinclair [29] provided a study of
the probability of failure in Wagner’s algorithm. By building the tree in a depth-
first manner, we can easily ensure an exponentially high success probability, that
will hold in the quantum setting as well as in the classical. The idea is to always
ensure that, given a candidate, a list will yield at least one partially colliding
element on the bits that we wish to put to zero. This makes our analysis simpler,
but we must pay a logarithmic overhead. The details can be found in Appendix
A.1.

4.3 Limitations of the Extension to Quantum k-trees

In the breadth-first variant of Wagner’s algorithm, it does not seem easy to use
Grover’s algorithm as a subroutine, as the initial lists are all fixed (although
this is proposed in [17]). In this case, whenever two lists are merged, the time
complexity of this operation is exactly the size of the output list: we cannot
expect any quantum improvement if we are to write this list in memory (quantum
or classical); and we cannot expect to pursue the tree traversal if we haven’t
written this list.

This fundamental problem is the main limitation on the quantum k-xor algo-
rithms of [20]. In their quantum walk approach, they mimic Wagner’s algorithm.
Given a set of queries to H, one reproduces the k-tree and moves from one set
to another in the MNRS quantum walk framework [28]. The inherent limitation
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of this procedure is that it reproduces the classical steps, and cannot yield a
better time when k is not a power of 2. In their low-qubits approach, they use
trees of depth 1: the leaf nodes are produced using some (classical or quantum)
precomputation, and then, they do a Grover search for the final element.

However, in the depth-first variant, each new step corresponds to some new
exhaustive search, as it begins with the query of new elements x which are
matched (not merged) against the currently stored lists. Hence, classical search
can easily be replaced with quantum search; classical queries to H are replaced
with quantum queries. We apply this idea in the next section.

4.4 Examples of Quantum Merging

In the depth-first tree traversal for 4-xor of Figure 5, we now allow quantum
computations. Each new node in the tree will be potentially built using quan-
tum queries to H and lookups to the previously computed nodes. We reuse the
numbering of lists of Figure 5.

1. We build and store the list L0 of 2n/3 elements. Quantum computing does
not help here.

2. We build the list L1 of pairs x, x0 such that x0 ∈ L0, x is a new queried
element, and x ⊕ x0 is 0 on n/3 bits. Since the list is of size 2n/3, and it
needs to be written down, Grover search will not accelerate this step. We
still need time 2n/3.

3. We discard the list L0. We build and store the list L2 of 2n/3 elements.
4. To find the final 4-xor, we are testing 2n/3 values of x, after which we expect

that the partial collision with a candidate in L2 and a candidate in L1 also
nullifies the last n/3 bits. This step can be done using Grover search, in time
2n/6.

At this point, it becomes clear that the tree of Figure 3 must be re-optimized,
so that all steps, including the last Grover search, take the same time. This new
strategy is specific to the quantum setting. We obtain a time complexity of
Õ
(
2n/4

)
, which is that of [20] for 4-xor. We don’t use a quantum walk anymore,

but the procedure still requires Õ
(
2n/4

)
QACM to hold the intermediate lists

L2 and L1 during the final Grover search.
Moreover, the example of 3-xor shows that there exists inherently quantum

merging strategies. In Algorithm 1, which also improves over [20], the corre-
sponding “3-xor-tree” is of depth one. Classically, it does not yield a speedup
over the collision exponent 1

2 .

4.5 Definition of Merging Trees

In order to emphasize that our trees are constructed in a depth-first manner,
and to make their definition more suitable, we start from now on to represent
them as unbalanced trees where each node introduces a new exhaustive search,
as on Figure 6.
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Algorithm 1 Quantum 3-xor Algorithm with QACM

1: Store a list L0 of 22n/7 elements;
2: Using Grover subroutines, build a list L1 of 2n/7 elements with a 2n

7 -bit zero
prefix;

3: Use Grover’s algorithm to find an element x such that f(x) = 1, where f is
defined as:
• Find x0 ∈ L0 which collides with x on the first 2n

7 bits, in time Õ (1),
with probability of success 1,

• Find x1 ∈ L1 such that x0 ⊕ x1 ⊕ x is zero on 3n
7 bits,

• If x0 ⊕ x1 ⊕ x = 0, return 1, else 0.
This requires

√
24n/7 iterations, as x0 ⊕ x1 ⊕ x has always 3n

7 bits to zero;
there remains 4n

7 bits to nullify.

Single 4-xor
on n bits

List L2 of 2n/4

elements
List L1 of 2n/4 collisions

on n/4 bits

List L0 of 2n/4

elements

Fig. 6: Tree of Figure 5 as an unbalanced quantum merging tree.

Since all the complexities throughout this paper are exponential in the output
bit-size n and we focus on the exponent, we write them in log2 as αkn for some αk
which depends only on k. We notice that n is a common factor in all complexities,
so it can actually by removed. Next, we define our unbalanced merging trees. A
tree represents a possible strategy for computing a k-xor; due to our specific
writing, its number of nodes is k. Each node corresponds to computing a new
list, starting from the leaves, computing the root last.

Definition 1. A k-merging tree is defined recursively as follows:

• If k = 1, it has no children: this corresponds to “simple queries” to H.
• If k > 1, it can have up to k − 1 children T0, . . . T`−1, which are ki-merging

trees respectively, with the constraint k0 + . . .+ k`−1 = k − 1.

In other words, a k-sum to zero can be obtained by summing some ki-sums,
such that the ki sum to k (here a +1 comes from the exhaustive search at the
root of the tree).

Next, we label each node of the tree with some variables, which represents
the characteristics of the list computed. We obtain the general shape of a tree
represented on Figure 7.

• The number ` of nodes of the subtree
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• The number u of bits to zero (as a multiple of n)
• The size s of this list: s represents a size of 2sn

• The (time) cost c of producing this list: c represents a time complexity of
2cn

T 0
0

Single k-xor
on n bits

T 1
0

2s
1
0 k1

0-xors
on u1

0 bits

T 1
1

2s
1
1 k1

1-xors
on u1

1 bits

. . .

. . .

T ji
2s
j
i kji -xors

on uji bits

T j+1
0

2s
j+1
0 kj+1

0 -xors

on uj+1
0 bits

T j+1
1

2s
j+1
1 kj+1

1 -xors

on uj+1
1 bits

. . .

T 1
`−1

2s
1
`−1 k1

`−1-xors
on u1

`−1 bits

. . .

Fig. 7: k-merging tree

The Merging Strategy. We now consider a k-node T and the ` subtrees (of
children) T0, . . . T`−1 attached to it. We suppose that they are ordered by their
number of nodes (hence the lists will contain k0-xors, k1-xors, . . . , k`−1-xors,
with k0 + . . . k`−1 + 1 = k). The merging strategy is inherent to the definition
of merging trees, and independent of the computation model. It generalizes the
depth-first examples of Section 4.

Each element of T is built using exhaustive search, with T0, . . . T`−1 as inter-
mediate data. We impose that the zero-prefixes of T0, . . . T`−1 are contained in
one another. Let u0, u1, . . . u`−1 be the sizes of these prefixes and s0, s1, . . . s`−1

the sizes of the lists. Given x in the search space of T , the test proceeds in `
steps. First, we make sure that x has zero-prefix u0. Then we can match it with
the first child T0. Since this child contains 2s0 elements, we can expect to find
x0 ∈ T0 such that x⊕ x0 has u0 + s0 bits to zero. Now we search T1 for some x1

which increases the number of zeroes in x⊕ x0⊕ x1. We would like T1 to have a
zero-prefix of size u1 = u0 +s0. Then x⊕x0⊕x1 will have u1 +s1 = u0 +s0 +s1

zero, and so on.
We see that for this depth-first merging strategy to work, we need a constraint

relating the sizes of the lists and of the prefix of each node. It must hold at any
non-leaf node in the tree.
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Constraint 1 (A pyramid of zeroes) Let T0, . . . T`−1 be the ` subtrees at-
tached to a given k-node T , ordered by their number of nodes. Let u0, u1, . . . u`−1

be their prefix sizes and s0, s1, . . . s`−1 be their sizes. We have:

∀1 ≤ i ≤ `− 1, ui = ui−1 + si−1 .

In other words, given x in the search space for node T , having u0 zeroes,
we expect only one candidate x0 ∈ T0 such that x0 ⊕ x1 has u1 zeroes, one
candidate in T1, etc. This constraint also ensures a success probability of 1 by
the argument of Section 4.2. Since the list of node Ti is responsible for putting
ui+1−ui bits to zero exactly, we ensure that it takes all the values in this range.
Notice that at this point, our definition of merging trees encompasses the binary
tree of Wagner’s algorithm, created in a depth-first manner.

Computation of the cost of a Tree. Since the goal of our strategy is to obtain the
best time complexity for merging, we enforce computational constraints, which
relate the cost of a k-node T with his size and zero-prefix and that of its children.
These constraints depend on the computation model used; whether we authorize
classical or quantum computation, QACM or not.

Constraint 2 (Cost of a leaf node) A leaf node T with size s and zero prefix
u has a cost c such that classically c = u+ s and quantumly c = s+ u

2 .

Classically, finding a single x with a prefix of u bits requires 2u queries to H.
Quantumly, it requires 2u/2 superposition queries with Grover’s algorithm.

Constraint 3 (Cost of a non-leaf node) A k-node T with size s and zero
prefix u, with children T0, . . . T`−1 having sizes s0, . . . s`−1 and prefixes u0, . . . u`−1

has a cost c such that:

• Classically c = s+ u+ u0 − u`−1 − s`−1

• Quantumly, with QACM: c = s+ 1
2 (u+ u0 − u`−1 − s`−1)

• Quantumly, low-qubits: c = s+ 1
2 (u− u`−1 − s`−1) + max

(
u0

2 , s0, . . . , s`−1

)
In the classical setting, there are 2s elements in the node to build and u

zeroes to obtain. We must start from an element with u0 zeroes, which requires
already 2u0 queries. Next, we traverse all intermediate lists, which give us a k-xor
on u`−1 + s`−1 zeroes. There remains u − u`−1 − s`−1 zeroes to obtain, so we
have to repeat this 2u−u`−1−s`−1 times. Quantumly, if we have quantum random
access to the previously computed children, we use Grover’s algorithm. We take
the square root of the classical complexity for finding one element and multiply
it by 2s, the total number of elements in the node. If we don’t have quantum
random access, we can emulate a QACM by a sequential lookup of classically
stored data. This was done in [16] in the case of quantum collision search (2-
xor) and further used in [20] for low-qubit k-xor algorithms. Checking whether
x ∈ Ti can be done in time n2si using a sequence of comparisons. Finding a
partially colliding element on some target takes the same time. Since each child
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list is queried this way, for each iteration of Grover search, the time complexity
becomes:

2s+
1
2 (u−u`−1−s`−1)

(
2
u0
2 + 2s0 + . . .+ 2s`

)
.

We approximate the right sum by 2max(u02 ,s0,...,s`). This remains valid up to
a constant factor in k. In the quantum setting, we will also authorize to fall back
on classical computations if there is no better choice.

Finally, the size and number of zeroes of the final list (the root node) are
parameters of the problem.

Constraint 4 (Final number of solutions) The root T of the tree has zero-
prefix u = 1 (since it requires n zeroes). Its size s is 0 if we want a single tuple,
or γ if we want 2γn of them for some constant γ.

Example. We can take as example Algorithm 1, which builds a 3-xor using two
intermediate lists. We have a merging tree T , where the root has children T0 and
T1. At T0, we build a list of 22n/7 elements: u0 = 0, s0 = 2

7 . At T1 we build a list

of 2n/7 elements with a 2n
7 -bit zero prefix: u1 = 2

7 , s1 = 1
7 . At the root we have

s = 0 and u = 1. The costs of all nodes are c0 = c1 = c = 2
7 . We can verify that

u1 = u0 + s0 and c = s+ 1
2 (u+ u0 − u1 − s1) = 0 + 1

2 (1− 1/7− 2/7) = 2
7 .

4.6 Optimization of Merging Trees

The description of merging trees that we have given above has two purposes: first,
to provide a unified framework for merging quantumly and classically; second,
to enable automatic search of optimal merging strategies. Given a tree structure,
minimizing the total time complexity (the maximum of ci for all Ti) is a linear
problem, that we can solve with Mixed Integer Linear Programming (MILP).
Given k, we can try different possible tree structures and find an optimal one.

Linear Program. We minimize the total time complexity of the merging tree.
By definition of ci, this is the sum of all 2nci for all nodes Ti, starting from the
leaf nodes (which are traversed first) up to the root (which is produced last). We
approximate it to 2nmaxi(ci), up to a constant factor in k. Hence we minimize
c = maxi(ci) under the constraints outlined above.

Adaptations. The constraints of Section 4.5 are the only ones required to solve
efficiently Problem 2. We will amend the framework in Section 6 to solve effi-
ciently Problems 1, 4 and 3.

5 Optimal Merging Trees

In this section, we present our main results regarding Problem 2. We first describe
the shape of the optimal trees, and next, the complexities in the QACM and
in the low-qubit setting. Our results are compared with the ones from [20] on
Figures 1, 2 and Table 3 in Appendix.
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5.1 Description of the Optimal Trees

By testing the different possible merging trees, and optimizing each tree with
a MILP solver, we obtained optimal merging-tree strategies for solving the k-
xor problem in the quantum setting, improving on [20] for many values of k.
Furthermore, the quantum walk of [20] uses QAQM, while our method relies
only on QACM. For non-powers of 2, we reach new and strictly better complexity
exponents for all k. In the low-qubits case, we obtain non-trivial improvements
for k = 5, 6, 7 and a new quantum speedup for half the values of k.

Optimal Trees. First of all, we define a family of trees Tk which will repre-
sent some optimal strategies for k-xor. The root of Tk (a k-xor) has dlog2(k)e
children. The first child contains

⌊
k
2

⌋
-xors on some bits, the second contains⌊

1
2

(
k −

⌊
k
2

⌋)⌋
-xors. In general, child i contains ki-xors, and child i+ 1 contains

ki+1 =
⌊

1
2

(
k −

∑i
j=1 kj

)⌋
. The children subtrees are all Tki .

If the Tk trees are solved with the classical constraints, we recover the com-
plexities of Wagner’s algorithm. Quantumly, we can make use of the additional
nodes when k is not a power of 2. Indeed, Grover’s algorithm allows to create
elements with some zero-prefix quadratically faster. This is the source of the
3-xor quantum speedup (see Algorithm 1), and it can be generalized. We point
out that Tk provides the optimal complexity both in the QACM and low-qubits
setting (for k > 5) however it is not the only merging tree with such optimization.

QACM Setting. In the QACM case, each node that has a non-empty zero pre-
fix is produced using Grover search. We note κ = blog2(k)c and αk = 2κ

(1+κ)2κ+k .

In the optimization of Tk, all the nodes have exactly the same cost (so all the
lists are generated in the same quantum time). For all nodes of the tree, the
optimal values of si and ui are multiples of 1

(1+κ)2κ+k . The whole description

of the optimal tree is easily derived from the constraints, but we do not have
a clear description of it for a given k. We give the tree and constraints in the
example of 11-xor in Appendix B.

Low-qubits Setting. In the low-qubits case, for k 6= 2, 3, 5, the best strategy
is always to use classical searches, except at some leaves of the tree, where
some elements with zero-prefixes are produced using Grover search. This gives
one intermediate level of complexity between two successive powers of 2. For
collision search, we obtain the algorithm of [16] with α2 = 2

5 . For k = 3, we
obtain the algorithm of [20] with α3 = 5

14 , showing that it remains optimal
in our extended framework (contrary to 3-xor with QACM, see Algorithm 1).
The case k = 5 is the last using Grover search at the root of the tree, with a
surprisingly non-trivial α5 = 14

45 . We describe it in full detail in Appendix B.

Memory. The memory used by our algorithms, for an equal time, is always
equal or better than the one from [20], in both settings. Notice that the low-
qubits variants use classical memory only (it can be seen as a quantum-classical
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tradeoff), its O (n) qubits being dedicated to computing. For a time Õ (2αkn),

the QACM variant requires Õ (2αkn) QACM (it is needed to store the leaf lists).

5.2 Optimality in the QACM Setting

The MILP experiments helped us find the time complexity exponents αk for
k ≤ 20, and acquire an intuition of the optimal algorithms for any k. We can
prove this optimality in the QACM setting among all merging trees.

Theorem 1. Let k ≥ 2 be an integer and κ = blog2(k)c. The best quantum

merging tree finds a k-xor on n bits in quantum time (and memory) Õ (2αkn)
where αk = 2κ

(1+κ)2κ+k . The same method finds 2nc k-xor with a quantum (time

and memory) complexity exponent of nmax (αk + 2αkc, c).

Furthermore, for every k, the optimum is realized by Tk.

One can verify that αk gives the expected exponent for powers of 2, where it
is equal to 1

κ+2 .

The idea of the proof is an induction on k. It is possible to prove that, if the
last child of the root node is a list of partial k`-xors, then the optimal exponent
αk satisfies:

1

αk
≤ 1 +

1

2αk−k`
+

1

2αk`
.

This is where the structure Tk appears naturally. Since αk is a decreasing
function of k, to minimize the sum on the right, we need k` equal to bk/2c. By
plugging in this value and using the recurrence hypothesis, we obtain immedi-
ately the formula for αk, and show that it is attained by Tk. The full proof is
given in Appendix B.3.

5.3 Theoretical Result in the low-qubits Setting

In the low-qubits setting, we can explain why Theorem 2 gives the optimal
complexities.

Theorem 2. Let k > 2, k 6= 3, 5 be an integer and κ = blog2(k)c. The best
quantum merging tree finds a k-xor on n bits in quantum time and classical
memory Õ (2αkn) where:

αk =

{ 1
κ+1 if k < 2κ + 2κ−1

2
2κ+3 if k ≥ 2κ + 2κ−1

The same method finds 2nc k-xors with a (quantum time and classical memory)
complexity exponent of max (αkn+ αkc, c).

Furthermore, for every k 6= 3, 5, the optimum is realized by Tk.
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Informally, when k is bigger than 6, the merging operation at the root of the
tree is performed using classical search. Grover search cannot be used anymore,
as each iteration requires to pay the full length of the children (to emulate the
qRAM lookups). In that case, we single out the first child T0. We can rewrite
the k-tree as a single merge between T0, which is a k0-tree, and a k − k0-tree.
The costs of producing these trees should be balanced, hence we should have
k0 = bk/2c as before, and we obtain the tree Tk. Now we can remark that if
k < 2κ + 2κ−1, then bk/2c < 2κ−1 + 2κ−2; and conversely, if k ≥ 2κ + 2κ−1, then
bk/2c ≥ 2κ−1 + 2κ−2. In other words, we fall back very easily on the recurrence
hypothesis.

6 Extended Merging Trees and Quantum Dissections

In this section, we extend merging trees to a much broader setting. We limit the
input domain size, solving Problems 3 and 4 with time complexities better than
the previous algorithms for most of the values of k. All new algorithms in this
section run in the QAQM model.

First we will show how to adapt the merging trees of Section 4 to this new
situation. We will present some examples of algorithms and our general results.
Recall that in our formulation of Problems 4 and 3, the input domain of the
oracle H is restricted to n/k bits and the codomain is n bits; alternatively, the
input lists are of size 2n/k.

6.1 Generalized Merging Trees for Problems 1, 3 and 4.

Our observation is that the dissection technique of [18, Section 3] finds a very
simple analogue in terms of merging trees.

We remark that a merging tree as defined in Section 4 has many unused
degrees of freedom. Indeed, suppose that we are building a tree T with children
T0, . . . T`−1. Each Ti has a zero-prefix of ui bits. We deliberately used the term
“zero-prefix”, but we can actually take any value for these bits. During a search
for a new element of T , we still look for successive collisions, but the values
required depend on the prefixes of each child. All the prefixes are ours to choose,
except for the root, since we still want the final k-tuple to XOR to zero.

This allows to repeat the node T up to 2u0 × 2u1 × . . . × 2u`−1 times, and
to overcome a limitation in the domain size. We write a merging tree as before,
but expect only a small probability of success for the search at the root; so we
interleave this tree with repetitions. The root search can be performed many
more times, by changing the children.

The final time complexity depends on the complexity of the children, and
the number of times that they are repeated. Indeed, suppose that the chil-
dren T0, . . . T`−1 are built in time t0, . . . t`−1 (all of this in log2 and multiples
of n). Suppose also that the root search requires time t. With a total num-
ber of repetitions r before we find a solution, the children will respectively be
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repeated r0, . . . r`−1 times (up to the choices they have in their prefixes) with
r0 + . . .+ r`−1 = r. We can write the time complexity as:

r0(t0 + r1(t1 + . . .) . . .+ t)

by taking an arbitrary order for the children and writing the algorithm as `
nested loops:

0. The first loop iterates r0 times on child T0

1. Inside the first loop, after building T0, the second loop iterates r1 times on
child T1

. . .
`− 1 Inside all ` − 1 previous loops, after building T0, . . . T`−2, the `-th loop

iterates on child T`−1. Inside this loop:
• We build the child T`
• We perform the exhaustive search of the root T , using the children
T0, . . . T`−1

In particular, this method subsumes the algorithms of [18, Section 3] in a clas-
sical setting. It also generalizes the idea of guessing intermediate values (which
are the prefixes of the children Ti) and running an exhaustive search of these,
and extends [18, Section 3] to all intermediate domain sizes.

The quantum correspondence works in a very simple way: these ` nested loops
become ` nested Grover searches. We search among choices for Ti, i.e. choices for
the fixed prefix. The setup (producing the superposition over the whole search
space) remains easy. The test of a choice performs the nested computations:
creating the list Ti itself and running the other searches.

Example: Quantum and Classical 4-dissection. We take the example of
Problem 3. We suppose quantum access to a random function H : {0, 1}n/4 →
{0, 1}n. Classically, the best algorithm is Algorithm 2, from [33], in time 2n/2 and
memory 2n/4. Quantumly, the best algorithm is in [7], in time 20.3n using 20.2n

QAQM. Our method is Algorithm 3. It runs in quantum time 20.3125n, smaller
than a simple meet-in-the-middle, and QAQM 20.25n. It is worse than [7] for
Problems 4 and 3, but we will see in Section 7 that it can be used to attack the
4-encryption problem, contrary to [7].

The classical time complexity of Algorithm 3 would be:

20.25n︸ ︷︷ ︸
choice of u

20.125n

 20.125n︸ ︷︷ ︸
Intermediate

list L1

+ 20.25n︸ ︷︷ ︸
Exhaustive

search


 = 20.625n

which is not optimal. However, as a quantum algorithm with nested Grover
searches, it optimizes differently, since exhaustive search factors are replaced by
their square roots:

20.125n/2 × 20.125n/2
(

20.125n + 20.25n/2
)

= 20.3125n .
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Algorithm 2 Classical 4-dissection

1: Query H and store all the elements H(x) in a list L0

2: for each u ∈ {0, 1}0.25n do
3: Create the list L1 of pairs x, y with x⊕ y = u|∗. This takes time 20.25n,
L1 contains 20.25n elements (indeed, for each element x ∈ L0 we expect a
partial collision on 0.25n bits with some other element y ∈ L0).

4: for each z ∈ L0 do
5: Find t ∈ L0 such that t⊕ z = u|∗.
6: Find x⊕ y ∈ L1 such that x⊕ y ⊕ z ⊕ t gives a 0.5n-bit zero prefix.
7: If x⊕ y ⊕ z ⊕ t is all-zero, then return this result.
8: end for
9: end for

10: Return the 4-tuple that XORs to zero.

Algorithm 3 Optimal merging tree algorithm for Problems 4 and 3 with k = 4

1: Query H and store all the elements H(x) in a list L0

2: for each u ∈ {0, 1}0.25n do
3: for 20.125n repetitions do
4: Build a list L1 of 20.125n partial collisions x⊕y = u|∗, in time 20.125n,

using exhaustive search with L0 as intermediate (if we take any element, we
expect a partial collision on 0.125n bits with some other in L0)

5: for each z ∈ L0 do
6: Find t ∈ L0 such that z ⊕ t = u|∗
7: Find x⊕ y ∈ L1 that collides with z ⊕ t on 0.25n more bits
8: If x⊕ y ⊕ z ⊕ t = 0, then return this result
9: end for

10: end for
11: end for
12: Return the 4-tuple that XORs to zero.

6.2 Quantum Algorithms for Unique k-xor

In what follows, we solve together Problem 4 and 3 in the QAQM model, with
the same time complexities. The reason why there is little difference between
these problems is that, as long as quantum random-access is allowed (QACM
or QAQM), it allows to simulate quantum oracle queries. It suffices to store the
input data in QACM and replace an oracle query by a query to the whole mem-
ory. For k ≥ 4, the cost of storing the whole domain of size 2n/k is not dominant.
For k = 3, there is a difference in the memory complexity. For completeness, the
two procedures for k = 3 are given in Appendix C.

In the general case, we obtain Theorem 3. We do not improve the complexity
of 20.3n for unique 4-xor obtained in [7], but we converge towards it, we reach
it when k is a multiple of 5 and improve on previous works when k is not a
multiple of 4.
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From our observations, we derive the optimal merging-tree time complexity
for Problems 4 and 3. When k is a multiple of 5, we can just apply our 5-xor
algorithm with an increased domain size, and obtain an exponent 0.3. For other
values of k, a good combination of Grover searches allows to approach it. While
this seems easy to infer, optimizing the quantum memory complexity of this
method would require more work.

Theorem 3. Let k > 2 be an integer. The best merging tree finds, given k lists
of uniformly distributed n-bit strings, of size 2n/k each, a k-xor on n bits if it

exists in quantum time Õ
(
2βkn

)
where βk = 1

k
k+dk/5e

4 . In particular, it converges
towards a minimum 0.3, which is reached by multiples of 5.

Without QAQM. Problem 4 becomes more difficult if QAQM is replaced by
QACM. Indeed, assume that we are making a loop on a prefix of u bits, under
which we build and store a list L of elements with u-prefix (before moving to
other computations). It is crucial for our technique to be able to loop over this
prefix with Grover search, in 2u/2 iterations. However, the list L written in each
iteration is now in superposition as well, since it depends on u: it cannot be
stored in classical memory. The solution would be to iterate classically on the
prefix, in 2u iterations. But then, we seem to loose the advantage over classical
computations.

An algorithm for Problem 4 without QAQM can be obtained for k = 3 (and
any multiple of 3) as follows: we store classically one of the lists and we do a
Grover search on the product of the two others. The time complexity is always
Õ
(
2n/3

)
. We leave as an open problem to find QACM algorithms for unique

k-xor (for any k ≥ 3) with a factor less than 1/3 in the complexity exponent, or
even to find algorithms in the low-qubits model.

7 Applications

In this section, we elaborate on various applications of our new algorithms. The
common point of all the problems below is their k-list or bicomposite structure.

7.1 Improved Quantum time – memory Tradeoff for Subset-sums

Using the extended merging trees for Problem 3, we reach a better quantum
time – memory product with respect to the current literature for low-density
knapsacks, as was the case in [18] for classical algorithms.

Let a1, . . . an, t be randomly chosen integers on ` bits. We are looking for a
subset of indices I ⊂ {1, . . . n} such that

∑
i∈I ai ≡ t mod 2`. The hardness of

this problem is related to the density n/`. When ` = poly(n), and we expect
a single solution with high probability, the best classical algorithm [4], runs in

time and memory Õ
(
20.291n

)
. The current best quantum algorithm [23] takes

time Õ
(
20.226n

)
, using as much QAQM.
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A subset-sum problem can easily be translated to a k-sum problem with a
single solution. Indeed, it suffices to separate the set {1, . . . n} into k disjoint
parts J1 ∪ . . .∪ Jk and to start from the lists L1, . . . , Lk, with list Lj containing
all the sums

∑
i∈I ai for I ⊂ Jj .

Both the quantum time and memory (QAQM) complexities of the k-xor (or
k-sum) problem with a single solution vary with k. Optimizing the time-memory
product (more details are given in Appendix C), we find that k = 12 seems the

most interesting, with a product of Õ
(
25n/12

)
= Õ

(
20.412n

)
which is less than

the previous 0.452n.

7.2 New Quantum Algorithms for LPN and LWE

We consider the LPN problem in dimension n with constant error rate 0 ≤ p <
1/2. Given a certain number of samples of the form (a, a ·s+e) where a ∈ {0, 1}n
is chosen uniformly at random and e ∈ {0, 1} is a Bernoulli noise: e ∼ Berp i.e.
P (e = 1) = p. The LWE problem is the generalization from F2 to Fq for some
prime q.

In [9], Blum, Kalai and Wasserman introduced an algorithm solving LPN in
time O

(
2n/ logn

)
, using 2n/ logn samples. Their idea is to combine samples: given

(a1, a1 ·s+e1) and (a2, a2 ·s+e2) one can compute (a1⊕a2, (a1⊕a2) ·s+e1 +e2).
When summing k Bernoulli errors of correlation ε = 1 − 2p, one obtains a
Bernoulli error of correlation εk by the Piling-Up Lemma. Hence, the goal is to
produce sufficiently many sums of ai with almost all bits to zero, with sufficiently
few ai summed, so that one can obtain a bit of s from the samples gathered.
The same principle applies to LWE, although we focus on LPN for simplicity.

In its original version, the BKW algorithm uses 2n/ logn samples and mem-
ory. It starts from the list of samples and repeatedly finds partial collisions,
cancelling n/ log n bits in the ai, until it produces a list of 2n/ logn samples with
a single nonzero bit. In [19], the authors find that there are many advantages
of combining c > 2 samples at a time, that is, using a c-list algorithm in place
of a simple 2-list merge operation. First of all, this reduces the memory used,
which is crucial for practical implementations of the BKW algorithm. Second,
this reduces the number of samples: we start from a smaller list. Finally, they
are able to give the first quantum algorithm for solving LWE.

The c-sum-BKW algorithm is build upon the c-Sum-Problem as defined
in [19, Definition 3.1]: given a list L of N uniformly random b-bit strings, given
t ∈ {0, 1}n find at least N distinct c-tuples of elements of L that xor to t.

They prove that, given an algorithm solving this problem in time Tc,N and

memory Mc,N with overwhelming probability, for b = log cn(1+ε)
logn and N ≥

2
b+c log c+1

c−1 , then their adapted BKW algorithm solves LPN in dimension n in

time T
1+o(1)
c,N and memory M

1+o(1)
c,N .

The authors study the solving of this c-sum problem via the Dissection
method [18] and obtain new time-memory trade-offs. They also study a quan-
tum version of this algorithm, hereby using a naive Grover search in the QACM
model: we store L in QACM and perform a Grover search on all c−1 tuples of L,
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for those who xor to an element of L. The memory used is N . As the parameters
are tailored for N solutions in total, the quantum time complexity is N c/2−1 for
a single solution and N c/2 for all of them. They leave as an open question (end
of Section 1) whether a quantum k-list algorithm could be used in replacement.

New trade-offs. We are in a situation in which the input list is of size Nc and
there are Nc solutions to recover. It is as if we were solving a c-xor problem on b
bits with c lists of size N = 2b/(c−1) each, and wanted all the 2b/(c−1) expected
solutions. Furthermore, we limit the memory (QAQM) used to N . We simply

solve the problem Õ
(
2b/(c−1)

)
times, as in the naive Grover case.

Table 1: Improvements on the quantum-BKW algorithm of [19] (see Table 1 in [19])

Previous (naive + Grover) This paper
c Memory Time Memory Time Time exponent

3 Nc N
3/2
c Nc N

5/3
c 5/3 = 1.667

4 Nc N2
c Nc N

13/7
c 13/7 = 1.857

5 Nc N
5/2
c Nc N2

c 2

6 Nc N3
c Nc N

5/2
c 5/2 = 2.5

7 Nc N
7/2
c Nc N

11/4
c 11/4 = 2.75

8 Nc N4
c Nc N3

c 3

7.3 New Quantum Algorithms for the Multiple-encryption Problem

The multiple-encryption problem is an example of a bicomposite problem exten-
sively studied in [18]. Consider a block cipher Ek with message space and key
space of size n both. We consider the encryption by Ek1 ◦. . .◦Ekr with a sequence
of independent keys k1, . . . kr. Given r plaintext-ciphertext pairs (enough to dis-
criminate the good sequence with high probability), we want to retrieve k1, . . . kr.
Classically, the best time complexity to date is essentially 2dr/2en and the ques-
tion is to obtain better time-memory trade-offs, as it is the case in [18]. We do
not know of any r-list algorithm that wouldn’t be applicable to r-encryption as
well.

In [26], Kaplan proves that 2-encryption is (quantumly) equivalent to element
distinctnessb. However, already for r = 4, we remark that the 4-xor algorithm
of [7] cannot be used to attack 4-encryption. Indeed, in the quantum optimization
of [7], the size of the “intermediate value” that is guessed is not a multiple of
n bits. This has no consequence on Problem 3, but if we try to translate the
algorithm to attack multiple-encryption, we cannot solve efficiently the smaller
meet-in-the middle problems. It would require to produce efficiently (in time
20.8n), from 20.8n choices of k1 and k2, the list of 20.8n pairs k1, k2 such that
Ek1 ◦ Ek2(P ) has some fixed 0.8n-bit prefix.

b Kaplan [26] also gives an algorithm for 4-encryption, but we could not verify its time
complexity.
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We remark that all our r-xor algorithms (on nr bits) can be naturally con-
verted to r-encryption: the size of the prefixes guessed is always a multiple of
n, so we remain in a similar situation as [18], while this was not the case for
quantum-walk based methods. For example, Algorithm 3 provides the best quan-
tum time for 4-encryption that we know of, in quantum time 21.25n and QAQM
2n to obtain the 4n-bit key. Theorem 3 gives the best quantum time complex-
ities for r-encryption for r ≥ 4 and also shows an exponential decrease in the
quantum time complexity with respect to 2-encryption.

7.4 Approximate k-list Problem

In [10], Both and May introduce and study the approximate k-list problem. It
is a generalization of k-xor in which the final n-bit value only needs to have a
Hamming weight lower than αn for some fraction 0 ≤ α ≤ n

2 (so the k-xor is
the special case α = 0). Its main application is solving the parity check problem:
given an irreducible polynomial P (X) ∈ F2[X] of degree n, find a multiple Q(X)
of P (X) of a certain weight and degree. This is used in fast correlation attacks on
stream ciphers. For this application, we can consider quantum oracle access (the
lists actually contain polynomials of the form Xa mod P (X) for many choices
of a).

The match-and-filter algorithm of [10, Section 3] consists in running a k-
xor algorithm with a restricted number of bits to put to zero, and to tailor the
length of the final list so that it will contain one element of low Hamming weight
with certainty. With a quantum k-merging tree, we can always improve on this
classical method in the QACM model. Let αk be the k-xor optimal QACM time
exponent as defined in Theorem 1. We cut the tree at its root: in time Õ (2αkun),
we can obtain a tuple of lists L1, . . . Lt such that, given an n-bit element x, we
can find x1 ∈ L1, . . . xt ∈ Lt such that x ⊕ x1 . . . ⊕ xt has (1 − 2αk)un bits to

zero. Indeed, the Grover search at the root of the tree has also cost Õ (2αkun)
since everything is balanced, so it eliminates 2αkun bits.

Hence, if we want to be able to eliminate un bits for some fraction 0 ≤ u ≤ 1,

we build all these lists in time Õ
(

2
αk

(1−2αk)
un
)

.

Now we do a modified Grover search at the root: given any n-bit element x,
the structure puts un bits to zero. There remains (1 − u)n (random) bits. We
want the Hamming weight of the result to be less than a target cwn. The propor-
tion of (1− u)n-bit strings of Hamming weight less than cwn is approximately:(

(1− u)n
cwn

)
/2(1−u)n ' 2(1−u)n(H(cw/(1−u))−1)) if c ≤ (1 − u) and 1 otherwise,

where H is the binary entropy function. Hence the number of Grover iterations
in this last step is: 2

1
2 (1−u)n(1−He(cw/(1−u)))) where He(x) = 0 if x ≥ 1. It suffices

to look for 0 ≤ u ≤ 1 which optimizes the sum of the time complexities of the
two steps:

2
αk

(1−2αk)
un

+ 2
1
2 (1−u)n(1−He(cw/(1−u)))) .

We obtain the results of Table 2 by numerical optimization.
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Table 2: Quantum speedup of the approximate k-list problem of [10], in the
QACM model.

k = 2 k = 3 k = 4
cw log T/n log T/n

(classical) (quantum)
0 0.5000 0.3333

0.1 0.2920 0.1876
0.2 0.1692 0.1046
0.3 0.0814 0.0481
0.4 0.0232 0.0129

cw log T/n log T/n
(classical) (quantum)

0 0.5000 0.2857
0.1 0.2769 0.1641
0.2 0.1590 0.0935
0.3 0.0778 0.0440
0.4 0.0221 0.0122

cw log T/n log T/n
(classical) (quantum)

0 0.3333 0.2500
0.1 0.2040 0.1460
0.2 0.1238 0.0846
0.3 0.0630 0.0407
0.4 0.0195 0.0116

k = 8 k = 32 k = 1024
cw log T/n log T/n

(classical) (quantum)
0 0.2500 0.2000

0.1 0.1576 0.1200
0.2 0.0984 0.0714
0.3 0.0518 0.0355
0.4 0.0170 0.0106

cw log T/n log T/n
(classical) (quantum)

0 0.1667 0.1429
0.1 0.1091 0.0889
0.2 0.0704 0.0548
0.3 0.0387 0.0284
0.4 0.0914 0.0091

cw log T/n log T/n
(classical) (quantum)

0 0.1667 0.1429
0.1 0.1091 0.0889
0.2 0.0704 0.0548
0.3 0.0387 0.0284
0.4 0.0914 0.0091

8 Conclusion

Better Quantum k-xor Algorithms. In this paper, we proposed new algorithms
improving the complexities from [20] for most values of k in both the QACM
and low-qubits settings. We gave quantum algorithms for the k-xor problem with
limited input size. This enabled us to gave algorithms for k-encryption running
exponentially faster than double-encryption and to reach the best quantum time
– memory product known for solving the subset-sum problem. All our algorithms
can be used by replacing xors by sums modulo 2n.

Optimal Strategies from MILP. We defined the framework of merging trees,
which allows to write strategies for solving k-list problems (classically and quan-
tumly) in an abstract and systematic way. Our optimization results were ob-
tained using Mixed Integer Linear Programming. We used this experimental
evidence to move on to actual proofs and systematic descriptions of our opti-
mums.

Future Work. The merging trees we defined might be extended with more ad-
vanced techniques, inspired by the classical literature on k-list problems. We
tried some of these techniques and could not find a quantum advantage so far.
There are also many cryptographic applications for quantum k-list algorithms
(e.g. lattice algorithms or decoding random linear codes [11]) that we did not
cover yet.
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Open Questions. We have proven some optimality results among all merging
trees, which is a set of strategies that we carefully defined, but we do not know
whether an extended framework could be suitable to improve the quantum al-
gorithms. In particular, the time complexity of our merging tree algorithms for
r-encryption encounters a limit 20.3n. Whether an extended framework could
allow to break this bound remains unknown to us. It would also be interesting
to obtain better algorithms for Problem 4 (unique k-xor) without QAQM, or
even in the low-qubits model.
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Appendix

A On Merging Trees

In this section, we elaborate on our use of Grover search, the probability of
success in merging trees and possible extensions of the framework.

A.1 Ensuring a Success Probability of 1 with a Depth-First Tree
Traversal

A node in a k-merging tree tree is a list L of 2t `-tuples which partially XOR to
zero on v bits, and of their XOR. During the computation, a candidate x having
also a zero-prefix of v bits will be matched against this node, expecting a XOR
with more zeroes, say u new zeroes. If we are not at the root of the tree, we want
at least one match (on average), so u ≤ t. For each candidate to find a match,
it suffices to ensure that the elements of L take all possible bit-strings in the u
bits of the match.

This is a coupon collector problem [30] with 2u coupons, ensuring that up to
logarithmic factor in n and constant in k the complexities remain unchanged.

While constructing L, each new element in this list draws a random coupon
among 2u; we want all coupons with high probability. Let T be the time to
obtain all coupons, and in our case, the number of elements produced before our
condition is met. For all β we have:

P(T > βu2u) ≤ (2u)−β+1

in particular, we crudely bound u by n and notice that:

P(T > βn|L|) ≤ (2u)−β+1

so by taking β = 2, we can see that, by putting an additional factor 2n on the
size of all lists, the probability that the algorithm fails is lower than:∑

lists L

P(T > βn|L|)
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which is negligible in n, as the value u is always a multiple of n, and the total
number of lists in the tree is not more than k2. Even in the limit case where
k approaches 2

√
n, taking a slightly increased value of β is sufficient. These

considerations hold independently of the way list elements are produced. Hence:

When k is a constant, by multiplying all the lists sizes in the tree
by a factor 2n, the merging tree solutions will exist with probability
1− negl(n).

This argument also ensures that each classical merging algorithm runs as
predicted, i.e., if a merging tree has predicted classical complexity 2αn, then the
practical complexity is Õ (2αn). Furthermore, although we need to produce 2n
more elements, the list sizes will actually remain the same as before: elements
in a new list are produced on the fly and for each coupon (wanted prefix), we
just need to keep one. For simplicity, we put this global factor aside and now
turn ourselves towards the quantum algorithms, where other factors need to be
taken into account.

A.2 Grover Search as a Building Block

Throughout the paper, in order to simplify our presentation, we assumed that
Grover search with 2t solutions in a search space of size 2n ran in an exact
number of 2(n−t)/2 iterations and with probability of success 1. If this was the
case, the situation for quantum merging tree algorithms would be exactly the
same as for classical algorithms, and the argument of Section A.1 would suffice.

However, Grover search differs from classical exhaustive search in two ways:
1. the number of iterations is actually

⌈
c2(n−t)/2⌉ where c = π

4 . Furthermore,
the computations inside a Grover iterate need to be reversible, hence this con-
stant c is often multiplied by 2 for uncomputations. 2. Grover’s algorithm is a
probabilistic procedure. In particular, the final measurement can yield an incor-
rect result. We now justify that, for all algorithms studied in this paper, if the
predicted quantum time complexity of a merging tree is 2αn, then the quantum
time complexity for a constant success probability is Õ (2αn).

Runtime of a Sequence of Grover Searches. In the merging trees defined in
Section 4, nodes are built one after another, and each new node requires a
sequence of Grover searches. Hence the whole quantum algorithm is a sequence
of Grover searches, with access to intermediate lists stored in classical memory.
An access to a stored list L1 costsO (|L1|n) quantum operations in the low-qubits
model and (log |L1|)O(1) in the QACM model. Each Grover iterations accesses
at most k2 (the maximal number of nodes in the tree) stored lists, whose size is
exponential in n. Hence all low-qubits accesses can be assumed to cost |L1| and
all QACM accesses can cost 1, with a global poly(n) factor. If L1, L2, . . . are the
successive lists built, the quantum time complexity becomes:

poly(n)
(
|L1|

⌈
c2(n−t1)/2

⌉
+ |L2|

⌈
c2(n−t2)/2

⌉
+ . . .

)
.
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We now justify that this quantum time is Õ (2αn).
First of all, notice that in each of these instances of Grover’s algorithm, the

number of iterations is a single-exponential in n: 2βn where β depends only on
k (it comes from the tree structure). Hence

∣∣⌈c2(n−t1)/2
⌉
− c2(n−t1)/2

∣∣ ≤ poly(n)
where the polynomial depends only on k as well. Hence we can remove all de
in the complexity computation, although the values are not integers anymore.
We put c aside as a global constant factor. The sum obtained: |L1|2(n−t1)/2 +
|L2|2(n−t2)/2 . . . is optimized to 2αn + 2αn + . . . where 2αn is the promised time
complexity of the quantum merging tree. There are at most k2 nodes in the tree,
hence we obtain poly(n) · k22αn = Õ (2αn) as expected.

Error of a Sequence of Grover Searches. We now justify that the probability
of success of the whole tree is 1 − negl(n). When Grover’s algorithm runs with⌈
c2βn

⌉
iterations, and β > 0 is a constant, the failure probability is smaller than

2−βn: it depends on how close the practical number of iterations, which is an
integer, can be to the “ideal” c2βn.

Crucially, when a failure occurs, we can easily detect it, as the result of
each Grover search is immediately measured and stored in memory. Hence when
Grover search fails with probability 2−βn, we need to multiply the number of
searches by 1/(1− 2−βn) (similarly as in Section A.1). We do that at each node,
including the root. The increase in complexity remains negligible in n and the
failure probability is negligible as well.

Runtime of Nested Grover Searches. In Section 6, we used nested instances of
Grover’s algorithm. In that case, we run a Grover search over some search space
X, and to test an element x ∈ X, we do some computations requiring to run
another Grover search. These nested instances come from the loops over guessed
prefixes. The number of such loops can be at most k; inside a loop, there are at
most k lists computed. By a similar argument as above, the multiplicative factor
with respect to the predicted time complexity can be at most: poly(n) · k(2c)k.

Although the computation of new lists is now performed inside outer Grover
searches, we can still take their error into account as before, by increasing the
computational cost by a multiplicative factor negligible in n. However, the nested
loops are instances of Grover search where the test function has some error prob-
ability (see [12]). The final probability of failure is the product of the probability
of failure of each loop, which is negligible in n. As they are at most k nested
loops, it remains negligible.

A.3 Extension to Modular Additions

We elaborate on the case where the bitwise XOR operation is replaced by mod-
ular additions. First, we recall that the classical k-tree algorithm [34] is already
adapted to the k-sum case. Suppose that all the elements lie in the interval
[−M ;M ] where M is some modulus, and we are looking for a k-sum to zero.
Instead of using lists of partially colliding elements, we look for sums falling in
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successive reduced intervals
[
−M

2`
; M

2`

]
. The computing cost is exactly the same

as before.
If we replace XOR by additions modulo 2n, we can easily show that the

merging tree complexities are not impacted. Consider a node T with children
T0, . . . T`−1. With XORs, in T ’s exhaustive search procedure, we take an element
x and find successive candidates x0, . . . x`−1 increasing the number of zeroes of
the sum. With modular additions, we can do the same if we keep a carry bit
alongside the partial collisions. More precisely: we find x0 such that x+ x0 has
its u0 less significant bits to zero. Then we find x1 such that x1 +x0 +x has its u1

less significant bits to zero. We only need to propagate a carry bit. The merging
strategy is unchanged, so the time and memory complexities are unchanged.

A.4 Other Extensions of Merging Trees.

Inspired by the classical works that extended the original k-tree algorithm of
Wagner [17,3,18,32,29], we considered many other possible extensions to merging
trees than the ones of Section 6. However, none of them seemed so far to give
an actual quantum improvement, whether in time or memory.

Clamping. For example, clamping [8] corresponds to taking a prefix of zeroes
for the first leaf of a given node in the tree. This reduces memory usage at the
cost of an increase in time.

Chain-ends. One can replace some lists of single elements by lists of chain-ends,
using Hellman tables [32]. Classically, the simplest is to replace all leaves in
Wagner’s original tree by such tables. It seems possible to translate this in our
framework. Assume we have a node T with children T0, . . . , T`−1, ordered by
their number of nodes. Consider the last child Ti which is a leaf. Constraint all
the other leaves to contain a single, random element (they are simply dismissed).
We replace Ti by a list of chain-ends of some length. When performing the search
for new elements of T , we test collision on Ti by recomputing a chain-end of the
same length. If Ti is of length 2v and contains chain-ends of chains of length 2u,
if T has a prefix of length t, then the classical time complexity is (we don’t write
the factors stemming from the other children and focus on the chain-ends):

2u+v + . . .+ 2t−2u−v−... (2u + . . .)

since roughly, the table allows to find a collision on 2u + v bits, which is then
matched against the other children (whose size has to be optimized accordingly).

Quantumly, iterating a function 2u times still requires 2u calls. In that case,
the time complexity becomes roughly:

2u+v + . . .+ 2(t−2u−v−...)/2 (2u + . . .)

and we can remark that using clamping on u bits (so taking, for the first leaf,
elements with a prefix of u zeroes) uses the same amount of memory but can
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only improve on the time complexity:

2u/2+v + . . .+ 2(t−u−v−...)/2
(

2u/2 + . . .
)
.

The reason for that is that quantumly, finding elements with arbitrary prefixes
is faster than iterating the function (which is not the case classically).

We have not studied the techniques of [18, Section 4], which use a similar
idea in a different context.

B Quantum Algorithms for Problem 2

In this section, we give more details on quantum merging algorithms for Prob-
lem 2 (k-xor with many solutions and quantum oracle access).

B.1 Quantum Low-qubits Algorithm for 5-xor

For k = 5, our algorithm has time complexity 214n/45 and classical memory
complexity 27n/45. The optimized merging tree is depicted on Figure 8. The
computation runs as follows:

• Build node T 2
0 : a list of size 27n/45 of elements with zero-prefix of 14

45n bits,

using a sequence of 27n/45 Grover searches in time:

2
7
45n × 2

1
2×

14
45n = 2

14
45n .

• Build node T 1
2 : a list of size 22n/15 of collisions on 23

45n bits, using the list of
T 2

0 as intermediate, in time:

2
2n
15 × 2

1
2×

2
45n︸ ︷︷ ︸

There remains
2n
45 bits to put to zero

 2
1
2×

14
45n︸ ︷︷ ︸

Finding the

zero-prefix

+ 2
7
45n︸︷︷︸

Lookup of T 2
0

 = 2
14
45n .

Indeed, given an element with 14
45n-bit zero prefix, we find a collision with

T 2
0 on 7n

45 more bits, and to obtain a collision on 23
45n bits there remains only

n
45 iterations to perform.

• Build node T 1
0 : a list of size 22n/15 of elements with zero-prefix of 4n/15 bits

• Build node T 1
1 : a list of 2n/9 elements with zero-prefix of 2n/5 bits

• Build node T 0
0 : a single 5-xor on n bits. For each element with the good zero

prefix, T 1
0 gives a partial collision on 2n/15 more bits. At this point we have

a collision on 2n/5 bits. So there is an element in T 1
1 yielding a partial 3-xor

on 5n/45 more bits, hence 23n
45 bits. And there is an element in T 1

2 yielding a
partial 4-xor on 2n/15 more bits, hence 29n

45 . There remain 16n
45 bits to put to

zero for a given element in the search space, so the Amplitude Amplification
procedure needs 2

8n
45 iterations.
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In each iteration, the setup requires 22n/15, to reduce the search space to
the elements of good zero-prefix. The test requires 22n/15 + 2n/9 + 22n/15 to
go through the three children and find the partially colliding elements (we
suppose that there is exactly one, see Section A.1). The total time is:

2
8n
45︸︷︷︸

Iterations

(
2

2n
15︸︷︷︸

Lookup of
T 1
0

+ 2
n
9︸︷︷︸

Lookup
of T 1

1

+ 2
2n
15︸︷︷︸

Lookup of
T 1
2

)
= 2

14
45n .

T 0
0

5-xors
u0

0 = 1.0 (1)
s0

0 = 0.0 (0)

T 1
0

1-xors
u1

0 = 0.267 (4/15)
s1

0 = 0.133 (2/15)

T 1
1

1-xors
u1

1 = 0.4 (2/5)
s1

1 = 0.111 (1/9)

T 1
2

2-xors
u1

2 = 0.511 (23/45)
s1

2 = 0.133 (2/15)

T 2
0

1-xors
u2

0 = 0.311 (14/45)
s2

0 = 0.156 (7/45)

Fig. 8: Optimized Merging Tree for low-qubits 5-xor

B.2 Merging Tree Complexities for Problem 2

In Table 3, we give our results for solving Problem 2. The table displays αk
instead of a time complexity Õ (2αkn). In the left two columns, the classical
complexities are displayed for comparison. In the next two columns, we give our
results. On the right side of the table, we give them as fractions and compare
with [20]. We highlight the improvements.

B.3 Proof of Optimality in the QACM Case

We give the full proof of Theorem 1 in Section 5.2:

Theorem 1. Let k ≥ 2 be an integer and κ = blog2(k)c. The best quantum

merging tree finds a k-xor on n bits in quantum time (and memory) Õ (2αkn)
where αk = 2κ

(1+κ)2κ+k . The same method finds 2nc k-xor with a quantum (time

and memory) complexity exponent of nmax (αk + 2αkc, c).
Furthermore, for every k, the optimum is realized by Tk.
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Table 3: Best time complexity exponents of k-xor optimized merging trees for k
up to 12, and comparison with the results from [20].

Classical QACM Low-qubits Comparison QACM Comparing Low-qubits
k Rounded Fraction Rounded Rounded This paper [20] This paper [20]

2 0.5 1/2 0.333 0.4 1/3 1/3 2/5 2/5
3 0.5 1/2 0.286 0.357 2/7 3/10 5/14 5/14
4 0.333 1/3 0.25 0.333 4/16 4/16 1/3 1/3
5 0.333 1/3 0.235 0.311 4/17 4/16 14/45 7/22
6 0.333 1/3 0.222 0.286 4/18 4/16 2/7 4/13
7 0.333 1/3 0.211 0.286 4/19 4/16 2/7 3/10
8 0.25 1/4 0.2 0.25 8/40 8/40 1/4 1/4
9 0.25 1/4 0.195 0.25 8/41 1/5 1/4 1/4
10 0.25 1/4 0.190 0.25 8/42 1/5 1/4 1/4
11 0.25 1/4 0.186 0.25 8/43 1/5 1/4 1/4
12 0.25 1/4 0.182 0.222 8/44 1/5 2/9 1/4
...

...
...

...
...

...
...

...
...

Proof. We prove this by induction on k. Recall that we write the complexities
in log2 and as multiples of n, so instead of writing 2ns1 = 2ns2 we write s1 = s2.

We consider a merging tree T that builds a single k-xor. The root has `
children denoted T0, . . . T`−1. Let s = 0, s0, . . . s`−1 be the size variables of
T, T0, . . . T`−1 respectively and u, u0 = 0, u1, . . . u`−1 be the size of zero-prefixes
of T, T0, . . . T`−1 respectively. We also note k0, k1, . . . k`−1 the number of nodes
of T0, . . . T`−1 respectively, and we have k0 + . . . + k`−1 + 1 = k. We order the
children so that k0 ≤ k1 ≤ . . . ≤ k`−1 and u0 ≤ . . . ≤ u`−1.

Remark 1. For simplicity we suppose that we build a single k-xor. In general,
when we want to produce 2nc k-xors for c small enough, the last Grover step will
be repeated 2nc times. If we rewrite carefully the cost constraints, we remark
that all is optimized as if we computed a single k-xor on n+ 2nc bits instead of
n bits, hence the updated complexity exponent. When c is too big, though, we
fall back on classical search.

We first remark that u0 = 0: if we force a non-empty zero-prefix for the first
child, we have to pay a setup of cost 2u0/2 at each iteration of Grover search
at the root T ; whereas we could remove the common u0 bits of prefix from all
subtrees, produce them in less time, and do 2u0/2 more iterations. Since u0 = 0,
the first child also has k0 = 1: producing k0-tuples gives no advantage over single
elements. Its cost is s0, equal to its size.

By the constraints of Section 4.5, we have:

u0 = 0, u1 = s0, u2 = s1 + s0, . . . , u`−1 =

`−2∑
i=0

si .
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We can use the recurrence hypothesis on all subtrees, since ki < k. The cost
of building each of them is: uiαki + 2siαki for i > 1. When the tree is optimized,
we expect all these costs to become equal. We have:

∀i ≥ 1, uiαki + 2(ui+1 − ui)αki = s0 =⇒ ui+1 =
ui
2

+
s0

2αki
. (1)

If we produce 2nc k-xors, so if the root node is a list of size 2nc, it can be
shown additionally that as long as αk + 2αkc < c, then αki + 2αkisi < si. In
other words, the subtrees remain in the regime in which 2nc ki-xors on n bits
cost 22αkinc times the price of a single one, and not the regime in which 2nc

ki-xors on n bits cost 2nc (in which case all the lists are built classically, except
for the leaf nodes).

By an induction on i in (1), we can expand u`−1 depending on s0 and the

αki : u1 = s0, u2 = u1

2 + s0
2αk1

= s0

(
1
2 + 1

2αk1

)
, and:

u`−1 = s0

(
1

2`−2
+

`−2∑
i=1

1

2`−1−iαki

)
. (2)

All of this still comes from the tree constraints and the equality of the cost of
all nodes. For the last child, we also have u`−1αk`−1

+ 2s`−1αk`−1
= s0 hence

s`−1 =
1

2αk`−1

s0 −
u`−1

2
. (3)

Furthermore, the cost of subtree T0, which is s0, is equal to the cost of the
final Grover search, which is 1

2 (1− s`−1 − u`−1) as shown in Section 4.5. By
replacing u`−1 and s`−1 by their respective expressions (3) and (2), we obtain:

s0 =
1

2
(1− s`−1 − u`−1) =⇒ 1 = 2s0 + s`−1 + u`−1

=⇒ 1 = s0

(
2 +

1

2`−1
+

`−1∑
i=1

1

2`−iαki

)
(4)

We note A(αk1 , . . . , αk`−1
) =

(
2 + 1

2`−1 +
∑`−1
i=1

1
2`−iαki

)
, hence the final

complexity exponent will be s0 = 1/A.

A Detour by the Multiple-Candidates Case. Before determining the constraints
of Section 4.5, we defined our merging trees in more generality, by allowing that
a child list yields multiple candidates. Assume for simplicity that we are in the
QACM case. In the exhaustive search operation that is performed by the node
T , we test a new element x. During this test, we find successive candidates: the
first child node yields a x ⊕ x0 with some bits to zero, the second child node
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yields x⊕x0⊕x1 with even more bits to zero, etc. We assumed that there always
was exactly one candidate at each step, but each list could actually yield 2ci of
them, with new variables ci, 0 ≤ i ≤ `− 1.

For example, if there are strictly less zeroes in L1 than elements in L0, then
L0 yields ci > 0 candidates, that all collide with L0 on the bit-positions zeroed
in L1. On the contrary, if there are more, hence ci < 0, then we find a candidate
(and move on to the next lists) only once over 2−ci . Inside the final Grover
search, each current candidate requires a query to the next list, so although all
queries cost O (1), the test costs:

max

(
max (c0, 0)︸ ︷︷ ︸
Number of

queries to T1

, max (c0, 0) + max (c1, 0)︸ ︷︷ ︸
Number of queries to T2

, . . . ,

`−2∑
i=0

max (ci, 0)︸ ︷︷ ︸
Number of queries to

T`−1

)

the reason for the “inner” max in max (c0, 0) is that, even if a list yields less than
one candidate on average and the next one more than one; we must handle all
cases in superposition, so all happens as if each list yielded at least one candidate
(so we replace ci by max (ci, 0)).

The relation between the ui and si is also changed: we have si = ci+(ui+1−
ui), by definition of ci, regardless of its sign, so ui+1 = ui

2 + s0
2αki
− ci and finally:

u`−1 =

`−2∑
i=0

si = s0

(
1

2`−2
+

`−2∑
i=1

1

2`−1−iαki

)
−
`−2∑
i=0

ci

and:

1− s`−1 − u`−1 + 2

`−2∑
i=0

max (ci, 0) = 2s0

so we can adapt (4) by taking into account the ci, and keeping the same expres-
sion A(αk1 , . . . , αk`−1

):

1 + 2

`−2∑
i=0

max (ci, 0) = s0

(
2 +

1

2αk`−1

)
+
u`−1

2
= s0A−

1

2

`−2∑
i=0

ci (5)

Since our intention is to minimize s0 (the final complexity exponent), we
remark that all the ci should be equal to zero. Having more candidates increases
the cost of the inner tests, while giving only a poor improvement on the number
of iterations of the search. Having less increases the number of iterations, for a
constant test cost. None of these situations improve.

Back to the Proof. What remains to do is to choose the ki so that the quantity

A(αk1 , . . . , αk`−1
) =

(
2 +

1

2`−1
+

`−1∑
i=1

1

2`−iαki

)
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becomes maximal, and the complexity exponent s0 = 1/A minimal. We now
single out the term depending on k`−1 in this complexity and rewrite:

A(αk1 , . . . , αk`−1
) = 1 +

1

2

(
2 +

1

2`−2
+

`−2∑
i=1

1

2`−i−1αki

)
+

1

2αk`−1

in which we recognize A(αk1 , . . . , αk`−2
). Our recurrence hypothesis supposes

that the best merging tree for k′ < k gives a complexity exponent αk′ with a
certain formula. So the term A(αk1 , . . . , αk`−2

), which corresponds to the com-
plexity of a k−k`−1 merging tree, must be smaller than 1

αk`−2

. In other words, we

rewrote the complexity of our k-merging tree so that it depends on the complex-
ity of a k − k`−1 merging tree, which is bounded by our recurrence hypothesis.

We have:

A(αk1 , . . . , αk`−1
) ≤ 1 +

1

2αk−k`
+

1

2αk`
.

and we obtain an equality by choosing the tree structure according to the optimal
k − k` merging.

Our recurrence hypothesis also states that αk is a strictly decreasing function
of k. Hence the sum 1

2αk−k`
+ 1

2αk`
becomes optimal when k − k` is close to k`.

In particular cases (when it is impossible to cut exactly in halves), there may be
two choices of equivalent complexity. However, we can still write that this sum
is smaller, for every k`, to the sum with k` = k−bk/2c. This precise choice gives
the tree structure Tk described above. To finish the recurrence, we remark that
the blog2c is the same for both bk/2c and k− bk/2c, and equal to κ− 1 in both
cases (this is a simple case disjunction whether k is a multiple of 2 or not). So
we have:

1

αk
= 1+

(1 + κ− 1)2κ−1 + k − bk/2c
2κ

+
(1 + κ− 1)2κ−1 + bk/2c

2κ
=

2κ(1 + κ) + k

2κ

which is the expected result.
ut

B.4 Optimization on an Example: 11-xor

The optimization of 11-xor is given below. Table 4 contains the constraints.

C Quantum Unique k-xor Algorithms

In this section, we give more details of the algorithms for problems 4 and 3. We
first give the detail of quantum 3-xor algorithms with a domain size of 2n/3 and
a single solution. The classical time complexity of this problem is 22n/3.

Algorithms 4 and 5 differ only in that the latter allows access to a quantum
oracle (which is the case for multiple-encryption), while the former supposes
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T 0
0

11-xors
u0

0 = 1.0 (1)
s0

0 = 0.0 (0)

T 1
0

1-xors
u1

0 = 0.0 (0)
s1

0 = 0.186 (8/43)

T 1
1

1-xors
u1

1 = 0.186 (8/43)
s1

1 = 0.093 (4/43)

T 1
2

3-xors
u1

2 = 0.279 (12/43)
s1

2 = 0.186 (8/43)

T 2
0

1-xors
u2

0 = 0.0 (0)
s2

0 = 0.186 (8/43)

T 2
1

1-xors
u2

1 = 0.186 (8/43)
s2

1 = 0.093 (4/43)

T 1
3

5-xors
u1

3 = 0.465 (20/43)
s1

3 = 0.163 (7/43)

T 2
2

1-xors
u2

2 = 0.0 (0)
s2
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Fig. 9: 11-xor optimization of the tree T11

Table 4: Sequence of constraints on which we optimize the tree T11

Node name Structural constraints Cost

T 3
0 c30 = s30 +

u3
0
2

T 2
4 c24 = s24 + 1

2

(
u2
4 + u3

0 − u3
0 − s30

)
T 2
3 c23 = s23 +

u2
3
2

T 2
2 c22 = s22 +

u2
2
2

T 1
3

u2
4 = s23 + u2

3

u2
3 = s22 + u2

2
c13 = s13 + 1

2

(
u1
3 + u2

4 − u2
2 − s22

)
T 2
1 c21 = s21 +

u2
1
2

T 2
0 c20 = s20 +

u2
0
2

T 1
2 u2

1 = s20 + u2
0 c12 = s12 + 1

2

(
u1
2 + u2

1 − u2
0 − s20

)
T 1
1 c11 = s11 +

u1
1
2

T 1
0 c10 = s10 +

u1
0
2

T 0
0

s00 = 0, u0
0 = 1

u1
3 = s12 + u1

2

u1
2 = s11 + u1

1

u1
1 = s10 + u1

0

c00 = s00 + 1
2

(
u0
0 + u1

3 − u1
0 − s10

)

that the data is given classically. Both have a time complexity of O
(
2n/3

)
.

Algorithm 5 uses only 2n/6 memory, while Algorithm 4 requires 2n/3 memory.
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Algorithm 4 Quantum algorithm for the unique 3-xor problem, with QACM,
without oracle access.

Store all the elements in a list L0 (QACM-accessible)
for x ∈ L0 do

for y ∈ L0 do
Find z ∈ L0 with x⊕ y ⊕ z = 0|∗
If x⊕ y ⊕ z = 0, return this result.

end for
end for

The time complexity of Algorithm 4 is:

2n/3 + 2n/6︸︷︷︸
Search on

x

× 2n/6︸︷︷︸
Search on

z

.

Algorithm 5 Quantum algorithm for the unique 3-xor problem (or 3-
encryption), with QAQM and oracle access

for u ∈ {0, 1}n/6 do
Build a list L0 of 2n/6 elements with prefix u, using Grover search in time

2n/4

for 2n/6 repetitions do
Build a list L1 of 2n/6 elements by querying H
for x′ ∈ {0, 1}n/3 do

Query x = H(x′)
Find y ∈ L0 with z ⊕ y = u|∗
If there exists z ∈ L1 such that x⊕ y ⊕ z = 0, return.

end for
end for

end for

The time complexity of Algorithm 5 is:

2n/12︸ ︷︷ ︸
Search on u

(
2n/4 + 2n/12

(
2n/6︸︷︷︸

Produce
L1

+ 2n/6︸︷︷︸
Search on

x′

))
.

We also give the detail of our quantum algorithm for unique 5-xor (or 5-
encryption). The time complexity of Algorithm 6 is 2n/10

(
2n/5 + 2n/5

)
= 23n/10.

It uses a memory 20.2n.

Finding the Best Time-Memory Product. In general, to reach the time Õ
(
20.3n

)
,

our algorithms for unique k-xor require an amount of 20.2n QAQM, so they do
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Algorithm 6 Quantum algorithm for the unique 5-xor problem, with or without
oracle access. We consider a single list; the case of 5 separate lists is similar.

1: Store all 2n/5 elements (input list L) in QAQM
2: for u ∈ {0, 1}n/5 do
3: Build a list L0 of 2n/5 collisions with prefix u, in time 2n/5, by using L

as intermediate
4: for x ∈ L do
5: for y ∈ L do
6: Find z ∈ L such that x⊕ y ⊕ z has prefix u
7: If there exists t⊕ t′ ∈ L0 such that the whole 5-xor is zero, return.
8: end for
9: end for

10: end for

Algorithm 7 Translation of algorithm 6 to the 5-encryption problem.

1: Input: 5 plaintext-ciphertext pairs (Pi, Ci) which form each an n-bit condi-
tion

2: Output: a sequence of 5 n-bit keys k0, k1, k2, k3, k4 such that Ek4 ◦ Ek3 ◦
Ek2 ◦ Ek1 ◦ Ek0(Pi) = Ci

3: for X ∈ {0, 1}n do . Repetition of the last child
4: Compute E−1

k4
(C1) for all k4

5: Compute Ek3(X) for all k3

6: Build the list of all pairs k3, k4 such that Ek4 ◦Ek3(X) = C1, in time 2n

7: Compute E−1
k3
◦ E−1

k4
(C2) for all these pairs

8: Compute E−1
k2

(X) for all k2

9: for any k1 do . Repetition of the third-to-last child
10: for any k0 do . Root exhaustive search
11: Find k2 such that Ek1 ◦ Ek0(P ) = E−1

k2
(X)

12: Find k3, k4 in the list of precomputed pairs such that E−1
k3
◦

E−1
k4

(C2) is equal to Ek2 ◦ Ek1 ◦ Ek0(P2)
13: The tuple k0, k1, k2, k3, k4 now enciphers P1 to C1 and P2 to C2

14: If it also matches on the other plaintext-ciphertext pairs, return.
15: end for
16: end for
17: end for
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not improve over the 4-xor quantum walk with respect to the time-memory
product. The time-memory product makes sense here, as the entire memory is
QAQM, and may require active hardware (see [22] or [25]). Finding the best
one is merely a change in the optimization goal, the time-memory product being
(in log2) the sum of two variables. We obtain the results of Table 5. They are
difficult to describe, especially since the best algorithms with this respect are
not the best algorithms in time. For example for k = 10, we have an algorithm
running in time Õ

(
20.35n

)
using 20.1n memory. At k = 12, with time Õ

(
2n/3

)
and memory 2n/12, the product is minimal among the instances studied. We do
not know whether it is a minimum over all k.

Table 5: Our quantum time and QAQM complexities for Problems 4 and 3, given
as Õ (2αkn). We emphasize in the first column the improvements with respect to the
previous quantum algorithms known.

Our best time Corresponding QAQM Best t.-m. product
k As fraction Rounded As fraction Rounded As fraction Rounded

3 1/3 0.3333 1/3 0.3333 2/3 0.6667
4 5/16 0.3125 1/4 0.25 9/16 0.5625
5 3/10 0.3 1/5 0.2 1/2 0.5
6 1/3 0.3333 1/6 0.1667 1/2 0.5
7 9/28 0.3214 1/7 0.1429 13/28 0.4643
8 5/16 0.3125 1/8 0.125 7/16 0.4375
9 11/36 0.3056 1/6 0.1667 4/9 0.4444
10 3/10 0.3 1/5 0.2 9/20 0.45
11 7/22 0.3182 3/22 0.1364 5/11 0.4545
12 5/16 0.3125 1/6 0.1667 5/12 0.4167
13 4/13 0.3077 2/13 0.1538 23/52 0.4423
14 17/56 0.3036 5/28 0.1786 13/28 0.4643
15 3/10 0.3 1/5 0.2 7/15 0.4667

D Quantum Algorithms for Problem 1

We now go back to the k-xor problem with “unrestricted domain”, but we remove
quantum oracle access and authorize classical inputs only. In that case, QAQM
access seems necessary to achieve a time speedup against Wagner’s algorithm,
so as before, we present results only in the QAQM case.

The quantum algorithms based on merging trees are a succession of Grover
searches. The main issue is that, contrary to classical k-xor, where the domain
size is exactly given by the leaf lists in the merging tree, the Grover searches
can span a bigger search space than the leaf list sizes. If the input lists are given
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classically, it is still possible to query them in superposition, thanks to quantum
random-access. We can also assume that they are sorted. However, the search
space in the Grover procedure is now limited by the total number of initial
elements.

A solution to this problem is to repeat the subtrees, as we did for the unique
k-xor problem. This does not cost many more elements, since obtaining a zero-
prefix or an arbitrary-prefix can be done by reusing the same search space. We
can also understand that, since the algorithms of [20] are particular cases of
merging trees, without the extension with repetitions, they could not be applied
for the k-xor with classical inputs. As an example, we give a 4-xor algorithm (Al-
gorithm 8) of quantum time complexity: 2n/7

(
2n/7 + 2n/7

)
= 22n/7. In general,

we obtain the results of Figure 10 and Table 6.

Algorithm 8 Quantum algorithm for the 4-list problem with QAQM

Store the input lists L0, L1, L2, L4 of size 22n/7 of n-bit elements in memory
for u ∈ {0, 1}2n/7 do

Build a list L of 2n/7 pairs x, y ∈ L0 × L1 with x ⊕ y = u|∗, by taking
random elements x in L0 and looking for a y ∈ L1 which has this 2n/7-bit
relation

for z ∈ L2 do
Find t ∈ L3 such that z ⊕ t = u|∗
Find, if it exists, x⊕ y ∈ L such that x⊕ y ⊕ z ⊕ t = 0

end for
end for
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This paper

Quantum time of Fig. 1

The complexities
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Fig. 10: Quantum time complexities of the k-xor problem with classical input
data, compared with the k-xor with a quantum oracle, and with the classical
time.
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We can remark the following simple property when k is not a power of 2. For
most values of k (including powers of 2), the exponent is actually better, but it
seems difficult to find a clear pattern for these improvements or to prove some
optimality result.

Proposition 1. Let k > 2 which is not a power of 2, let κ = blog2 kc. The

quantum time complexity of k-xor with classical lists is Õ (2αkn) with αk ≤
1

2+blog2 kc
.

Proof. We give a general algorithm for k-xor without quantum oracle access,
when k is not a power of 2. Suppose that k = 1 + 2κ (the other degrees of
freedom will be simply dismissed). We consider the quantum merging tree for
2κ. It is completely classical, except the last Grover search, for the root. In
particular, the last search must nullify 2

2+blog2 kc
n bits, which is why it runs in

quantum time 2
n

2+blog2 kc .

To build all the nodes except the root, we only need 2
1

2+blog2 kc
n

classical

inputs. However, the root itself would require a search space of size 2
2

2+blog2 kc
n
.

To overcome this limitation, we use the new degree of freedom that we just
added. We perform a Grover search on pairs of elements. ut

In Table 6, we give the exponents obtained for Problem 1 (k-xor with classical
inputs).

Table 6: Complexity of the k-xor problem with classical inputs, compared with quan-
tum oracle access, as Õ (2αkn).

Classical αk Without oracle With oracle
k As fraction Rounded Rounded As fraction Rounded As fraction

3 1/2 0.5 0.3333 1/3 0.2857 2/7
4 1/3 0.3333 0.2857 2/7 0.25 1/4
5 1/3 0.3333 0.25 1/4 0.2353 4/17
6 1/3 0.3333 0.25 1/4 0.2222 2/9
7 1/3 0.3333 0.2353 4/17 0.2105 4/19
8 1/4 0.25 0.2222 2/9 0.2 1/5
9 1/4 0.25 0.2 1/5 0.1951 8/41
10 1/4 0.25 0.2 1/5 0.1905 4/21
11 1/4 0.25 0.2 1/5 0.186 8/43
12 1/4 0.25 0.1951 8/41 0.1818 2/11
13 1/4 0.25 0.1905 4/21 0.1778 8/45
14 1/4 0.25 0.1818 2/11 0.1739 4/23
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