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Abstract

Most existing blockchains either rely on a Nakamoto-style of consensus, where the chain
can fork and produce rollbacks, or on a committee-based Byzantine fault tolerant (CBFT)
consensus, where no rollbacks are possible. While the latter ones offer better consistency, the
former can be more efficient, tolerate more corruptions, and offer better availability during
bad network conditions. To achieve the best of both worlds, we initiate the formal study of
finality layers. Such a finality layer can be combined with a Nakamoto-style blockchain and
periodically declare blocks as final, preventing rollbacks beyond final blocks.

As conceptual contributions, we identify the following properties to be crucial for a
finality layer: finalized blocks form a chain (chain-forming), all parties agree on the finalized
blocks (agreement), the last finalized block does not fall too far behind the last block in the
underlying blockchain (updated), and all finalized blocks at some point have been on the
chain adopted by at least k honest parties (k-support). We also put forward an argument
why finality layers should be asynchronous or partially synchronous.

As technical contributions, we propose two variants of a finality layer protocol. We prove
both of them secure in the setting with t < n/3 Byzantine parties and a partially synchronous
network. The first variant satisfies all of the aforementioned requirements (with k = 1) when
combined with an arbitrary blockchain that satisfies the usual common-prefix, chain-growth,
and chain-quality properties. The other one needs an additional, mild assumption on the
underlying blockchain, but is more efficient and satisfies k = n/3-support. We finally show
that t < n/3 is optimal for partially synchronous finality layers.

∗This work was supported by Concordium Blockchain Research Center, Aarhus University, Denmark.
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1 Introduction
In classical blockchains such as Bitcoin [22], the parties that win some sort of lottery get the
right to append blocks to a chain. Due to network delays, what may cause parties to append
new blocks without knowing about other blocks already appended to the chain by other parties
or adversarial behavior, the chain can fork and become a tree. For that case, parties have
some chain-selection rule, e.g., the longest-chain rule, determining which chain in the tree is
considered valid and where to append new blocks. Therefore, the chain selected by a given
party can change over time, causing rollbacks and invalidating transactions on the previously
selected chain. Since very long rollbacks are unlikely, the risk can be mitigated by waiting until
“sufficiently many” blocks are below a certain block before that block can be considered “final”.
This is problematic for the practical adoption of blockchains, especially for applications such as
cryptocurrencies, where the confirmation time for blocks (and transactions) needs to be almost
immediate. One problem is that “sufficiently many” depends on unknown parameters such as the
network condition. It is therefore unclear how long one really needs to wait. Another problem is
that this waiting time will often be longer than what is desirable for applications: Even assuming
perfect network conditions and 1/3 corruption, the adversary can with probability 1/3k win k
times in a row and thereby cause a rollback of length k. This means that to limit the rollback
probability to 2−80, one needs to wait for at least 50 blocks. Taking Bitcoin as an example,
where a new block is generated roughly every 10 minutes, this results in waiting for more than 8
hours. Considering more sophisticated attacks and unclear network conditions, an even longer
waiting time would be necessary in practice.

A main reason for the slow finality is that the simplistic rule of looking far enough back in
the chain needs to take a worst-case approach. It is extremely unlikely that the adversary wins
50 blocks in a row, but if you want 2−80 security against a 33% adversary, you constantly have
to behave as if it just happened.

We propose a finality layer that can be composed with any synchronous or partially syn-
chronous blockchain (cf., [10, 24, 8]) that has the property of common prefix (as defined by [10]).
Our finality layer allows to dynamically “checkpoint” the blockchain by using Byzantine agree-
ment to identify and then mark common blocks in the honest user’s chain as final, essentially
turning the new final blocks into genesis blocks. The goal of our finality layer is to guarantee
that a block becomes final much faster than the 50 blocks waiting time mentioned above; once a
block is in the common-prefix it should quickly become final. In this sense, the finality layer
should be responsive: if blocks quickly become agreed upon, they also quickly become final.
Once a block is final, honest parties will never do a rollback behind this block.

Communication model. We assume a partially synchronous (or semi-synchronous) network
model [9, 8]. This means that there is an upper bound ∆net on the network delay, but in contrast
to the synchronous model, this bound is not known to the protocol. In particular, ∆net cannot
be used in a partially synchronous protocol. This can be modeled by letting the adversary
pick ∆net after the protocol was designed. We next argue that this is an appropriate model
for blockchain finality layers. Assuming that it is possible for parties to exchange messages
within some bounded time seems to be reasonable in practice (note that this bound can be
very large, say one day). Typically, the network will run much faster than this bound, though.
Using some large bound in a synchronous protocol is therefore hugely inefficient. On the other
hand, a partially synchronous protocol runs fast if the network is fast as it cannot depend on the
unknown upper bound, only the actual network delay. As we discuss in the following paragraph,
a finality layer is particularly useful in situations where the network is partitioned for some
limited time (due to for instance a misconfiguration of the network, a distributed denial of
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service (DDoS) attack, or a huge earth quake crippling Internet connectivity). In such situations,
messages cannot be delivered within the usual timeframe (so synchronous protocols assuming a
too small bound fail), but they can be delivered again once the network rejoins. This therefore
fits nicely into the partially synchronous model, where ∆net can just be set to be larger than
the duration of such partitions.

Finality layers versus pure BFT consensus. Committee-based Byzantine fault tolerant
(CBFT) consensus designs such as the ones employed by Tendermint [19, 3] and Algorand [20, 13]
provide immediate finality, i.e., every block that makes it into such a blockchain can be considered
final. Such a blockchain obviously does not need a finality layer. There are several reasons why
it still makes sense to combine a Nakamoto-style blockchain with a finality layer, instead of
directly using a CBFT blockchain:

• A finality layer can be put on top of any Nakamoto-style blockchain, yielding a modular
design. This allows to optimize the two aspects separately. In particular, our finality layer
could be retrofitted on top of existing blockchains to get responsive finality.

• Nakamoto-style consensus, especially its proof-of-stake variant, can produce blocks much
faster than CBFT consensus. This can be obtained by, for instance, setting the block-time
aggressively. For such high-throughput blockchains it can be hard to give a reasonable
good worst-case bound on common-prefix. But if you add to them a partially synchronous
finality layer, you turn them into fast blockchains with responsive finality. Another view
on this is that if you know you are designing a blockchain that will be given a finality layer,
you can allow yourself to make much more aggressive designs. Your blockchain should
just ensure that on average there is a good common-prefix, and that there is always some
upper bound on the common prefix. You need not even know this bound.

• CBFT protocols tend to be very slow if the number of participants is high. Therefore
most CBFT protocols like Algorand and Tendermint work by sampling the committee
as relatively small subsets of parties. Algorand proposes a committee size of 1500 to get
security in at the level normally consider by cryptography (2−60). Tendermint in some
versions propose using significantly smaller committees for efficiency, which results in
sub-cryptographic security. By only using the CBFT for finality, we can tolerate to run
with bigger committees. The underlying blockchain ensures throughput by for instance
having a block-time in the seconds, and the finality layer can be designed to work with
that: If the finality layer takes 10 minutes to finalize a block and you have a 10 second
block-time, simply finalize only every 60 blocks.

• Using a two-layer approach, as we propose in this paper, provides the best of both worlds:
Transactions make it into the blockchain very quickly, but may still be subject to a rollback
until they are finalized. For small transactions between mutually trusting parties, they can
decide to accept the risk and proceed directly. If stakes are high, the parties can wait until
the transaction appears on a finalized path where, for a good finality layer, this waiting
time should roughly correspond to the time it takes a CBFT protocol to produce the next
block. Therefore, parties in our design can, for each transaction, adaptively decide whether
they want to be fast or safe, giving the best possible guarantees in both cases.

• The well-known CAP-Theorem [2, 14] implies that in the presence of a catastrophic network
partition, one cannot have both consistency and availability. This means that in case
of a partition, say between different continents, one has to choose between consistency
and availability. In Nakamoto-style blockchains, the chains will keep growing on each
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continent, i.e., there is availability. Once the network joins again, there will be long
rollbacks on some continent, i.e., there is no consistency during partition. On the other
hand, CBFT blockchains choose consistency over availability by not producing any new
blocks during the partition (assuming that no continent contains more than 2/3 of all
parties/stake/computing power/. . . ). Our design again provides the best of both worlds:
The blockchains on each continent will keep growing, but finalization will turn off during
the partition. As in the previous point, users can now again choose whether they want
to accept transactions on the chain (i.e., choose availability), or wait until finalization
continues to work (i.e., choose consistency). This means that our design puts the choice
between consistency and availability into the hands of the users of the system. Furthermore,
this choice can be made for each transaction individually. In contrast, for existing designs
like Bitcoin and Algorand, this choice is fixed by the protocol designer once and for all.

• Lastly, Responsive CBFT protocols cannot tolerate more than t < n/3 corruptions (cf. [25]).
This means that designs which use CBFT for producing blocks can catastrophically break
down if it happens once in the lifetime of the system that 34% of the parties are corrupted.
On the other hand, some blockchain designs tolerate 49% corruption. Some designs in
fact tolerate periodic corruption of > 51% if only over long enough periods the average
corruption is below 50%. It therefore makes sense to have a two layer design where the
blockchain ensures the eventual agreement and the finality layer ensures only finality. If at
some point the corruption reaches 49% the finality property might break, but eventual
agreement still holds, as the blockchain keeps running. One can even mitigate such
a catastrophic event by having a fallback finalization on the blockchain using a very
conservative common-prefix bound. We propose it as interesting future work to further
explore such gradual degradation of security and recovery from such catastrophic events.
Having a modular two-layer design dividing the responsibility of eventual agreement and
finality seems to facilitate this study.

1.1 Our Techniques

We assume there is a finalization committee such that less than 1/3 of the committee is corrupted.
Selecting such a committee is an independent problem, which has been studied in the literature
and is not the focus of this work. In Section 8, we give an overview of some ways to select
committees. This finalization committee is responsible for finalizing the next block. The block
they are to finalize is the one at depth d, where d is some depth in the tree that they all agree
on and which is deeper than the currently last finalized block. To ensure all parties agree on the
value of d, it is deterministically determined by the blocks from genesis up to the last finalized
block.

When a committee member has a best chain which reached depth d + 1, it votes on the
block it sees at depth d on its best chain using a committee-based Byzantine fault tolerance
consensus protocol (CBFT). This protocol is designed such that it succeeds if all parties vote
for the same block, otherwise it might fail. If the CBFT announces success, the block that it
outputs is defined to be final. This is enforced by modifying the best chain rule to always prefer
the chain with the most final blocks. If the CBFT reports failure, the committee members will
iteratively retry until it succeeds. In the i’th retry they wait until they are at depth d+ 2i and
vote for the block they see at depth d on their best chain. Eventually 2i will be large enough
that the block at depth d is in the common-prefix, and then the CBFT will succeed. The process
then repeats with the next committee and the next depth d′ > d.

This finality layer works under the assumption that there is some non-trivial common-prefix.
It does not need to know how long it is. It only assumes that some unknown upper bound exists:

5



the protocol is partially synchronous. The rational behind this is twofold. It gives responsive
finality: when the common-prefix value is low, we finalize quickly. It also makes the finality layer
work as a hedge against catastrophic events.

Common-prefix and unique justified votes. The procedure described above ensures that
at some point, the block to be finalized at depth d is in the common-prefix. Then, the common-
prefix property ensures that all honest parties vote for that block. It is still possible for dishonest
parties to vote for another block. We propose two protocol variants that deal with this in
different ways.

The first variant requires an additional property of the underlying blockchain, which we call
bounded dishonest chain growth. It implies that a chain only adopted by dishonest parties grows
slower than the chains of honest parties. This holds for many blockchains (assuming honest
majority of the relevant resource), but it may not hold, e.g., if the blockchain allows parties
to adaptively adjust the hardness of newly added blocks. In that case, dishonest parties can
grow long chains with low hardness quickly without violating the common-prefix property, since
honest parties will not adopt those chains with low hardness.

Given this additional property, we have that at some point, there will be only one block at
depth d lying on a sufficiently long path. Note that when a party votes for a block at depth d,
we can ask the party to justify the vote by sending along an extension of the path of length
2i. So we can ask that our CBFT has success only when all parties vote the same, even the
corrupted parties. In all other cases it is allowed to fail. Since any path can eventually grow
to any length, the property that there is a unique justified vote is temporary. We therefore
start our CBFT with a so-called Freeze protocol which in a constant number of rounds turns
a temporarily uniquely justified vote into an eternally uniquely justified vote. After that, the
CBFT can be finished by running a Boolean-valued Byzantine agreement on whether Freeze
succeeded.

The second protocol variant does not rely on bounded dishonest chain growth and consequently
works with any blockchain with the typical properties. We still get from the common-prefix
property that at some point, all honest parties will vote for the same block. We exploit this by
adding an additional step at the beginning of the first protocol variant, which tries to filter out
votes that come only from dishonest parties.

Keeping up with chain growth. We want that the finalized blocks do not fall behind the
underlying blockchain too much. We call this the updated property of the finality layer. To
guarantee this, the depths for which finalization is attempted need to be chosen appropriately.
Ideally, we would like the distance between two finalized blocks to correspond to the number of
blocks the chain grows during the time needed for finalization. Since parties have to agree on
the next depth to finalize beforehand, they can only use information that is in the chain up to
the last finalized block to determine the next depth.

We use the following idea to ensure the chain eventually catches up with the chain growth:
When parties add a new block, they include a pointer to the last block that has been finalized at
that point. They also include a witness for that finalization, so that others can verify this. If the
chain does not grow too fast, at the time a finalized block is added to the chain, the previously
finalized block should already be known. If the chain grows too fast, however, we keep finalizing
blocks that are too high in the tree. In the latter case, the pointer to the last finalized block
in some block will be different from the actually last finalized block. If we detect this, we can
adjust how far we need to jump ahead with the following finalization.
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1.2 Related Work

To the best of our knowledge, there is no prior work on provably secure finality layers, let alone
works formalizing the desirable security properties of finality layers.

The most closely related work seems to be Casper [4], which was the first proposal of a
modular finality layer that can be built on top of a Nakamoto-style blockchain. Casper presents
a finality layer for PoW blockchains where a finalization committee is established by parties that
are willing to “deposit” coins prior to joining the committee. The committee members can vote
on blocks that they wish to make final and a CBFT protocol is used to achieve agreement; if
more than 2/3 of the committee members (weighted by deposit value) vote on the same block,
then the block becomes “final”. Casper also employs a penalty mechanism known as slashing; if
a committee member signs two conflicting votes, its previously deposited coins can be slashed
from the system as a penalty. However, since the authors do not present a formal network
model and a detailed protocol description and analysis, it is not clear if the Casper protocol
guarantees liveness and/or safety in our partially synchronous model. In particular, the authors
only consider what they call “plausible liveness”, but there is no guarantee that liveness actually
holds.

We do not present a blockchain. Our finality layer needs to run on top of a secure blockchain
to achieve consensus. Similarly, existing consensus protocols are not finality layers. Yet,
it is instructive to compare our finality layer to existing consensus protocols, in particular
Algorand [20, 13], Thunderella [26], and Hybrid Consensus [25].

The consensus protocol closest to ours is Hybrid Consensus by Pass and Shi, and the closely
related Thunderella. They take an underlying synchronous blockchain and use it to elect a
committee. Then the committee runs a CBFT protocol to get a responsive consensus protocol,
i.e., the committee is producing the blocks. This does not add finality to the underlying
blockchain, and blocks produced by the committee are not final either, unless the committee
itself is already final. If the blockchain experiences a rollback behind the block where the
committee was elected, all the blocks of the committee are lost. The way this is handled in
Hybrid Consensus is to assume that the underlying blockchain has a known upper bound on
how long rollbacks can be. They then look that far back in the currently best chain to elect the
committee. One disadvantage is that the committee will tend to be old, so they implicitly assume
that nodes stick around for a long time. Also, the design is not robust against a catastrophic
partitioning. If some day the network partitions for a long time, separate committees will form
on both sides of the partitioning. We could cast our work in terms of theirs as follows: we can
elect the next committee in the same way as HC. But the committee would not produce blocks,
instead it introspectively tries to agree on a recent block in the underlying blockchain. We then
do a binary search to look far enough back to reach agreement. When we agree, that block is
defined as final. Now we could use that final block to elect the next committee in the same way
as HC. That way, we can typically elect the next committee from a much more recent block.
Thus, we do not need to assume that recent block winners stay online for as long as HC. In
principle after having added responsive finality like above to any blockchain, one could add HC
on top: elect committees from recent final blocks and let the committee produce blocks using a
CBFT. We, however, conjecture that eventually the fastest designs will be by fast blockchains
with a finality layer on top and not from blockchains with a block producing CBFT committee,
at least when run with comparable cryptographic security. This is an interesting question to
explore in future theoretical and experimental work.

Another closely related consensus protocol is Algorand. It also uses a CBFT to produce
blocks. In Algorand the committee is elected at random using a proof-of-stake approach. It
introduces a very elegant protocol which is “player replaceable”. For each move in the protocol,
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like “send player i’s messages in round r”, a party is elected using a lottery. The protocol is
such that any party can take on the role. Each winner speaks only once. The adversary cannot
predict who is the winner until the message is sent. This gives an ultimate protection against
DDoS attacks. Like other CBFT designs, if the network partitions, Algorand will deadlock: it
picks consistency over availability by design. This is because in at least one side of the partition
a too small committee will be elected. This is under the assumption that honest participation
does not fluctuate too fast. In case of rapid fluctuations in the amount of online honest stake
this could lead to a fork. To illustrate this, consider an extreme example: if the amount of
stake quickly doubles and the network experiences a temporary partition at the same time, a
new committee of sufficient size might be elected on both sides of the partition, leading to an
irreparable fork. An adversary can try to provoke this by turning all his stake active at the
time of a spike in online honest stake and mounting a DDoS attack on the network in the same
moment. Notice that in our design the previous committee “approves” the next committee,
as we assume that the next committee can be determined deterministically from the previous
final block, which was uniquely chosen by the previous committee. This Algorand cannot do,
as the next committee by design is not known until they speak. We have chosen the design of
“approving” the next committee to get finality independently of how fast honest participation
fluctuates, as we did not want to make too many assumptions on the underlying blockchain. The
price is to open up for DDoS attacks. It seems like an interesting open problem to get a player
replaceable CBFT which can simultaneously tolerate rapid fluctuations in honest participation
and network partitions.

1.3 Outline

In Section 2, we describe our assumptions on the network and the overall model, and recall some
basic concepts from graph theory that we use later. In Section 3, we describe how we model
the underlying blockchain and our assumptions on its properties. We formalize the goal of a
finality layer in Section 4. In Section 5, we present the Afgjort protocol, which uses a weak
multi-valued Byzantine agreement that we present in Section 6. In Section 7, we prove that
the Afgjort protocol satisfies the properties of a finality layer we introduced in Section 4. In
Section 8 we finally discuss how to select finalization committees.

2 Preliminaries

2.1 Model and Network Assumptions

We assume that there is a physical time τ ∈ N that is monotonously increasing. Parties have
access to local clocks. These clocks do not have to be synchronized; we only require the clocks
to run at roughly the same speed. We assume they drift from τ by at most some known bound
∆Time. For the sake of simpler proofs we will pretend in proofs that ∆Time. The proofs trivially
adapt to the case of a known ∆Time > 0.

For simplicity, we assume that there is a fixed set of parties P with n :=
∣∣P∣∣, where we

denote the parties by Pi ∈ P. There is an adversary which can corrupt up to t ∈ N parties. We
call Pi honest if it was not corrupted by the adversary. We use Honest to denote the set of all
honest parties. For simplicity, we here assume static corruptions, i.e., the adversary needs to
corrupt all parties at the beginning. The set of parties P constitutes what we call a committee.
In Section 8 we discuss how the set P can be sampled from a blockchain.

Network. We further assume parties have access to a gossip network which allows them to
exchange messages. This models how the peer-to-peer layer distributes messages in typical
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blockchains. We work in a partially synchronous model, which means that there is a hidden
bound ∆net on message delays. In contrast to synchronous networks, ∆net is not known, i.e.,
the protocols cannot use ∆net, they can only assume the existence of some bound. One can
think of ∆net as being chosen by the adversary at the beginning of the protocol execution, after
the protocol has been fixed. We make the following assumptions on the network:

• When an honest party sends a message at time τ , all honest parties receive this message
at some time in [τ, τ + ∆net].

• When an honest party receives a message at time τ (possibly sent by a dishonest party),
all honest parties receive this message until time τ + ∆net.

We model the network using an ideal functionality. The adversary inputs the delay to the ideal
functionality in unary, i.e., as 1∆net . After that, whenever a party sends a message, it is given
to the adversary, and the adversary can instruct the network to deliver messages as long as it
maintains the above timing restrictions.
Remark 1. The above assumptions on the network are not realistic for a basic gossip network.
We have chosen them because they allow for a proof focusing on the important and novel aspects
of out protocol. The assumptions can be weakened significantly. A weaker network model could
for instance assume that if the network partitions it is always at some future point connected
again for long enough and that there exist an unknown bound ∆ such that the network will not
drop a message sent between two connected parties if the same message is sent ∆ times. In such
a model we could for instance let all honest committee members save all messages they sent in
the ongoing finalization attempt. They will keep occasionally resending these message until they
see the finalization attempt terminate. That way we would only need that all honest committee
members are eventually connected to all other members for long enough. Furthermore, parties
would only have to store a finite number of messages, namely those belonging to the current
finalization event.

Signatures. We finally assume that each party has a signing key for some cryptographic
signature scheme where the verification key is publicly known (e.g., is on the blockchain). For
our analysis, we assume signatures are perfect and cannot be forged. Formally, this can be
understood as parties having access to some ideal signature functionality [6, 1]. We do not model
this in detail here because the involved technicalities are not relevant for our protocols.

2.2 Graphs and Trees

We next recall some basic concepts from graph theory.

Definition 1. A graph G = (V,E) consists of a set of nodes V and a set of edges E, where
every edge e ∈ E is a 2-element subset of V . A path (also called chain) of length k − 1 in G is a
sequence (v1, . . . , vk) of distinct nodes such that {vi, vi+1} ∈ E for all i ∈ {1, . . . , k − 1}.

The graphs we are most interested in are trees. We only consider trees with a root (corre-
sponding to the genesis block) in this work and always mean rooted tree when saying tree.

Definition 2. A (rooted) tree T is a graph (V,E) together with a node r ∈ V , called root, such
that for every v ∈ V , there is a unique path from r to v. We denote this path by PathTo(T, v).
A leaf is a node v ∈ V \ {r} that occurs in only one edge. We further let Depth(T, v) be the
length of PathTo(T, v) and Height(T, v) be the length of the longest path from v to a leaf. When
the tree is clear from context, we may also write PathTo(v), Depth(v), and Height(v). The
height of a tree equals the height of its root: Height(T ) := Height(T, r) (equivalently, the height
of a tree is the depth of its deepest node).
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Remark 2. Some papers in the blockchain literature use the term height for what we call depth,
e.g., [4]. We instead use the terms depth and height as common in computer science literature,
which are derived from the understanding that tree data structures grow from top (root) to
bottom (leaves).

Definition 3. Let T = ((V,E), r) be a rooted tree and let u, v ∈ V be two nodes. If u is on
PathTo(T, v), then u is an ancestor of v and v is a descendant of u.

One can define several operations on graphs. The ones we need are the union and intersection,
which are simply defined as the union and intersection of the nodes and edges, respectively.

Definition 4. For two graphs G1 = (V1, E1) and G2 = (V1, E2), we define their union as
G1 ∪G2 := (V1 ∪ V2, E1 ∪ E2), and their intersection as G1 ∩G2 := (V1 ∩ V2, E1 ∩ E2). For two
rooted trees T1 = (G1, r), T2 = (G2, r) with common root r, we define T1 ∪ T2 := (G1 ∪G2, r)
and T1 ∩ T2 := (G1 ∩G2, r).

Note that T1 ∪ T2 and T1 ∩ T2 are not necessarily trees.

3 Abstract Model of Blockchains
We want to describe our finality layer independently of the underlying blockchain protocol.
Therefore, we use an abstract model that captures only the relevant properties needed for our
finalization layer. We use the UC framework [7]. The properties are modelled via an ideal
functionality FTree, to which all parties have access.

3.1 Description of Tree Functionality

We will not describe an ideal functionality in full detail, as the exact details do not matter
for the proof. At a high level, FTree provides each party access to their view of all existing
blocks arranged in a tree with the genesis block at its root. The adversary can grow these trees
under certain constraints. Formally we give the adversary access to commands which grow the
individual trees Treei of the parties Pi. We also give party Pi access to a GetTree command
which returns the current Treei. There are additional commands covered below. We also use
FTree to model the network, but will not go into depth of the commands for the network here.

The ideal functionality also maintains a time τ . It is initially 0. It can be incremented by 1
by the adversary giving the command Increment. The time cannot be seen by the parties. It
is for internal accounting. Note that the adversary needs to use running time to increment the
time by 1, so the time will be polynomial.

We here describe FTree, which maintains several variables that evolve over time. For a
time τ and a variable X, we use Xτ to denote the value of the variable X at time τ .

Inside FTree each Pi has an associated tree Treei. The nodes in these trees correspond to
blocks and can contain several pieces of information, which we do not further specify since this
is not relevant here. We only assume that blocks contain a field for some metadata data used by
our finalization protocols. The party Pi can read Treei but is not allowed to modify it. All trees
have a common root G, called genesis, and initially, all trees only consist of G. We let

HonestTree := ∪Pi∈HonestTreei

be the graph that consists of all blocks in the view of any honest party. The adversary can add
nodes to any tree at will, under the constraint that HonestTree remains a tree at all times.
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All Pi also have a position Posi ∈ Treei. We require that Posi is a leaf of Treei and can be
set at will by the adversary. If the adversary adds a node in Treei that is a child of Posi, Posi
gets updated to be the new leaf.

Recall that for a node B in Treei, PathTo(Treei, B) denotes the (unique) path from the
root to B. We define Pathi := PathTo(Treei,Posi). In a typical blockchain protocol, Pathi
corresponds to the best chain (e.g., the longest chain, or the chain with maximal total hardness)
in the view of Pi.
Remark 3. New blocks are typically not added only by the adversary, but also by honest parties
that are baking. Furthermore, the positions of honest parties are not set by the adversary, but
by the parties themselves following some chain selection rule, e.g., by setting the position to
the deepest leaf in the tree. We give the adversary full control over these two aspects for two
reasons: First, it allows us to abstract away details about these mechanisms. Secondly, giving
the adversary more power makes our results stronger.

Finalization friendliness. To be able to finalize, we need the blockchain to be finalization
friendly. This basically means that it needs to provide an interface for our finalization protocols.
Concretely, parties need to additionally have access to the two commands setFinal and
propData. A party calls (setFinal, R) once this party considers R to be final. More formally,
each party has a variable lastFinali ∈ Treei, initially set to the genesis block G. The command
(setFinal, R) for R ∈ Treei sets lastFinali to R. Inputs (setFinal, R) by Pi where R is not
a descendant of lastFinali are ignored. The intended effect on the blockchain is that parties
will eventually set their position to be a descendant of R and maintain this indefinitely. In our
formalization, this corresponds to a restriction on how the adversary sets the positions and is
discussed in Section 3.2. In a real blockchain protocol, this can be achieved by modifying the
chain selection rule to reject all chains not containing R. For honest Pi we use FinalTreei to
be the tree consisting of all paths in Treei going through lastFinali. Note that this consists of
only a single path from G to lastFinali and then possibly a proper tree below lastFinali. We let
FinalTree = ∪Pi∈HonestFinalTreei .

The command (propData, data) allows parties to propose some data ∈ {0, 1}∗ to be included
in a future block. This is different from transactions being added to blocks in that we only have
weak requirements on it: Roughly speaking, we want a constant fraction of all honest paths to
contain data corresponding to the last proposal of some honest party at the time the block was
first added. This requirement is discussed in more detail in Section 3.2; here we only assume
the adversary can add arbitrary data to blocks, which is implicit in the model since blocks are
chosen by the adversary.

We conclude with a formal specification of the functionality FTree.

Functionality FTree

Initialization
for Pi ∈ P do

Treei :=
(
(Vi := {G}, Ei := ∅), ri := G

)
Posi := G, lastFinali := G, lastPropi := ⊥

end for

Interface for party Pi ∈ P

Input: getTree
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return copy of (Treei,Posi) to Pi
Input: (setFinal, R)
if lastFinali ∈ PathTo(Treei, R) then

lastFinali := R
send (setFinal, Pi, R) to adversary

end if

Input: (propData, data)
lastPropi := data
send (propData, Pi, data) to adversary

Interface for adversary
Input: (addNode, Pi, B, p) // add B as child of p in Treei = ((Vi, Ei), ri)
if B /∈ Vi and HonestTree remains a tree after adding B as child of p in Treei then

Vi := Vi ∪ {B}
Ei := Ei ∪ {{p,B}}
if p = Posi then

Posi := B
end if

end if

Input: (setPosition, Pi, B) // set position of Pi to B
if B is a leaf of Treei then

Posi := B
end if

3.2 Desirable Properties and Bounds

We now state some important assumptions and properties of blockchain protocols in our model.
All properties are essentially restrictions on how the adversary can grow the trees. The definitions
below involve a number of so-called hidden bounds. These parameters are supposed to exist
(possibly depending on the security parameter), but are not made public to the parties. In
particular, they cannot be used in the protocols; one may only assume in proofs that these
parameters exist. We require that the bounds are polynomial in the security parameter. Formally,
we require that the adversary inputs the bounds in unary to the ideal functionality before it
interacts with the ideal functionality in any other way.

We first define two properties that are not directly related to the security of the blockchain,
but rather follow from the assumptions on the network and how the protocols are supposed
to work. Widely considered properties of blockchain protocols include common prefix, chain
growth, and chain quality, introduced in [11, 15, 24]. We recast the two former in our model.
Since our model does not have a notion of a party creating a block, chain quality is not directly
applicable. We instead formalize that proposals of honest parties make it into blocks, which is
closely related to chain quality.

Tree propagation. There is a hidden bound ∆tree such that for all honest parties Pi ∈ Honest,
HonestTreeτ−∆tree ⊆ Treeτi . This models the case that when a honest party sees a chain, then
eventually all honest parties will see that chain.
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New root taking effect. There is a hidden parameter ∆final, that intuitively is the time
that it takes for a setFinal command to take effect. We require that R ∈ Pathi after ∆final
time units since Pi gave the command (setFinal, R). This means that the adversary must in
reasonable time put Pi under the finalized block R, and when this happens Posi will stay in a
path under R forever.

Common prefix. The common-prefix property intuitively means that if any two honest
parties look far enough back in their own tree, then they will be on the same path to the root.
We formally define this property for ξ ∈ N, which determines how far parties have to look back,
via the predicate Prefix(ξ):

Prefix(ξ) :≡ ∀τ1, τ2 ∈ N, τ1 ≤ τ2, ∀P1, P2 ∈ Honest
(
Pathτ1

1
)dξ � Pathτ2

2 ,

where (·)dξ denotes the operation of removing the last ξ blocks and � is the prefix relation.

Chain growth. The chain-growth property guarantees that chains of honest parties grow
within time ∆growth at least at rate ρgrowth and at most at rate ρ′growth, 0 < ρgrowth ≤ ρ′growth.
Note that the chain of party Pi in our model corresponds to Pathi and its length is equal to
Depth(Posi). We thus use the following formalization:

ChainGrowth(∆growth, ρgrowth, ρ
′
growth) :≡ ∀τ ∈ N ∀Pi ∈ Honest

ρgrowth ·∆growth ≤ Depth
(
Posτ+∆growth

i

)
−Depth

(
Posτi

)
≤ ρ′growth ·∆growth.

Remark 4. Some papers, e.g., [24, 8] consider a stronger variant of chain growth by comparing
the lengths of chains from two different honest parties at different times. For our purposes, the
simple definition above that only considers a single party is sufficient.
Remark 5. Note that earlier formalizations of chain growth only considered a lower bound on
growth. It turns out that for several non-trivial uses of blockchains, one also needs an upper
bound as introduced in [24]. It is for instance impossible to create a finalization layer which
keeps being updated if the underlying blockchain can grow by an unbounded length in one time
unit. For any length L that you might want as a bound on how far finalization can fall behind,
the adversary could let the blockchain grow by L+ 1 blocks faster than it takes one message in
the finalization protocol to propagate. In such a model one would get trivial impossibility of
designing updated finalization layers.

Proposal quality. This property is formally unique to our finalization friendliness involving
the propData command, but it is closely related to chain quality as discussed next. Proposal
quality with parameter `PQ ∈ N means that at any time τ , for all honest Pi ∈ Honest, and for
all `PQ consecutive blocks B1, . . . , B`PQ in Pathτi , there exists a block B′ ∈ {B1, . . . , B`PQ} that
was added to HonestTree at time τ ′ and an honest party Pj ∈ Honest such that lastPropτ ′j is
contained in (the data field of) a block on PathTo

(
HonestTreeτ ′ , B′

)
. In other words, at the time

B′ is added to HonestTree, if the last proposal of some honest party is not already contained in
an ancestor of B′, that proposal is included in B′.

Note that proposal quality can be achieved by any blockchain that has chain quality: Chain
quality with parameters µ and `′ says that within any sequence of at least `′ consecutive blocks
in an honest path, the ratio of blocks generated by honest parties is at least µ. This implies that
for `PQ ≥ `′ with `PQ · µ ≥ 1, at least one block within `PQ consecutive blocks is generated by
an honest party. Whenever honest parties add a block B′, they can check whether their last
proposed data is already contained in a previous block, and if not, they include that data in B′.
This yields proposal quality with parameter `PQ.
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4 The Finality Layer

4.1 Formalization

We now formalize the properties we want from a finality layer. The finality layer is a protocol
that interacts with a blockchain as described above and uses the setFinal-command. The
properties correspond to restrictions on how the setFinal-command is used.

Definition 5. Let ∆, k ∈ N. We say a protocol achieves (∆, k)-finality if it satisfies the following
properties.

Chain-forming: If honest party Pi ∈ Honest inputs (setFinal, R) at time τ , we have lastFinali ∈
PathTo

(
Treeτi , R

)
and R 6= lastFinali.

Agreement: For all l ∈ N we have that if the l-th inputs (setFinal, ·) of honest Pi and Pj
are (setFinal, Ri) and (setFinal, Rj), respectively, then Ri = Rj .

∆-Updated: At any time τ , we have

Height(HonestTreeτ )− min
Pi∈Honest

Depth
(
lastFinalτi

)
≤ ∆.

k-Support: If honest Pi ∈ Honest inputs (setFinal, R) at time τ , there are at least k honest
parties Pj ∈ Honest and times τj ≤ τ such that R ∈ Pathτjj .

The chain-forming property guarantees that all finalized blocks are descendants of previously
finalized blocks. That is, the finalized blocks form a chain and in particular, there are no forks.
Agreement further guarantees that all honest parties agree on the same finalized blocks. This
means that all ancestors of the last finalized block can be trusted to never disappear from the
final chain of any honest party. The updated property ensures that the final chain grows roughly
at the same speed as the underlying blockchain. This also implies liveness of the finalization
protocol if the underlying blockchain keeps growing, in the sense that all honest parties will keep
finalizing new blocks.

The property k-support finally ensures that whenever a block becomes finalized, at least k
parties had this block on their path at some point. The smaller k is, the more honest parties
need to “jump” to a new position under the next finalized block, which can cause rollbacks. We
want to guarantee that at least k ≥ 1 because otherwise we finalize blocks that are not supported
by any honest party, what would inevitably lead to bad chain quality.

In Section 7 we show that our finalization protocol from Section 5 satisfies the above
properties.

On long range attacks. In a long-range attack on a proof-of-stake blockchain, an attacker
can in several plausible situations, given enough time, grow a deeper alternative chain from
far back in time that overtakes the real one.[12] To prevent long-range attacks, many existing
proof-of-stake protocols use some form of checkpointing, which prevents honest parties from
adopting such alternative chains.[12] For example, Ouroboros [16] and Ouroboros Praos [8] use
a chain-selection rule that selects the longest chain that does not fork from the current chain
more than some parameter k blocks. The rule ensures that everything more than k blocks ago is
final and prevents long-range attacks. The parameter k needs to be chosen such that Prefix(k)
holds, which can be problematic in practice since a correct bound on the common prefix needs
to be known. If a finality layer such as Afgjort is added to the blockchain, this finality provides
checkpointing, which is then not needed anymore in the underlying blockchain. Therefore, one
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can use simpler chain selection rules, such as choosing the longest chain. For this to be secure, we
need that the time required to finalize the next block is shorter than the time needed to mount
a successful long-range attack. To put this into perspective, the analysis by Gaži et al. [12] of a
hypothetical proof-of-stake blockchain suggests that, e.g., an attacker with 0.3 relative stake
needs more than 5 years for the attack considered there.

4.2 On Proving UC Security

Note that our requirements on the finality layer are given as some properties on how it uses
FTree. What we will prove later is that our finality layer has these properties except with
negligible probability. We furthermore show that if the hidden bounds of FTree is a polynomial,
so is for instance the hidden bound ∆ in ∆-updated. This shows that if the underlying blockchain
has “polynomial liveness”, so does the blockchain resulting from adding our finality layer.

We here discuss briefly how to model the security in the UC framework and how the proof
that the finality layer has the desired properties translates into a UC proof. The reader not
familiar with the UC model or not interested in how to translate the property based proof into
a UC proof can safely skip this section.

With a few modifications given below, we model UC security of a finality layer by requiring
that it UC securely implements the following ideal functionality FFinTree, where we drop the
payload data of blocks for brevity. The payload was used only for implementation purposes of
the finality layer.

Functionality FFinTree

Initialization
for Pi ∈ P do

Treei :=
(
(Vi := {G}, Ei := ∅), ri := G

)
Posi := G, lastFinali := G

end for

Interface for party Pi ∈ P

Input: getTree
return copy of (Treei, lastFinali,Posi) to Pi

Interface for adversary
Input: (addNode, Pi, B, p) // add B as child of p in Treei = ((Vi, Ei), ri)
if B /∈ Vi and HonestTree remains a tree after adding B as child of p in Treei then

Vi := Vi ∪ {B}
Ei := Ei ∪ {{p,B}}
if p = Posi then

Posi := B
end if

end if

Input: (setPosition, Pi, B) // set position of Pi to B
if B is a leaf of FinalTreei then

Posi := B
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end if

Input: (isFinal, Pi, R)
if lastFinali ∈ PathTo(Treei, R) and R ∈ PathTo(Treei,Posi) then

lastFinali := R
end if

Note that FFinTree has taken finality out of the hand of the user and put it into the hand of
the adversary. The adversary is free to announce any block as final, as long as it promises to
keep the party in a position under that final block for all future times. In addition the adversary
needs to update the trees, positions, and final blocks according to the desirable properties of
FTree and the following additional properties, for some hidden parameters ∆, k ∈ N:

Chain-forming: If the adversary inputs (isFinal, Pi, R) at time τ , we have lastFinali ∈
PathTo

(
Treeτi , R

)
and R 6= lastFinali.

Agreement: For all l ∈ N we have that if the l-th inputs of the form (isFinal, Pi, ·) and
(isFinal, Pj , ·) for honest Pi and Pj are (isFinal, Pi, Ri) and (isFinal, Pj , Rj), respec-
tively, then Ri = Rj .

∆-Updated: At any time τ , we have

Height(HonestTreeτ )− min
Pi∈Honest

Depth
(
lastFinalτi

)
≤ ∆.

k-Support: If the adversary inputs (isFinal, Pi, R) at time τ , there are at least k honest
parties Pj ∈ Honest and times τj ≤ τ such that R ∈ Pathτjj .

Given a finality layer we can construct a protocol ΠFin for the FTree-hybrid model implement-
ing FFinTree as follows. It runs the finality layer on top of FTree. Whenever the finality layer
updates lastFinali party Pi saves the old value in lastFinal′i and records the new value in lastFinali.
On getTree, call getTree on FTree and get (Treei,Posi). If lastFinali ∈ PathTo(Treei,Posi),
then return (Treei, lastFinali,Posi). Otherwise, return (Treei, lastFinal′i,Posi). The reason for
the slight complication here is that in FTree, it might take a while for the new root to take
effect. On FFinTree we therefore only announce the new root as final once we find ourselves in a
position under it.

We model UC security of a finality layer by requiring that ΠFin[FTree] UC securely realizes
FFinTree. Notice that in FFinTree all inputs to all honest parties are given to the adversary/sim-
ulator. So we can construct a UC simulator simply by running ΠFin[FTree] on the real inputs of
FFinTree. The simulator updates the variables Treei, lastFinali,Posi in FFinTree to have exactly
the values they have in the execution of ΠFin[FTree] in the simulation. This gives a perfect
simulation as long as FFinTree allows the simulator to update Treei, lastFinali,Posi as needed. It
can be seen that FFinTree allows the simulator to update Treei, lastFinali,Posi as needed exactly
as long as the finality layer has the desired properties.

Note that the simulator also has to set the hidden parameters of FFinTree. It in particular
has to set the hidden parameter ∆ in the ∆-Updated property. This parameter has to be input
as 1∆ before the protocol starts executing. This puts two requirements on the simulator: 1) it
ha be be able to compute ∆ before the protocol starts executing, and 2) it needs to have running
time ∆ available to write the string 1∆. Note now that the simulator in the simulated execution
of ΠFin[FTree] sees how the hidden parameters ∆′ of FTree are set. These parameters are input
to the simulator as 1∆′ . It can then be seen that it suffice to show for a given finality layer that
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there is some ∆-Updated property and that ∆ can be computed as a fixed polynomial of the
hidden parameters ∆′ of FTree. The reason this is enough is that it 1) allows the simulator to
compute ∆ before the protocol starts executing and that 2) in the UC model an input like 1∆′

gives the simulator an additional running time budget of ∆′ and the total running time of the
simulator is allowed to be a fixed polynomial of its budget. We can therefore set the running
time polynomial of the simulator to be larger than the one needed to compute the parameters ∆
of FFinTree from the parameters ∆′ of FTree.

Moving forward it is therefore sufficient to prove that the finality layer has the desired
properties except with negligible probability and that if the hidden bounds of FTree are
polynomials, so are the hidden bounds of FFinTree, and they are related by some fixed polynomial.
We will throughout the paper derive explicit bounds on protocols from the assumed bound on
their sub-protocols. It will be immediately clear from these that they polynomially relate the
produced bounds from the assumed bounds, so we will not explicitly note this moving forward.
As an example, consider the bound γ0 derived in (1) in the proof of Lemma 1.

A final remark on the bounds. In some case we prove only a bound on the expected value
of a bound ∆, in particular for our randomized Byzantine agreement protocols. In all case a
worst-case bound can be derived by multiplying by the security parameter. This gives a bound
which will hold except with negligible probability, which is enough to prove UC security. If the
actual running time exceeds the bound, the simulator give up the simulation, but this happens
only with negligible probability.

4.3 Impossibility of Better Bounds for the Number of Corruptions

We next show that our protocol is optimal in its corruption bound, and that the hope for a
t ≥ n/3 partially synchronous blockchain that satisfies the properties of a finality layer is void.

Theorem 1. A partially synchronous blockchain (satisfying the properties of liveness and
persistence [10]) for n parties that satisfies the properties of finality (Section 4) must have
t < n/3.

Proof. We prove this by contradiction. We first define a simple distributed problem called
unscheduled broadcast (UB) and show that it cannot be solved in partially synchronous network
for n = 3 parties and t = 1 corruptions. We then show that if we are given a partially synchronous
blockchain (satisfying the properties of liveness and persistence [10]) that satisfies the properties
of finality (Section 4) then we can solve the UB problem. The proof generalizes to any n and
t = n/3.

The UB problem for P1, P2, P3 is defined as follows. At some point in time P1 receives as
input a bit b1 that it is to broadcast. We assume that P1 immediately outputs b1, so we also call
b1 the output of P1. At some point in time Pi, for i = 2, 3, might output a bit bi. Agreement:
If both Pi and Pj are honest and they output bi and bj , then bi = bj . Liveness: If P1 and Pi,
for i ∈ {1, 2}, is honest and P1 receives input b1, then eventually Pi outputs some bit bi. The
network is partially synchronous, i.e., there is a hidden bound ∆ on the network delivery time.
The delay is picked adversarially after the protocol is designed.

It is clear that we can solve UB given a partially synchronous blockchain. Party P1 will send
a signed b1 on the blockchain. If a party Pi, for i = 2, 3, sees a b1 on the blockchain behind a
finalized block, it will output bi = b1.

We now show that one cannot solve UB in a partially synchronous network. Let π be a
protocol solving UB. Set ∆ = 1. Let T be an upper bound such that when running with network
delay ∆ and input b1 to P1 at the very beginning of the execution, the protocol π will terminate
in time T except with negligible probability. This T exists by the assumption of liveness above.
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Now consider running π with network delay ∆′ = T + 1 and input b1 to P1 at the very beginning
of the execution. But schedule the message delivery such that all messages are still delivered in
time ∆. It follows that the protocol still terminates in time T on any such scheduling, as π does
not know ∆′, it can only depend on the actual network delivery times, which are consistent with
∆.

Now consider a protocol where P1 has input 0 and where P1(0) and P2 are honest and P3 is
crashed. Deliver all message in time ∆. Let 〈P1(0), P2〉 denote the output b2 of P2 in such an
execution. By agreement we have that 〈P1(0), P2〉 = 0. The output occurs before time T .

Now consider a protocol where P1 has input 1 and where P1(1) and P3 are honest and P2 is
crashed. Deliver all message in time ∆. Let 〈P1(1), P3〉 denote the output b3 of P3 in such an
execution. By agreement we have that 〈P1(1), P3〉 = 1. The output occurs before time T .

Now consider an execution where P2 and P3 are honest and where P1 is corrupt. We let
P1 act as P1(0) towards P2 , and we let P1 act as P1(1) towards P3 . We delay all messages
between P2 and P2 for more than time T . This is allowed as ∆′ = T + 1 > T . The output of P2
will be exactly the same as in 〈P1(0), P2〉 as it interacts with P1(0) and receives no messages
from P3 before it gives its output b2: it gives output at time T and all messages are delayed for
time T + 1. Similarly the output of P3 will be exactly the same as in 〈P1(0), P3〉. Hence b2 = 0
and b3 = 1, violating agreement.

5 Afgjort Protocol
In this section we describe our finality protocol. The protocol consists of a collection of algorithms
that interacts with each other making finalization possible. In the main routine FinalizationLoop,
parties regularly try to finalize new blocks by invoking the Finalization algorithm.

The goal of Finalization is to make all the honest parties agree on a common node R at
depth d of their own local trees. This finalization happens with a “delay” of γ blocks, i.e., honest
parties will only start the agreement process once their Pathi has length at least d+ γ. If the
honest parties successfully agree on a block R, they will finalize it by re-rooting their own local
tree for the new root R. If no agreement is achieved the parties increase the finalization delay γ
and re-run the agreement protocol with the new delay; this process repeats until an agreement
is met. The idea is that once γ is large enough, there will be only one candidate for a final block
at depth d, which will then successfully be agreed on.

Justifications. We introduce the concept of justifications. A justification J is a predicate
which takes as input a value v and the local state of a party (in particular its tree). We say that
the value v is J-justified for party Pi if the predicate evaluates to true for v and Pi’s state.

Definition 6. For a value v that can be sent or received, a justification is a predicate J which
can be applied to v and the local state of a party. Justifications are monotone with respect to
time, i.e, if J is true for a value v at party P at time τ , then J is true (at that party) any time
≥ τ .

An example is the following justification Jd,γInTree where the value v is a block.

Definition 7. A block B is Jd,γInTree-justified for party Pi if B is at depth d of a path of length
at least d+γ in FinalTreei.

We call such justification eventual, in the sense that if a block is Jd,γInTree-justified for a honest
party Pi, then it will be eventually Jd,γInTree-justified for any other honest party. This is a direct
consequence of tree propagation.
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Definition 8. A justification J is an eventual justification if for any value v and parties Pi and
Pj the following holds. If v becomes justified for party Pi at time τ and both Pi and Pj from
that point in time are live and honest, then eventually v becomes justified for party Pj .

Keeping up with the tree growth. After a block at some depth d has successfully been
finalized, one needs to choose the next depth d′ for finalization. For the updated property,
this new depth should ideally be chosen such that d′ − d corresponds to how long the chain
grows during one finalization round. In case this value was set too small before, we need to
temporarily increase it to catch up with the chain growth. In the finalization protocol, parties
use the subroutine NextFinalizationGap, which returns an estimate `, and set the next depth to
d′ = d+ `. We discuss this procedure in Section 5.1.

Finalization witnesses. After a successful finalization, parties use propData to add a
finalization witness W to the blockchain. A finalization witness has the property that whenever
a valid witness for some R exists, then R indeed has been finalized. In our protocols, such a
witness consists of n− t signatures on the outcome of the finalization. We put such witnesses on
the blockchain for two reasons: First, it allows everyone (including parties not on the finalization
committee) to verify which blocks have been finalized. Secondly, we use the witnesses for
computing the next finalization gap (see Section 5.1).

Finalization. The finalization loop algorithm FinalizationLoop is used to periodically invoke
the finalization procedure to finalize blocks at increasing depths.

Protocol FinalizationLoop(sid)

Party Pi does the following:
1: Set γ := 1, d := 6, and ` := 5
2: for ctr = 1, 2, 3, . . . do
3: Set faid := (sid, ctr)
4: Run (R, W, γ′) := Finalization(faid, Jd,γInTree, d, γ)
5: Invoke (setFinal, R)
6: Invoke (propData, W)
7: Set ` := NextFinalizationGap(lastFinali, `)
8: Set d := d+ `
9: Set γ := d0.8 · γ′e

10: end for

The basic building block of our finality protocol is the algorithm Finalization which is used
to agree on a final block for depth d. The algorithm takes as inputs a unique id faid, a depth d,
and an integer γ ≥ 1 corresponding to number of blocks that need to occur under the block that
is attempted to be finalized. If there is no agreement on a final block, γ is doubled and the
parties try again. Once the parties have agreed on a block R, the algorithm outputs R, and
the value γ for which agreement was reached. The finalization loop then again reduces γ by
multiplying it with 0.8 so that over time, a good value for γ is found. The factor 0.8 is not
significant and only used for simplicity here. In practice, one can use some heuristics to optimize
efficiency.
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Protocol Finalization(faid, Jd,γInTree, d, γ)

Party Pi does the following:
1: repeat
2: Set baid := (faid, γ)
3: Wait until lastFinali is on Pathi and Pathi has length at least d+ γ
4: Let Bd be the block at depth d on Pathi
5: Run (R, W) := WMVBA

(
baid, Jd,γInTree

)
with input Bd

6: if R = ⊥ then set γ := 2γ end if
7: until R 6= ⊥
8: Output (R, W, γ)

The Finalization algorithm relies on a weak multi-valued Byzantine agreement protocol, that
we call WMVBA. We discuss the general idea of the WMVBA protocol next, and we defer a
more detailed treatment to Section 6.

WMVBA. The input to the WMVBA protocol are proposals in the form of blocks; we require
all proposals in WMVBA to be Jd,γInTree justified, i.e., the block proposal must be in the tree of
honest parties at depth d and height γ. This prevents the corrupted parties from proposing
arbitrary blocks. By the design of the Finalization protocol, where γ is doubled between the calls
to WMVBA it will quickly happen that all honest parties agree on the block B at the depth
where we try to finalize. Furthermore, by the sustainable prefix property it will also happen
that no other block is Jd,γInTree-justified. This moment where B is the only valid proposal is a
sweet spot for agreement as we have pre-agreement. However, the sweet spot is temporary; if
enough time passes, the corrupted parties could grow a long enough alternative chain which
would make another proposal legitimate. We therefore want to quickly exploit the sweet spot.

For n > 3t we construct in Section 6 a WMVBA protocol which consists of two subprotocols
called Freeze and A BBA. First the subprotocol Freeze is used to boil down the agreement problem
to a choice between either at most one block B or the decision that there was no pre-agreement.
The output of Freeze is a block or ⊥ and is again justified by some justification. After Freeze
terminates one of two will happen: If there was a pre-agreement (as is in the case of the sweet
spot), then all parties decided on the same block B. However, if there was no pre-agreement it
might be the case that some parties have decided on a block B while others have decided on ⊥.
WMVBA therefore uses the binary Byzantine agreement protocol A BBA which decides which of
the two cases happened. Given the decision of A BBA, parties can then either output the agreed
block or output ⊥ to signal disagreement.

5.1 Computing the Next Finalization Gap

To measure whether the finalization falls behind the tree growth, we use the following approach:
When a block B is finalized, let F be the deepest node for which a finalization witness exists in
the path to B, and let F ′ be the deepest ancestor of B that has been finalized. If the chain does
not grow too fast, we should get F = F ′. However, if finalization is falling behind the chain a lot,
B has been added to the tree long before F ′ has been finalized, in which case we have F 6= F ′.
We use this observation to adjust the gap between finalized blocks: If F 6= F ′, we increase it,
otherwise we slightly decrease it. Below, we give a formal description of the procedure.
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Protocol NextFinalizationGap(B, `)

1: Let F be the deepest node for which a valid finalization witness exists on
PathTo(HonestTree, B) (let F := G if this does not exist)

2: if Depth(B)−Depth(F ) = ` then
3: Output d0.8 · `e
4: else
5: Output 2 · `
6: end if

The values 0.8 and 2 are again somewhat arbitrary and can in practice be optimized for
better results.

5.2 Existence of Unique Justified Proposals

For our more efficient finalization protocol to succeed, we need that there will be a unique
justified proposal at some point such that all honest parties will agree on that. More precisely,
we need for every depth d we want to finalize, for all time intervals δfreeze required to run Freeze,
for all times τ at which we start to finalize a block, and for all sufficiently large γ, there is a
time τ0 ≥ τ at which Freeze will succeed, i.e., in the time interval of length δfreeze starting at τ0,
there is exactly one block at depth d that has height at least γ, and all honest parties will have
that block on their path. We give a precise formalization below.

Definition 9. We say that UJP holds if there exists a polynomial γ0(d, δfreeze, τ) such that the
following conditions are satisfied for all d, τ, δfreeze ∈ N, and for all γ ≥ γ0(d, δfreeze, τ):

1. There exists a time τ0 ≥ τ such that there is an honest party Pi ∈ Honest and B ∈ Pathτ0
i

with Depth(B) = d and Height(B) ≥ γ.

2. For the smallest τ0 satisfying the first condition and for all τ ′ ∈ [τ0, τ0 + δfreeze], there is
only one B′ ∈ FinalTreeτ ′ with Depth(B′) = d and Height(B′) ≥ γ (namely B′ = B).

3. For all τ ′ ∈ [τ0, τ0 + δfreeze] and for all Pj ∈ Honest, we have B ∈ Pathτ ′j .

Dishonest chain growth. To prove that unique justified proposals exist, we need an additional
property of the underlying blockchain, which is concerned with how fast dishonest parties can
grow chains. The usual chain growth property defined in Section 3.2 bounds the growth of the
positions of honest parties. We here consider a bound on the growth of chains no honest party
is positioned on. In typical blockchain protocols, bakers extend the chains at their positions, i.e.,
we are here interested in how fast dishonest parties can grow their chains.

Definition 10. For τ ∈ N and B ∈ FinalTreeτ , let B̂ to be the deepest ancestor of B in
FinalTreeτ that has at some point been on an honest path,

B̂ := argmax
B′∈PathTo(FinalTreeτ ,B)∩

(
∪τ ′≤τ∪Pi∈HonestPathτ ′i

){Depth(B′)},

and let τ̂B be the first time B̂ appeared in an honest path:

τ̂B := min
{
τ ′ ∈ N

∣∣∣∣ B̂ ∈ ⋃
Pi∈Honest

Pathτ ′i
}
.
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Let ∆growth ∈ N, and ρdisgro ≥ 0. We define the dishonest chain growth with parameters
∆growth, ρdisgro to hold if for all B in FinalTreeτ such that τ − τ̂B ≥ ∆growth, the length of the
path from B̂ to B is bounded by ρdisgro · (τ − τ̂B), and by ρdisgro ·∆growth if τ − τ̂B < ∆growth:

DCGrowth(∆growth, ρdisgro) :≡ ∀τ ∈ N ∀B ∈ FinalTreeτ

Depth(B)−Depth
(
B̂
)
≤ ρdisgro ·max

{
∆growth, τ − τ̂B

}
.

Intuitively, the path from B̂ to B is grown only by dishonest parties since no honest party
was ever positioned on it, and τ − τ̂B is the time it took to grow this path. Taking the maximum
over ∆growth and τ − τ̂B allows that for periods shorter than ∆growth, the growth can temporarily
be faster. Note that it is possible that the adversary knows B̂ before it appears on an honest
path or even in FinalTree. In that case, there is actually more time to grow the chain. The
definition thus implicitly excludes that dishonest parties know blocks honest parties will have on
their path far in the future.
Remark 6. A more straightforward definition of dishonest chain growth might appear to be
something like the following: The length of any path between two nodes that have never been on
any honest path and appeared in FinalTree within a time interval of length ∆growth is bounded.
The problem with that definition is that dishonest parties can grow a path just “in their heads”
and then publish the whole chain at once. Hence, dishonest chains in this sense can grow
arbitrarily long within a very short time. To obtain a meaningful notion, we need to estimate at
what point in time dishonest parties have started growing their chains. This estimate corresponds
to τ̂B in the above definition.

Proving the existence of unique justified proposals. We finally show that the property
from Definition 9 is implied by dishonest chain growth together with standard assumptions on
the underlying blockchain.

Lemma 1. Assume Prefix(ξ) holds for some ξ > 0, and ChainGrowth(∆growth, ρgrowth, ρ
′
growth)

as well as DCGrowth(∆growth, ρdisgro) hold for some ∆growth ∈ N, ρgrowth > 0, ρ′growth, and
ρdisgro < ρgrowth. Then, UJP holds.

Proof. Let d, δfreeze, and τ ∈ N be arbitrary. Let d̄ := maxB∈FinalTreeτ Depth(B) the maximal
depth of any block at time τ . We then define

γ0 := max
{
ξ +

ρdisgro
(
ρgrowth(δfreeze + ∆growth) + ρ′growth ·∆growth

)
ρgrowth − ρdisgro

, d̄+ 1− d
}
. (1)

Note that γ0 > d̄ − d and γ0 ≥ ξ because ρdisgro < ρgrowth. Now let γ ≥ γ0 and let τ0 be the
smallest time for which there exists some Pi ∈ Honest such that Depth

(
Posτ0

i

)
≥ d + γ. Note

that this exists because we assume positive chain growth. Let B be the node on Pathi at depth d.
By the choice of γ0, we have Depth

(
Posτ0

i

)
≥ d+ γ > d̄, and thus, τ0 > τ . Hence, condition 1 of

UJP holds.
We first show that all honest parties have B on their path during the time interval [τ0, τ0 +

δfreeze]. Let τ ′ ∈ [τ0, τ0 + δfreeze] and Pj ∈ Honest. We have by Prefix(ξ) that
(
Pathτ0

i

)dξ � Pathτ ′j .
Since Depth

(
Posτ0

i

)
≥ d+ γ ≥ d+ ξ, we have that B ∈

(
Pathτ0

i

)dξ and thus, B ∈ Pathτ ′j . This
proves condition 3 of UJP.

Let τ ′ ∈ [τ0, τ0 +δfreeze] and let B′ ∈ FinalTreeτ ′ be an arbitrary block that is not a descendant
of B (in particular, B′ 6= B). Let B̂′ be the deepest ancestor of B′ that has at some point
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(until τ ′) been on an honest path, and let τ̂B′ be the first time B̂′ appeared on an honest path.
Let d̂′ := Depth

(
B̂′
)
. We claim that

d̂′ < d+ ξ.

To prove this, note that at some time until τ ′, PathTo
(
FinalTreeτ ′ , B̂′

)
was a prefix of Pathk

for some honest Pk ∈ Honest. Hence, Prefix(ξ) implies that PathTo
(
FinalTreeτ ′ , B̂′

)dξ is a prefix
of Pathτ ′j for all Pj ∈ Honest. As we have shown above, B ∈ Pathτ ′j . Thus, we either have
B ∈ PathTo

(
FinalTreeτ ′ , B̂′

)dξ or PathTo
(
FinalTreeτ ′ , B̂′

)dξ is a prefix of PathTo
(
FinalTreeτ ′ , B

)
.

Because B′ is a descendant of B̂′ and we assume that B′ is not a descendant of B, the former is
impossible. In the latter case, we have d̂′ < d+ ξ as claimed.

We next want to bound τ0 − τ̂B′ . We assume this value is positive, otherwise we obtain the
bound τ0 − τ̂B′ ≤ 0. At time τ̂B′ , some honest party had a position with depth at least d̂′. By
definition of τ0, all honest parties at time τ0−1 have positions with depth less than d+γ. Hence,
ChainGrowth(∆growth, ρgrowth, ρ

′
growth) implies that all honest parties at time τ0 have positions

with depth less than d+ γ + ρ′growth ·∆growth. This means that between times τ0 and τ̂B′ , the
depth of the position of some honest party has grown by at most d+ γ + ρ′growth ·∆growth − d̂′.
Note that this value is positive since γ ≥ ξ and d̂′ < d + ξ. The number of time intervals of
length ∆growth that fit into [τ̂B′ , τ0] equals⌊

τ0 − τ̂B′
∆growth

⌋
≥ τ0 − τ̂B′

∆growth
− 1.

Using the upper bound on chain growth, this implies

(τ0 − τ̂B′ −∆growth) · ρgrowth ≤
⌊
τ0 − τ̂B′
∆growth

⌋
·∆growth · ρgrowth ≤ d+ γ + ρ′growth ·∆growth − d̂′.

Hence, we obtain

τ0 − τ̂B′ ≤ ∆growth +
d+ γ + ρ′growth ·∆growth − d̂′

ρgrowth
.

We finally want to bound Depth(B′). Using DCGrowth(∆growth, ρdisgro), we obtain

Depth(B′)−Depth
(
B̂′
)
≤ ρdisgro ·max

{
∆growth, τ

′ − τ̂B′
}

≤ ρdisgro ·max
{
∆growth, τ0 + δfreeze − τ̂B′

}
≤ ρdisgro ·

(
∆growth +

d+ γ + ρ′growth ·∆growth − d̂′

ρgrowth
+ δfreeze

)
.

Thus,

Depth(B′) ≤ d̂′ ·
(

1− ρdisgro
ρgrowth

)
+ ρdisgro ·

(
∆growth +

d+ γ + ρ′growth ·∆growth

ρgrowth
+ δfreeze

)
.
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Since ρdisgro < ρgrowth, we have 0 < 1− ρdisgro
ρgrowth

≤ 1. Further using d̂′ < d+ ξ, this implies

Depth(B′) < (d+ ξ) ·
(

1− ρdisgro
ρgrowth

)

+ ρdisgro ·
(

∆growth +
d+ γ + ρ′growth ·∆growth

ρgrowth
+ δfreeze

)

≤ d+ ξ + ρdisgro ·
(

∆growth +
γ + ρ′growth ·∆growth

ρgrowth
+ δfreeze

)

= d+ ξ + ρdisgro ·
(

∆growth +
ρ′growth ·∆growth

ρgrowth
+ δfreeze

)
+ γ · ρdisgro

ρgrowth
.

By the choice of γ0 ≤ γ, we have

ρdisgro
(
ρgrowth(δfreeze + ∆growth) + ρ′growth ·∆growth

)
≤ (γ − ξ) · (ρgrowth − ρdisgro),

which implies

ρdisgro ·
(
δfreeze + ∆growth +

ρ′growth ·∆growth

ρgrowth

)
≤ (γ − ξ) ·

(
1− ρdisgro

ρgrowth

)
.

Therefore,

Depth(B′) < d+ ξ + (γ − ξ) ·
(

1− ρdisgro
ρgrowth

)
+ γ · ρdisgro

ρgrowth
≤ d+ γ.

Since B′ was an arbitrary block that is not a descendant of B, we can conclude that all
blocks with depth at least d+ γ are descendants of B. This concludes the proof of condition 2
of UJP.

6 Weak Multi-Valued Byzantine Agreement
At the core of the Finalization algorithm from Section 5, parties use a Byzantine agreement
protocol relative to a justification J (here J = Jd,γInTree). Each party Pi inputs a proposal pi
(a block) and gets a decision di (a block or ⊥) as output. We propose two variants of such
a protocol, namely WMVBA and FilteredWMVBA which are inspired by classic asynchronous
BA protocol such as [5]. WMVBA requires DCGrowth from the underlying blockchain, whereas
FilteredWMVBA only relies on standard blockchain properties. Both protocols satisfy consistency
and termination, defined as follows:

Consistency: If some honest parties Pi and Pj output decisions di and dj respectively, then
di = dj .

Termination: If all honest parties input some justified proposal, then eventually all honest
parties output a decision.

The WMVBA protocol additionally satisfies weak persistency and n/3-support:

Weak Persistency: If during the protocol execution there exists a decision d such that no
other decision d′, where d′ 6= d is J-justified for any honest party, then no honest party Pi
outputs a decision d′ with d′ 6= d.
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n/3-Support: If some honest party Pi outputs decision d with d 6= ⊥, then at least n/3 of the
honest parties had J-justified input d.

Remark 7. The n/3-support property is a strengthening of strong validity, which has been
introduced by Neiger [23]. Strong validity requires the output of honest parties to be the
input of some honest party, i.e., it roughly corresponds to 1-support (ignoring ⊥-outputs and
justifications). As was shown by Neiger [23], strong validity is impossible (even in a synchronous
network) if n ≤ mt, where m is the number of possible inputs. We circumvent this impossibility
by allowing parties to output ⊥ when there are too many possible inputs (i.e., justified proposals).

As we have shown in Lemma 1, a blockchain satisfying Prefix, ChainGrowth, and DCGrowth
have the property that at some point, there is a unique justified proposal in the tree. Weak
persistency guarantees that running WMVBA at that point leads to parties outputting that block.
If DCGrowth does not hold, there could always be more than one justified proposal, in which
case WMVBA can always output ⊥. To deal with this, FilteredWMVBA provides (non-weak)
persistency, at the expense of only having 1-support. More precisely, FilteredWMVBA satisfies
consistency, termination, and the following two properties:

Persistency: If all honest parties input the same J-justified d, then no honest party Pi outputs
a decision d′ with d′ 6= d.

1-Support: If some honest party Pi outputs decision d with d 6= ⊥, then at least 1 of the honest
parties had J-justified input d.

The usual common-prefix property implies that if honest parties have more than the prefix
parameter number of blocks below the block they propose to finalize, then they all propose the
same block. Hence, persistency of FilteredWMVBA ensures that in this case, they agree on this
block. Note that without DCGrowth, it is possible to have other chains of equal length in the
tree (and thus no unique justified proposal), but Prefix implies that no honest party adopts
these alternative chains, i.e., only dishonest parties can input them to FilteredWMVBA.

We first present WMVBA. FilteredWMVBA is essentially the same with an additional filtering
step at the beginning, with the goal of filtering out proposals of dishonest parties. In Section 6.5
of the supplementary material, we describe how WMVBA needs to be modified to obtain
FilteredWMVBA.

Protocol idea. At the beginning of the WMVBA protocol all parties first run the Freeze
sub-protocol. In Freeze, parties send their proposals to all other parties and every party checks
whether they received at least n − t proposals for the same block. In that case, their output
for Freeze is that block, otherwise it is ⊥. Freeze thereby boils the decision for a finalized block
down to the binary decision between ⊥ and a unique block output by Freeze (if that exists). To
this end, a binary Byzantine agreement protocol A BBA is run after Freeze. We provide details
about the sub-protocols and WMVBA in the following sections.

6.1 Freeze Protocol

Each honest party Pi has a J-justified input pi, called proposal. In our use case these proposals
are blocks. Each honest party Pi (eventually) outputs a decision di which is either from the
space of proposals (e.g. a block) or ⊥. The output decision di of Pi is justified by justification
Jdec (see Definition 13). The Freeze protocol satisfies the following properties.

Weak Consistency: If honest parties Pi and Pj output decisions di 6= ⊥ and dj 6= ⊥ respec-
tively, then di = dj .
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Weak Persistency: If during the protocol execution1 there exists a J-justified proposal p such
that no other proposal p′ 6= p is J-justified for any honest party, then no honest party Pj
outputs p′.

n− 2t-Support: If honest party Pi outputs decision di 6= ⊥, then at least n− 2t honest parties
had di as input.

Termination: If all honest parties input some justified proposal, then eventually all honest
parties output a decision.

Next, we define the following justifications relative to the input justification J .

Definition 11. A proposal message m = (baid,proposal, p) from Pi is considered Jprop-
justified for Pj if m is signed by Pi and p is J-justified for Pj .

Definition 12. A vote message m = (baid,vote, v) from Pi is considered Jvote-justified
for Pj if it is signed by Pi and either for v 6= ⊥ Pj has collected Jprop-justified messages
(baid,proposal, v) from at least n − 2t parties or for v = ⊥ Pj has collected Jprop-justified
messages (baid,proposal, p) and (baid,proposal, p′) (from two different parties) where p′ 6=
p.

Definition 13 (Jdec-justification). A decision message m = (baid, frozen, d) is Jdec-justified
for Pj if Pj collected Jvote-justified messages (baid,vote, d) from at least t+ 1 parties.

Observe that for example a proposal message (baid,proposal, p) can become Jprop-justified
for Pj much after it was received from Pi. This due to J being an eventual justification. The
proposal p thus can become J-justified after receiving a proposal message containing p.

Protocol. We describe the Freeze protocol next.

Protocol Freeze(baid, J)

Each (honest) party P has a J-justified proposal p as input. Party P does the following:
Propose:

1. Broadcast proposal message (baid,proposal, p).

Vote:

2. Collect proposal messages (baid,proposal, pi). Once Jprop-justified proposal mes-
sages from at least n − t parties have been collected do the following (but keep
collecting proposal messages).

(a) If Jprop-justified proposal messages from at least n− t parties contain the same
proposal p, broadcast vote message (baid,vote, p).

(b) Otherwise broadcast vote message (baid,vote,⊥).

Freeze:

3. Collect vote messages (baid,vote, pi). Once Jvote-justified vote messages from at
least n− t parties have been collected and there is a value contained in at least t+ 1
vote messages do the following.

1That is until the first honest party gets an output.
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(a) If Jvote-justified vote messages from at least t+ 1 parties contain the same p 6= ⊥
then output (baid, frozen, d), where d = p.

(b) Otherwise if ⊥ is contained in vote messages from at least t+ 1 parties output
(baid, frozen,⊥).

4. Keep collecting vote messages until WMVBA is terminated (i.e., until Pi gets an
output in WMVBA). Party Pi keeps track of all decisions (baid, frozen, d) which
become Jdec-justified.

Lemma 2. For t < n
3 the protocol Freeze satisfies weak agreement, weak persistency, n − 2t-

support, and termination. The outputs of honest parties are Jdec-justified.

Proof. We prove each individual property next.

Weak Consistency: To prove the weak agreement property, we have to show that no honest
parties Pi and Pj will ever output different decisions di and dj when di 6= ⊥ and dj 6= ⊥.
If all honest parties output ⊥ then we are done. So assume that honest party Pi outputs
di. Then at least one honest party Pk broadcast Jvote-justified message (baid,vote, di).
So Pk must have collected Jprop-justified messages (baid,proposal, di) from at least n− t
parties. This implies that any other honest party has received (baid,proposal, dj) from
at most 2t parties where di 6= dj 6= ⊥. So all honest parties will vote either for di or ⊥.
Thus all honest parties will output either di or ⊥. This implies the property.

Weak Persistency: Assume that there exists a proposal p such that during the protocol
execution there exist no other p′ 6= p that is J-justified for any honest party. Thus, the only
proposal message which could be Jprop-justified for honest parties is (baid,proposal, p).
This implies that the only vote message which could be Jvote-justified for honest parties is
also (baid,vote, p). Thus, (baid, frozen, d), where d = p is the only decision that could
become Jdec-justified for any honest party.

n− 2t-Support: Assume Pi outputs decision di 6= ⊥. That means that Pi received Jvote-
justified vote message (baid,vote, p) from strictly more than t parties. Out of those
parties at least one must be honest. That honest must have received Jprop-justified
(baid,proposal, di) from at least n− t parties. Thus at least n− 2t honest parties have
sent Jprop-justified (baid,proposal, di) which they only do if di is their input.

Termination: Note that all used justifications are eventual. So if there exists a proposal which
is J-justified for some honest party it eventually becomes J-justified for all honest parties.
Thus, all honest parties will eventually send out Jprop-justified proposal messages and all
honest parties will eventually send out Jvote-justified vote messages. As honest parties
vote for at most two different values, all will eventually receive vote messages from n− t
parties where one values is contained in at least t+ 1 votes. Therefore all honest parties
will eventually output a decision.

Finally, we show that the output di of honest party Pi is Jdec-justified for Pi. If di 6= ⊥
then Pi collected Jvote-justified messages (baid,vote, di) from at least t+ 1 parties. Thus the
output is Jdec-justified. If di = ⊥ and Pi collected Jvote-justified messages (baid,vote,⊥) from
at least t+ 1 parties, then the output is also Jdec-justified.

Corollary 1. At most one decision d 6= ⊥ will ever be Jdec-justified for any honest party.
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Proof. This follows from the argument of weak agreement.

Lemma 3. Assume any message received by an honest party will eventually be received by all
other honest parties. If an honest party Pi outputs (Jdec-justified) decision di 6= ⊥ in Freeze,
then eventually all honest parties will accept di has Jdec-justified.

Proof. Assume Pi outputs (Jdec-justified) decision di 6= ⊥. That means that Pi received Jvote-
justified vote message (baid,vote, p) from strictly more than t parties. This also means that at
least one honest party received Jprop-justified (baid,proposal, di) from at least n− t parties.
This implies that di is J-justified for that party.

The decision di will therefore be J-justified for any other honest party. Under the assumption
that any message received by an honest party will eventually be received by all other honest
parties we have that any honest party will have Jvote-justified (baid,vote, p) vote messages
from strictly more than t parties. This makes all honest parties accept di as Jdec-justified
eventually.

6.2 Core Set Selection

The weak core-set selection protocol CSS is used in our binary byzantine agreement protocol
A BBA (see Section 6.3) to compute a common core-set of party-value tuples. The global inputs,
i.e., the pre-agreed parameters, are Jcssin and a delay ∆CSS. Each party inputs a Jcssin-justified
bit where Jcssin is some (eventual) justification which is later defined by A BBA. Each honest party
Pi (eventually) outputs a set Corei which contains Jtpl-justified tuples (P, b) (see Definition 14).

The idea with the delay ∆CSS is to give honest parties more time to submit their input to
the core-set. This allows to counter the effect of de-synchronization. In particular, assume that
honest parties start the protocol within ∆st and that the network delay is at most ∆net. Then
honest parties are at most ∆st + ∆net de-synchronized. By waiting ∆CSS > ∆st + ∆net the
inputs of all honest parties will be part of the core set. The protocol has the following properties.

Common Core: The output sets of honest parties have a common core Core ⊆
⋂
i Corei which

contains tuples (P, b) from at least n− t different2 parties.

Weak Persistency: If during the protocol execution of CSS for some baid there exists a
Jcssin-justified b such that no other bit b′ is Jcssin-justified for any honest party, then all
tuples in the output set Corei of honest party Pi are of the form (·, b).

Unique Honest Tuple: The output set Corei of honest party Pi contains for each honest
party Pj at the tuple (Pj , bj) where bj is the input of Pj .

Termination: If all honest parties have Jcssin-justified input, then all honest parties will
eventually terminate.

∆CSS-Waiting: If ∆CSS is larger than the de-synchronization of honest parties, then output set
Corei of honest party Pi contains tuples from all honest parties. Moreover, all honest
outputs are fixed before the first honest party gives an output.

We define the following justifications relative to justification Jcssin.

Definition 14. A tuple (Pi, bi) is Jtpl-justified for Pj if it is correctly signed by Pi and bi is
Jcssin-justified for Pj .

2Note that the Core or any Corei contain multiple tuples with the same (dishonest) party.
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Definition 15. A seen message (seen, Pk, (Pi, bi)) is Jseen-justified for Pj if it is correctly
signed by Pk and (Pi, bi) is Jtpl-justified for Pj .

Definition 16. A done-reporting message (doneReporting, Pk, iSawk) is Jdone-justified for
Pj if it is correctly signed by Pk and for each tuple (Pi, bi) ∈ iSawk Pj has a Jtpl-justified
(seen, Pk, (Pi, bi)).

We give a formal description of the protocol next.

Protocol CSS(baid, Jcssin,∆CSS)

The protocol is described from the view point of a party Pi which has Jcssin-justified input
bit bi.
Start:

• Party Pi sets flag reporti to >. It initializes sets iSawi and manySawi to ∅. Then Pi
sends its Jcssin-justified input bi signed to all parties.

Reporting Phase:

• Once Pi receives signed bj from Pj such that (Pj , bj) is Jtpl-justified, Pi adds (Pj , bj)
to iSawi and sends signed (seen, Pi, (Pj , bj)) to all parties. Party Pi does this for
each party Pj at most once.

• Once Pi received Jseen-justified (seen, Pk, (Pj , bj)) from at least n− t parties, party
Pi adds (Pj , bj) to manySawi.

• Once manySawi contains tuples (Pj , ·) for at least n− t parties, Pi waits for ∆CSS (while
still collecting tuples) and then sets reporti to ⊥.

Closing Down:

• Once party Pi had set reporti to ⊥ Pi sends to all parties signed
(doneReporting, Pi, iSawi).

• Once Pi received Jdone-justified (doneReporting, Pj , iSawj) from at least n − t
parties, Pi sets Corei to be the set of all currently Jtpl-justified (Pj , bj). It then waits
for ∆CSS (and stops collecting messages), and afterwards outputs Corei.

Lemma 4. For t < n
3 the protocol CSS satisfies common core, weak persistency, unique honest

tuples, termination, and ∆CSS-waiting.

Proof. We prove each individual property next.

Common Core: Let Pi be the first honest that sends out (doneReporting, Pi, iSawi). At
this point Pi’s manySawi contains Jtpl-justified tuples (Pj , bj) from at least n− t parties.
Additionally note that if (Pj , bj) ∈ manySawi then at least n− 2t > t honest parties must
have added (Pj , bj) to their iSaw.
Let Pk be an honest party with output Corek. We now argue that any tuple (Pj , bj) in
manySawi must be part of Corek. At the point where Pk computed Corek the party has
seen at least n− t Jdone-justified (doneReporting, P, iSaw). So one of them must come
from an honest party which has (Pj , bj) added to their iSaw (as n − 2t > t have added
it to their iSaw). Thus Pk will consider (Pj , bj) Jtpl-justified at this point and add it to
Corek.
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Weak Persistency: The output set Corei contains only tuples (Pk, bk) which are Jtpl-justified
for Pi. As b is the only Jcssin-justified value, only tuples of the form (·, b) are Jtpl-justified.
Thus all tuples in Corei are of the form (·, b).

Unique Honest Tuple: An honest party Pj will only send out its signed input bit bj . Thus if
a tuple (Pj , b) is considered Jtpl-justified by Pi, we have that b = bj .

Termination: Each honest party Pi will send out its signed input bit b. Any other honest Pj will
add b to its iSawj (as Jcssin is an eventual justification) and send out (seen, Pj , (Pi, bi)).
As there are at least n− t honest parties, all honest parties will add at least n− t tuples to
their manySaw. This implies that they all will send out (doneReporting, ·, ·) messages
which are justified for all other honest parties. Thus every honest party Pi will eventually
output a Corei.

∆CSS-Waiting: If ∆CSS is large enough, then any honest party Pi will have enough time to
broadcast their input bit, such that any other honest party Pj will receive it before they
set reporti to ⊥. Furthermore, waiting for ∆CSS time after fixing Corei guarantees that
all honest outputs are fixed before any honest party gives an output.

From the common-core property we directly get the following corollary.

Corollary 2. The output set Corei of honest party Pi contains tuples (Pj , bj) from at least n− t
different parties.

The next corollary is implied by the unique-honest-tuple property.

Corollary 3. The output Corei of party Pi contains tuples (Pj , b) and (Pj , b′) with b 6= b′ for
at most t parties.

6.3 A Binary Byzantine Agreement

We now describe a Binary Byzantine Agreement protocol (A BBA). Parties use A BBA to decide
whether they agreed on a non-⊥ decision in Freeze (resp. FilteredFreeze).

Each party has a Jin-justified bit b ∈ {⊥,>} as input (see Definition 17). The idea is that
parties input ⊥ (resp. >) if their Jdec-justified output of Freeze was (baid, frozen,⊥) (resp.
(baid, frozen, d) for d 6= ⊥). The output of honest parties in A BBA are Jout-justified bits (see
Definition 20).

The A BBA protocol is a type of randomized graded agreement. The protocol consists of
multiples phases. In each phase parties propose their current bit. After a weak core-set agreement
using CSS parties make a choice to update their current bit. They each grade their choice from
0 to 2. The randomization comes in the form of a leader election where the elected leader helps
parties with grade 0 to select their current bit. The protocol A BBA has the following properties.

Consistency: If some honest Pi and Pj output bits bi respectively bj , then bi = bj .

Weak Persistency: If during the protocol execution there exists a Jin-justified b such that no
other bit b′ is Jin-justified for any honest party, then no honest party outputs b′ 6= b.

1-Support: If some honest Pi output bit bi, then some other honest party had bi as input.

Termination: If all honest parties input some Jin-justified bit, then eventually all honest voters
output some bit.
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We use the following justifications in A BBA.

Definition 17. A bit b is Jin-justified (input) for Pi if Pi has a Jdec-justified tuple (baid, frozen, d)
where d 6= ⊥ if and only if b 6= ⊥.

Definition 18. A bit b is Jphase,1-justified (phase-1 justified) for Pi if it is Jin-justified.

Definition 19. For k > 1 a bit b is Jphase,k-justified (phase-k justified) for Pi if Pi has > t
signatures on (baid, justified, b, k − 1).

Definition 20. A bit b is Jout-justified (output) for Pi if Pi has n − t signatures on (baid,
WeAreDone, b).

Leader election lottery. The A BBA protocol requires a lottery which ranks parties. We
need that every party gets a “lottery ticket” such that other parties can verify the ticket and
every party has the same probability of having the highest ticket. Furthermore, we require
that lottery tickets of honest parties cannot be predicted before they sent it. This can, e.g.,
be implemented using a verifiable random function (VRF) [21] with unpredictability under
malicious key generation [8]. Such a VRF that can locally be evaluated by every party and
verified by others using a public key. Depending on the underlying blockchain, one can also use
some other mechanism offered by the blockchain to run the lottery.

Protocol. We next describe the protocol. It uses some globally known ∆ as the initial waiting
time. We conjecture it works well in practice to set ∆ equal to the expected network delivery
time. Any value works in principle since we increase the waiting time in each phase.

Protocol A BBA(baid, Jin)

The protocol is described from the view point of a party Pi which has Jin-justified input
bi. The party starts both the “Graded Agreement” and the “Closing Down” part of the
protocol.
Graded Agreement
In each phase k = 1, 2, . . . do the following:

1. The parties jointly run CSS(baid, Jphase,k, k ·∆) where Pi inputs bi. Denote by Corei
the output of Pi.

2. Pi computes its lottery ticket ticketi and broadcasts signed (baid, justified, bi, k)
along with ticketi.

3. Pi waits for time k ·∆ and then does the following:

• If all bits (of the tuples) in Corei are > let bi = > and gradei = 2.
• Else if at least n− t bits in Corei are > let bi = > and gradei = 1.
• Else if all bits in Corei are ⊥ let bi = ⊥ and gradei = 2.
• Else if at least n− t bits in Corei are ⊥ let bi = ⊥ and gradei = 1.
• Else, select a bit b which occurs > t in Corei. If this bit is not unique, verify
all lottery tickets using verifyA BBALotteryTicket and select the bit b where
(b, P ) ∈ Corei and P has the highest valid lottery ticket for all parties in Corei.
Let bi = b and gradei = 0.

4. Go to the next phase.
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Closing Down Each party sends at most one (baid,WeAreDone, ·) message.

1. When party Pi achieves grade 2 for the first time it sends signed
(baid,WeAreDone, bi) to all parties.

2. Once having receiving at least n − t signed (baid,WeAreDone, b) terminate the
protocol and output Jout-justified b.

Lemma 5. For n > 3t the protocol A BBA satisfies agreement, validity and, termination.

Proof. We first proceed to prove the following claims.

Claim 1. At the start of any phase k the current bit bi of an honest party Pi is Jphase,k-justified
for Pi and is eventually Jphase,k-justified for any other party.

Proof. In the first phase the bit bi is the Jin-justified input bit, thus the statement holds. So
assume that the start of phase k − 1 all honest parties have a Jphase,k−1-justified bit. In Step 2
of phase k − 1 they broadcast n − t ≥ 2t + 1 messages of the form (baid, justified, ·, k − 1).
These messages will eventually be received by all honest parties. Thus in phase k at least one
bit must be eventually Jphase,k-justifiable for all honest parties. By the design of A BBA honest
parties will select such a bit in Step 3 of phase k − 1. So they all end up with a Jphase,k-justified
bit at the start of phase k.

Claim 2. Eventually all honest party will end up with the same bit b and grade grade = 2.

Proof. Consider the following cases:

Case 1: Assume that in some phase k in Step 1 there exists a Jphase,k-justified bit b such that
all honest parties have bi = b.
All honest parties send out signed (baid, justified, b, k) and start CSS with justified
inputs. By the termination property of CSS every honest party will eventually have an
output. By the common-core property the output sets have a common core of size at least
n− t. By the unique-honest tuple property b will occur at least t+ 1 in Pi’s output set
Corei. On the other hand 1− b will occur at most t times in Corei. Therefore, any honest
party Pi will select again b in Step 3 (with a grade of 0 or more). In the next phase k + 1
all honest parties have bi = b and no other bit is Jphase,k+1-justified. In this phase by the
weak persistency property of CSS it follows that all honest parties will have bi = b and
gradei = 2 after Step 3. Afterwards, the honest parties will no longer change their values
nor their grades.

Case 2: Assume that in some phase k after Step 3 an honest party Pi has bi = b and gradei = 2.
That means Corei from CSS and thus the core-set only contains tuples with b. So any
other honest party Pj has b at least n− t times in its Corej . At the same time Pj cannot
have at least n− t > 2t tuples with 1− b in Corej . Hence after Step 3 Pj will set bj = b
with gradej ≥ 1. Thus in the next phase we are in Case 1.

Case 3: Assume that in some phase after Step 3 there is a bit b such that any honest party Pi
either has bi = b with gradei ≥ 1 or bi arbitrary with gradei = 0.
We assume that k · ∆ is larger than the network delay, which will eventually happen.
Otherwise the adversary can potentially delay messages from honest parties with high
lottery tickets and we end up in one of the cases 1-3. In case k ·∆ is large enough, the
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lottery tickets of all honest parties have arrived after waiting in Step 3. Furthermore, the
∆CSS-waiting property of CSS guarantees that all Corei and the common Core contains
the tuples of all honest parties.

sub-case a): Assume that there is some honest party Pi with bi = b and grade gradei = 1
after Step 3. Then, there are at least n − t tuples of the form (·, b) in Corej . Let
x ≥ n − t be the size of the core-set. Then, there are at least x − t ≥ n − 2t > t
tuples of the form (·, b) from honest parties in the core-set. This implies that b is a
justified choice for all honest parties. If the other bit is not justified for any honest
party, all honest parties choose b and we are in Case 1 in the next phase. Otherwise,
some honest parties will use the highest lottery ticket to determine their output. We
analyze this case below.

sub-case b): Assume that all honest parties have gradei = 0. Let b′ be the bit input
to CSS by more honest parties (and b′ = > if both bits are input equally often).
Since the tuples of all honest parties are in the core-set, b′ is at least t+ 1 times in
the core-set, and thus in every Corei. It is therefore a justified choice for all honest
parties. Hence, either all parties will choose b′ since it is the only justified bit, or
some honest parties will choose their bit according to the highest lottery ticket.

We finally consider the case where some honest parties make their choice according to the
highest lottery ticket. In both sub-cases, there is a bit b′′ that corresponds to at least n/3
honest lottery tickets such that if all honest parties choose b′′, then we are in Case 1 in the
next phase (in sub-case a), b′′ = b and in sub-case b), b′′ = b′). Note that the ∆CSS-waiting
property of CSS guarantees that all honest outputs of CSS are fixed before the tickets are
generated. Thus, the lottery tickets are independent of b′′. Since all tickets have the same
probability of being the largest one, and all honest tickets are considered by all honest
parties, the probability that the winning ticket is an honest one with bit b′′ is at least 1

3 .
Otherwise, we again end up in one of the cases 1-3.

Case 4: Assume that in some phase after Step 3 some honest party Pi has bi = b and gradei ≥ 1
while an other honest party Pj has bj = 1 − b and gradei ≥ 1. We now show that this
case can not happen. This would imply that in Corei there are at least n− t tuples (·, b)
and in Corej there are at least n− t tuples (·, 1− b). As the sets have a common core-set
of size at least n− t we have that in the core-set there are n− 2t parties with tuples for
both b and 1− b. This is a contradiction to Corollary 3.

Clearly the network is always in one of the four above case. In each possible case and in
each phase, we have that once k ·∆ exceeds the de-synchronization of the parties, they end up
in Case 1 in the next phase with probability at least 1/3. This means that once k ·∆ is large
enough, the expected number of phases needed to reach Case 1 is constant. Once in Case 1,
they will stay there forever.

Finally, we can show the properties.

Termination: If all hones parties have a Jin-justified input, then we start in one of the Cases 1-3.
Thus eventually we end up in Case 1 or Case 2. In particular, once the first honest party
has grade 2 for b all honest parties will decide with grade 2 on that bit. Thus all honest
parties will eventually send out signed (baid,WeAreDone, b). Therefore all honest
parties eventually output b together with n− t signatures on (baid,WeAreDone, b).
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Consistency: Once the first honest party sends (baid,WeAreDone, b) all honest parties will
converge in Case 1 with b. Thus they all will all send out (WeAreDone, b) as well. If an
honest party outputs a bit, it must be b.

1-Support If there are two honest parties with different inputs then this property follows
directly. So assume that all honest parties have the same input b. Then similar to Case 1
from the proof of the previous Claim, any phase > 1 b is the only justified bit. Thus it
will be output by all honest parties.

Weak Persistency: If all hones parties have a Jin-justified input b and no other Jin-justified
input exists, then honest parties will decide on b with grade 2 in the first phase. Thus
they will not output any other bit b′.

Remark 8. In A BBA, there are three places (including two within CSS) where parties wait. These
waiting times are effective once they exceed the de-synchronization of the parties (and are the
reason our protocol is partially synchronous and not asynchronous): The first one in CSS ensures
that all honest parties make it into the core-set, the second one in CSS ensures that all honest
outputs of CSS are fixed before honest parties give their outputs (which in turn guarantees that
these outputs do not depend on the lottery tickets in A BBA), and the last one in A BBA ensures
that all honest lottery tickets arrive in time. By reordering the protocol and letting one instance
of waiting take care of more than one property, it is possible to reduce the overall waiting time.
Since this complicates the analysis, we do not discuss this further here.

6.4 WMVBA Protocol

We can now describe the actual WMVBA protocol. Each party inputs a J-justified proposal and
gets a Jfin-justified output which is either a proposal or ⊥.

The idea of is WMVBA to first call Freeze to boil down the choice to a unique proposal or ⊥.
Parties then use A BBA which one is the case. Note that it can happen that an honest party
decides on ⊥ at the end of Freeze, but A BBA nevertheless outputs >. In this case, at least one
honest party had a justified non-⊥ decision as output in Freeze. This decision is unique. So
we must ensure that honest parties with ⊥ output in Freeze can somehow get their hands on
that decision. For that, parties do not terminate Freeze once they get their output, but instead
continue to collect decisions and vote-messages. By Lemma 3, this ensures that all honest parties
will eventually receive the unique non-⊥ decision.

We define the following justification.

Definition 21. A decision d is considered justified with respect to final justification Jfin for Pi
if Pi has t+ 1 signatures on the message (baid,WeAreDone, d).

Note that a ⊥ output from A BBA is already Jfin-justified. The protocol formally works as
follows:

Protocol WMVBA(baid, J)

The protocol is described from the view point of party Pi which has J-justified input pi.

1. Run Freeze(baid, J) with input pi. Denote by di the Jdec-justified output for Pi from
Freeze.

2. Run A BBA(baid, Jin) with input bi where bi = ⊥ if di = ⊥ and bi = > otherwise.
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Denote by b′i the output of A BBA for Pi.

3. If b′i = ⊥, then terminate and output b′i (which is Jfin-justified) together with W = ⊥,
otherwise (if b′i = >) do:

• Once Pi has a Jdec-justified decision message (baid, frozen, di) with di 6= ⊥
(from Freeze) it sends signed (baid,WeAreDone, di) to all other parties.
• Once n − t signed (baid,WeAreDone, d), for some d, have been received,

terminate and output (d, W), where W contains baid and n− t of these signatures.

Theorem 2. For t < n
3 the protocol WMVBA satisfies consistency, weak persistency, n/3-support,

and termination.

Proof. We prove each individual property next.

Consistency: Consider two honest parties Pi, Pj with Jfin-justified outputs outputs di and dj .
Assume that they are different.

case i) Assume that without loss of generality di = ⊥ and thus dj 6= ⊥. In this case Pi
had output ⊥ from A BBA and Pj had output > from A BBA. This contradicts the
consistency property of A BBA.

case ii) Assume that both di and dj are not equal to ⊥. Then, both parties Pi and Pj got
> as output from A BBA. This implies that at least one honest party Pk had input >
to A BBA due to the 1-support of A BBA. This party Pk must have had Jdec-justified
output (baid, frozen, dk) from Freeze (with dk 6= ⊥).
Let without loss of generality di 6= dk, then it must be that Pi collected at least
t+ 1 signed messages (baid,WeAreDone, di) of which at least one must have been
broadcast by an honest party Pl. That party Pl must consider (baid, frozen, di) to
be Jdec-justified. This is a contradiction to the weak consistency of Freeze.

Thus, the output of honest parties must be the same.

Weak Persistency: Assume that there exists a d such that any d′ 6= d is not J-justified during
the protocol run.
The weak persistency of Freeze implies that no (baid, frozen, d′) with d′ 6= d is output by
an honest party in Freeze. In particular, (baid, frozen,⊥) cannot become Jdec-justified.
So ⊥ is not a Jin-justified input for A BBA.
By the weak persistency of A BBA it follows that ⊥ is not a Jout-justified output for A BBA.
Therefore neither ⊥ nor a decision d′ 6= d can be an Jfin-justified output of A BBA.

n/3-Support: Assume that honest party Pi outputs di 6= ⊥.
Therefore Pi had output > from A BBA. By 1-support of A BBA at least one honest
party Pj had input > to A BBA. This party Pj must have had Jdec-justified output
(baid, frozen, dj) from Freeze with dj 6= ⊥.
We also know that Pi collected at least t+ 1 signed (baid,WeAreDone, di). So, at least
one honest party considers (baid, frozen, di) to be Jdec-justified. By Corollary 1 we must
have di = dj . The n− 2t-support property of Freeze implies that at least n− 2t honest
parties had input di for Freeze. This means that at least n

3 honest parties had input di for
WMVBA.
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Termination: Assume that all honest parties have a J-justified proposal as input. By the
termination property of Freeze all honest parties will have a Jdec-justified output. Thus
they all have a Jin-justified input for A BBA. By the termination property of A BBA they
all have an Jout-justified output from A BBA. Consider the following cases.

case i): Assume honest party Pi has Jout-justified output ⊥ from A BBA. Then Pi output
Jfin-justified ⊥.

case ii): Assume honest party Pi has Jout-justified output > from A BBA. The 1-support
of A BBA implies that at least one honest party Pj had input > for A BBA. Thus
party Pj had Jdec-justified output (baid, frozen, dj) from Freeze with dj 6= ⊥.
Lemma 3 implies that eventually all honest parties will accept (baid, frozen, dj) as
Jdec-justified. Thus Pi will eventually output a Jdec-justified decision.

6.5 Filtered WMVBA Protocol

As described before, FilteredWMVBA is a variant of the WMVBA protocol for blockchains without
the DCGrowth property. It has a stronger persistency guarantee such that we do not need a
unique justified proposal to achieve finalization. Instead, it is enough if all honest parties agree
on a proposal. However, this comes at the cost that FilteredWMVBA only offers 1-support
instead of n/3-support. Technically, FilteredWMVBA is the same as WMVBA except we use a
slightly altered Freeze subprotocol called FilteredFreeze.

Filtered Freeze. FilteredFreeze is a variant of the Freeze protocol. It is essentially Freeze with
an additional step where proposals with low support are filtered out. It provides a stronger
persistency guarantee. This comes at the cost of a lower support guarantee. Each party honest Pi
has a J-justified input pi and the output of Pi is justified by justification Jdec (cf. Definition 13).
The protocol has the following properties.

Weak Consistency: If some honest Pi and Pj output decisions di 6= ⊥ respectively dj 6= ⊥,
then di = dj .

Persistency: If all honest parties input the same J-justified proposal p, then no honest Pj
outputs a decision p′′ with p′′ 6= p.

1-Support: If honest party Pi outputs decision di 6= ⊥, then at least one honest party had di
as input.

Termination: If all honest parties input some justified proposal, then eventually all honest
parties output some decision.

For the new filter step we need the following justification.

Definition 22. A filtered proposal message m = (baid, filtered, p, σ) is considered Jfilt-
justified for Pj if either σ contains Jprop-justified proposal messages for p from t+ 1 different
parties or σ contains Jprop-justified proposal messages from n− t different parties such that no
proposal is contained in more than t of those messages.

Vote messages are now cast after the filter step and depend on filtered proposal messages.
We thus redefine the justification for vote messages as follows. The definition of Jdec (relative to
the redefined Jvote) stays the same as for Freeze.
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Definition 23. A vote message m = (baid,vote, v) from Pi is considered Jvote-justified for Pj
if is signed by Pi and either for v 6= ⊥ Pj has collected Jfilt-justified filtered proposal messages
from at least n−2t parties or for v = ⊥ Pj has collected Jfilt-justified filtered proposal messages
(baid, filtered, p, σ) and (baid, filtered, p′, σ′) (from two different parties) where p′ 6= p.

Protocol FilteredFreeze(baid, J)

Each (honest) party P has a J-justified proposal p as input. Party P does the following:
Propose:

1. Broadcast signed proposal message (baid,proposal, p).

Filter:

1. Collect proposal messages (baid,proposal, pi). Once Jprop-justified proposal mes-
sages from at at least n − t parties have been collected do the following (but keep
collecting proposal messages).

(a) If your input p is contained in at least t + 1 Jprop-justified proposal messages,
broadcast filtered proposal message (baid, filtered, p, σ) where σ is a set of
t+ 1 signed proposal messages which all contain p.

(b) Else if there is any p′ which is contained in at least t+ 1 Jprop-justified proposal
messages, broadcast filtered proposal message (baid, filtered, p′, σ) where σ is
a set of t+ 1 signed proposal messages which all contain p. Do this for at most
one proposal.

(c) Else broadcast (baid, filtered, p, σ) where σ is a set of n− t signed proposal
messages such that no proposal is contained in more than t of those proposal
messages.

Vote:

2. Collect filtered proposal messages (baid, filtered, pi). Once Jfilt-justified filtered
proposal messages from at at least n− t parties have been collected do the following
(but keep collecting filtered proposal messages).

(a) If Jfilt-justified filtered proposal messages from at at least n− t parties contain
the same proposal p, broadcast vote message (baid,vote, p).

(b) Otherwise broadcast vote message (baid,vote,⊥).

Freeze:

3. Collects vote messages (baid,vote, pi) messages. Once Jvote-justified vote messages
from at least n − t parties have been collected and there is a value contained in at
least t+ 1 vote messages do the following.

(a) If Jvote-justified vote messages from strictly more than t parties contain the same
p 6= ⊥ output (baid, frozen, p).

(b) Otherwise if Jvote-justified vote messages from strictly more than t parties contain
⊥ output (baid, frozen,⊥).

4. Keep collecting vote messages until WMVBA is terminated (i.e., until Pi gets an
output in WMVBA). Party Pi keeps track of all decisions (baid, frozen, p) which
become Jdec-justified.
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Lemma 6. For t < n
3 the protocol FilteredFreeze satisfies weak consistency, persistency, 1-

support, and termination. The outputs of honest parties are Jdec-justified.

Proof. Weak Consistency: Assume that some honest party sends Jvote-justified (baid,vote,d
) for d 6= ⊥. It must have received Jfilt-justified filtered proposal messages for d from
at least n− t different parties. Thus at most t honest parties sent Jfilt-justified filtered
proposal messages for d′ where d′ 6= d. Therefore at most 2t < n − t parties sent Jfilt-
justified filtered proposal messages for d′ where d′ 6= d. Therefore no honest party will
send a Jvote-justified vote message for d′ for d′ 6= d. Therefore, in Freeze, if two honest
parties output Jdec-justified (baid, frozen, d) and (baid, frozen, d′), then d = d′.

Persistency: Assume all honest parties have J-justified input d.
So all honest parties will send out Jprop-justified proposal messages for d.
So all honest parties will receive at least t+ 1 Jprop-justified proposal messages for d and
thus all send out Jfilt-justified filtered proposal messages for d.
On the other hand for any d′ 6= d there are no t+ 1 Jprop-justified proposal messages for d′.
Also any set of Jprop-justified proposal messages from n− t different parties will contain at
least t+ 1 proposal messages for d. This means that no Jfilt-justified filtered proposal
message for d′ can exist.
Thus all honest parties will vote for d while no other Jvote-justified can exist.
Thus all honest parties will output (baid, frozen, d) which is Jdec-justified while no other
Jdec-justified can exist.

1-Support: Assume honest party Pi outputs di 6= ⊥. Then it collected at least t+ 1 votes for
di. So at least one honest party sent out a vote for di. This party must have collected at
least t+ 1 filtered proposals for di. So at least one honest party sent out a filtered proposal
message for di. This party must have collected at least t+ 1 proposal messages for di. So
at least one honest party had input di.

Termination: Note that all used justifications are eventual justifications.
Every honest party will send out a justified proposal message. Thus all honest parties
will eventually receive Jprop-justified proposal message from n− t different parties. They
therefore send out all filtered proposal messages. Thus all honest parties will eventually
receive Jfilt-justified filtered proposal messages from n− t different parties and send out
vote messages. So eventually they will all collect Jvote-justified vote messages from n− t
and thus all output a decision.

Similar to Lemma 3 for Freeze we get.

Lemma 7. Assume any message received by an honest party will eventually be received by
all other honest parties. If an honest party Pi outputs (Jdec-justified) decision di 6= ⊥ in
FilteredFreeze, then eventually all honest parties will accept di has Jdec-justified.

The proof follows along the lines of the proof for Lemma 3.

Filtered WMVBA. The protocol FilteredWMVBA is identical to WMVBA where Freeze is
replaced by FilteredFreeze.

Theorem 3. For t < n
3 the protocol FilteredWMVBA satisfies consistency, persistency, 1-support,

and termination.
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Proof. We prove each individual property next.

Consistency: Consider two honest parties Pi, Pj with Jfin-justified outputs outputs di and dj .
Assume that they are different.

case i) Assume that without loss of generality di = ⊥ and thus dj 6= ⊥. In this case Pi
had output ⊥ from A BBA and Pj had output > from A BBA. This contradicts the
consistency property of A BBA.

case ii) Assume that both di and dj are not equal to ⊥. Then, both parties Pi and Pj got >
as output from A BBA. This implies that at least one honest party Pk had input >
to A BBA due to the 1-support of A BBA. This party Pk must have had Jdec-justified
output (baid, frozen, dk) from FilteredFreeze (with dk 6= ⊥).
Let without loss of generality di 6= dk, then it must be that Pi collected at least
t+ 1 signed messages (baid,WeAreDone, di) of which at least one must have been
broadcast by an honest party Pl. That party Pl must consider (baid, frozen, di) to
be Jdec-justified. This is a contradiction to the weak consistency of FilteredFreeze.

Thus, the output of honest parties must be the same.

Persistency: Assume that all honest parties input J-justified d.
The persistency of FilteredFreeze implies that no (baid, frozen, d′) with d′ 6= d is output
by an honest party in Freeze. In particular, (baid, frozen,⊥) cannot become Jdec-justified.
So ⊥ is not a Jin-justified input for A BBA.
By the weak persistency of A BBA it follows that ⊥ is not a Jout-justified output for A BBA.
Therefore neither ⊥ nor a decision d′ 6= d can be an Jfin-justified output of A BBA.

1-Support: Assume that honest party Pi outputs di 6= ⊥.
Therefore Pi had output > from A BBA. By 1-support of A BBA at least one honest party Pj
had input> to A BBA. This party Pj must have had Jdec-justified output (baid, frozen, dj)
from FilteredFreeze with dj 6= ⊥. The 1-support of FilteredFreeze implies that at least on
honest party had input dj . This party had input dj to FilteredWMVBA.

Termination: Assume that all honest parties have a J-justified proposal as input. By the
termination property of FilteredFreeze all honest parties will have a Jdec-justified output.
Thus they all have a Jin-justified input for A BBA. By the termination property of A BBA
they all have an Jout-justified output from A BBA. Consider the following cases.

case i): Assume honest party Pi has Jout-justified output ⊥ from A BBA. Then Pi output
Jfin-justified ⊥.

case ii): Assume honest party Pi has Jout-justified output > from A BBA. The 1-support
of A BBA implies that at least one honest party Pj had input > for A BBA. Thus
party Pj had Jdec-justified output (baid, frozen, dj) from FilteredFreeze with dj 6= ⊥.
Lemma 7 implies that eventually all honest parties will accept (baid, frozen, dj) as
Jdec-justified. Thus Pi will eventually output a Jdec-justified decision.

Finalization with Filtered Byzantine Agreement.

Theorem 4. For t < n
3 , and a blockchain satisfying common-prefix there exists a ∆ such that

the protocol described in Section 5 where calls to WMVBA replaced by calls to FilteredWMVBA
satisfies (∆, 1)-finality.
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Proof. The agreement and chain-forming properties follow as in the proof of Theorem 5 as
FilteredWMVBA as 1-support. Similarly, the 1-support property follows directly from the
1-support of FilteredWMVBA.

It remains to check the ∆-updated property. First, we show that any invocation of Finalization
eventually terminates. As the blockchain satisfies chain growth we know that all honest parties
will eventually start FilteredWMVBA in each execution of the repeat until loop of Finalization.
Note also that all honest parties have a justified input to WMVBA so it will terminate. The
parties will exit the loop if WMVBA outputs a non-⊥ decision. By the common-prefix property
of the underlying blockchain and the increasing γ in Finalization, all honest parties will eventually
input the same justified proposal. This implies by the persistency and termination property of
FilteredWMVBA that eventually Finalization will terminate with a new finalized block lastFinal
at depth d. The actual ∆-updated property follows as in the proof of Theorem 5.

7 Security Analysis of Finalization
In this section we show that the protocol described in Section 5 is a finality protocol as defined
in Section 4.

Theorem 5. For t < n
3 and a blockchain satisfying UJP there exists a ∆ such that the protocol

described in Section 5 satisfies (∆, n/3)-finality.

Proof. We argue each property individually next.

Agreement: We proof the property by induction.
The statement is true at the beginning of the protocol (k = 0).
So assume the statement holds for k − 1. An honest party will call (setFinal, ·) for the
k-th time after getting output Ri from Finalization. The agreement property of WMVBA
(cf. Theorem 2) guarantees that all honest parties output the same Ri. Thus they will all
input (setFinal, Ri).

Chain-forming: Consider honest party Pi which at time τ inputs (setFinal, R). Let lastFinali
be the last finalized block of Pi. As Pi is honest R was the output of Finalization. In
Finalization the WMVBA protocol is used to agree on R. The support property of WMVBA
(cf. Theorem 2) implies that R was input by at least one honest party Pj . By the design of
Finalization party Pj selected R in the subtree of lastFinalj (at that time). By the agreement
property we have lastFinali = lastFinalj and it follows that lastFinali ∈ PathTo(Treeτi , R).
As the output of NextFinalizationGap is ≥ 1 we have that R is at greater depth than
lastFinali. So R 6= lastFinali.

n/3-Support: Consider honest party Pi at time τ inputting (setFinal, R). As Pi is honest
R was the output of Finalization. In Finalization the WMVBA protocol is used to agree on
R. The n/3-support property of WMVBA (cf. Theorem 2) implies that R was input by at
least n/3 honest parties. By the design of Finalization these parties selected R as on their
Path.

∆-Updated: First, we show that any invocation of Finalization eventually terminates. As the
blockchain satisfies chain growth we know that all honest parties will eventually start
WMVBA in each execution of the repeat until loop of Finalization. Note also that all honest
parties have a justified input to WMVBA so it will terminate. The parties will exit the loop
if WMVBA outputs a non-⊥ decision. Let δfreeze be an upper bound on the duration of the
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Freeze sub-protocol. If the blockchain satisfies the UJP, then for the given depth d of the
to-be-finalized block and any time τ there exists a γ0 such that for all γ ≥ γ0 we have that
there is a time period of length δfreeze where there is a unique justified proposal and all
honest parties will have that proposal on their path. This implies by the weak persistency
and termination property of WMVBA that eventually Finalization will terminate with a
new finalized block lastFinal at depth d.
It remains to show that protocol achieves ∆-updated. According to Section 5.1 after some
point in time we have that the following holds right after finalizing a block. First, the
` output of NextFinalizationGap is roughly the same as the number of blocks added to
the chain during finalization. Second, the depth at which the next finalized block should
be roughly at the same depth as the deepest honest block, i.e., its height (which can be
negative if it is deeper than the tree) h is roughly zero. In particular, h ≤ `
So consider a finalization run at this point in time. Let d be the depth of the last finalized
block B and let d′ be the depth where the new finalized block has to be determined. We
have to upper bound the distance between the depth d of the last finalized block and the
depth of honest positions during the run of Finalization for d′.
This difference ∆ is the largest right before a new finalized block is output by Finalization.
The difference consists of the following parts. First, we have the height h1 of the finalized
block B at the beginning of its own finalization. Then, we have the number of blocks
added during the finalization of B, i.e. around `. Next, if the height for d′ was negative,
there are h2 more blocks. Finally, there are ` more blocks which have been added during
finalization for d′. We get ∆ = h1 + h2 + 2` ≤ 4`.

8 Committee Selection
The protocol of Section 5 is (intentionally) described in a simplified setting that abstracts away
many aspects of the underlying blockchain. We stress however, that our goal is to present
a finality layer, and not a full-fledged blockchain. Therefore, the reason for considering a
simplified setting is that by abstracting the properties of the underlying blockchain we end up
with a protocol that is generic enough to be used in tandem with virtually any Nakamoto-style
blockchain. Hence, if the underlying blockchain has properties such as permissionlessness and
dynamic stakes then our protocol can preserve those properties.

Properly selecting a committee is a challenging task that has been extensively studied [25, 17,
18]. The appropriate strategy to select a finalization committee is highly tied to the specific type
of blockchain one considers. Therefore, it is out of the scope of this paper to propose a definitive
answer on how to select a committee for each particular setting. We do however discuss some
possible approaches that can be used to select the finalization committee in a few settings.

We can categorize committees into two main categories, namely external committees and
chain-based committees. We discuss both next.

8.1 External Committees

An external committee is usually selected prior to the deployment of the system, and can be
dynamic or static during the lifetime of the system. External committees are more common in
permissioned blockchain applications, where there are restrictions to parties joining the system.
As an example, consider a blockchain backed by a foundation (e.g., Ethereum); the selection
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of the committee to run the finality layer can be initially chosen by the foundation, perhaps
among a few nodes that are previously registered with the foundation to perform the task. The
committee can be later updated during the lifetime of the system; the only requirement is that
the corrupted nodes compose less than 1/3 of the total number parties. We stress that allowing
a permissioned committee for the finality layer does not make the protocol trivial or the result
any weaker; in fact, it shows that our protocol is flexible enough to allow virtually all types of
blockchains to take advantage of finality capabilities.

8.2 Chain-Based Committees

Chain-based committees are deterministically selected from the blockchain itself. To abstract the
selection procedure from the underlying blockchain we define an interface C = FC(Tree, B) for a
function that takes as input the current blocktree Tree and a block B and selects a committee
C. The actual function FC is implemented by the underlying blockchain and can select the
committee in an arbitrary way; e.g., read all the state data in the previous epoch plus any
auxiliary information that might have been added via a survey layer (e.g., live nodes information),
and from this data select the committee C including each party’s stake. It is important to note
that the committee C is deterministically selected from B ∈ Tree and the path from B to the
genesis block. The committee C is selected by invoking the function FC and passing the current
tree Tree and the last finalized block B as input.

Chain-based committees in PoW. In a PoW blockchain miners employ computational
power to solve a hash puzzle to eventually get the right to append a new block to the chain. By
inspecting the history of mined blocks, one can infer the proportion of computational power
each party (or public key) possess in relation to the overall system within some time period.
To select a committee in a PoW chain, one could employ similar techniques from [25, 17, 18]
and consider a sliding time window (e.g., last 1000 blocks) that ends just before the last final
block (initially one can consider a pre-selected committee in the genesis block), where the miners
within the time window would constitute the committee. Note that the previously described
committee selection strategy assumes synchronicity. This, however does not imply that Afgjort
is synchronous, but rather that it supports many different strategies of committee selection.

Chain-based committees in PoS. To instantiate the function FC for PoS blockchains one
could use the data and stake distribution from the chain and run the committee selection as
a VRF lottery using the party’s stake as the “lottery tickets”, as is done in Algorand [20] and
Ouroboros Praos [8]; the more stake one has the higher is the probability of being selected.3 A
similar approach would be to run the selection based on the party’s stake by using randomness
produced by a coin tossing protocol ran by all the online parties in the previous epoch, as is
done in Ouroboros [16].
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