
DL-LA: Deep Learning Leakage Assessment
A modern roadmap for SCA evaluations

Felix Wegener∗, Thorben Moos∗, and Amir Moradi
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Abstract. In recent years, deep learning has become an attractive in-
gredient to side-channel analysis (SCA) due to its potential to improve
the success probability or enhance the performance of certain frequently
executed tasks. One task that is commonly assisted by machine learning
techniques is the profiling of a device’s leakage behavior in order to carry
out a template attack. Very recently at CHES 2019, deep learning has
also been applied to non-profiled scenarios, extending its reach within
SCA beyond template attacks for the first time. The proposed method,
called DDLA, has some tempting advantages over traditional SCA due
to merits inherited from (convolutional) neural networks. Most notably,
it greatly reduces the need for pre-processing steps when the SCA traces
are misaligned or when the leakage is of a multivariate nature. However,
similar to traditional attack scenarios the success of this approach highly
depends on the correct choice of a leakage model and the intermediate
value to target.
In this work we explore whether deep learning can similarly be used
as an instrument to advance another crucial (non-profiled) discipline
of SCA which is inherently independent of leakage models and tar-
geted intermediates, namely leakage assessment. In fact, given the simple
classification-based nature of common leakage assessment techniques, in
particular distinguishing two groups fixed-vs-random or fixed-vs-fixed,
it comes as a surprise that machine learning has not been brought into
this context, yet. Our contribution is the development of a full leakage
assessment methodology based on deep learning which gives the evalu-
ator the freedom to not worry about location, alignment and statistical
order of the leakages and that easily covers multivariate and horizon-
tal patterns as well. We test our approach against a number of case
studies based on FPGA measurements of the PRESENT block cipher,
equipped with state-of-the-art hardware-based countermeasures. Our re-
sults clearly show that the proposed methodology and network struc-
ture (which remains unchanged between the experiments) outperform
the classical detection approaches (t-test and χ2-test) in all considered
scenarios.

1 Introduction

In an ideal world, side-channel security evaluations would be able to provide a
qualitative and confident answer (pass or fail) to the question whether the device
under test (DUT) is vulnerable to physical attacks or not. However, history has
shown that this expectation is indeed a utopia. An exhaustive verification of the
security of a DUT against all possible attack vectors is simply infeasible. In-
stead, the concept of leakage assessment has been introduced in order to answer
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a slightly, but explicitly, less informative question, namely whether in general
any kind of information can be extracted from side-channel measurements of
the device under test. Clearly, in case this question is answered positively, no
conclusions about the actual vulnerability of the device with respect to key recov-
ery attacks can be drawn (although it is sometimes interpreted as an indication
thereof). Yet, in case it is answered negatively (and no false negative occurs) the
DUT should be sufficiently secure. In other words, leakage assessment is concep-
tually capable of providing the initially desired confidence in at least one of the
two cases. This possibility inspired the quest for appropriate leakage assessment
methods in academia and industry.

The most prominent approach is certainly distinguishing two groups of mea-
surements, one for fixed and one for random inputs, by means of the Welch’s
t-test [5, 14]. Whenever these two groups are distinguishable with confidence one
can conclude that the device reveals input-dependent information. However, this
method has some severe limitations, especially when more sophisticated types
of side-channel leakage need to be captured. First of all, since each point in time
is evaluated independently, the approach inherently expects that any potential
side-channel leakage is of a univariate nature and, more generally, that the de-
tection of the leakage does not benefit from a combination of multiple points.
Yet, many counterexamples to this assumption can be observed in reality. Al-
though Schneider et al. [14] provide detailed information on how to perform
the t-test at arbitrary order and variate, the performance of the test at higher
variates either quickly runs into feasibility issues or its success depends highly
on the expertise of the evaluator and the prior knowledge about the underlying
implementation. On another note, a misalignment of the leaking samples be-
tween the individual traces leads to a significantly impaired detection as well.
Thus, the Welch’s t-test, as it is currently applied as a test vector leakage as-
sessment (TVLA) methodology, is naturally unsuited to cover multivariate and
horizontal leakages, as well as (heavily) misaligned traces. In addition to that, it
was recently pointed out that the separation of statistical orders, which is often
seen as a beneficial feature of the t-test when seeking the smallest key depen-
dent moment for example, causes false negatives when masked implementations
with (very) low noise levels are analyzed or when the leakage is distributed over
multiple statistical moments (as it is common for hardware masking schemes
like threshold implementations) [11, 16]. Moradi et al. [11] suggested Pearson’s
χ2-test as a natural complement to the Welch’s t-test to aggregate leakages dis-
tributed over multiple orders and to analyze the joint information. By combining
the two approaches the risk of false negatives, especially in the previously de-
scribed cases, can significantly be reduced. Yet, in the same manner as the t-test,
the χ2-test analyzes the individual points in a leakage trace independently and
therefore suffers from the same shortcomings when it comes to multivariate or
horizontal patterns and misalignments.

Deep learning has been brought into the context of side-channel analysis mainly
in order to improve the effectiveness of template attacks [6]. In a template attack
the adversary is in possession of a fully-controlled profiling device, learns the
leakage function of a certain cryptographic operation and subsequently uses the
acquired knowledge to reveal sensitive information on a structurally identical
but distinct target device where the secrets are unknown. Apart from the general
suitability of deep learning to build classifiers for profiled side-channel attacks,
it has also been demonstrated that certain features and structures of the applied
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neural networks offer valuable advantages over classical template attacks. For
example, it is shown in [3] that convolutional neural networks (CNNs) can lead
to efficient classifiers even when the available side-channel traces suffer from
a misalignment. Thus, due to their so-called translation invariance property,
CNNs can be utilized to conquer jitter-based countermeasures. Very recently,
the first non-profiled deep learning based side-channel attacks were demonstrated
in literature [17]. The proposed method, called DDLA, is based on guessing a
part of the key, using it to compute the targeted key-dependent intermediate
value, applying a leakage model and labeling the training data according to its
result. Assuming that under the correct key hypothesis the differences between
the classes implied by the leakage model correlate with the measured leakage
traces (and for the incorrect guesses they do not), the impact of the correct key
guess is visible in the training loss and the training accuracy respectively and
can easily be identified. Although, this approach depends on the correct choice
of the targeted intermediate value and the applied leakage model just as much
as traditional attacks do, it offers some tempting advantages. First of all, in case
CNNs are used, the translation invariance property allows to analyze misaligned
traces without any pre-processing. Secondly, when the leakage is of a multivariate
nature or generally distributed over multiple points no recombination and no
prior knowledge about the underlying implementation is required. Hence, deep
learning is a powerful tool for non-profiled scenarios as well.

1.1 Our Contribution

For the first time in literature we evaluate whether deep learning is an eligi-
ble strategy for black box leakage detection. To this end, we have developed an
approach that is based on the concept of supervised learning. We call it deep
learning leakage assessment (DL-LA) in the following. Simply put, we train a
neural network with a randomly interleaved sequence of labeled side-channel
measurements that have been acquired while supplying the DUT with one of
two distinct fixed inputs (fixed-vs-fixed). Afterwards, in the validation phase,
the trained network is supplied with unlabeled measurements from both groups
and supposed to correctly classify them. Of course, the training set and the vali-
dation set are disjoint. In case the network succeeds with a higher percentage of
correct classifications than could be achieved by a randomly guessing binary clas-
sifier with a non-negligible probability, it can be concluded that indeed enough
information was included in the training set to distinguish the two groups. In
other words, given the percentage of correctly classified traces and the size of the
validation set one can easily calculate a confidence value, i.e., a probability, that
the correct classifications were not just a random statistical occurrence. In this
way it is possible to directly compare the confidence values achieved by DL-LA
with the confidence provided by classical leakage assessment approaches, such
as the Welch’s t-test and Pearson’s χ2-test.

Clearly, in order to qualify as a reasonable strategy for leakage assessment, it
should be given that the network which is trained to become the classifier offers a
fairly robust and universal performance, independent of the type of side-channel
leakage to be detected and independent of exterior parameters such as the trace
length. The evaluator should not be required to tune the hyper parameters of the
network, since this easily becomes computationally expensive, especially when
the result of the evaluation is not known a priori. Thus, one of the main concerns
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is whether it is possible to select a network structure that is performing robustly
when faced with different types of side-channel leakage and characteristics of the
traces. Interestingly, we found that a very simple network structure consisting
of only a few fully-connected layers with a fixed number of neurons handles this
task surprisingly well. We test the chosen network in a total of 7 FPGA-based
case studies featuring the PRESENT ultra-lightweight block cipher with different
kinds of countermeasures applied. The classification capability of our network
does not only withstand misaligned and noisy traces, but is able to deal with
univariate and multivariate higher-order leakage as well. In all 7 case studies
we compare the success of our method to both the Welch’s t-test and Pearson’s
χ2-test and show that DL-LA outperforms the leakage assessment capabilities
of the classical techniques in all considered scenarios (either by requiring less
traces to achieve the same confidence or by providing a higher confidence for the
same amount of traces). We also present one scenario where both the univariate
and the multivariate versions of the t-test and the χ2-test fail to detect leaked
information with confidence, while DL-LA still succeeds with only half of the
available traces. As an unintended byproduct of our practical case studies, we
provide the most detailed practical comparison between the Welch’s t-test and
Pearson’s χ2-test that has been reported in the literature so far.

The most outstanding advantage of our approach is clearly that the network
is free to combine as many points for the classification of the two groups as
necessary. Thus, even in complex scenarios of purely multivariate or horizontal
leakages, the traces can simply be fed as training data into the network without
any pre-processing or manual selection of points. Accordingly, neither a high
expertise is demanded from the evaluator, nor is it required to obtain any prior
information about the underlying implementation or the type of leakage that is
expected. Additionally, DL-LA entails a much lower risk of false positives than
current approaches, as it provides a single confidence value to assess the dinstin-
guishability of the groups. The traditional point-wise methods would actually
need to normalize their confidence values to the number of points in the traces to
provide a correct confidence threshold. However, this inaccuracy is mostly dis-
regarded in their respective methodologies. Even though, DL-LA provides only
a single confidence value, the approach can still identify the points of interest
in side-channel traces that contain leakage, by performing a Sensitivity Analysis
(SA) on the trained network. Obviously, the average computation time to per-
form a DL-LA is significantly higher when compared to simple univariate tests.
However, as soon as more complex types of side-channel leakage need to be an-
alyzed, the additional run time quickly pays off, since the effort that otherwise
has to be spend in order to make traditional methods recognize those complex
patterns (if even possible) grows even bigger and contains several steps that are
hard to automate.

1.2 Claims and Non-Claims

In order to avoid any potential confusion regarding our claims, or lack thereof,
we explicitly list the most important statements below:

We do not claim that ...

– our chosen network is optimal for leakage detection in general or for any of
the considered case studies in particular. We are certain that there is room
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for improvement, as we intentionally optimized for robustness and simplicity
instead of single case performance.

– our chosen network necessarily leads to a classifier that outperforms the
t-test or the χ2-test for any given side-channel traces.

– DL-LA should replace all other leakage detection techniques, but rather that
it can be extremely helpful especially in cases where detection is non-trivial.

– DL-LA generally causes none or fewer false negatives than the classical ap-
proaches.

We do claim that ...

– the chosen network offers some basic universality and robustness. We have
tested the network even beyond the case studies presented in this work (and
also for extreme cases like a trace length of 1 or greater than 10 000) and it
delivered reliable results in all of them.

– the chosen network is able to learn first-order, higher-order, univariate, mul-
tivariate and horizontal leakages without requiring any pre-processing or
prior knowledge of the underlying implementation.

– DL-LA entails a much lower risk of false positives (when the same confidence
threshold is chosen) since it provides one confidence per set of traces instead
of one confidence per time sample in the trace set.

2 Background

In this section we introduce the necessary background with respect to the roots
and the state-of-the-art of leakage assessment, as well as deep learning and its
applications to side-channel analysis.

2.1 Leakage Assessment

Ever since the introduction of side-channel attacks in 1999 [8] the standard
approach for assessing the physical vulnerability of a device has been a more
or less exhaustive verification of its resistance against known attacks while at-
tempting to cover a broad range of intermediate values and hypothetical leakage
models. This approach, however, became less feasible over the years due to the
increasing amount of new attack methods and the higher complexity of poten-
tial leakage models due to the introduction of countermeasures against physical
attacks. Another concern regarding this procedure is that it entails a significant
risk of reporting physical security in favor of the DUT while in reality merely a
certain attack vector was missed in the process (by mistake or because it was un-
known at time of evaluation) that could indeed enable key recovery [14]. Hence,
the need for a robust and reliable standard leakage assessment method inde-
pendent of concrete attack scenarios, targeted intermediates and hypothetical
leakage models grew consistently over the years. In an attempt to gather and
evaluate promising candidates, the National Institute of Standards and Technol-
ogy (NIST) hosted a ”Non-Invasive Attack Testing Workshop” in 2011. One of
the most intriguing proposals at the workshop was the use of the non-specific
Welch’s t-test [5] for leakage detection. Leakage detection avoids any dependency
on the choice of intermediates and leakage models by focusing on the detection of
leakage only, without paying any attention to the possibility to exploit said leak-
age for key recovery. Simply put, the concept is based on supplying the device
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under test with different inputs, recording its leakage behavior and evaluating
whether a difference can be observed. Thus, such a method is suitable for black
box scenarios and allows certification of a device’s physical security by third
party evaluation labs without the need to test a multitude of different meth-
ods and parameter combinations. Seven years later, after some shortcomings of
the moment-based nature of the t-test had been identified [16], another popular
statistical hypothesis test was proposed for leakage detection purposes, namely
the Pearson’s χ2-test [11]. Both hypothesis tests, the t-test and the χ2-test, are
applied in the field of statistics in order to answer the question whether two
sets of data are significantly different from each other. To be more precise, the
evaluation of the tests examines the validity of the null hypothesis, which con-
stitutes that both sets of data were drawn from the same population (i.e., they
are indistinguishable) [14]. In side-channel analysis contexts, it is usually evalu-
ated whether two groups of measurements can be distinguished with confidence.
Traditionally, those two groups are acquired by supplying the DUT either with
random (group Q0) or a fixed input (group Q1), selected by coin toss. Later, it
has been demonstrated that the careful choice of two distinct fixed inputs (in-
stead of maintaining one group for random inputs) usually leads to a lower data
complexity for the distinction [4]. We provide the details on how to conduct the
Welch’s t-test and Pearson’s χ2-test below.

Welch’s t-test. We denote two sets of data by Q0 and Q1, their cardinality by
n0 and n1, their respective means by µ0 and µ1 and their standard deviations by
s0 and s1. The t-statistics and the degrees of freedom v can then be computed
using the following formulas.

t =
µ0 − µ1√
s20
n0

+
s21
n1

v =

(
s20
n0

+
s21
n1

)2
(

s20
n0

)2

n0−1 +

(
s21
n1

)2

n1−1

Afterwards, the confidence p to accept the null hypothesis can be estimated
via the Student’s t probability density function, where Γ (.) denotes the gamma
function [14, 11].

p = 2

∫ ∞
|t|

f(t, v)dt f(t, v) =
Γ
(
v+1
2

)
√
πvΓ

(
v
2

) (1 +
t2

v

)− v+1
2

In practice, for the sake of simplicity, it is common to only evaluate the t-
statistics and to set the confidence threshold for distinguishability to |t| > 4.5.
The statistical background of this threshold is that for |t| > 4.5 and v > 1000 the
confidence p to accept the null hypothesis is smaller than 0.00001 which is equiv-
alent to a 99.999 % confidence that the two sets were not drawn from the same
population. Of course, when the degrees of freedom v is not explicitly evaluated,
it can occur that the assumption v > 1000 does not hold. However, practice has
shown that this procedure rarely produces false positive results in side-channel
analysis contexts. Yet, calculating the actual confidence p is certainly prefer-
able, scientifically correct and can still be efficiently implemented [11]. Since the
Welch’s t-test is designed to distinguish the means of two distributions, it can
only be applied to first-order univariate analyses in its simplest form. Schneider
et al. [14] extended the methodology to arbitrary orders and variates and provide
the required formulas for incremental one-pass computation of all moments.
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Pearson’s χ2-test. In order to mitigate some of the limitations and shortcomings
of the moment-based nature of the Welch’s t-test, in particular for higher-order
analyses of masked implementations, Moradi et al. [11] suggested the Pearson’s
χ2-test. In contrast to the t-test this hypothesis test analyzes the full distribu-
tions and can capture information that lies is multiple statistical moments. Thus,
it prevents false negatives when moment-based analyses become suboptimal [11].
In a first step a contingency table F has to be constructed from the two sets Q0

and Q1 (basically two histograms). We denote the number of rows by r (= 2,
when two sets are compared) and the number of columns by c (number of bins
of the histograms). The χ2-statistics x and the degrees of freedom v can then be
computed using the following formulas.

x =

r−1∑
i=0

c−1∑
j=0

(Fi,j − Ei,j)2

Ei,j
v = (r − 1) · (c− 1)

Ei,j denotes the expected frequency for a given cell.

Ei,j =

(∑c−1
k=0 Fi,k

)
·
(∑r−1

k=0 Fk,j

)
N

Finally, the confidence p to accept the null hypothesis is estimated via the χ2

probability density function, where Γ (.) denotes the gamma function [11].

p =

∫ ∞
x

f(x, v)dx f(x, v) =


x

v
2
−1e−

x
2

2
v
2 Γ( v

2 )
x > 0

0 otherwise

In contrast to the t-test this procedure can easily be extended to more than two
sets of data (r > 2), which can be a valuable feature when used as distinguisher
for key recovery attacks. Generally, it can be said that in cases where the χ2-test
provides a higher confidence to reject the null hypothesis than the t-test (on the
same side-channel data), the analysis of the leakages requires some special atten-
tion. This is usually the case when masked implementations with low noise levels
are analyzed or when hardware-masking schemes like threshold implementations
cause leakages in multiple moments due to physical defaults such as glitches [11].

2.2 Deep Learning

We give a brief summary of the history and applications of deep learning and
subsequently introduce definitions and explain the underlying principle.

History and Applications. Historically, the field of machine learning dealt with
extracting meaningful information from data by applying relatively simple math-
ematical models, e.g., Bayes Classifiers, Support Vector Machines or Decision
Trees to a sanitized version of the input data. This required manual and time-
consuming feature engineering to predetermine which elements might be useful
in a given set of raw data and how to best represent them, e.g., Canny edge
detection as a first hard-coded step for image classification.
In contrast, deep learning methods are generally capable of learning from raw
input data, thereby making the elaborate modeling process unnecessary. Since
the breakthrough improvement of classification accuracy on the ImageNet data
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set in 2012 [9], deep learning has been successfully applied to many diverse tasks
such as speech recognition, drug discovery, natural language processing, visual
art style transfer, image classification, autonomous driving and strategy games.

More recently, the side channel community discovered deep learning as a
tool to perform profiled attacks [3, 6, 10] with competitive results compared to
classical modeling techniques, e.g., based on a multivariate normal distribution.
Apart from our present work, only Timon at CHES 2019 has investigated the use
of deep learning in the non-profiled case [17]. The author exploits the correlation
between a correct key guess and a steep learning rate to enable key recovery.
Unfortunately, the method is computationally intense as a separate model has
to be trained for every key guess and its success is highly dependent on the
correct labeling of the data which implies a suitable choice of leakage model and
targeted intermediate, making it unsuitable as a starting point for efficient and
confident leakage assessment.

Principle and Definitions. In the following we limit ourselves to sequential neu-
ral networks (without recurrent elements) used for the purpose of classification.
The aim of this description is to give brief definitions for the standard terms in
deep learning, while the explanation of principles is intentionally very shallow.
A neural network is structured into multiple layers, each containing a matrix
of learnable weights w that is linearly applied to its inputs x and a non-linear
activation function applied to each coordinate of the result of this matrix mul-
tiplication. The output of this combined operation is taken as an input for the
subsequent layer. Finally, the output layer of the neural network contains as
many output coordinates as classes1 (c) and uses softmax as an activation func-
tion

softmax(xj) =
exj∑c
i=1 e

x
i

,

such that the sum over all outputs is always equal to one, thereby forming a
probability distribution over the possible class labels.

Let us first assume the weights are initialized with some values before an
evaluation of the network takes place by applying the function of the first layer
to the input sample and subsequently propagating the computed values forward
layer by layer until all layers have been evaluated. The prediction y′ consists in
the output coordinate of the final layer with the highest value.

In the beginning, the weights in a neural network are initialized with random
values. To determine useful weights that achieve accurate prediction values, a
training phase is necessary. First, the designer needs to define a metric to mea-
sure the distance between a prediction y′ and the actual class label y. This metric
is called a loss function which determines the loss score. To perform training, a
data set with labeled inputs, i.e., a list of tuples (x, y), is separated into batches
of a fixed size b. The neural network is evaluated simultaneously on all sam-
ples in a batch thereby producing loss scores. After each batch an optimization
strategy based on Backpropagation is used to adjust all weights in the neural
network dependent on the gradient of the loss function. Each iteration through
the entire training set is called an epoch. To minimize the loss score, training over
multiple epochs is performed in each of which the training data is randomly re-
grouped into new batches. For simplicity we assume that the training ends after
a predetermined number of user-defined epochs.

1 We limit ourselves to this variant called one-hot encoding.
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To judge the quality of the classifier during and after training, the metrics
accuracy and validation accuracy should be considered. While accuracy is related
only to the training set, validation accuracy takes an entirely separate validation
set into account, to ensure that the traits learned are actually generalizable
opposed to rote learning of the specific training set (the latter phenomenon is
called overfitting).

When choosing and training a deep learning model, the designer has to de-
termine values for many so-called hyper parameters2, these include the depth
of the network, the types and sizes of layers, their activation function, the loss
function and the optimizer strategy. We provide the hyper parameters we chose
and maintained throughout all of our case studies in Section 3.3.

3 DL-LA: Deep Learning Leakage Assessment

We introduce Deep Learning Leakage Assessment (DL-LA), a novel leakage as-
sessment methodology based on deep learning. Our method is simple to apply
and outperforms classical leakage detection approaches such as the Welch’s t-
test and the more recently proposed Pearson’s χ2-test in many cases due to its
intrinsically multivariate nature.

3.1 Core Idea of DL-LA

The aim of leakage assessment is to determine whether an attacker is able to
extract information from side channel measurements. The current state of the art
for non-profiled adversary models is based on univariate statistical distinction
tests (Welch’s t-test, Pearson’s χ2-test) which are applied to two groups of side-
channel measurements collected for two distinct fixed inputs processed by the
target implementation (alternatively one group for random inputs and the other
one for fixed).

DL-LA maintains the basic idea of distinguishing two groups of side channel
traces from each other (fixed-vs-fixed). Hence, from an evaluator’s perspective
the entire measurement setup and tool-chain can remain unchanged when adopt-
ing our methodology. We apply deep learning to the concept of leakage assess-
ment by training a neural network to serve as a distinguisher between the two
groups. This is done in a supervised-learning-based approach by applying labeled
data from both groups to the network. This set of data is then called the train-
ing set. Afterwards, the classification capabilities of the network are evaluated
on a distinct validation set of labeled measurements without revealing the true
labels to the network. The success rate of the classification on the validation set
quantifies the amount of information that could be extracted from the training
set by the neural network in order to provide a better-than-random guess which
of the two fixed inputs was processed by the target. In case this classification
succeeds with a higher percentage than it could be achieved by randomly guess-
ing with a non-negligible probability, it gives clear evidence for the fact that
informative side-channel leakage is present. In this context we present a simple
metric to determine an exact p-value that quantifies the statistical confidence in
the evidence.

Please note that the number of required traces to extract the information
is only related to the training set. The size of the validation set can be chosen

2 In distinction from the parameters, i.e., the concrete weights learned during training.
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completely independent and influences the result of the detection only if gener-
alizable features (i.e., side-channel leakage) could be extracted from the training
set. Otherwise the percentage of correct classifications will never be significantly
different from 50%, no matter how large the validation set is. We discuss the
partition strategy into training set and validation set to decouple the number
of traces available to the attacker from the statistical confidence the evaluator
wants to obtain in Section 5.

Given an identical number of traces, our proposed DL-LA leads in many
cases to a higher statistical confidence than the t-test and χ2-test and is less
prone to produce false positives. In the case of an implementation that does
not show univariate, but only multivariate leakage DL-LA outperforms current
leakage assessment methods by a large margin without requiring any knowledge
about the underlying implementation.

3.2 Overall Methodology

We assume that the recorded traces have already been separated into a set of
N training traces and a set of M validation traces, the latter of which should
have an equal number of elements from both groups to maximize the statis-
tical confidence value that can be obtained during the evaluation3. First, the
evaluator has to pick a confidence level, i.e., an upper bound on the chance
that a false positive occurs. We assume the common threshold in SCA evalu-
ations of pth = 10−5. Now, let v be the validation accuracy obtained by the
neural network, then the total number of correct classifications is computed as
sM = v ·M . Considering the null hypothesis H0 where the neural network did
not learn anything and classifies randomly (coin flip model), this corresponds to
modeling the total number of correct guesses as a random variable following a
binomial distribution

H0 : X ∼ Binom(M, 0.5).

The probability that at least sM correct classifications occur in a purely random
classifier is given by: P (X ≥ sM ). This probability is easily computed as

P (X ≥ sM ) =

M∑
k=sM

(
M

k

)
0.5k0.5M−k = 0.5M

M∑
k=sM

(
M

k

)

Now, we say that the implementation leaks information about intermediate val-
ues if

P (X ≥ sM ) < pth.

In this case the exact location of leakage can be determined subsequently by
Sensitivity Analysis (cf. Section 3.4).

In the following, we specify a neural network that showed excellent and ro-
bust results during our case studies. Further, we introduce Sensitivity Analysis
as a method of leakage location and preempt several common pitfalls during
adoption.

3 We provide a discussion on the size of both sets in Section 5.
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3.3 Proposed Network Structure

To perform DL-LA we suggest a generalizable network architecture that is free
of any assumptions about the traces to be analyzed or about the underlying
implementation of the DUT. We performed all case studies in Section 4 with the
same network built within the Python library Keras using TensorFlow as the
backend.

Specification. Initially, we determine the (point-wise) mean µ and standard de-
viation σ of the traces in the training set thereby standardizing both training
and validation sets:

Xj
i := (Xj

i − µi)/σi,

with j denoting the trace and i the time sample within the trace. This very
lightweight pre-processing step is necessary to reach a homogeneous range be-
tween all input points and weights thus enabling efficient training.

The network consists of four fully-connected layers (Dense) of 120, 90, 50,
respectively 2 output neurons. The input layer and each of the inner layers use
a Rectified Linear Unit (ReLU ) as an activation function, while the final layer
uses softmax. The four Dense layers are each separated by a BatchNormalization
layer. In summary, the model can be defined in Python as:

model = Sequential([

Dense(120, activation = ’relu’, input_shape= (tracelength,) ),

BatchNormalization(),

Dense(90, activation = ’relu’),

BatchNormalization(),

Dense(50, activation = ’relu’),

BatchNormalization(),

Dense(2, activation = ’softmax’) ])

Further, we used the mean squared error as a loss function and adam as an
optimizer with the default parameters provided by Keras4. We chose the batch
size according to the memory restrictions of our Tesla K80 graphics card with 11
GB VRAM as 2 000 samples for traces of length 5 000 points and 20 000 samples
for traces of length 500 points.

Justification. We chose ReLU defined as

relu(x) =

{
x, x ≥ 0

0, x < 0

as an activation function over other common possibilities, e.g., tanh or sigmoid,
because of better results regarding validation accuracy in initial tests as well as
for better computational performance when operating on large datasets (which
is highly relevant for the evaluation of protected implementations). We chose the
softmax activation function of the final layer to create a probability distribution
over both classes as explained in Section 2.2. The purpose of each BatchNormal-
ization-layer is to decouple the learning process of all Dense layers from each
other and additionally provide a means of regularization to prevent overfitting
[7].

4 lr = 0.001, β1 = 0.9, β2 = 0.999, ε = 10−8, decay = 0.0
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We confirmed the suitability for univariate and multivariate leakage located
in different statistical orders and for traces as short as one point and as long as
10 000 points which may be encountered during a typical leakage evaluation of
symmetric cryptographic primitives and provide extensive depth on the perfor-
mance of our leakage assessment approach in different case studies in Section 4.

3.4 Extracting Temporal Information

If leakage is detected, the hardware designer or evaluator is usually interested in
exactly pinpointing the leakage locations to report or alleviate the shortcoming,
e.g., masking flaws. By applying Sensitivity Analysis (SA) [15, 17] we can exactly
locate all points of interest by quantifying how much they contributed to the
leakage function learned by the neural network. In short, SA determines the
partial derivates of one output coordinate of the neural network with respect to
the network inputs, thereby characterizing the effect of a slight change in each
individual input on the classification outcome.

We perform SA on the final network after training has completed by averag-
ing the gradients of one output coordinate (with respect to the network inputs)
weighted with the network inputs for all samples in the validation set and sub-
sequently take the absolute value. More precisely, let xi denote the i-th input
of our network, y0 the first output coordinate of the network and Xj

i the value
of the i-th input for trace j in the validation set. Then the sensitivity can be
determined as:

si =

∣∣∣∣∑
j

∂y0
∂xi
·Xj

i

∣∣∣∣.
While the actual value of this expression has to be determined via the chain-rule
over all network layers, this process is fully-automated by TensorFlow such that
the remaining effort for the evaluator is a single function call.

3.5 Common Pitfalls

We discuss the most important differences between the classical detection ap-
proaches and DL-LA and aim to preempt common pitfalls an evaluator might
encounter with our leakage assessment:

Group Imbalance. While the classical TVLA based on the Welch’s t-test as
well as the χ2-test can handle groups imbalanced in mean, variance and size,
we want to stress that an equalization of group sizes in the validation set is
extremely important for DL-LA. If the groups are imbalanced, the test statistic
no longer follows the distribution X ∼ Binom(M, 0.5). Instead, always assigning
the label of the more common group leads to a classifier which outperforms
random guessing, without actually being able to distinguish the groups based
on their traces. This discrepancy between actual and theoretical distribution of
the test statistic – given a sufficiently large validation set – will lead to false
positives. We strongly advise pruning both groups in the validation set to an
exact ratio of 50/50.
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Probability Adaption. An obvious idea to counteract the issue just addressed is
the adaption of the success probability in the Binomial distribution. Assume a
slight (or even significant) imbalance ε in group sizes

|G0|
|G0|+ |G1|

= 0.5 + ε.

The evaluator could simply adapt the distribution of the test statistic to

X ∼ Binom(M, 0.5 + ε).

While this might even show satisfactory results in the case of low noise and
unprotected or severely flawed implementations, which in turn lead to a high
validation accuracy, we caution against any alteration of the distribution. In all
practically relevant cases (protected implementation, moderate noise) a change
of the success probability severely lowers the confidence of the statistical test.
More specifically, consider a validation set of size 500 000 traces over which a
validation accuracy of v = 0.506 has been achieved. In case of a balanced val-
idation set this event is highly statistically significant (10−17). However, if the
validation set contains a small bias of ε = 0.004 no significance can be concluded
as the remaining likelihood for this event is only 10−3. It is obvious that the
adapted test looses its statistical power in all interesting cases; hence, false neg-
atives might occur. Therefore, we want to reinforce the previous point to prune
the validation set to an exact 50/50 ratio.

Overfitting. We caution against using an overly complicated neural network as
it might lead to overfitting, which is defined by a continuous rise of the training
accuracy over the number of epochs while the validation accuracy begins to fall.
The underlying cause of this effect is the memorization of the training set as
opposed to learning generalizable features of the entire set. Hence, it can be
prevented by using a network with a simple structure which does not contain
excessively many weights and optionally includes Normalization, Regularization
or Dropout layers (cf. Section 3.3).

4 Experimental Results

In the following we provide an experimental verification of the suitability of DL-
LA as a black box leakage assessment strategy. In contrast to related works we
do not test our approach under circumstances of purely theoretical relevance,
such as noise-free simulations or Sbox-only measurements with an extremely
high signal-to-noise ratio (SNR). Instead, we strive for a realistic benchmark of
our approach with a clear real-world impact. For this reason we chose hardware
implementations of the full PRESENT-80 ultra lightweight block cipher [2] as the
common target in our case studies. PRESENT has been developed for ubiquitous
and resource constrained computing environments, which exactly constitutes the
type of application that commonly requires side-channel security as a design goal
and may be certified by third-party evaluations labs. We target a very compact
serialized hardware implementation of the cipher and two protected versions of
it which both feature provable first-order security. One of them even provides
security at any order against univariate-only attacks. In all scenarios, we compare
the leakage assessment capability of DL-LA to the previously introduced state-of-
the-art methods Welch’s t-test and Pearson’s χ2-test. We conclude that DL-LA
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2 1 031415 state register 1

2 1 031819 key register

PLayer

S

Fig. 1. Unprotected serialized PRESENT architecture with a 4-bit data path.

is able to confidently detect leakage with fewer traces or a higher confidence on
the same amount of traces compared to the conventional methods which makes it
an extremely valuable tool for leakage assessment. Especially in the case studies
where only multivariate leakage is present DL-LA outperforms the state of the
art by a large margin.

4.1 Measurement Setup

We have implemented the different instances of the PRESENT block cipher on a
SAKURA-G board [1] which has specifically been designed for SCA evaluations.
The board features two Spartan-6 FPGAs, one as a target and the other as
a control interface. We measured the voltage drop over a 1 Ω shunt resistor in
the Vdd path of the target FPGA, which is amplified through the built-in AC
amplifier, with a digital sampling oscilloscope at a sampling rate of 1 GS/s for
the first 5 case studies and 100 MS/s for the last 2. The targets were clocked
at a frequency of 6 MHz, with the exception of the clock-randomized case study
which is detailed later. For all case studies we measured side-channel traces in
a fixed-vs-fixed manner for two arbitrarily selected fixed inputs. We have taken
care to follow all rules that have to be considered to avoid false positives in
leakage assessment [14], e.g., the measurements of the two groups are randomly
interleaved and in the masked cases the communication between the control and
the target FPGA is performed in a shared manner (in our case the same holds
for the communication with the measurement PC).

Case Study 1: Unprotected PRESENT, aligned Traces

In this first case study we target an unprotected serialized implementation of
the PRESENT block cipher. The architecture can be seen in Figure 1 and is
similar to profile 1 introduced in [13]. As a first step we evaluate the confidence
to distinguish the two groups of measurements (fixed-vs-fixed) by conventional
methods. The results of the first-order t-test and the χ2-test can be seen in
Figure 2. In both cases we plot the confidence values p instead of relying on the
common (and less precise) approach of defining a threshold for the intermediate
statistics (e.g., |t| > 4.5). The t-test succeeds in providing a confidence higher
than 99.999 % for the distinguishability of the two groups after only 20 traces
since it shows a probability below 10−5 to accept the null hypothesis. The χ2-test
requires approximately 90 traces to overcome the desired confidence threshold.
In conclusion, none of the two methods faces any problems to distinguish the
leakage distributions with a high confidence when 1 000 traces are considered.

When applying DL-LA to the same traces, the results in Figure 3 are achieved.
We have to state here that a plot as depicted in Figure 3(b) is rather unnatural



DL-LA: Deep Learning Leakage Assessment 15

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time samples

P
ow

er
 c

on
su

m
pt

io
n

1200 1250 1300 1350 1400 1450 1500 1550 1600

Time samples

P
ow

er
 c

on
su

m
pt

io
n

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time samples

0

20

40

60

80

-lo
g

10
(p

)

0 100 200 300 400 500 600 700 800 900 1000

No. of Traces

0

20

40

60

80
-lo

g
10

(p
)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time samples

0

10

20

30

40

50

-lo
g

10
(p

)

0 100 200 300 400 500 600 700 800 900 1000

No. of Traces

0

10

20

30

40

50

-lo
g

10
(p

)

Fig. 2. Univariate leakage assessment using 1 000 traces (step size 10) of an unprotected
serialized PRESENT-80 implementation. From top to bottom: 1) Sample trace, 2)
Overlay of 10 sample traces, 3) t-test results, 4) χ2-test results.
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Fig. 3. DL-LA and Sensitivity Analysis using 1 000 traces (step size 10) of an un-
protected serialized PRESENT-80 implementation. For each p value 30 epochs and a
validation set of 10 000 traces are considered.

to obtain using DL-LA. Normally, training and validating the network results
in a confidence value after each epoch. Thus, it would be more natural to train
the network on a training set of fixed size and to show the p values over the
number of epochs to determine how many are required to overcome the thresh-
old. However, in order to offer the best possible comparison between the leakage
assessment approaches we repeated this process 100 times for a fixed number of
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epochs (30) and a training set that increases by 10 traces per step and plotted
the maximum confidence over the number of traces. The result shows that a
network which is trained on only 10 traces is already capable of providing an
extremely high confidence that the two groups are distinguishable (since large
−log10(p) values give confidence to reject the null hypothesis). By increasing
the size of the training set the confidence is boosted significantly until the p
values stagnate in a corridor between 10−2300 to 10−3011. Please note that, as
the validation set has a size of 10 000 traces, the maximum achievable p value is
0.510 000 = 10−3011. Thus, the stagnation in the corridor is simply caused by the
fact that (almost) all of the traces in the validation set were classified correctly.
By using a larger validation set the −log10(p) values would rise even beyond
3011. We also perform a Sensitivity Analysis on the network to determine the
points of interest and obtain a spatial resolution comparable to the univariate
tests (cf. Figure 3(a)). The absolute values of the SA are not meaningful and
cannot be compared to any threshold. Thus, they are omitted here. In summary,
DL-LA outperforms the classical detection approaches in terms of required num-
ber of traces and absolute confidence provided. Of course, for the evaluation of
DL-LA as performed in this case study, a validation set is required on top of
the training set. However, please note that we only chose a validation set of
10 000 traces here in order to show the extremely high magnitude of achievable
confidence values, even when considering very small training sets5. In fact, the
indication of distinguishability relates only to the training set, and, in case the
network learned generalizable features from it, the confidence can be arbitrar-
ily boosted by increasing the validation set. If no generalizable features were
learned (e.g., because no leakage is present) the percentage of correct classifica-
tions will not be significantly different from 0.5. The advantages of decoupling
the confidence from the number of traces are discussed in Section 5. In Figure 19
of Appendix A, we additionally provide DL-LA results for the first three case
studies where the size of the union of the training and the validation set does
not exceed the number of traces considered by the t- and the χ2-test. Even then
DL-LA outperforms the classical approaches.

Case Study 2: Unprotected PRESENT, misaligned Traces

This case study is an exact replication of the previous one apart from the fact
that we artificially created a misalignment of the traces, as apparent in Fig-
ure 4(b). This misalignment was achieved by forcing the oscilloscope to trigger
the acquisition of the power traces close to the peak of the rising edge of the
trigger signal (in our case at 2.48 V while the peak is at 2.5 V) as opposed
to the more stable part in the middle of the edge. Thus, due to the electronic
noise, the acquisition is in some cases triggered earlier than in others and the
traces are not perfectly aligned anymore. Figure 4 shows that the t- and χ2-test
results do not seem to significantly suffer from this misalignment when consid-
ering the absolute magnitude of the −log10(p) values. However, the number of
traces to overcome the threshold is increased in comparison to the previous case
study in both tests. DL-LA also performs similar as before, as apparent from
Figure 5 and outscores the classical detection approaches in required traces and
provided confidence. It seems that the slight misalignment of the traces does not

5 The minimum size of the validation set in order to be able to overcome the detection
threshold is 17, since −log10(0.517) > 5. However, this assumes a 100% correct
classification by the network, otherwise a larger set needs to be considered.
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Fig. 4. Univariate leakage assessment using 1 000 misaligned traces (step size 10) of an
unprotected serialized PRESENT-80 implementation. From top to bottom: 1) Sample
trace, 2) Overlay of 10 sample traces, 3) t-test results, 4) χ2-test results.
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Fig. 5. DL-LA and Sensitivity Analysis using 1 000 misaligned traces (step size 10) of
an unprotected serialized PRESENT implementation. For each p value 30 epochs and
a validation set of 10 000 traces are considered.

significantly affect the detection capabilities of any of the leakage assessment
techniques when unprotected implementations are considered and the number
of available traces is not chosen to be extremely small.
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Case Study 3: (Unprotected) PRESENT, randomized Clock

Since the artificial delay in the previous case study only slightly increased the
data complexity of a leakage detection we now try to test a countermeasure
that leads to much more heavily misaligned and noisy traces. In particular, we
randomize the clock that drives the targeted PRESENT implementation. This
is done by clocking the cipher with the output of a 64-bit LFSR. Hence, in
each encryption (and therefore also in the power traces) the same intermediate
computations are executed at different times, since the rising edges of the LFSR
output occur in a random sequence. The input frequency of the LFSR was set to
24 MHz so that the number of rising edges in a certain frame of time is on average
similar to being clocked by a stable 6 MHz clock. In this case the t- and χ2-test
struggle significantly more to detect leakage than in the previous experiments, as
apparent in Figure 6. While the t-test requires about 2 000 traces for a detectable
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Fig. 6. Univariate leakage assessment using 5 000 traces (step size 50) of a serialized
PRESENT-80 implementation with clock randomization. From top to bottom: 1) Sam-
ple trace, 2) Overlay of 10 sample traces, 3) t-test results, 4) χ2-test results.

breach of side-channel security, the χ2-test barely overcomes the threshold at
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all. DL-LA on the other hand is able to confidently state distinguishability after
about 150 traces (cf. Figure 7). Although all three approaches suffer significantly
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Fig. 7. DL-LA and Sensitivity Analysis using 5 000 misaligned traces (step size 50) of
an unprotected serialized PRESENT implementation with clock randomization. For
each p value 30 epochs and a validation set of 10 000 traces are considered.

from the misalignment and the added noise, DL-LA is still able to perform
detection on a much smaller amount of traces. Please note that, if desired by the
evaluator, the confidence can be made arbitrarily larger by increasing the size
of the validation set.

Case Study 4: PRESENT Threshold Implementation, aligned Traces

In this case study we target a serialized threshold implementation (TI) [12] of
the PRESENT block cipher. The architecture can be seen in Figure 8 and is
similar to profile 2 introduced in [13]. The PRESENT Sbox is decomposed into

2 1 031415 state register 1

2 1 031415 state register 2

2 1 031415 state register 3

2 1 031819 key register

PLayer

PLayer

PLayer

G3

G2

G1

F1

F2

F3

Fig. 8. Serialized PRESENT threshold implementation architecture with 3 shares and
a decomposed Sbox.

two quadratic functions F and G. Both of those decompositions are split into
three component functions each according to the concepts of correctness, non-
completeness and uniformity [12]. As apparent from Figure 8 the three shares
in the computation of the decomposed Sbox are evaluated in parallel. Thus,
no first-order, but univariate higher-order (especially second- and third-order)
leakage is expected. We evaluate this assumption in Figure 9. As expected the
first-order t-test does not indicate detectable leakage, but the second- and third-
order test do. Interestingly, we can confirm the statements made by the authors
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Fig. 9. Univariate leakage assessment using 10 000 000 traces (step size 100 000) of a
serialized PRESENT threshold implementation. From top to bottom: 1) Sample trace,
2) Overlay of 10 sample traces, 3) first-order t-test results, 4) second-order t-test results,
5) third-order t-test results, 6) χ2-test results.

of the χ2-test proposal [11] regarding the shortcomings of the moment-based
nature of the t-test. Unlike the situation in the previous case studies, the χ2-test
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outperforms the t-test here. While the second-order and the third-order t-test
require 3 000 000 and 1 500 000 traces for the detection respectively, the χ2-test
succeeds after only 500 000 traces and results in a much higher confidence over
all.

Please note that for this case study and the upcoming ones, where we analyze
protected implementations, we change the visualization of the DL-LA results.
Due to the large data sets involved it is not feasible to train many different
classifiers with a steadily increasing size of the training set over many steps.
Instead we visualize the −log10(p) values over the number of epochs (instead
of over training traces). We do this twice, once for the minimum number of
traces required by the classical assessment method (here χ2-test with 500 000)
and once for a larger training set in order to show that much larger confidence
values can be achieved in the protected cases as well. Those results are presented
in Figure 10. In case of a training set of size 500 000, the DL-LA succeeds only
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Fig. 10. DL-LA and Sensitivity Analysis using 500 000 (Fig. 10(b)) and 3 000 000
(Fig. 10(a), 10(c)) traces of a serialized PRESENT threshold implementation respec-
tively. For each p value a validation set of 1 500 000 traces is considered.

just in overcoming the confidence threshold. However, barring the possibility of a
false positive results (which is highly unlikely), the confidence could be increased
by an evaluator either by considering more epochs or by increasing the validation
set. In the case of a training set including 3 000 000 measurements, the confidence
that side-channel leakage is present becomes extremely large.

Case Study 5: PRESENT Threshold Implementation, misaligned
Traces

This case study is equivalent to the previous one apart from the fact that we
artificially created a misalignment of the traces, as it was already done for case
study 2. As a result of this misalignment the leakage detection approaches require
slightly more traces to overcome the confidence threshold than in the aligned
case. In particular, as shown in Figure 11, the second-order and the third-order
t-test require 3 600 000 and 1 500 000 traces for the detection respectively, while
the χ2-test succeeds after only 800 000 traces and again results in a much higher
confidence. The DL-LA is again the most powerful leakage detection mechanism
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Fig. 11. Univariate leakage assessment using 10 000 000 misaligned traces (step size
100 000) of a serialized PRESENT threshold implementation. From top to bottom: 1)
Sample trace, 2) Overlay of 10 sample traces, 3) first-order t-test results, 4) second-
order t-test results, 5) third-order t-test results, 6) χ2-test results.

and succeeds for both sizes of the training set (800 000 and 3 000 000) with much
higher confidence values than any of the classical approaches (cf. Figure 12).
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Fig. 12. DL-LA and Sensitivity Analysis using 800 000 (Fig. 10(b)) and 3 000 000
(Fig. 10(a), 10(c)) misaligned traces of a serialized PRESENT threshold implementa-
tion respectively. For each p value a validation set of 1 500 000 traces is considered.

Case Study 6: PRESENT Multivariate Threshold Implementation,
aligned Traces

In the final two case studies we concentrate on scenarios where the classical uni-
variate detection approaches are naturally unsuited to detect leakage, namely
purely multivariate higher-order leakages. These cases are the primary motiva-
tion to apply DL-LA in reality, as all currently known methods fail to capture
the whole amount of present side-channel leakage in these scenarios. We provide
evidence for this statement in the following.

We constructed a special version of the PRESENT threshold implementation
architecture depicted in Figure 8, that does not offer univariate side-channel
leakage. To this end we had to ensure that all six component function (G1, G2,
G3, F1, F2 and F3) are evaluated sequentially and not in parallel. We did this
by gating their respective inputs with AND gates which are controlled by a finite
state machine (FSM). In addition to that we had to make sure that none of
the state registers are clocked at the same time. Thus a single Sbox computation
takes 7 clock cycles in the resulting hardware design. As expected, our univariate
leakage assessment using the classical detection approaches does not indicate
the presence of any side-channel leakage (cf. Figure 13). However, a multivariate
investigation could still find higher order leakage if performed at the correct
offsets. This requires either white-box knowledge about the implementation or
must be determined by exhausting all possibilities. The results for the best offset
leading to detectable multivariate leakage is illustrated in Figure 14 which shows
leakage in the third order after more than 45 million traces. Please note that we
have performed each multivariate second-order t-test, third-order t-test and χ2

with the correct offsets (as we know all the implementation details) and none of
them was able to detect leakage with fewer traces.

In stark contrast, as apparent in Figure 15, DL-LA provides a very high
confidence level of −log10(p) > 150 for the presence of side-channel leakage after
training on only 20 million traces. We still retained the same network architecture
as before and made absolutely no assumptions about the leakage and required no
white-box knowledge about the offset of the individual evaluation of TI shares.
Due to memory and time restrictions we pruned the trace to a length of 500
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Fig. 13. Univariate leakage assessment using 50 000 000 traces (step size 500 000) of a
serialized multivariate PRESENT threshold implementation. From top to bottom: 1)
Sample trace, 2) Overlay of 10 sample traces, 3) first-order t-test results, 4) second-
order t-test results, 5) third-order t-test results, 6) χ2-test results.

sample points (1281-1780). Validation took place on 5 million traces. Leakage
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Fig. 14. Multivariate third-order t-test using 50 000 000 traces (step size 500 000) of a
serialized multivariate PRESENT threshold implementation.
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Fig. 15. DL-LA using 20 000 000 traces of a serialized multivariate PRESENT thresh-
old implementation. For each p value a validation set of 5 000 000 traces is considered.

becomes apparent after 25 epochs and continuously increases until our chosen
threshold of 50 epochs has been reached.

Case Study 7: PRESENT Multivariate Threshold Implementation,
misaligned Traces

Our final case study is a replication of the previous one, but again we misaligned
the traces through bad triggering. As shown in Figure 16 no univariate detec-
tion of leakage succeeds. In this case however, even the multivariate third-order
analysis with the best possible offset for leakage detection in the previous case
study does not succeed (cf. Figure 17). In other words, the acquired set of traces
does not allow detection of any leakage using conventional methods, at least in
case the traces are not re-aligned before the analysis.

DL-LA however detects leakage with high confidence (−log10(p) > 60) after
training on only half of the available traces (25 000 000). This result is depicted
in Figure 18.

5 Discussion

False Positives. False positives commonly appear as a problem in classical leak-
age evaluations. This is due to their point-wise independent nature. A threshold
of pth = 10−5 for each individual point will lead to an aggregation of the error
probability over the length of the entire trace, thereby lowering the confidence.
More formally, the likelihood that a false positive occurs at least once in a trace
of length K can be described as:

P (false positive) = 1− (1− pth)K .
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Fig. 16. Univariate leakage assessment using 50 000 000 misaligned traces (step size
500 000) of a serialized multivariate PRESENT threshold implementation. From top to
bottom: 1) Sample trace, 2) Overlay of 10 sample traces, 3) first-order t-test results,
4) second-order t-test results, 5) third-order t-test results, 6) χ2-test results.

For the typical value of K = 5 000 in our case studies and the common threshold
of pth = 10−5 this formula equates to 0.0488, thereby it only provides an effective



DL-LA: Deep Learning Leakage Assessment 27

2 4 6 8 10 12 14 16 18 20

Time samples

0

1

2

3

4

5

-lo
g

10
(p

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

No. of Traces 107

0

1

2

3

4

5

-lo
g

10
(p

)

Fig. 17. Multivariate third-order t-test using 50 000 000 misaligned traces (step size
500 000) of a serialized multivariate PRESENT threshold implementation.
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Fig. 18. DL-LA using 25 000 000 misaligned traces of a serialized multivariate
PRESENT threshold implementation. For each p value a validation set of 5 000 000
traces is considered.

confidence of roughly 5%. Hence, a manual investigation of the individual leakage
points is often necessary when performing classical leakage detection to exclude
false positives.

In contrast, our deep learning based methodology does not produce several
individual univariate statistical tests, but produces a single decision metric based
on the entirety of points6. To practically verify the resilience against false pos-
itives, we trained our network several times on randomly generated data with
random group assignments. In these evaluations we never observed any confi-
dence exceeding p = 10−2. Hence, we have a high confidence, that false positives
are far less likely to occur with our methodology if a reasonable threshold is
chosen, e.g., pth = 10−5.

False Negatives. Any leakage evaluation methodology should primarily aim to
prevent false negatives. While we cannot possibly compare our methodology to
all existing attacks and most certainly do not claim the impossibility of false
negatives, we want to stress the importance to adopt DL-LA as one new element
besides the t- and the χ2-test in the evaluator’s toolbox to severely reduce false
negatives when considering multivariate information leakage.

Confidence Boosting. In a common leakage evaluation a statistical test (t-test,
χ2-test) is performed on the entirety of collected traces. Thereby, two different
metrics, (i) the number of traces required to extract meaningful information,
and (ii) the level of confidence the evaluator wants to achieve are tightly in-
tertwined. More specifically, under realistic noise conditions t-test and χ2-test

6 Note that pinpointing leakage in the time dimension is still possible due to sensitivity
analysis as demonstrated in our case studies.
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are fundamentally unable to answer the question: Given a very high confidence
threshold of p = 10−50 can the attacker extract information given only very few
traces? In stark contrast, our deep learning based methodology operates on two
sets: One training set of size N and one validation set of size M . Here, N and
M can be chosen independently from each other. While N represents the actual
amount of traces available to an attacker, M should be chosen sufficiently large
to reach the desired level of statistical confidence, e.g. note that the maximum
level of statistical confidence that can be achieved with a given validation set
equals 0.5M and might be much lower under realistic noise conditions.

Sensitivity Analysis. As seen in Section 4 computing the gradient of an output
component of the neural network with respect to the input values can provide an
insight into the dependence of the classification result on each individual time
sample. While this seems similar to the result of classical univariate hypothesis
tests, which illustrate independent statistical tests on each point in time, there
are some crucial differences: DL-LA learns a function depending on the inputs in
some way, that minimizes the given loss function. This leads to two effects: (1)
Points that do not contribute to leakage may still receive a non-zero component
in the gradient, (2) Points that contribute to leakage, but correlate heavily with
other points contributing to leakage might not be learned, as there is no intrinsic
incentive for the neural net to learn redundant information. However, all of our
practical case studies show, that the highest values in the Sensitivity Analysis
always correspond to leakages which are also found by point-wise analyses. Yet,
we want to caution against the idea that all leakage locations can be found with
a single SA. Instead, the process is more iterative: After a design flaw has been
identified and fixed, the DL-LA of the next design iteration might reveal new
leakage locations of flaws that already persisted in the initial evaluation, but
were simply not learned by the classifier.

Validation Accuracy in Isolation. Commonly, neural networks are applied to
classification tasks in which the user is actually interested in obtaining a good
classifier, e.g., obtain a network to distinguish cat pictures from dog pictures.
In those cases a very high validation accuracy (0.99 + ε) is expected from a
suitable neural network as each individual sample is noise free and can easily be
assigned to one specific group. In contrast, when evaluating side-channel traces,
especially of masked implementations, the randomized intermediate values lead
to an impossibility to precisely assign each individual sample to a group with
high accuracy.7 In contrast, the aim of the attacker can only be to distinguish
different intermediate values statistically, i.e., on average. This leads to a very
different expectation (compared to the image classification problem): The aim is
to find a network that works better than chance (validation accuracy > 0.5) and
does so consistently over a large validation set. Hence, we caution the evaluator to
disregard seemingly small values for the validation accuracy, e.g. 0.505. Instead,
the size of the (perfectly balanced) validation set should always be taken into
account by computing the correct p-value according to the Binomial distribution.

Test and Validation Set. In deep learning, there is a common distinction between
the validation set, used as a feedback mechanism to adjust the hyper parame-

7 In fact, if we find a neural network with validation accuracy equal to 1.0 an attacker
would most likely be able to not only succeed with DPA, but mount a successful
Simple Power Analysis (SPA).
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ters and the test set, another completely independent set that is used to access
the accuracy of the final network. This approach is used to prevent implicit in-
formation leakage from the validation set into the trained model (through the
adjustment of hyper parameters). For our case studies this distinction is not
needed, because we performed all evaluations on networks with identical hyper
parameters and the chosen network architecture is not special by any means, e.g.,
we verified that (small) variations in the size of layers will lead to comparable
results.

Misalignment. As seen in our case studies, DL-LA is resilient against slight
misalignment through bad triggering. However, this robustness is shared with
the t- and χ2-test. When operating on severely misaligned traces due to clock
randomization both DL-LA and classical tests lose orders of magnitude of con-
fidence compared to an aligned evaluation. Fortunately, this can be partially
offset by increasing the validation set to perform Confidence Boosting. While we
performed initial experiments with CNNs which indeed provide more resilience
against misalignment, we chose not to include them into our network sugges-
tion as the usage of convolutions severely hindered the detection of higher-order
(univarate or multivariate) leakages. We leave the design of a neural network
combining convolutions and fully-connected layers to resist misalignment while
detecting higher-order leakages as future work.

Availability. A sample implementation of our evaluation methodology based
on Keras and TensorFlow, including an arbitrary precision computation of the
classifier will be made freely available upon publication.

6 Conclusion

We introduced Deep Learning Leakage Assessment (DL-LA), a novel method-
ology to evaluate leakages in an intrinsically multivariate and horizontal way
by training a classifier based on deep neural networks. In the case of univariate
leakages our method outperforms the non-specific t-test as well as the χ2-test in
several case studies: We detect leakages with fewer traces and with a confidence
orders of magnitudes higher compared to classical leakage assessment. However,
as we cannot provide an indication suggesting the general superiority of our ap-
proach over the classical hypothesis tests in these scenarios, we suggest DL-LA
as a complement to the t-test and χ2-test and not a replacement thereof.

In the case of multivariate leakage, DL-LA effortlessly learns an accurate
classifier, while multivariate extensions of the t- and χ2-test require (i) exhaus-
tive search over all time offsets or (ii) expert-level domain knowledge to choose
the correct offset. Most importantly, we demonstrate a case study in which the
classical hypothesis tests cannot detect any leakage despite having white-box
knowledge about the underlying implementation while DL-LA indicates the in-
security with overwhelming confidence in a black box setting, requiring only a
part of the available trace.

Our method unifies horizontal and vertical side-channel attacks, is simple to
use, broadly applicable and produces results with high statistical confidence. It
should be adopted as a valuable addition to the evaluator’s toolbox to severely
reduce false negatives in multivariate and horizontal settings.
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Fig. 19. DL-LA results targeting an unprotected serialized PRESENT-80 implemen-
tation, using (up to) half the traces as training set and half the traces as validation
set. From top to bottom: 1) aligned traces, 2) misaligned traces, 3) randomized clock.
For 1) and 2) the training set ranges from 10 to 500 traces in steps of 10, while the
validation set is 500 traces large. For 3) the training set ranges from 50 to 2 500 traces
in steps of 50, while the validation set is 2 500 traces large.


