
RingCT 3.0 for Blockchain Confidential Transaction:
Shorter Size and Stronger Security

Tsz Hon Yuen1, Shi-feng Sun2, Joseph K. Liu2, Man Ho Au3,
Muhammed F. Esgin2, Qingzhao Zhang4, Dawu Gu4

1 The Univeristy of Hong Kong, Hong Kong,
thyuen@cs.hku.hk

2 Monash University, Australia,
{shifeng.sun, joseph.liu, muhammed.esgin}@monash.edu

3 Hong Kong Polytechnic University, Hong Kong,
csallen@comp.polyu.edu.hk

4 Shanghai Jiao Tong University, China
{fszqz001, dwgu}@sjtu.edu.cn

Abstract. In this paper, we propose the most competent blockchain ring confidential trans-
action protocol (RingCT3.0) for protecting the privacy of the sender’s identity, the recipient’s
identity and the confidentiality of the transaction amount. For a typical 2-input transac-
tion with a ring size of 1024, the ring signature size of our RingCT3.0 protocol is 98% less
than the ring signature size of the original RingCT1.0 protocol used in Monero. Taking the
advantage of our compact RingCT3.0 transcript size, privacy-preserving cryptocurrencies
can enjoy a much lower transaction fee which will have a significant impact to the crypto-
economy. Our implementation result shows that our protocol outperforms existing solutions,
in terms of efficiency and security.
In addition to the significant improvement in terms of efficiency, our scheme is proven secure
in a stronger security model. We remove the trusted setup assumption used in RingCT2.0.
Our scheme is anonymous against ring insider (non-signing users who are included in the
ring), while we show that the RingCT1.0 is not secure in this strong model.
Our RingCT3.0 protocol relies on our brand new designed ring signature scheme as an
underlying primitive, which is believed to be the most efficient ring signature scheme up-to-
date (in terms of signature size) without trusted setup. Our ring signature scheme is derived
from our novel design of an efficient set membership proof of n public keys, with the proof
size of O(logn). It is the first set membership proof without trusted setup for public keys in
the base group, instead of in the exponent. These two primitives are of independent interest.

1 Introduction

Blockchain is a distributed ledger of transaction records between nodes, without relying on a
trusted authority. Transaction records are synchronized to all nodes by a consensus algorithm, in
order to provide a globally agreed, immutable history. However, all transaction data, including the
sender’s public key, the recipient’s public key and the transaction amount, are publicly available. It
may not be desirable for sensitive transaction in the area of FinTech. As a result, privacy-preserving
blockchain received a lot of attention.

Monero, Dash and Zcash are three popular privacy-preserving cryptocurrencies having total
market capitalization of USD 4 billion. They are ranked at 10, 13 and 21 of all cryptocurrencies
as of October 2018. They used different cryptographic techniques: Monero [32] used linkable ring
signatures, Pedersen commitment and Diffie-Hellman key agreement; Dash used coin shuffling;
Zcash [5] used general zero-knowledge proof (zk-SNARK). These cryptographic techniques mainly
suffer from two drawbacks: inefficient signature generation/verification, or large signature size.
The latter is more concerned in public blockchains, since it is directly related to the transaction
fee.

Transaction Fee. In public blockchain, the distributed ledger is maintained by miners. They
are motivated for bookkeeping because they earn rewards in terms of new cryptocurrency mined

2 T. H. Yuen, S.-F. Sun, J. K. Liu, M. H. Au, M. F. Esgin, Q. Zhang, D. Gu

and the transaction fee from each transaction they recorded. The transaction fee is determined by
the size of the transaction data. Different cryptocurrencies have their own fee rate, i.e., the price
per kB of transaction data. During Nov 2017 to Feb 2018, Bitcoin’s fee rate reaches 0.002-0.008
BTC/kB (which is over USD 100/kB at that time); since then, Bitcoin’s fee rate is relatively stable
at 0.0001 BTC/kB (which is about USD 1/kB). Monero has a relatively stable fee rate of about
0.0008 XMR/kB (which is about USD 0.2/kB).

Transaction fee depends on the length of the transaction data, which is dominated by the
signature length of the senders. In Bitcoin, a typical transaction of 2-input-2-output contains 2
ECDSA signatures, the length of which is 1kB. As of April 2018, the average transaction fee
of Bitcoin is USD 1 and the daily transaction fee of the whole Bitcoin system is USD 160,000.
In Monero, the total signature size for a typical confidential transaction is 13.2kB. Therefore,
any effort to reduce the signature size will have a significant impact to the crypto-economy. The
improvement in signature size is relatively more important than the improvement in computation
efficiency for public blockchains.

Ring Signatures in Blockchain. In this paper, we will focus on the ring signature, which is
widely used in privacy-preserving blockchain applications. Ring signature [34] allows a user to
dynamically choose a set of public keys (including his own) and to sign messages on behalf of
the set, without revealing his identity. Ring signature provides perfect anonymity, such that it is
impossible to decide whether two signatures are issued by the same user. In anonymous e-cash
or cryptocurrency system, linkable-anonymity is more suitable than perfect anonymity since a
double-spent payment can be detected. In a linkable ring signature [27], given any two signatures,
the verifier knows that whether they are generated by the same signer (even though the verifier
still does not know who the actual signer is).

RingCT. The first blockchain Confidential Transaction (CT) [28] is a proposed enhancement
to the Bitcoin protocol for hiding payment values in the blockchain. To further achieve sender
anonymity, a number of coin mixing protocols are proposed with CT.

In cryptocurrency Monero, linkable ring signature is used with CT to give a Ring Confidential
Transaction (RingCT) protocol [32]. For a set of M transaction inputs, the M transaction inputs
correspond to M ring signatures of ring size O(n) each, where n is the number of possible signer.
In addition the net transaction amount (which should be equal to a commitment of zero) also
corresponds to a ring signature of ring size O(n). Therefore, Monero’s RingCT1.0 [32] has (M +1)
signatures of size O(n) each. Since the large signature size limits the the number n of possible
signers, the value of n in Monero’s official wallet software ranges from 5 to 20 only. As a result,
the sender anonymity for RingCT1.0 is at most 1-out-of-20. Due to the small ring size, there are
some attacks to the anonymity of Monero users such as [22,37,30]. By launching an analysis of the
Monero blockchain data, the signer anonymity can be revoked with a significant non-negligible
probability.

The RingCT1.0 paper [32] does not give any notion and security model of RingCT, which
are then later formalized in [36] and they give a RingCT2.0 protocol with (M + 1) signatures
of size O(1) by using trusted public parameters. However, the use of trusted public parameters
is not desirable in the setting of public blockchain. Note that the above comparison ignores the
computation of range proof (e.g., an efficient range proof can be adopted from [9]), the M key
images for linking double-spending transactions, and the computation of N committed output
transaction amount. 5

5 We note that a scheme called RuffCT of signature size O(logn) is mentioned in [35]. Due to the lack of
security analysis or security proof, we do not compare our scheme with RuffCT. The RuffCT is frequently
discussed within the Monero development community and they plan to implement the RuffCT in the
future Monero update.

RingCT 3.0 for Blockchain Confidential Transaction: Shorter Size and Stronger Security 3

RingCT
Communication Prover Verifier
G Zp (# G exponentiation) (# G exponentiation)

RingCT1.0 [32] M + 1 (M + 1)(n+ 1) 2(M + 1)(n− 1)e2 + 2(M + 1)e1 2(M + 1)n · e2
This paper 2 lognM + 9 M+8 2(enM+1 + enM

2
+1 + . . .+ e1) e2nM+2 lognM+4

+e2nM+1 + e2nM + enM+1 + eM+3 +e4 + e5
+eM + (2nM + 1)e3 + 4nMe2 + e1 +eM+1

Table 1: Summary of RingCT without trusted setup for a set of M transaction inputs and each
input generates a ring signature of ring size n (excluding the range proof, the key images and the
input/output accounts).

Ring Signatures
Signature Size Prover Verifier
G Zp (# G exponentiation) (# G exponentiation)

[21] 4 logn 3 logn + 1 logn · en+1 + 3
2

logn(e2 + e1) en+logn+1 + n(e3 + e2)

[7] logn + 12 3
2

logn + 6 1
2

logn · en+1 + 2e2 logn+1 2en+ 1
2
logn+1

+(1
2

logn+ 3)e2 + 4e1 +2e2 logn+2 + 4e2
This paper 2 logn + 7 7 e2n+1 + en+1 + 3e2 e2n+2 logn+4

+(e2n + en + . . .+ e1) +e4 + e3
Table 2: Summary of O(log n)-size DL-based ring signatures for n public keys.

1.1 Our Contributions

Our goal is to construct a cost-efficient blockchain RingCT protocol by using an efficient ring
signature scheme without trusted setup, and to prove the security in a stronger security model.
Specifically, the contributions of this paper include:

1. We build a novel efficient ring signature scheme to construct RingCT3.0 protocol with the short-
est RingCT transcript size, without using trusted setup. As shown in Table 1, our RingCT3.0
has ring signature size of O(M + log n) and the original RingCT1.0 [32] has ring signature size
of O(Mn). Consider a typical transaction (i.e., number of inputs M = 2) with a ring size of
1024, our ring signature size (1.3kB) is 98.6% less than the ring signature size of [32] (98kB).
In blockchain applications, the transaction fee is proportional to the transaction size. This im-
provement in the size provides significant savings of the transaction fee for privacy-preserving
cryptocurrencies such as Monero. In addition, it becomes practical to include a larger ring
size (e.g., to include 105 users with less than 1800 bytes for the signature size) and therefore
(having a large ring size) makes it extremely difficult to launch an anonymity attack based on
blockchain data analysis.

2. We give a strong security model for RingCT. In particular, we give a clearer security model for
the balance property, and give a stronger security model for anonymity by considering insider
attack. We will show that the original RingCT1.0 protocol in [32] is not secure in this anonymity
model for insider attack. Then we will show that our RingCT3.0 is secure in this strong model.

3. Our significant improvements in the RingCT3.0 protocol rely on our proposed brand new ring
signature scheme. It is the shortest ring signature without trusted setup in the literature (refer to
Table 2). The idea comes from an innovative technique to construct an efficient set membership
proof of n public keys in the base group, instead of in the exponent without trusted setup
with the proof size of O(log n). We believe these two primitives are of independent interest and
contributions.

2 Background

We give some background for the paper.

4 T. H. Yuen, S.-F. Sun, J. K. Liu, M. H. Au, M. F. Esgin, Q. Zhang, D. Gu

2.1 System Model

Public blockchain is a distributed system where users can join the system freely at anytime. User
can have different roles:

– Sender/Recipient: The sender acts as the signer of a signature scheme to confirm that he wants
to spend some money to the recipient in a transaction.

– Miner: The miner acts as the verifier of the signature scheme and checks if the signature (and
the transaction) is valid. If it is true, all miners run the consensus protocol of the blockchain to
agree on the order of all transactions.

In public blockchain, we assume that system parameters are simply agreed by all users and they
do not need to be generated by a trusted party. For example, common hash function and elliptic
curve can be used.

For the data model in the system, we use the model of Unspent Transaction Outputs (UTXO)
as used in many blockchain systems. If a user wants to spend his digital assets in a transaction,
he has to refer to the specific assets that he wants to spend. If he spends the same asset twice, the
verifier will notice it and will reject the transaction.

2.2 Notations and Intractability Assumptions

Vector Notations. For a scalar c ∈ Zp and a vector a = (a1, . . . , an) ∈ Znp , we denote by b = ca
the vector of bi = c · ai for i ∈ [1, n]. Let 〈a, b〉 =

∑n
i=1 aibi denote the inner product between two

vectors a, b, and a ◦ b = (a1 · b1, . . . , an · bn) denote the Hadamard product.
We use kn to denote the vector containing the first n-th powers of k ∈ Zp. That is kn =

(1, k, k2, . . . , kn−1) ∈ Znp . We use the vector notation to Pedersen vector commitment. Let g =
(g1, . . . , gn) ∈ Gn be a vector of generators and a = (a1, . . . , an) ∈ Znp , then C = ga =

∏n
i=1 g

ai
i .

Intractability Assumptions. Denote G as a cyclic group of order p generated by a security
parameter 1λ. This paper uses the following intractability assumptions.

Discrete Logarithm (DL) Assumption. Given (g, ga) where g ∈ G, a ∈ Zp, no probabilistic polynomial
time (PPT) adversary can output a with non-negligible probability.

q-Decisional Diffie-Hellman Inversion (DDHI) Assumption. Given (g, ga, . . . , ga
q

, T) where g ∈ G, a ∈
Zp, no PPT adversary can decide if T = g1/a with non-negligible probability.

3 Overview of RingCT3.0

We give a brief overview on how to improve the efficiency and the security of the RingCT protocol
using a step-by-step approach.

3.1 Efficient RingCT3.0 Protocol

We give a new design of ring signature scheme to build an efficient RingCT without using trusted
setup. This construction is composed of a number of new primitives and techniques.

Set Membership Proof. Our basic idea is to start with a set membership proof of a set of public
keys, without trusted setup. We give the first set membership proof without trusted setup for public
keys in the base group. The intuition is that we can have a set of public keys Y = (Y1, . . . , Yn)
and a binary vector bL = (b1, . . . , bn). Denote Y bL =

∏n
i=1 Y

bi
i . For a public key Yi ∈ Y , we set

C = hβYi for some public group element h and randomness β. We observe that C is a Pedersen
commitment of the secret key xi = logg Yi. Also, when bL only has the bit at position i equal to
1, we have:

C = hβYi = hβY bL .

RingCT 3.0 for Blockchain Confidential Transaction: Shorter Size and Stronger Security 5

Define bR as bR = bL − 1n, where 1n = (1, . . . , 1) of length n. We give a zero-knowledge proof
for the above condition of bL by showing that:

bL ◦ bR = 0n, bL − bR = 1n, 〈bL,1n〉 = 1,

where ◦ denotes the Hadamard product. Since the zero-knowledge proof hides the knowledge of
bL, the position index i of the committed public key is hidden.

In order to give an efficient set membership proof of bL with length n, we use the inner
product argument in [9] to reduce the proof size to log n. One non-trivial tweak of our construction
is to ensure the security of the Pedersen commitment C on the public key Y . We have to set
h = Hash(Y) (Hash denotes a cryptographic hash function), such that the discrete logarithm
(DL) between the public key Y and h is not known.

Our set membership proof is fundamentally different from the existing approaches. [21,7,8]
proved that for a set of commitments, one of them is committed to g0. They used n polynomials
of degree log n to hide the prover index and ran a zero-knowledge proof for the polynomials. Our
scheme uses a zero-knowledge proof to prove that bL is a binary vector with Hamming weight 1
and uses the inner product argument in [9] to reduce the proof size to log n. Details of the set
membership proof is given in Appendix B. A comparison with the state-of-the-art log n-size set
membership proofs is shown Table 5. Our scheme is the most efficient in terms of communication
size for ECC group, where |G| ≈ |Zp|. The computation of prover and verifier are slightly less
efficient than the existing schemes, but the difference is smaller if we consider the acceleration of
computing multi-exponentiation.

Linkable Ring Signatures for RingCT3.0. We propose the use of set membership proof
for constructing ring signatures directly. The signer can directly give a zero-knowledge proof of
knowing: (1) a committed public key (C = hβYi) which is in the set of n public keys, and (2) the
secret key which corresponds to the committed public key. Details of the ring signature is given in
Appendix C. However, turning it into linkable ring signature is a non-trivial task. Simply adding a
key image to the ring signature does not give a secure linkable ring signature. It is because in one
of the security models of linkable ring signature, the adversary is allowed to know all the secret
keys in the ring. This is not compatible with the proof of ring signature, where the adversary
does not know the pairwise discrete logarithm between public keys in the ring. As a result, the
representation of public keys in the ring has to be changed for linkable ring signature.

Firstly, we convert our ring signature into a linkable ring signature by giving an extra linkability
tag (also called key image in Monero) for each signer. The security proof of our ring signature
scheme requires that the pairwise DL between different users’ public key should be unknown to
the adversary. However, in the security model of balance and non-slanderability for RingCT, the
adversary is allowed to have more than one secret key. If we simply use the users’ public keys as
the representation of users in the ring, the scheme is not secure since the adversary knows the
pairwise DL . The classical representation of user i in DL-setting is the public key Yi = gxi where
xi is the user’s secret key.

Therefore, we give a new proposal of using Yig
d
i as the user representation in the set Y , where

Yi is the public key, gi is the system parameter and d is the hash of all public keys in the ring. For
each user representation Yig

d
i , the gi component cannot be canceled out by Yi due to the exponent

d added. Now consider the DL between user representations. Even though the adversary knows
the secret keys xi of other users (which is allowed in the security model), the DL relation between
different users’ representation is still unknown guaranteed by the DL between g and gi. (Refer to
lemma 1).

Compressing Multiple Inputs for RingCT3.0. A trivial construction of RingCT with M
multiple input is to include M linkable ring signatures and then proves that the sum of input
amount is equal to the sum of output amount. As a result, we can obtain a RingCT with signature
size O(M log n). In this paper, we follow the technique of proving multiple range proof in [9] to

6 T. H. Yuen, S.-F. Sun, J. K. Liu, M. H. Au, M. F. Esgin, Q. Zhang, D. Gu

further compress the our RingCT 3.0. In short, we use the first n bit of bL to represent the first
linkable ring signature, the second n bit of bL to represent the second linkable ring signature and
so on. As a result, we have a nM bit of bL for M inputs. By applying the inner product argument,
the correctness of bL is proven with a proof of size O(log nM). However, we still need M group
elements to show the correctness of M key images. Therefore, our final RingCT 3.0 has a proof
size of O(M + log n).

3.2 Strong Security Model for RingCT3.0

As compared to the formal security model of RingCT proposed in [36], we propose a few improve-
ments:

– We remove the use of trapdoor in system parameters. Therefore, this model is more suitable for
public blockchain, as compared with RingCT2.0 [36].

– We give a clearer definition of the balance property. We observe that the balance property
requires that any malicious user cannot (1) spend any account of an honest user, (2) spend
her own accounts with the sum of input amount being different from that of output amount,
and (3) double spend any of her accounts. Therefore, we break down the balance property into
unforgeability, equivalency and linkability. As a result, the security of each property can be
evaluated easily.

– We give a stronger security model of anonymity than the model in [36]. We consider the
anonymity against insider attacks. Note that the original RingCT [32] is not secure in this
strong model.

Anonymity against Insider Attacks. We observe that anonymity for RingCT protocol is more
complicated than the anonymity of linkable ring signatures. Given the knowledge of the input and
output amount, the level of anonymity of RingCT protocol may be lowered. For a transaction with
multiple input accounts, multiple linkable ring signatures are generated. Yet, they are correlated
when validating the balance of input and output amount. This extra relationship may lower the
level of anonymity.

The previous model of anonymity [36] only considered outsider security (i.e., not against the re-
cipient and other members of the ring). In this paper, we define two stronger models for anonymity:
anonymity against recipient (who knows all the output account secret keys and their amounts) and
anonymity against ring insider (who knows some input account secret keys and their amounts).
The collusion of recipient and ring insider will inevitably lower the level of anonymity. Therefore,
we do not capture it in our security model.

Anonymity of RingCT1.0. We first review the original RingCT1.0 [32]. Denote Ain as the set
of all input accounts and AS as the set of real signers. Arrange Ain as an M × n matrix with
each row containing only one account in AS . The original RingCT1.0 [32] requires that all signing
accounts are in the same column in Ain. One ring signature is generated for each row. The graphical
representation is as follows:

act
(1)
1 act

(n)
1 act

(ind)
1

...
...

...

Ain = act
(1)
k act

(n)
k , AS = act

(ind)
k

...
...

...

act
(1)
M act

(n)
M act

(ind)
M

The real signers must be located in the same column. It is because RingCT1.0 [32] includes an
extra ring signature, where each “ring public key” is computed by the product of all coins in each

RingCT 3.0 for Blockchain Confidential Transaction: Shorter Size and Stronger Security 7

column, divided by all output coins. It is used to guarantee the balance of the input and output
amount.

We observe that if the adversary knows one of the secret key in the first column, he can check
if any of the key images is generated from this secret key. If not, the adversary can rule out
the possibility that the real signer is from the first column. The level of anonymity is already
lowered. By knowing n− 1 secret keys in different columns, the adversary can find out which M
input accounts are the real signer. Therefore, the original RingCT1.0 [32] is not secure against our
model of anonymity against ring insider.

Anonymity of RingCT3.0. In order to provide anonymity against ring insider, we have to
break the distribution of real signer in Ain in RingCT1.0 [32]. We achieve this by three steps:
(1) generate one re-randomized input coin C∗in,k for each input coin of the real signer (denoted

as C
(i)
in,k); (2) prove in zero-knowledge that C∗in,k and C

(i)
in,k are the Pedersen commitments on the

same amount; (3) prove the sum of amounts of all re-randomized input coins is equal to that of all
the output coins Cout,j . The first step is done by simply re-randomizing the Pedersen commitment

C
(i)
in,k. The third step is done via showing the

∏
k C
∗
in,k/

∏
j Cout,j is a commitment to zero. It can

be done without the need of using ring signatures. The most complicated part is the second step.
We can prove the validity of C∗in,k by further changing the user representation of our RingCT3.0
as:

Yi
(C(i)

in,k

C∗in,k

)d1
gd20 ,

where Yi is the input public key corresponding to C
(i)
in,k, g0 is the system parameter, and d1, d2 are

the hash of all public keys in the ring. Recall that the coin C∗in,k = hacg
κ
c is a commitment to input

amount a. If Yi is the real signer’s public key, then
C

(i)
in,k

C∗in,k
= gκ

′

c for some κ′. Then the RingCT3.0

includes an extra proof of knowledge of κ′. The re-randomized input coins together with the new
user representation provide anonymity against insider for RingCT3.0.

4 Security Model for RingCT

We give the security definitions and models for RingCT which is modified from [36]. A RingCT pro-
tocol consists of a tuple of polynomial time algorithms (Setup, KeyGen, Mint, AccountGen,
Spend, Verify), the syntax of which are described as follows:

– pp ← Setup(1λ): it takes a security parameter λ ∈ N, and outputs the system parameters pp.
All algorithms below have implicitly pp as part of their inputs.

– (sk, pk) ← KeyGen(): In order to provide anonymity to the recipient, the concept of stealth
address was used in RingCT1.0 [32]. It can be viewed as dividing the algorithm into two parts:
generating a long-term key pairs for each user, and generating a one-time key pairs for each
transaction.

• LongTermKeyGen. It outputs a long term secret key ltsk and a long term public key.
• OneTimePKGen. On input a long term public key ltpk, it outputs pk and the auxiliary

information Rot.
• OneTimeSKGen. On input a one-time public key pk, an auxiliary information Rot and a

long term secret key ltsk, it outputs the one-time secret key sk.

– (cn, ck) ← Mint(pk, a): it takes as input a public key pk and an amount a, outputs a coin cn
for pk as well as the associated coin key ck.

– (act, ask)/⊥ ← AccountGen(sk, pk, cn, ck, a): it takes as input a user key pair (sk, pk), a coin
cn, a coin key ck and an amount a. It returns ⊥ if ck is not the coin key of cn with amount a.
Otherwise, it outputs the account act

.
= (pk, cn) and the corresponding account secret key is

ask
.
= (sk, ck, a).

8 T. H. Yuen, S.-F. Sun, J. K. Liu, M. H. Au, M. F. Esgin, Q. Zhang, D. Gu

– (Aout, π,S,Ckout)/⊥ ← Spend(m,KS ,AS ,Ain,O): it takes as input a group AS of accounts
together with the corresponding account secret keys KS , an arbitrary set Ain of groups of input
accounts containing AS , a set O of output public keys with the corresponding output amounts,
and some transaction string m ∈ {0, 1}∗, it outputs ⊥ if the sum of output amount in O is
different from the sum of input amount in KS . Otherwise, it outputs a set of output accounts
Aout, a proof π, a set S of serial numbers and a set of output coin keys Ckout. Each serial number
Si ∈ S corresponds to one account secret key aski ∈ KS .

– 1/0/− 1← Verify(m,Ain,Aout, π,S): it takes as input a message m, a set of input accounts Ain,
a set of output accounts Aout, a proof π and a set of serial numbers S, the algorithm outputs
−1 if the serial numbers in S is spent previously. Otherwise, it checks if the proof π is valid for
the transaction tx, and outputs 1 or 0, meaning a valid or invalid spending respectively.

Perfect Correctness. The perfect correctness property requires that a user can spend any group
of her accounts w.r.t. an arbitrary set of groups of input accounts, each group containing the same
number of accounts as the group she intends to spend.

A RingCT protocol is called perfectly correct if for all PPT adversaries A, it holds that

Pr

Verify(m,
Ain,Aout,
π,S) = 1

:

pp← Setup(1λ);
∀j ∈ [1,M], aj ←R Zp :

(skj , pkj)← KeyGen(); (cnj , ckj)←Mint(pk, aj);
(actj , askj)← AccountGen(skj , pkj , cnj , ckj , aj);

AS
.
= {actj}j∈[1,M],KS

.
= {askj}j∈[1,M];

(m,Ain,O)← A(pp,AS ,KS);
(Aout, π,S,Ckout)← Spend(m,KS ,AS ,Ain,O).

= 1.

We give the definition of some oracles and lists that will be used in the security models in
Table 3 and 4.

Anonymity. The anonymity of RingCT is more complicated than the anonymity of linkable ring
signatures, due to the extra knowledge of transaction amount. The previous model of anonymity
in RingCT1.0 only considered outsider security only (i.e., not against the recipient and other
members of the ring). As introduced in section 3.2, we define two stronger models for anonymity:
anonymity against recipient (who knows all the output amounts) and anonymity against ring
insider (who knows some input account secret keys and their amounts).

Anonymity against recipient. The anonymity against recipient property requires that without
the knowledge of any input account secret key and input amount (which are within a valid Range),
the spender’s accounts are successfully hidden among all the honestly generated accounts, even
when the output accounts and the output amounts are known.

Definition 1. A RingCT protocol is called anonymous against recipient if for all PPT adversaries
A = (A1,A2) in the following experiment ExprAR:

pp← Setup(1λ);
(m, {pkk,i}k∈[1,M],i∈[1,n], {pkout,j}j∈[1,N])← AOrc

1 (pp),
where (skk,i, pkk,i) ∈ U and ((pkk,i, ·), ·) /∈ L;

for k ∈ [1,M], i∗k ←R [1, n], ak,i, aout,j ←R Range,where
∑
k ak,i∗k =

∑
j aout,j .

(cnk,i, ckk,i)←Mint(pkk,i, ak,i),
(actk,i, askk,i)← AccountGen(skk,i, pkk,i, cnk,i, ckk,i, ak,i);
Ain

.
= {actk,i},AS

.
= {actk,i∗k},KS

.
= {askk,i∗k},O

.
= {pkout,j , aout,j};

(A∗out, π∗,S∗,Ck∗out)← Spend(m,KS ,AS ,Ain,O);
(k∗, ind∗)← AOrc

2 (pp, (A∗out, π∗,S∗,O,Ck∗out,Ain)),

it holds that:
∣∣Pr [A wins in ExprAR]− 1

n

∣∣ ≤ negl(λ). A wins if ind∗ = i∗k and Ain ∩ C = ∅.

RingCT 3.0 for Blockchain Confidential Transaction: Shorter Size and Stronger Security 9

List Description

U The list of user key pairs generated by the challenger.

G The list of accounts, their balance and coin keys generated by Mint or Spend.

I The list of accounts with public keys generated by the challenger.

L The list of accounts and account secret keys with public keys generated by the challenger.

T The list of output generated by the Spend oracle with the corresponding input accounts.

C The list of corrupted accounts.

Table 3: Definition of Lists

Oracle Description

PkGen(i, b, j)

on input a query number i, a bit b and an index j, if b = 0, it runs algo-
rithm (ltski, ltpki) ← LongTermKeyGen(), adds (i, ltski, ltpki) to an ini-
tially empty list U ′ and returns the long term public key pki. If b = 1, it re-
trieves (j, ltskj , ltpkj) from U ′ and runs (pki, Rot)← OneTimePKGen(ltpkj),
ski ← OneTimeSKGen(pki, Rot, ltskj). It adds (ski, pki) to an initially empty
list U and returns pki.

ActGen(pk, a)

on input a public key pk and an amount a, it runs algorithm (cn, ck) ←
Mint(pk, a), and outputs (act, ck) for address pk. It adds (act, a, ck) to an
initially empty list G. If (sk, pk) ∈ U , then the associated secret key with ac-
count act is ask

.
= (sk, ck, a). It adds act and (act, ask) to an initially empty

list I and L respectively.

Corrupt(act)
on input an account act, it retrieves (act, ask) ∈ L. It adds act to an initially
empty list C, and finally returns ask.

Spend(m,AS ,
Ain,O)

takes in a string m, input accounts Ain containing AS and the output set
O, it retrieves (acti, aski) ∈ L for all acti ∈ AS . Denote KS as the set of
these aski. It runs (Aout, π, S,Ckout) ← Spend(m,KS ,AS ,Ain,O) and returns
(Aout, π, S,Ckout) after adding (Aout, π, S,AS) to an initially empty list T .
For all actj = (pkj , cnj) ∈ Aout, with aj as the corresponding amount in O and
ckj as the corresponding coin key in Ckout, it adds (actj , aj , ckj) to the list G.
If (skj , pkj) ∈ U , it sets askj

.
= (skj , ckj , aj), where ckj is the corresponding

coin key in Ckout. It adds actj to the list I and adds (actj , askj) to the list L.

Table 4: Definition of Oracles Orc

Anonymity against ring insider. The anonymity against ring insider property requires that
without the knowledge of output account secret key and output amount (which are within a valid
Range), the spender’s accounts are successfully hidden among all uncorrupred accounts.

Definition 2. A RingCT protocol is called anonymous against ring insider if for all PPT adver-
saries A = (A1,A2) in the following experiment ExprAI :

pp← Setup(1λ);
(m, {actk,i}k∈[1,M],i∈[1,n], {pkout,j}j∈[1,N])← AOrc

1 (pp),
where (·, pkout,j) ∈ U , and (actk,i, ak,i, ckk,i) ∈ G;

for j ∈ [1, N], i∗k ←R [1, n], aout,j ←R Range,where
∑
k ak,i∗k =

∑
j aout,j .

Ain
.
= {actk,i},AS

.
= {actk,i∗k},KS

.
= {askk,i∗k},O

.
= {pkout,j , aout,j};

(A∗out, π∗,S∗,Ck∗out)← Spend(m,KS ,AS ,Ain,O);
(k∗, ind∗, n∗)← AOrc

2 (pp, (A∗out, π∗,S∗,Ain)),

it holds that:
∣∣∣Pr [A wins in ExprAI]− 1

n−n∗

∣∣∣ ≤ negl(λ). A wins if ind∗ = i∗k and there are n∗

distinct values of i such that actk∗,i ∈ C.

10 T. H. Yuen, S.-F. Sun, J. K. Liu, M. H. Au, M. F. Esgin, Q. Zhang, D. Gu

Balance. The balance property requires that any malicious user cannot (1) spend any account
of an honest user, (2) spend her own accounts with the sum of input amount being different from
that of output amount, and (3) double spend any of her accounts. Therefore, the balance property
can be modeled by three security models: unforgeability, equivalence and linkability.

The following definition of unforgeability captures the property that no PPT adversary can
forge a signature where all input accounts are uncorrupted.

Definition 3. A RingCT protocol is called unforgeable if for all PPT adversaries A, it holds that

Pr
[
A Wins : pp← Setup(1λ); (m,Ain,Aout, π,S)← AOrc(pp)

]
≤ negl(λ),

where Orc denotes all oracles PkGen, ActGen, Spend and Corrupt defined in Table 4. Finally, A
wins in the experiment if Verify(m,Ain,Aout, π, S) = 1, (Aout, π,S, ·) /∈ T , and for all acti ∈ Ain,
acti ∈ I \ C.

The following definition of equivalence captures the property that no PPT adversary can output
a valid signature and coin keys where the sum of input amount is different from the sum of output
amount. It holds even if these accounts are corrupted.

Definition 4. A RingCT protocol is called equivalent w.r.t. insider corruption if for all PPT
adversaries A, it holds that

Pr
[
A Wins : pp← Setup(1λ); (m,Ain,Aout, π,S,Ckout,Amtout)← AOrc(pp)

]
≤ negl(λ),

where Amtout is a set of output amount. A wins in the experiment if it satisfies the following
conditions: (1) Verify(m, Ain,Aout, π, S) = 1, (2) for all coin key cki ∈ Ckout and amount aout,i ∈
Amtout, AccountGen(ski, pki, cni, cki, aout,i) 6= ⊥, (3) for all account actj ∈ Ain, (actj , ain,j) ∈ G,∑
j ain,j 6=

∑
i aout,i.

The following definition of linkability captures the property that no PPT adversary can output
two valid signatures with distinct serial numbers S1 and S2, where there is at most |S1|+ |S2| − 1
input account that is corrupted or not generated by the challenger.

Definition 5. A RingCT protocol is called linkable w.r.t. insider corruption if for all PPT adver-
saries A, it holds that

Pr
[
A Wins : pp← Setup(1λ); {mi,Ain,i,Aout,i, πi,Si}i=1,2 ← AOrc(pp)

]
≤ negl(λ).

A wins in the experiment if Verify(mi,Aini ,Aout,i, πi,Si) = 1 for i = 1, 2; S1 ∩ S2 = ∅; and
(Ain,1 ∪ Ain,2) ∩ C + (Ain,1 ∪ Ain,2) \ I ≤ |S1|+ |S2| − 1.

Non-Slanderability. The non-slanderabiliy property requires that a malicious user cannot slan-
der any honest user after observing an honestly generated spending. It is infeasible for any malicious
user to produce a valid spending that shares at least one serial number with a previously generated
honest spending.

Definition 6. A RingCT protocol is called non-slanderable if for all PPT adversaries A, it holds
that

Pr
[
A Wins : pp← Setup(1λ);

(
Ŝ, m,Ain,Aout, π,S

)
← AOrc(pp)

]
≤ negl(λ).

A wins if Ŝ∩ S∗ 6= ∅; Verify(m,Ain,Aout, π,S) = 1; (Aout, π,S, ·) /∈ T ; and (·, ·, Ŝ,AS) ∈ T and for
all act ∈ AS, act /∈ C.

5 RingCT 3.0

For the ease of presentation, we first present a basic construction of RingCT3.0 with linkable ring
signature. Then we optimize our construction to log(n)-size by using the inner-product argument
in [9], where n is the size of the ring.

RingCT 3.0 for Blockchain Confidential Transaction: Shorter Size and Stronger Security 11

5.1 Our Basic Construction

We give our basic construction in this section. Our scheme uses a zero-knowledge range proof
of a value committed in a Pederson commitment. Denote RP = (RSetup,RProof,RVerify) as a
zero-knowledge range proof for the statement:

PoK : {(a, κ) : C = hacg
κ
c ∧ a ∈ [Rmin, Rmax]}.

The range proof can be instantiated by the Bulletproof [9].
Our basic construction is as follows.

Setup. On input security parameter 1λ and the maximum size of ring nmax, it picks a group G of
prime order p and some generators gc, hc, g, u ∈ G, g = (g1, . . . , gnmax), h = (h1, . . . , hnmax) ∈ Gnmax .
Suppose that Hj : {0, 1}∗ → Zp for j = 1, 2, 4, 5, H3 : {0, 1}∗ → G and H6 : G→ Zp are collision
resistant hash functions. It also runs RSetup of the range proof. Assume these parameters are
known in the system.

KeyGen. The KeyGen algorithm is divided as follows.

– LongTermKeyGen. The user picks his long term secret key ltsk
.
= (x1, x2) ∈ Z2

p and computes
his long term public key ltpk

.
= (gx1 , gx2).

– OneTimePKGen. On input a long term public key ltpk = (gx1 , gx2), it picks a random
rot ∈ Zp and computes a one-time public key pk = gx1 · gH6((g

x2)r). It outputs pk and the
auxiliary information Rot

.
= grot .

– OneTimeSKGen. On input a one-time public key pk, an auxiliary information Rot and a long
term secret key ltsk = (x1, x2), it checks if pk = gx1 · gH6(R

x2
ot). If it is correct, then it outputs

the one-time secret key sk = x1 +H6(Rx2
ot).

Mint. On input a public key pk, an amount a ∈ Zp, the algorithm chooses κ ∈ Zp uniformly at
random and computes the coin C = gκc h

a
c. It returns the coin C and the coin key ck = κ.

AccountGen. On input a user key pair (sk, pk), a coin C and a coin key ck = κ (where the
pair (pk, C) is listed as the output of a transaction) and an amount a, it checks if C = gκc h

a
c. If

it is true, then it outputs the account act
.
= (pk, C) and the corresponding account secret key is

ask
.
= (sk, ck, a).

Spend. On input a set of M signer’s input accounts AS with a set of account secret keys {askk =
(skk, κin,k, ain,k)}k∈[1,M], a set of nM input accounts Ain which contains AS (where n < nmax is
the size of the ring), a set of N output amount {aout,j}j∈[1,N] corresponding to N recipient’s
public keys {pkout,j}j∈[1,N], and a transaction message m, it first checks the amount balance. If∑M
k=1 ain,k 6=

∑N
j=1 aout,j , the transaction amount is not correct and it returns ⊥.

Arrange Ain as an M ×n matrix with each row containing only one account in AS . Denote the
column index indk as the position of the k-th element in AS appearing in row k, column indk of
Ain. The graphical representation is as follows:

act
(1)
1 act

(n)
1 act

(ind1)
1

...
...

...

Ain = act
(1)
k act

(n)
k , AS = act

(indk)
k

...
...

...

act
(1)
M act

(n)
M act

(indM)
M

The spend protocol can be roughly separated into two parts. The first part is mainly about
the balance of the input and output amount. The second part is mainly about the ring signature
providing anonymity of the sender.

We first give some sub-protocols for the balance property as follows.

12 T. H. Yuen, S.-F. Sun, J. K. Liu, M. H. Au, M. F. Esgin, Q. Zhang, D. Gu

1. Generate One-Time Public Key: The sender converts all recipient’s long term public keys to
one-time public keys by OneTimePKGen. The auxiliary information is appended to the
transaction message m.

2. Generate Output Coins. It first runs (Cout,j , κout,j) ← Mint(aout,j), for all j ∈ [1, N]. It sets
Aout = {(pkout,j , Cout,j)}j∈[1,N] as the set of N output accounts.
The sender can later privately send the amount aout,j and coin key κout,j to each secret key
owner of pkout,j . Denote Ckout as the set of all coin keys.

3. Generate Range Proof. It runs the RProof of the range proof for all aout,j where j ∈ [1, N].
Denote πrange as the set of output of RProof for all j.

4. Prepare Balance Proof. Denote the coin for act
(indk)
k as C

(indk)
in,k . Recall that the coin key of

C
(indk)
in,k is (ain,k, κin,k). If sum of input amount is equal to the sum of output amount, we have∏M
k=1 C

(indk)
in,k /

∏N
j=1 Cout,j = g

∑M
k=1 κin,k−

∑N
j=1 κout,j

c . Denote ∆
.
=
∑M
k=1 κin,k −

∑N
j=1 κout,j .

Next, we give some sub-protocols for the ring signature part. The sender generates a single

ring signature for each all row k of Ain. Denote act
(i)
k = (pk

(i)
in,k, C

(i)
in,k) for i ∈ [1, n] and the signer

index is indk. The sender runs as follows.

1. Generate One-Time Secret Key: The sender converts his long term secret key to one-time secret
keys by OneTimeSKGen.

2. Generate Key Images. Denote (skk, ·, ·) as the account secret key for act
(indk)
k . It computes the

key image Uk = u
1

skk .

3. Ring Formation. Denote the concatenated string str as the concatenation of {act(1)k || . . . ||act
(n)
k }k∈[1,M].

The prover computes d0 = H2(0, str), d1 = H2(1, str) and d2 = H2(2, str). The prover sets

Yk = ((pk
(1)
in,k)d

k−1
0 (C

(1)
in,k)d1gd21 , . . . , (pk

(n)
in,k)d

k−1
0 (C

(n)
in,k)d1gd2n) for k ∈ [1,M],

Y = Y1|| . . . ||YM .

4. Prepare Signer Index. For k ∈ [1,M], the sender generates a binary vector bL,k = (bk,1, . . . , bk,n),
where bk,i = 1 when i = indk and bk,i = 0 otherwise. Define bL = bL,1|| . . . ||bL,M and
bR = bL − 1n. We will prove in zero knowledge that bL,k is a binary vector with only one
bit equal to 1. It is equivalent to showing: bL ◦ bR = 0n, bL − bR = 1n, 〈bL,k,1

n〉 = 1 for
k ∈ [1,M].

5. Signature Generation. It consists of the following steps.

Commit 1. It sets h = H3(Y), picks random α1, α2, β, ρ, rα1
, rα2

, rsk1 , . . . , rskM , rδ ∈ Zp,
sL, sR ∈ ZnMp and computes:

B1 = hα1 ·
M∏
k=1

(pk
(indk)
in,k)d

k−1
0 (C

(indk)
in,k)d1gd2indk B2 = hα2

M∏
k=1

gindk , A = hβhbR ,

S1 = hrα1
−d2rα2 g

∑M
k=1 rskkd

k−1
0 gd1r∆c , S2 = hρY sLhsR , S3 =

M∏
k=1

U
rskkd

k−1
0

k .

Observe that B1 = hα1Y bL .

Challenge 1. Denote the concatenated string str′ = Y ||B1||B2||A||S1||S2||S3||U1||, . . . ||UM . It
computes y = H4(1, str), z = H4(2, str) and w = H4(3, str).

Commit 2. It can construct two degree 1 polynomials of variable X:

l(X) = bL − z · 1nM + sL ·X,

r(X) = ynM ◦ (w · bR + wz · 1nM + sR ·X) +

M∑
k=1

z1+k · (0(k−1)n||1n||0(M−k)n).

RingCT 3.0 for Blockchain Confidential Transaction: Shorter Size and Stronger Security 13

Denote t(X) = 〈l(X), r(X)〉, which is a degree 2 polynomial. We can write t(X) = t0 + t1X +
t2X

2, and t0, t1, t2 can be computed by using (bL, bR, sL, sR, w, y, z). In particular, observe
that

t0 = w〈bL, bR ◦ ynM 〉+ zw〈bL − bR,y
nM 〉+

M∑
k=1

z1+k〈bL,0(k−1)n||1n||0(M−k)n〉

− wz2〈1nM ,ynM 〉 −
M∑
k=1

z2+k〈1nM ,0(k−1)n||1n||0(M−k)n〉,

=

M∑
k=1

z1+k + w(z − z2)〈1nM ,ynM 〉 −
M∑
k=1

nz2+k.

It picks random τ1, τ2 ∈ Zp, and computes: T1 = gt1hτ1 , T2 = gt2hτ2 .

Challenge 2. It computes x = H5(w, y, z, T1, T2, m).

Response. It computes:

τx = τ1 · x+ τ2 · x2, µ = α1 + β · w + ρ · x, zα1
= rα1

+ α1 · x, zα2
= rα2

+ α2 · x,
zsk,k = rsk,k + skk · x for k ∈ [1,M], z∆ = r∆ +∆ · x, l = l(x) = bL − z · 1nM + sL · x,

r = r(x) = ynM ◦ (w · bR + wz · 1nM + sR · x) +

M∑
k=1

z1+k · (0(k−1)n||1n||0(M−k)n), t = 〈l, r〉.

It outputs σring = (B1, B2, A, S1, S2, S3, T1, T2, τx, µ, zα1 , zα2 , zsk,1, . . . , zsk,M , z∆, l, r, t) and the key
image (U1, . . . , UM). Note that l, r can be reduced to logarithm size.

Output. Denote S as a set of serial number {U1, . . . , UM}. Then the output of the spend
algorithm is (Aout, π = (πrange, σring),S,Ckout).
Verify. On input a message m, a set of input accounts Ain, a set of output accounts Aout, a proof
π and a set S of serial numbers and a set U of serial numbers in the past, then it checks:

1. If there exists any U in both S and U, returns 0 and exits since it is a double spending of
the previous transaction. We can use Bloom filter on U to speed up the detection of double
spending.

2. It runs the RVerify algorithm of the range proof with input from πrange and the output coins
in Aout.

3. It checks the ring signature σring and key images Uk ∈ S for k ∈ [1,M] as follows.
It computes d0, d1, d2 and Y as in the Ring Formation of the Spend protocol, using Ain. Denote
the concatenated string str = Y ||B1||B2||A||S1||S2||S3||U1|| . . . ||UM . It computes h = H3(Y),
y = H4(1, str), z = H4(2, str), w = H4(3, str) and x = H5(w, y, z, T1, T2, m). Define h′ =

(h′1, . . . , h
′
nM) ∈ GnM such that h′i = hy

−i+1

i for i ∈ [1, nM]. It returns 1 if all of the following
hold and returns 0 otherwise:

t = 〈l, r〉, (1)

gthτx = g
∑M
k=1 z

1+k(1−nz)+w(z−z2)〈1nM ,ynM 〉 · T x1 · T x
2

2 , (2)

hµY lh′r = B1 ·Aw · Sx2 · Y −z·1
nM

· h′wz·y
nM+

∑M
k=1 z

1+k·(0(k−1)n||1n||0(M−k)n),
(3)

hzα1
−d2zα2 g

∑M
k=1 zsk,kd

k−1
0 gd1z∆c = S1(B1 ·

N∏
j=1

Cd1out,j ·B
−d2
2)x, (4)

N∏
k=1

U
zsk,kd

k−1
0

k = S3 · ux
∑N
k=1 d

k−1
0 . (5)

14 T. H. Yuen, S.-F. Sun, J. K. Liu, M. H. Au, M. F. Esgin, Q. Zhang, D. Gu

5.2 Security

We give the security theorem of our construction. The security profs are given in the appendix.

Theorem 1 (Balance). Our scheme is unforgeable if the DL assumption holds in G in the ran-
dom oracle model (ROM). Our scheme is equivalent w.r.t. insider corruption if the DL assumption
holds in G in the ROM and RP is a secure zero-knowledge range proof. Our scheme is linkable
w.r.t. insider corruption if the DL assumption holds in G in the ROM.

Theorem 2 (Anonymity). Our scheme is anonymous against recipient if the q-DDHI assump-
tion holds in G in the ROM, where q is the number of Spend oracle query. Our scheme is anony-
mous against ring insider if the q-DDHI assumption holds in G in the ROM and RP is a secure
zero-knowledge range proof.

Theorem 3 (Non-slander). Our scheme is non-slanderable w.r.t. insider corruption if the DL
assumption holds in G in the random oracle model.

5.3 Our Efficient Construction

The last step towards our final construction is to use the improved inner product argument in [9]
to compress the O(n)-size vector l, r in the ring signature part to a O(log n)-size proof. Denote
IPProve, IPVerify as the inner product argument. Details of the algorithm can be found in [9].
We give the modified Spend’ and Verify’ algorithms as follows.

– Spend’. On input (m,KS ,AS ,Ain,O), it runs (Aout, π = (πrange, σring),S, Ckout)← Spend(m,KS ,
AS ,Ain, O)). For each σring = (B1, B2, A, S1, S2, S3, T1, T2, τx, µ, zα1 , zα2 , zsk,1, . . . , zsk,M , z∆, l, r,
t), it computes P = Y lh′r, where Y and h′ are defined in Spend. it runs (L,R, a, b) ←
IPProve(Y ,h′, t, P, l, r). Note that L,R are vectors of G with size log n. It sets σ′ring =
(B1, B2, A, S1, S2, S3, T1, T2, τx, µ, zα1

, zα2
, zsk,1, . . . , zsk,M , z∆, t, P,L,R, a, b). The algorithm out-

puts (Aout, π = (πrange, σ
′
ring),S,Ckout).

– Verify’. On input (m,Ain,Aout, π = (πrange, σ
′
ring), S), denote σ′ring = (B1, B2, A,S1, S2, S3, T1, T2,

τx, µ, zα1 , zα2 , zsk,1, . . . , zsk,M , z∆, t, P,L,R, a, b). It runs 0/1← IPVerify(Y ,h′, t, P, (L, R, a, b)),
where Y and h′ are defined in Verify. It outputs 0 if IPVerify outputs 0. Otherwise, it runs
as the Verify algorithm, except that equation (3) is modified to:

hµP = B1 ·Aw · Sx2 · Y −z·1
nM

· h′wz·y
nM+

∑M
k=1 z

1+k·(0(k−1)n||1n||0(M−k)n).

The security of our final construction follows from the security of the improved inner product
argument in [9], which is based on the DL assumption in the random oracle model.

6 Analysis

Proof Size of RingCT. RingCT3.0 has size of O(M + log n) excluding the key images and
committed outputs, where n is the size of the ring and M is the number of transaction input. As
shown in Figure 1a, RingCT3.0 is significantly shorter than Monero’s RingCT1.0 even for small
ring size (ring size ≥ 16) and hence RingCT3.0 can reduce the transaction fee by more than
90%. Since the proof size increases logarithmically, the sender can increase the anonymity level
by increasing the ring size without increasing the cost drastically. Increasing the ring size of 1000
only increases the transaction fee by 45%.

Consider a typical transaction (i.e., number of inputs M = 2) with a ring size of 1024, our
ring signature size (1.3kB) is 98.6% less than the ring signature size of [32] (98kB). Monero has
a relatively stable fee rate of about 0.0008 XMR/kB (which is about USD 0.2/kB). For the ring
size of 1024, the cost of the ring signature part for RingCT1.0 is already about USD 20, which is
not practical. On the other hand, the cost of the ring signature part for RingCT3.0 is only about
USD 0.27.

RingCT 3.0 for Blockchain Confidential Transaction: Shorter Size and Stronger Security 15

Running Time of RingCT. We implemented the RingCT3.0 in Ubuntu 16.04, Intel Core
i5-6200U 2.3GHz, 8GB RAM. We used the BouncyCastle’s Java library for Curve 25519 in our
implementation. Each element in G is represented by 33 bytes and each element in Zp is represented
by 32 bytes.

We compare the running time of the Spend protocol of RingCT3.0 in Figure 2a and RingCT1.0
in Figure 2c. Our RingCT3.0 outperforms RingCT1.0 when the ring size exceeds 64. Our RingCT3.0
is better for larger ring size and more user input. When the ring size is 1024 and the input size is
20, RingCT3.0 is about 2 times faster than RingCT1.0.

We compare the running time of the Verify protocol of RingCT3.0 in Figure 2b and RingCT1.0
in Figure 2d. Our RingCT3.0 outperforms RingCT1.0 when the ring size exceeds 32. When the ring
size reaches 1024 and the input size is 20, RingCT3.0 is more than 2 times faster than RingCT1.0.

In general, the running time of RingCT3.0 is comparatively shorter than the time of generating
a block of transactions, which is 2 minutes in Monero and 10 minutes in Bitcoin. Therefore,
RingCT3.0 will not be the bottleneck of the blockchain system.

100 200 300 400 500

103.5

104

104.5

Ring Size

S
ig

n
a
tu

re
S
iz

e
(B

y
te

s)

RingCT 3.0

RingCT

(a) small ring size

103 104 105

1,300

1,400

1,500

1,600

1,700

1,800

Ring Size

S
ig

n
a
tu

re
S
iz

e
(B

y
te

s)

RingCT3.0

(b) large ring size

Fig. 1: Comparison of RingCT and RingCT3.0 for a transaction with 2 inputs.

7 Conclusion

We propose the RingCT3.0 protocol, which is more efficient and more secure than the existing
RingCT1.0 used in Monero. For a typical 2-input transaction with a ring size of 1024, the ring
signature size of our RingCT3.0 protocol is 98% less than the ring signature size of the RingCT1.0
protocol.

Acknowledgement

We would like to thank Russell W.F. Lai for the discussion of the security proof in the previous
version of this paper.

References

1. Au, M.H., Tsang, P.P., Susilo, W., Mu, Y.: Dynamic universal accumulators for DDH groups and
their application to attribute-based anonymous credential systems. In: Fischlin, M. (ed.) CT-RSA
2009. LNCS, vol. 5473, pp. 295–308. Springer (2009)

16 T. H. Yuen, S.-F. Sun, J. K. Liu, M. H. Au, M. F. Esgin, Q. Zhang, D. Gu

0 200 400 600 800 1,000
0

5

10

15

Ring Size

R
u
n
n
in

g
T

im
e

(s
)

1 input

2 inputs

3 inputs

4 inputs

5 inputs

10 inputs

20 inputs

(a) RingCT3.0: Running Time of Spend.

0 200 400 600 800 1,000
0

2

4

6

8

10

12

Ring Size

R
u
n
n
in

g
T

im
e

(s
)

1 input

2 inputs

3 inputs

4 inputs

5 inputs

10 inputs

20 inputs

(b) RingCT3.0: Running Time of Verify.

0 200 400 600 800 1,000
0

10

20

30

Ring Size

R
u
n
n
in

g
T

im
e

(s
)

1 input

2 inputs

3 inputs

4 inputs

5 inputs

10 inputs

20 inputs

(c) RingCT1.0: Running Time of Spend.

0 200 400 600 800 1,000
0

10

20

30

Ring Size

R
u
n
n
in

g
T

im
e

(s
)

1 input

2 inputs

3 inputs

4 inputs

5 inputs

10 inputs

20 inputs

(d) RingCT1.0: Running Time of Verify.

Fig. 2: Performance of RingCT3.0 and RingCT1.0.

2. Baldimtsi, F., Camenisch, J., Dubovitskaya, M., Lysyanskaya, A., Reyzin, L., Samelin, K., Yakoubov,
S.: Accumulators with applications to anonymity-preserving revocation. In: EuroS&P 2017. pp. 301–
315. IEEE (2017)

3. Bayer, S., Groth, J.: Zero-knowledge argument for polynomial evaluation with application to blacklists.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 646–663. Springer
(2013)

4. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and post-quantum secure
computational integrity. Cryptology ePrint Archive, Report 2018/046 (2018), https://eprint.iacr.
org/2018/046

5. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza, M.: Zerocash: Decen-
tralized anonymous payments from bitcoin. In: IEEE SP 2014. pp. 459–474. IEEE Computer Society
(2014)

6. Boneh, D., Corrigan-Gibbs, H.: Bivariate polynomials modulo composites and their applications. In:
Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 42–62. Springer (2014)

7. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short accountable ring signatures
based on DDH. In: Pernul, G., Ryan, P.Y.A., Weippl, E.R. (eds.) ESORICS 2015. LNCS, vol. 9326,
pp. 243–265. Springer (2015)

8. Bootle, J., Groth, J.: Efficient batch zero-knowledge arguments for low degree polynomials. In: Ab-
dalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 561–588. Springer (2018)

9. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: Short proofs for
confidential transactions and more. In: IEEE SP 2018. pp. 315–334. IEEE (2018)

10. Camacho, P., Hevia, A., Kiwi, M.A., Opazo, R.: Strong accumulators from collision-resistant hashing.
Int. J. Inf. Sec. 11(5), 349–363 (2012)

https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2018/046

RingCT 3.0 for Blockchain Confidential Transaction: Shorter Size and Stronger Security 17

11. Camenisch, J., Chaabouni, R., Shelat, A.: Efficient protocols for set membership and range proofs.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 234–252. Springer (2008)

12. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps and efficient
revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443,
pp. 481–500. Springer (2009)

13. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient revocation of
anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer
(2002)

14. Chandran, N., Groth, J., Sahai, A.: Ring signatures of sub-linear size without random oracles. In:
Arge, L., Cachin, C., Jurdzinski, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 423–434.
Springer (2007)

15. Damg̊ard, I., Triandopoulos, N.: Supporting non-membership proofs with bilinear-map accumulators.
Cryptology ePrint Archive, Report 2008/538 (2008), http://eprint.iacr.org/

16. Derler, D., Hanser, C., Slamanig, D.: Revisiting cryptographic accumulators, additional properties
and relations to other primitives. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 127–144.
Springer (2015)

17. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad hoc groups. In: Cachin,
C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 609–626. Springer (2004)

18. Esgin, M.F., Steinfeld, R., Liu, J.K., Liu, D.: Lattice-based zero-knowledge proofs: New techniques
for shorter and faster constructions and applications. Cryptology ePrint Archive, Report 2019/445
(2019), https://eprint.iacr.org/2019/445. To appear in CRYPTO 2019.

19. Esgin, M.F., Steinfeld, R., Sakzad, A., Liu, J.K., Liu, D.: Short lattice-based one-out-of-many proofs
and applications to ring signatures. Cryptology ePrint Archive, Report 2018/773 (2018), https://
eprint.iacr.org/2018/773. To appear in ACNS 2019.

20. Foley, S.N., Gollmann, D., Snekkenes, E. (eds.): ESORICS 2017, LNCS, vol. 10493. Springer (2017)

21. Groth, J., Kohlweiss, M.: One-out-of-many proofs: Or how to leak a secret and spend a coin. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 253–280. Springer (2015)

22. Kumar, A., Fischer, C., Tople, S., Saxena, P.: A traceability analysis of monero’s blockchain. In: Foley
et al. [20], pp. 153–173

23. Lai, R.W.F., Ronge, V., Ruffing, T., Schröder, D., Thyagarajan, S.A.K., Wang, J.: Omniring: Scal-
ing up private payments without trusted setup - formal foundations and constructions of ring
confidential transactions with log-size proofs. Cryptology ePrint Archive, Report 2019/580 (2019),
https://eprint.iacr.org/2019/580

24. Li, J., Li, N., Xue, R.: Universal accumulators with efficient nonmembership proofs. In: Katz, J., Yung,
M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 253–269. Springer (2007)

25. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-based accumulators:
Logarithmic-size ring signatures and group signatures without trapdoors. In: Fischlin, M., Coron, J.
(eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 1–31. Springer (2016)

26. Lipmaa, H.: On diophantine complexity and statistical zero-knowledge arguments. In: Laih, C. (ed.)
ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415. Springer (2003)

27. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signature for ad hoc groups
(extended abstract). In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108,
pp. 325–335. Springer (2004)

28. Maxwell, G.: Confidential transactions (2015), https://people.xiph.org/~greg/confidential_

values.txt

29. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: Anonymous distributed e-cash from bitcoin.
In: IEEE SP 2013. pp. 397–411. IEEE Computer Society (2013)

30. Möser, M., Soska, K., Heilman, E., Lee, K., Heffan, H., Srivastava, S., Hogan, K., Hennessey, J.,
Miller, A., Narayanan, A., Christin, N.: An empirical analysis of traceability in the monero blockchain.
PoPETs 2018(3), 143–163 (2018)

31. Nguyen, L.: Accumulators from Bilinear Pairings and Applications. In: Menezes, A.J. (ed.) CT-RSA
2005. LNCS, vol. 3376, pp. 275–292. Springer (2005)

32. Noether, S.: Ring Signature Confidential Transactions for Monero. Cryptology ePrint Archive, Report
2015/1098 (2015), http://eprint.iacr.org/

33. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifiable computation.
In: IEEE SP 2013. pp. 238–252. IEEE Computer Society (2013)

34. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001.
LNCS, vol. 2248, pp. 552–565. Springer (2001)

http://eprint.iacr.org/
https://eprint.iacr.org/2019/445
https://eprint.iacr.org/2018/773
https://eprint.iacr.org/2018/773
https://eprint.iacr.org/2019/580
https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
http://eprint.iacr.org/

18 T. H. Yuen, S.-F. Sun, J. K. Liu, M. H. Au, M. F. Esgin, Q. Zhang, D. Gu

35. Ruffing, T., Thyagarajan, S.A.K., Ronge, V., Schroder, D.: Boosting private payments
in monero: New attacks, exact cryptographic definitions, and sublinear ring signatures
(2017), described in https://github.com/b-g-goodell/research-lab/blob/master/publications/

standards/RTRSRingCT/Ruffct.txt

36. Sun, S., Au, M.H., Liu, J.K., Yuen, T.H.: RingCT 2.0: A compact accumulator-based (linkable ring
signature) protocol for blockchain cryptocurrency monero. In: Foley et al. [20], pp. 456–474

37. Wijaya, D.A., Liu, J.K., Steinfeld, R., Liu, D.: Monero ring attack: Recreating zero mixin transaction
effect. In: IEEE TrustCom. pp. 1196–1201. IEEE (2018)

38. Zhang, H., Zhang, F., Tian, H., Au, M.H.: Anonymous post-quantum cryptocash. Cryptology ePrint
Archive, Report 2017/716 (2017), to appear in FC 2018

A Security Proofs

Theorem 4. Our scheme is anonymous against recipient if the q-DDHI assumption holds in G
in the ROM, where q is the number of Spend oracle query.

Proof. Observe that the adversary is given A∗out, π∗ = (πrange, σring), S∗,O, Ck∗out and Ain. Note that
A∗out,O, Ck∗out only contain information about the output account (including the output amount).
Therefore, we only have to check if π∗,S∗ reveal the information of the input account or amount.

Suppose the simulator is given the DDHI problem instance (g, ga, . . . , ga
q

, T) and wants to
decide if T = g1/a. The simulator picks some distinct random ζ, h∗, h1, . . ., hq ∈ Zp and u =

gζ·
∏q
i=1(a−h

∗+hi) as part of the system parameters.
For the PkGen query, the simulator picks some random ltsk and computes the corresponding ltpk

and one-time pk. Except for one time, the simulator returns ltpk∗ = (ga−h
∗
, gx2) for some random

x2 ∈ Z∗p. The simulator honestly runs the ActGen oracle, except that the ask∗ corresponding to
ltpk∗ is unknown. For the Corrupt oracle, the simulator declares failure and exits if the ask∗ is
requested.

If the adversary queries the H6 oracle, it either returns ζ, h∗, h1, . . . , hq, or a random element
in Z∗p.

If the adversary queries the Spend oracle with input (m,AS ,Ain,O) with with known ltsks cor-
respond to some public keys in AS , then the simulator can generate valid signatures for that

part. Otherwise pk = (ga−h
∗
gĥ) corresponds to a public key in AS , where ĥ is the oracle out-

put of H6. If ĥ 6= hj for some j, the simulator declares failure and exits. If ĥ = hj , then

the simulator set U = gζ·
∏q
i=1,i 6=j(a−h

∗+hi). The simulator chooses most of the proof elements
(B1, B2, S2, T2, τx, µ, zα1

, zα2
, zsk,1, . . . , zsk,M , z∆, l, r) and challenges (x, y, z, w) uniformly at ran-

dom from their respective domains, and then computes t from equation (1), T1 from equation (2),
A from equation (3), S1 from equation (4) and S3 from equation (5). Then the simulator sets the
value x, y, z, w in the random oracle H4, H5. Then the output for σring is complete. The rest of the
Spend oracle can be simulated easily.

In the challenge phase, the adversary gives (m, {pkk,i}k∈[1,M],i∈[1,n], {pkout,j}j∈[1,N]) to the

simulator. If pk∗ = ga−h
∗
gh
∗

= ga does not corresponds to some pkk,i, the simulator declares
failure and exits. Without loss of generality, assume pkk′,i∗k = pk∗ for some k′, i∗k. According to

the security model, the simulator retrieves (skk,i, pkk,i) ∈ U , picks ak,i, aout,j ←R Range where∑
k ak,i∗k =

∑
j aout,j . With the knowledge of all input amount, the simulator can honestly gen-

erate πrange. For the generation of the ring signature part, the generation of σring is described

as follows. The simulator sets Uk′ = gζ·
∏q
i=1(a−h

∗+hi)/a := gζ·
∑q−1
i=0 Aia

i

T ζA−1 , for some constant
Aq−1, . . . , A0, A−1 ∈ Zp. Note that A−1 6= 0 since h∗ 6= hi for all i. The values Uk can be honestly
computed for k 6= k′. The rest of σring is simulated as in the Spend oracle. According to the security
model, the adversary is given A∗out, π∗ = (πrange, σring),S∗,O, Ck∗out and Ain, where S∗ is the set of
serial numbers, O is the set of output public keys and output amounts and Ain is the set of input
accounts.

Finally the adversary outputs (k∗, ind∗k). With probability 1/M , k′ = k∗. If the adversary
guesses ind∗k = i∗k correctly, then the simulator outputs T = g1/a as the solution to the DDHI
problem. Therefore, our scheme is anonymous against recipient if the DDHI assumption holds. ut

https://github.com/b-g-goodell/research-lab/blob/master/publications/standards/RTRSRingCT/Ruffct.txt
https://github.com/b-g-goodell/research-lab/blob/master/publications/standards/RTRSRingCT/Ruffct.txt

RingCT 3.0 for Blockchain Confidential Transaction: Shorter Size and Stronger Security 19

Theorem 5. Our scheme is anonymous against ring insider if the q-DDHI assumption holds in
G in the ROM and RP is a secure zero-knowledge range proof.

Proof. Observe that the adversary is given A∗out, π∗ = (πrange, σring), S∗ and Ain. Note that A∗out
only contain the public information about the output account. Therefore, we only have to check
if π∗,S∗ reveal the information of the input account or amount.

Suppose the simulator is given the DDHI problem instance (g, ga, . . . , ga
q

, T) and wants to
decide if T = g1/a. The simulator picks some distinct random ζ, h∗, h1, . . ., hq ∈ Zp and u =

gζ·
∏q
i=1(a−h

∗+hi) as part of the system parameters.
For the PkGen query, the simulator picks some random ltsk and computes the corresponding ltpk

and one-time pk. Except for one time, the simulator returns ltpk∗ = (ga−h
∗
, gx2) for some random

x2 ∈ Z∗p. The simulator honestly runs the ActGen oracle, except that the ask∗ corresponding to
ltpk∗ is unknown. For the Corrupt oracle, the simulator declares failure and exits if the ask∗ is
requested.

If the adversary queries the H6 oracle, it either returns ζ, h∗, h1, . . . , hq, or a random element
in Z∗p.

If the adversary queries the Spend oracle with input (m,AS ,Ain,O) with with known ltsks cor-
respond to some public keys in AS , then the simulator can generate valid signatures for that

part. Otherwise pk = (ga−h
∗
gĥ) corresponds to a public key in AS , where ĥ is the oracle out-

put of H6. If ĥ 6= hj for some j, the simulator declares failure and exits. If ĥ = hj , then

the simulator set U = gζ·
∏q
i=1,i 6=j(a−h

∗+hi). The simulator chooses most of the proof elements
(B1, B2, S2, T2, τx, µ, zα1

, zα2
, zsk,1, . . . , zsk,M , z∆, l, r) and challenges (x, y, z, w) uniformly at ran-

dom from their respective domains, and then computes t from equation (1), T1 from equation (2),
A from equation (3), S1 from equation (4) and S3 from equation (5). Then the simulator sets the
value x, y, z, w in the random oracle H4, H5. Then the output for σring is complete. The rest of the
Spend oracle can be simulated easily.

In the challenge phase, the adversary gives (m, {actk,i}k∈[1,M],i∈[1,n], {pkout,j}j∈[1,N]) to the

simulator. If pk∗ = ga−h
∗
gh
∗

= ga does not corresponds to some actk,i, the simulator declares
failure and exits. Without loss of generality, assume the corresponding pkk′,i∗k = pk∗ for some k′, i∗k.

According to the security model, the simulator retrieves (actk,i, ak,i, ckk,i) ∈ G, picks aout,j ←R

Range where
∑
k ak,i∗k =

∑
j aout,j . With the knowledge of all input amount, the simulator can

honestly generate πrange. For the generation of the ring signature part, the generation of σring is

described as follows. The simulator sets Uk′ = gζ·
∏q
i=1(a−h

∗+hi)/a := gζ·
∑q−1
i=0 Aia

i

T ζA−1 , for some
constant Aq−1, . . . , A0, A−1 ∈ Zp. Note that A−1 6= 0 since h∗ 6= hi for all i. The values Uk can be
honestly computed for k 6= k′. The rest of σring is simulated as in the Spend oracle. According to
the security model, the adversary is given A∗out, π∗ = (πrange, σring),S∗ and Ain, where S∗ is the set
of serial numbers and Ain is the set of input accounts. Recall that if RP is a secure zero-knowledge
range proof, then πrange does not reveal the transaction input amount.

Finally the adversary outputs (k∗, ind∗k, n
∗). With probability 1/(n − n∗), k′ = k∗. If the

adversary guesses ind∗k = i∗k correctly, then the simulator outputs T = g1/a as the solution to the
DDHI problem. Therefore, our scheme is anonymous against recipient if the DDHI assumption
holds and RP is a secure zero-knowledge range proof. ut

Before giving the formal proof of balance, we first give a lemma.

Lemma 1. There is no non-trival discrete logarithm relation between each element in Y (formed
by the Ring Formation step), h and h if the discrete logarithm assumption holds in G.

Proof. The part related to h and h is trivial since each element in h is a random G element and h
is the output of a hash function H3(Y). Next we show that it is difficult to find distinct l, l′ such
that Y l = Y l′ .

Suppose the simulator is given a DL problem instance (g0, X) and wants to compute logg0 X.

The simulator picks some random ζi, η1, η2 ∈ Zp and sets g = g0, gc = gη1 , hc = gη2 and gi = Xζi .

Consider elements Yi
.
= gskihaid1c gd1κic gd2i for all i.

20 T. H. Yuen, S.-F. Sun, J. K. Liu, M. H. Au, M. F. Esgin, Q. Zhang, D. Gu

Suppose Y l = Y l′ . Denote l = (l1, . . . , ln) and l′ = (l′1, . . . , l
′
n). Then we have

n∏
i=1

(gskihaid1c gd1κic gd2i)li =

n∏
i=1

(gskihaid1c gd1κic gd2i)l
′
i

g
∑n
i=1 ski(li−l′i)h

∑n
i=1 d1ai(li−l

′
i)

c g
∑n
i=1 d1κi(li−l

′
i)

c =

n∏
i=1

g
d2(l

′
i−li)

i

g
∑n
i=1(ski+η1d1κi+η2d1ai)(li−l

′
i)

0 = X
∑n
i=1 ζid2(l

′
i−li)

Since l, l′ are distinct, l′i 6= li for some i. Then the simulator can answer the DL problem as∑n
i=1(ski+η1d1κi+η2d1ai)(li−l

′
i)∑n

i=1 ζid2(l
′
i−li)

. ut

Theorem 6. Our scheme is unforgeable if the DL assumption holds in G in the random oracle
model.

Proof. Suppose the simulator is given a discrete logarithm problem instance g, ga. It picks random
group elements for h, u, hc and gc such that the discrete logarithm with respect to g is unknown.
It picks a random β ∈ Zp ad sets u = gaβ .

For the PkGen query, the simulator picks some random sk = ι ∈ Zp and returns pk = gι. Except
for one-time, the simulator returns pk∗ = ga. The simulator honestly runs the ActGen oracle, except
that the ask∗ for input pk∗ is unknown. For the Corrupt oracle, the simulator declares failure and
exits if the ask∗ is requested. For the H6 oracle, it returns a random h ∈ G (therefore the discrete
logarithm with respect to g is unknown).

If the adversary queries the Spend oracle, the simulator runs as the Spend algorithm if pk∗

is not the signing account’s public key. If pk∗ is the signing account’s public key, the simula-
tor can first honestly generate πrange using the knowledge of all input amount. It generates the
set of output accounts A∗out and coin keys Ck∗out using Mint. The generation of the ring sig-
nature part σring is described as follows. The simulator sets U = gβ for the key image corre-
sponding to pk∗, and computes other Uk honestly. The simulator chooses most proof elements
(B1, B2, S2, T2, τx, µ, zα1 , zα2 , zsk,1, . . . , zsk,M , z∆, l, r) and challenges (x, y, z, w) uniformly at ran-
dom from their respective domains, and then computes t from equation (1), T1 from equation (2),
A from equation (3), S1 from equation (4) and S3 from equation (5). Then the simulator sets
the value x, y, z, w in the random oracle H4, H5. Then the output for σring is complete. Hence the
simulator can answer the Spend oracle query.

Finally, the adversary A outputs (m,Ain,Aout, π,S) such that for all acti ∈ Ain, acti ∈ I \ C,
and (Aout, π,S, ·) /∈ T . If A wins, Verify(m,Ain,Aout, π, S) = 1. Denote the output π = (πrange,
σring). The simulator rewinds H5 (in step challenge 2) for three times. For each transcript, denote
the challenge as xi and the responses as (τx,i, µi, zα,1,i, zα,2,i, zsk,1,i, . . . , zsk,M,i, z∆,i, li, ri, ti) for
i ∈ [1, 3]. Denote li = (li,1, . . . , li,n) and ri = (ri,1, . . . , ri,n).

– To extract B1A
w, it picks some ηi ∈ Zp such that

∑2
i=1 ηi = 1,

∑2
i=1 ηixi = 0. By equation (3),

we have:

B1A
w = h

∑2
i=1 ηiµiY

∑2
i=1 ηi·li+z·1

nM

h′
∑2
i=1 ηiri−wz·y

nM−
∑M
k=1 z

1+k·(0(k−1)n||1n||0(M−k)n)

:= hγ
′
Y b′

Lhw·b
′
R , (6)

for some γ′, b′L, b
′
R.

– To extract S2, it picks some η′i ∈ Zp such that
∑2
i=1 η

′
i = 0,

∑2
i=1 η

′
ixi = 1. By equation (3), we

have:
S2 = h

∑2
i=1 η

′
iµiY

∑2
i=1 η

′
ili · h′

∑2
i=1 η

′
iri := hρ

′
Y s′

Lh·s
′
R ,

for some ρ′, s′L, s
′
R.

Putting back the extracted values B1A
w and S2 into equation (3), we have:

hµY ·lh′r = (hγ
′
Y b′

Lhw·b
′
R) · (hρ

′
Y s′

Lhs′
R)x · Y −z·1

nM

· h′wz·y
nM+

∑M
k=1 z

1+k·(0(k−1)n||1n||0(M−k)n).

RingCT 3.0 for Blockchain Confidential Transaction: Shorter Size and Stronger Security 21

By lemma 1, there is no non-trival discrete logarithm relation between each element in Y , h′

and h if the discrete logarithm assumption holds in G. Then we have:

l = b′L − z · 1
nM + s′L · x,

r = ynM ◦ (w · b′R + wz · 1nM + s′R · x) +

M∑
k=1

z1+k · (0(k−1)n||1n||0(M−k)n).

By the same set of 3 rewinding transcripts, we can also extract the commitments T1, T2 as
follows.

– To extract T1, it picks some δi ∈ Zp such that
∑3
i=1 δi = 0,

∑3
i=1 δixi = 1,

∑3
i=1 δix

2
i = 0. By

equation (2), we have:

T1 = g
∑3
i=1 δitih

∑3
i=1 δiτx,i := gt

′
1hr

′
1

for some t′1, r
′
1.

– To extract T2, it picks some δ′i ∈ Zp such that
∑3
i=1 δ

′
i = 0,

∑3
i=1 δ

′
ixi = 0,

∑3
i=1 δ

′
ix

2
i = 1. By

equation (2), we have:

T2 = g
∑3
i=1 δ

′
itih

∑3
i=1 δ

′
iτx,i := gt

′
2hr

′
2

for some t′2, r
′
2.

Putting back the extracted values T1 and T2 into equation (2), we have:

gthτx = g
∑M
k=1 z

1+k(1−nz)+w(z−z2)〈1nM ,ynM 〉 · (gt
′
1hr

′
1)x · (gt

′
2hr

′
2)x

2

.

Since h is a random group element by the simulation of H6, we have:

t =

M∑
k=1

z1+k(1− nz) + w(z − z2)〈1nM ,ynM 〉+ t′1x+ t′2x
2.

Denote t′0 =
∑M
k=1 z

1+k(1− nz) + w(z − z2)〈1nM ,ynM 〉.
By equation (1), we have t = 〈l, r〉. Observe that we already extracted l, r as:

〈l, r〉 = (b′L − z · 1
nM + s′L · x) · (ynM ◦ (w · b′R + wz · 1nM + s′R · x) +

M∑
k=1

z1+k · (0(k−1)n||1n||0(M−k)n))

= w〈b′L, b
′
R ◦ y

nM 〉+ wz〈b′L − b′R,y
nM 〉+

M∑
k=1

z1+k〈b′L,0
(k−1)n||1n||0(M−k)n〉

− wz2〈1nM ,ynM 〉 −
M∑
k=1

z2+k〈1nM ,0(k−1)n||1n||0(M−k)n〉+ t′′1x+ t′′2x
2

= w〈b′L, b
′
R ◦ y

nM 〉+ wz〈b′L − b′R,y
nM 〉 − wz2〈1nM ,ynM 〉

+

M∑
k=1

z1+k〈b′L,0
(k−1)n||1n||0(M−k)n〉 −

M∑
k=1

nz2+k + t′′1x+ t′′2x
2,

for some t′′1 , t
′′
2 ∈ Zp. Since the above holds for all w, x, y, z, we have:

b′L ◦ b
′
R = 0nM , b′L − b′R = 1nM , b′L := b′L,1|| . . . ||b

′
L,M , 〈b′L,k,1

n〉 = 1 for k ∈ [1,M].

Therefore, it implies that b′L,k is a binary vector with one bit equal to 1. Denote that bit as indk.
Putting back b′L,k in equation (6), we have:

B1A
w = hγ

′
·
M∏
k=1

(pk
(indk)
in,k)d

k−1
0 (C

(indk)
in,k)d1gd2indk · h

w·b′
R ,

22 T. H. Yuen, S.-F. Sun, J. K. Liu, M. H. Au, M. F. Esgin, Q. Zhang, D. Gu

for some index indk. Since the above is true for all w, then we haveB1 = hα
′∏M

k=1(pk
(indk)
in,k)d

k−1
0 (C

(indk)
in,k)d1gd2indk

for some α′ ∈ Zp.
By the same set of rewinding transcripts, we can also extract from equation (4):

B1 ·
N∏
j=1

Cd1out,j ·B
−d2
2 = h

zα1,1
−zα1,2

x1−x2
−d2·

zα2,1
−zα2,2

x1−x2 g

∑M
k=1(zsk,k,1−zsk,k,2)d

k−1
0

x1−x2 g
d1(z∆,1−z∆,2)

x1−x2
c ·

N∏
j=1

Cd1out,j ·B
−d2
2

:= hα
′′
1 +d2α

′′
2 ·

M∏
k=1

gsk
′
kd
k−1
0 · gd1∆

′

c ·
N∏
j=1

Cd1out,j ·B
−d2
2 (7)

Since the above is true for all h, d0, d1 and d2, then we have pk
(indk)
in,k = gsk

′
k . Hence if gsk

′
k = pk∗,

then the simulator returns sk′k as the solution to the DL problem. It happens with probability
1/n.

Theorem 7. Our scheme is equivalent w.r.t. insider corruption if the DL assumption holds in G
in the random oracle model and RP is a secure zero-knowledge range proof.

Proof. Suppose the simulator is given a discrete logarithm problem instance g, ga. It picks random
group elements for h u, and hc such that the discrete logarithm with respect to g is unknown. It
sets gc = ga.

For the AddGen query, the simulator picks some random sk = ι ∈ Zp and returns pk = gι. The
simulator honestly runs the ActGen oracle, the Corrupt oracle and the Spend oracle.

In the challenge phase, the adversary outputs (m,Ain,Aout, π,S, Ckout,Amtout). If A wins, then
for all coin key κi ∈ Ckout, amount aout,i ∈ Amtout and output coins Cout,i in Aout,

Cout,i = gκic h
aout,i
c .

Denote the output π = (π∗range, σring). Recall from the proof of unfogeability that we have B1 =

hα
′∏M

k=1(pk
(indk)
in,k)d

k−1
0 (C

(indk)
in,k)d1gd2indk . Together with equation (7), we have∏M

k=1 C
(indk)
in,k∏N

j=1 Cout,j

= g∆
′

c , (8)

by the random choice of d1.
Recall that if A wins, then for all account actj ∈ Ain, (actj , ain,j , κin,k) ∈ G, It implies that

C
(indk)
in,k = h

ain,k
c g

κin,k
c and ain,k is within a valid range. Similarly, the range proof π∗range of the

challenge signature shows that Cout,j = h
aout,j
c g

κout,j
c and aout,j is within a valid range. Therefore,

we have:
M∏
k=1

h
ain,k
c g

κin,k
c =

N∏
j=1

haout,jc gκout,j
c · g∆

′

c .

If Z
.
=
∑N
j=1 aout,j −

∑M
k=1 ain,k 6= 0, then:

hZc = g
∑M
k=1 κin,k+∆

′−
∑N
j=1 κout,j

c .

Then the simulator returns
∑M
k=1 κin,k+∆

′−
∑N
j=1 κout,j

Z as the solution to the DL problem.

Theorem 8. Our scheme is linkable w.r.t. insider corruption if the DL assumption holds in G in
the random oracle model.

Proof. Suppose the simulator is given a DL problem instance g, ga. It picks random elements in
G for h, u, hc and gc.

For the PkGen query, the simulator picks some random sk = ι ∈ Zp and returns pk = gι. Except
for one-time, the simulator returns pk∗ = ga. The simulator honestly runs the ActGen oracle, except

RingCT 3.0 for Blockchain Confidential Transaction: Shorter Size and Stronger Security 23

that the ask∗ for input pk∗ is unknown. For the Corrupt oracle, the simulator declares failure and
exits if the ask∗ is requested. If the adversary queries the Spend oracle, the simulator runs as in
the proof of unforgeability.

Finally, the adversary A outputs (mi,Ain,i,Aout,i, πi,Si) for i = 1, 2, such that all U in S1 and
S2 are distinct. From the proof of unforgeability, the simulator can rewinds x and from equation
(7):

sk′k =
zsk,k,1 − zsk,k,2

x1 − x2
for the random choice of d0. From equation (5), we also have:

M∏
k=1

U
(zsk,k,1−zsk,k,2)dk−1

0

k = u(x1−x2)
∑N
k=1 d

k−1
0 .

Since the above holds for all d0, we have Uk = u
1

sk′
k and gsk

′
k refers to one public key in Ain,1∪Ain,2.

There are |S1|+ |S2| distinct values of U .
If A wins, then (Ain,1 ∪ Ain,2) ∩ C + (Ain,1 ∪ Ain,2) \ I ≤ |S1| + |S2| − 1. It means that there

exists at least one U corresponding to one public key gsk
′

with account act∗
.
= (gsk

′
, ·) ∈ I \ C.

With probability at least 1
qa+qs−qc , gsk

′
= ga, where qa, qs, qc is the number of oracle queries to

the ActGen, Spend, Corrupt oracles respectively. Then the simulator returns sk′ as the solution to
the DL problem.

Theorem 9. Our scheme is non-slanderable w.r.t. insider corruption if the DL assumption holds
in G in the random oracle model.

Proof. Suppose the simulator is given a DL problem instance g, ga. It picks random elements in
G for h, u, hc and gc.

For the PkGen query, the simulator picks some random sk = ι ∈ Zp and returns pk = gι. Except
for one-time, the simulator returns pk∗ = ga. The simulator honestly runs the ActGen oracle, except
that the ask∗ for input pk∗ is unknown. For the Corrupt oracle, the simulator declares failure and
exits if the ask∗ is requested. If the adversary queries the Spend oracle, the simulator runs as in
the proof of unforgeability.

Finally, the adversary A outputs (Ŝ, m,Ain,Aout, π,S), where (·, ·, Ŝ,AS) ∈ T .
If pk∗ /∈ AS , the simulator declares failure and exits (it happens with probability (1− 1

qp
)|AS |,

where qp is the number of PkGen oracle queries.). By the winning condition, there exists some

U ∈ Ŝ∩S∗. Following the proof of linkability, the simulator can extract sk′ such that U = u
1
sk′ and

gsk
′ ∈ AS . With probability 1

|AS | , g
sk′ = pk∗. Then the simulator return sk′ as the solution to the

DL problem.

B Set Membership Proof without Trusted Setup

We first review the definition of set membership proof in [11] and then we give our new construction
without using trusted setup.

Definition 7. [11] Let C = (Gen,Com,Open) be the generation, the commit and the open al-
gorithm of a commitment scheme. For an instance c, a proof of set membership with respect to
commitment scheme C and set Φ is a proof of knowledge for the following statement:

PK{(µ, ρ) : c← Com(µ; ρ) ∧ µ ∈ Φ}.

The security model for set membership proof follows the standard definitions of zero-knowledge
proof: perfect completeness, computational soundness and perfect zero-knowledge.

In this section, we consider the following modified set membership proof for a set Φ of base
group elements :

PK{(µ, ρ) : c = gµhρ ∧ gµ ∈ Φ}.

24 T. H. Yuen, S.-F. Sun, J. K. Liu, M. H. Au, M. F. Esgin, Q. Zhang, D. Gu

Related Works. Generally speaking, accumulator with the property of zero-knowledge can be
viewed as a special case of set membership proof. As summarized in [16,2], it includes the RSA-
based [13,24,2], pairing-based [31,15,1,12,16], Merkle-tree-based [6] and lattice-based [25] construc-
tions. However, all existing RSA-based and pairing-based accumulators, and [6] require a trusted
setup. The scheme in [6] also requires a trusted setup for generating composite order group. Fur-
thermore, the pairing-based approach can only accumulate values in the exponent. It means that
if we want to accumulate public keys, eventually we have to prove the knowledge of a secret key as
a proof of double discrete logarithm, which is inefficient. For the Merkle-tree-based accumulator
[10], it can be combined with zk-SNARK [33] to achieve zero-knowledge. Nevertheless, zk-SNARK
also needs trusted setup. Recently, zk-STARK [4] is proposed to remove the need of trusted setup.
However, zk-STARK proofs is 1000 times longer than zk-SNARK proofs and hence it is not prac-
tical. For the lattice-based accumulator without trusted setup [25], the asymptotic proof size is
O(log(n)), but the actual size is impractical (> 30MB).

B.1 Our Basic Construction

Our construction is essentially a set membership proof for group elements which is the domain of
public keys. It is the first set membership proof for public keys in the base group, instead of in
the exponent. The intuition of our scheme is introduced in the previous section. Our construction
is as follows.

– Setup. On input security parameter 1λ and the maximum size of the set of membership public
key N , it picks a group G of prime order p and some generators g ∈ G,h = (h1, . . . , hN) ∈ GN .
Suppose that Hj : {0, 1}∗ → Zp for j = 1, 2, 3, 4, H6 : {0, 1}∗ → G are collision resistant
hash functions. Let C = (Gen,Com,Open) be the Pedersen commitment scheme. Assume these
parameters are known in the system.

– PKGen. It randomly picks x ∈ Zp and outputs a public key Y = gx.
– Prove. On input the set of n ≤ N public keys as Y = (Y1, Y2, . . ., Yn) and denote the set

member σ = Yi∗ ∈ Y , with corresponding secret key xsk,i∗ . The prover runs as follows.
1. Prepare Index. The prover generates a binary vector bL = (b1, . . . , bn), where bi = 1 when
i = i∗ and bi = 0 otherwise. Define bR = bL − 1n. It proves in zero knowledge that bL is a
binary vector with only one bit equal to 1. It is equivalent to showing:

bL ◦ bR = 0n, bL − bR = 1n, 〈bL,1n〉 = 1.

2. Commit 1. It computes h = H6(Y). It picks random α, β, ρ, rα, rsk ∈ Zp, sL, sR ∈ Znp and
computes:

A1 = hαY bL = hαYi∗ , A2 = hβhbR , S1 = hrαgrsk , S2 = hρY sLhsR .

Note that A1 is the Pedersen commitment of the secret key of Yi∗ for randomness α.
3. Challenge 1. Denote the concatenated string str = Y ||A1||A2|| S1||S2. It computes y =
H2(str), z = H3(str) and w = H4(str).

4. Commit 2. It can construct two degree 1 polynomials of variable X:

l(X) = bL − z · 1n + sL ·X,
r(X) = yn ◦ (w · bR + wz · 1n + sR ·X) + z2 · 1n.

Denote t(X) = 〈l(X), r(X)〉, which is a degree 2 polynomial. We can write t(X) = t0 +
t1X + t2X

2, and t0, t1, t2 can be computed by using (bL, bR, sL, sR, w, y, z). In particular,
observe that

t0 = w〈bL, bR ◦ yn〉+ zw〈bL − bR,y
n〉+ z2〈bL,1n〉 − wz2〈1n,yn〉 − z3〈1n,1n〉,

= z2 + w(z − z2)〈1n,yn〉 − z3〈1n,1n〉.

It picks random τ1, τ2 ∈ Zp, and computes:

T1 = gt1hτ1 , T2 = gt2hτ2 .

RingCT 3.0 for Blockchain Confidential Transaction: Shorter Size and Stronger Security 25

5. Challenge 2. It computes x = H1(w, y, z, T1, T2).
6. Response. It computes:

τx = τ1 · x+ τ2 · x2,
µ = α+ β · w + ρ · x,
zα = rα + α · x,
zsk = rsk + xsk,i∗ · x,
l = l(x) = bL − z · 1n + sL · x,
r = r(x) = yn ◦ (w · bR + wz · 1n + sR · x) + z2 · 1n,
t = 〈l, r〉.

It outputs A1 and σ = (A2, S1, S2, T1, T2, τx, µ, zα, zsk, l, r, t).
– Verify. On input a set of public keys Y , A1 and the proof σ = (A2, S1, S2, T1, T2, τx, µ, zα, zsk, l,

r, t), denote the concatenated string str = Y ||A1||A2||S1||S2. It computes h = H6(Y), y =
H2(str), z = H3(str), w = H4(str) and x = H1(w, y, z, T1, T2). Define h′ = (h′1, . . . , h

′
n) ∈ Gn

such that h′i = hy
−i+1

i for i ∈ [1, n]. It checks if all of the following hold:

t = 〈l, r〉, (9)

gthτx = gz
2+w(z−z2)〈1n,yn〉−z3〈1n,1n〉 · T x1 · T x

2

2 , (10)

hµY lh′r = A1 ·Aw2 · Sx2 · Y −z·1
n

· h′wz·y
n+z2·1n , (11)

hzαgzsk = S1A
x
1 . (12)

Theorem 10. The set membership proof is secure if the discrete logarithm assumption holds in
G in the random oracle model.

Proof. Completeness. The completeness of the protocol is straightforward.
Zero-knowledge. The simulator chooses most of the proof elements (A1, S2, T2, T3, τx, µ, zα,

zsk, l, r) and challenges (x, y, z, w) uniformly at random from their respective domains, and then
computes t from equation (9), T1 from equation (10), A2 from equation (11) and S1 from equation
(12). Then the simulator sets the value x, y, z, w in the random oracle H1, H2, H3, H4. Hence it
achieves the zero-knowledge property .

Soundness. Suppose the adversary returns a proof σ for a set of public keys Y ∗ = {Y1, . . . , Yn},
the extractor rewinds challenge 2 for 3 times. For each transcript, denote the challenge as xi
and the responses as (τx,i, µi, zα,i, zsk,i, li, ri, ti) for i ∈ [1, 3]. Denote li = (li,1, . . . , li,n) and
ri = (ri,1, . . . , ri,n).

– To extract A1A
w
2 , it picks some ηi ∈ Zp such that:

∑2
i=1 ηi = 1,

∑2
i=1 ηixi = 0. By equation

(11), we have:

A1A
w
2 = h

2∑
i=1

ηiµi
Y

2∑
i=1

ηi·li+z·1n
h′

2∑
i=1

ηiri−wz·yn−z2·1n

:= hα
′
Y b′

Lhw·b
′
R , (13)

for some α′, b′L, b
′
R.

– To extract S2, it picks some η′i ∈ Zp such that
∑2
i=1 η

′
i = 0,

∑2
i=1 η

′
ixi = 1. By equation (11),

we have:
S2 = h

∑2
i=1 η

′
iµiY

∑2
i=1 η

′
ili · h′

∑2
i=1 η

′
iri := hρ

′
Y s′

Lh·s
′
R ,

for some ρ′, s′L, s
′
R.

Putting back the extracted values into equation (11), we have:

hµY lh′r = (hα
′
Y b′

Lhw·b
′
R) · (hρ

′
Y s′

Lhs′
R)x · Y −z·1

n

· h′wz·y
n+z2·1n .

26 T. H. Yuen, S.-F. Sun, J. K. Liu, M. H. Au, M. F. Esgin, Q. Zhang, D. Gu

Since the above holds for all x, and assuming the DL assumption holds between h, g and h, we
have

l = b′L − z · 1
n + s′L · x,

r = yn ◦ (w · b′R + wz · 1n + s′R · x) + z2 · 1n.

By the same set of 3 rewinding transcripts, we can also extract some other commitments as follows.

– To extract T1, it picks some δi ∈ Zp such that
∑3
i=1 δi = 0,

∑3
i=1 δixi = 1,

∑3
i=1 δix

2
i = 0. By

equation (10), we have:

T1 = g
∑3
i=1 δitih

∑3
i=1 δiτx,i := gt

′
1hr

′
1 ,

for some t′1, r
′
1.

– To extract T2, it picks some δ′i ∈ Zp such that:
∑3
i=1 δ

′
i = 0,

∑3
i=1 δ

′
ixi = 0,

∑3
i=1 δ

′
ix

2
i = 1. By

equation (10), we have:

T2 = g
∑3
i=1 δ

′
itih

∑3
i=1 δ

′
iτx,i := gt

′
2hr

′
2 ,

for some t′2, r
′
2.

Putting back the extracted values into equation (10), we have:

gthτx = gz
2+w(z−z2)〈1n,yn〉−z3〈1n,1n〉 · (gt

′
1hr

′
1)x · (gt

′
2hr

′
2)x

2

.

By the random oracle model, the DL between h = H6(Y) and g is not known by the adversary.
So we have:

t = z2 + w(z − z2)〈1n,yn〉 − z3〈1n,1n〉+ t′1x+ t′2x
2.

By equation (9), we have t = 〈l, r〉. Observe that:

〈l, r〉 = (b′L − z · 1
n + s′L · x)(yn ◦ (w · b′R + wz · 1n + s′R · x) + z2 · 1n)

= w〈b′L, b
′
R ◦ y

n〉+ wz〈b′L − b′R,y
n〉+ z2〈b′L,1

n〉
− wz2〈1n,yn〉 − z3〈1n,1n〉+ t′′1x+ t′′2x

2,

for some t′′1 , t
′′
2 ∈ Zp. Since the above holds for all w, x, y, z, we have:

b′L ◦ b
′
R = 0n, b′L − b′R = 1n, 〈b′L,1

n〉 = 1.

Therefore, it implies that b′L is a binary vector with one bit equal to 1. By equation (11), we have

A1A
w
2 = hα

′
Yi∗h

w·b′
R = hα

′
gxsk,i∗hw·b

′
R for some index i∗. Since the above is true for all w, then

we have A1 = hα
′
gxsk,i∗ .

By the same set of rewinding transcripts, from equation 12, we also have:

A1 = h
zα,1−zα,2
x1−x2 g

zsk,1−zsk,2
x1−x2 := hα

′
gsk
′
.

By the random oracle model, the DL between h and g is not known by the adversary. So we
can extract xsk,i∗ = sk′, where A1 is a commitment to Yi∗ = gxsk,i∗ . It completes the soundness
proof. ut

B.2 Set Membership Proof with Logarithm Size

Our scheme in the last section is linear size of n for the part of l and r. Observe that the verifier can
compute A1 ·Aw2 ·Sx2 ·Y −z·1

n ·h′wz·yn+z2·1n . We note that verifying both equations (9) and (11) is
equivalent to verifying the witness l and r satisfying the inner-product relation. Therefore, it can
be fitted into the improved inner-product argument framework from [9] to give a zero knowledge
proof π of l, r such that:

P = Y ′lh′r ∧ t = 〈l, r〉.

RingCT 3.0 for Blockchain Confidential Transaction: Shorter Size and Stronger Security 27

0 20 40 60 80 100 120 140
0

100

200

300

Ring Size

R
u
n
n
in

g
T

im
e

(m
s)

Proof Time

Verify Time

Fig. 3: Efficiency of Our Set Membership Proof.

Membership Communication Prover Verifier
Proof G Zp (# G exponentiation) (# G exponentiation)

[3] 4 logn+ 5 3 logn+ 4 (4 logn+ 4)e2 (2 logn+ 1)e3 + elogn+3 + e2
[21] 4 logn 3 logn + 1 5

2
logn · e2 + 3

2
logn · e1 elogn+3 + n(e3 + e2)

[7] logn + 12 3
2

logn + 6 1
2

logn · en+1 + 2e2 logn+1 2en+ 1
2
logn+1

+(1
2

logn+ 3)e2 + 4e1 +2e2 logn+2 + 4e2
[8] 7 4 logn + 4 5elogn+1 e3 logn+1 + elogn+2

Scheme 1 +(logn+ 2)e2 +elogn+1 + e2
[8] 2.7

√
logn + 5 1.9 logn + 5e3.2 logn+1 e9.5 logn+1 + e3.2 logn+1

Scheme 2 2.7
√

logn + 4 +2.7 logn · e2 +e1.6 logn+2 + e2
This paper 2 logn + 6 7 e2n+1 + en+1 + 3e2 e2n+2 logn+4

+(e2n + en + . . .+ e1) +e4 + e3
Table 5: Summary of set membership proofs for n members with O(log n) size. Denote ei as the
multi-exponentiation of length i.

The size of π is 2 · dlog2(n)e elements in G and 2 elements in Zp. The signer’s work is dominated
by log n+ 1 multi-exponentiations in G of size 2n, n, n/2, . . . , 1 respectively. The verifier’s work is
dominated by a single multi-exponentiations in G of size 2n+ 2 log2 n+ 1.

To sum up, the set membership proof output is σ = (A1, A2, S1, S2, T1, T2, τx, µ, zα, zsk, t, π),
which has size 2 · dlog2(n)e+6 elements in G and 7 elements in Zp. The signer’s work is dominated
by three multi-exponentiations in G of size 2n+ 1, 2n and n+ 1 respectively. The verifier’s work
is dominated by two multi-exponentiations in G of size 2n+ 2 log2 n+ 1 and n+ 4 respectively.

We implemented our scheme in Intel Core i5 3.1GHz, 8Gb RAM, MacOS 10.13.4. We used the
BouncyCastle’s library for Curve 25519 in our implementation. Each element in G is represented
by 33 bytes and each element in Zp is represented by 32 bytes. The results are shown in Figure 3.
It can be seen that the proof and verification time is almost linear to the size of the set, which is
consistent to our analysis.

B.3 Comparison

As introduced in the previous section (§3.1), our set membership proof is fundamentally different
from the existing approaches [21,7,8]. A comparison with the state-of-the-art log n-size set mem-
bership proofs is shown Table 5. Our scheme is the most efficient in terms of communication size
for ECC group, where |G| ≈ |Zp|.

28 T. H. Yuen, S.-F. Sun, J. K. Liu, M. H. Au, M. F. Esgin, Q. Zhang, D. Gu

B.4 Extensions for Range Proof

We can construct set membership proof for arbitrary set of integers, if we modify our scheme by
using G as a group of composite order N = pq. By considering the set as (x1, x2, . . . , xn) and we
use Yi = gxi in the above construction.

As compared to the range proof in [9], it only allows the proof for a continuous range from zero
to a maximum value. It is because the range proof is essentially performed in a bitwise manner. In
our scheme, we can perform proof of arbitrary disjoint range, e.g. proving x ∈ [2, 5]∪[8, 10]∪[12, 14].
It may be useful in some privacy-preserving smart contract scenario. For example, it can be used to
show that a transaction is performed between Monday to Friday in January 2018. It is equivalent
to prove that the date variable x ∈ [1, 5] ∪ [8, 12] ∪ [19, 23] ∪ [26, 30].

There exists range proof in composite order group, with proof size independent of the size of
the range [26]. To prove a number x ∈ [A,B], Lipmaa [26] used the Lagrange theorem for showing
x− A ≥ 0 and B − x ≥ 0. If we want to use [26] to prove set membership for M disjoint ranges,
then the prover needs to have M disjunction of the Lipmaa’s proof. On the other hand, the proof
size of our scheme is O(logN), where N is the total size of the disjoint ranges. Therefore, our
scheme is more efficient for multiple disjoint ranges.

B.5 Application to Zerocoin

Zerocoin [29] was the first anonymous cryptocurrency proposal which supports large anonymity
sets. The original Zerocoin protocol is used by many cryptocurrencies (Zcoin, PIXV, SmartCash,
Zoin, and HexxCoin) with a combined market capitalization of about USD 660 million at the time
of writing. Each zerocoin is a commitment C to a so-called serial number S. When a zerocoin is
spent, the spender reveals the serial number S and proves in zero-knowledge of C that she knows
C is a commitment to the serial number S and C belongs to a large set of minted zerocoins C.

[29] used RSA-based accumulator for zero-knowledge proof of C. Therefore, it suffers from the
drawback of having trusted setup. We propose the use of our set membership proof of C for the
set of minted zerocoins C. Our set membership proof can be easily modified to fit the Zerocoin
protocol, by replacing the RSA-based accumulator. The only modification needed is changing the
proof of knowledge of secret key, to the proof of knowledge of randomness used in the zerocoin
commitment C.

C Efficient Ring Signatures without Trusted Setup

In this section, we give an efficient ring signature without trusted setup, whose signature size is
logarithmic in the size of the ring.

Backgrounds. The classical ring signatures [34] for a set of n public keys are constructed by
computing n “pseudo-signatures” and only one real secret key (out of all n secret keys) is used to
sign. Many ring signatures use disjunctive proofs to demonstrate possession of one-out-of-n secret
keys. However, they have signature size of O(n), with the exception of [14] having O(

√
n) size.

Ring signatures can also be constructed by cryptographic accumulator [17]. Accumulator allows
the signer to “compress” n public keys into a constant size value and there is a witness showing
that the signer public key is in the set of public keys. Then, a ring signature can be constructed by
a zero-knowledge proof of knowing (1) the witness and the signer public key that correspond to the
accumulated value, and (2) the secret key that corresponds to the signer public key. The advantage
of this approach is constant signature size. However, the existing RSA-based and pairing-based
accumulators both require a trusted setup for generating system parameters. It is not desirable for
system without mutually trusted party.6 The accumulator without trusted setup by lattice [25] is
impractical.

6 Some may suggest the use of multi-party computation for generating such system parameters. However,
we have to ensure that all participated parties did not collude and they performed secure erasure.

RingCT 3.0 for Blockchain Confidential Transaction: Shorter Size and Stronger Security 29

Some new ring signature schemes are proposed using zero-knowledge argument for low degree
polynomials. In [21], the signer’s index b can be expressed as a binary string (b1, . . . bm), where
m = log n. For i ∈ [1,m], each secret bi is hidden in a polynomial pi of degree m. The zero-
knowledge proof is the evaluation of these polynomials using the challenge value as input. [7] used
u-ary representation of b instead of binary. These ring signatures have size of O(log(n)).

The logarithmic ring signature from lattice-based accumulator [25], one-out-of-many proof
[19] and one-shot zero-knowledge proof [18] are still at least 100 times longer than our discrete
logarithm-based construction. For a ring size of 1024, the signature size of [25] is 59.1MB for
λ = 100 and the signature size of [19] is 1.021MB for λ = 133. For a ring size of 4096, the
signature size of [18] is 103KB for λ = 128. They are still far less efficient than the DL-based
construction.

Our Ring Signature by Set Membership Proof. We propose the use of set membership
proof for constructing ring signatures directly. The signer can directly give a zero-knowledge proof
of knowing: (1) a committed public key which is in the set of n public keys, and (2) the secret
key which corresponds to the committed public key. Compared to the accumulator-based two-step
approach, we avoid the need to generate witness and accumulated value first and then to compute
zero-knowledge proof on them. Theoretically, our proposal is a more direct approach of constructing
ring signatures. In practice, we can also avoid the use of trusted setup for existing RSA-based and
pairing-based accumulators. The major obstacle of our approach is how to construct an efficient
set membership proof of “a committed public key is in the set of n public keys”.

We give a concrete instantiation of using set membership proof for constructing ring signatures.
We use the set membership proof together with the zero-knowledge proof of the secret key corre-
sponding to the committed public key. As a result, we obtain an efficient ring signature without
trusted setup, whose signature size is logarithmic to the size of the ring.

Note that this approach is not efficient with the existing set membership proofs [11,21,8]. The
non-interactive version of [11] does not allow dynamic set formation. The set membership proof of
[21,8] is for the set of integers in the exponents. If the public keys are considered as the set, then a
further zero-knowledge proof of knowledge of the corresponding secret key requires an inefficient
zero-knowledge proof of double discrete logarithms. Our new set membership proof enables this
new paradigm of ring signatures. 7

Compared with existing accumulator-based ring signatures, the RSA-based or pairing-based
constructions require trusted setup. It is not desirable for distributed systems without trusted
authority. Our construction does not require such trusted setup. The lattice-based construction
is not practical [38]. A number of ring signatures are proposed recently using zero-knowledge
argument for polynomial evaluation [21,7]. They both achieve signature size of O(log n). Table 2
shows the comparison with these efficient ring signatures, except [38] due to its large impractical
size. Our construction is the most efficient in terms of signature size (we consider ECC where
|G| ≈ |Zp|) and verifier’s computation. In terms of prover efficiency, our scheme is the fastest for
larger ring size (n > 128).

C.1 Definitions

A ring signature scheme consists of some PPT algorithms (Setup, KeyGen, Sign, Verify) for
generating a system parameter available to all users, generating keys for users, signing messages
and verifying ring signatures. We follow the standard definition of ring signatures algorithms and
its security model (correctness, unforgeability and perfect anonymity) in [21].

In practice, it is not a simple task. Zcash performed some complicated procedures (https://z.cash/
technology/paramgen.html) to convince the general public that the system parameters are properly
generated.

7 [7,21] use the property that “DL-based public key is equal to Pedersen commitment of zero” and then
the ring signature includes the one-out-of-many proofs that one Pedersen commitment is committed to
zero. Our scheme does not involve the commitment to zero.

https://z.cash/technology/paramgen.html
https://z.cash/technology/paramgen.html

30 T. H. Yuen, S.-F. Sun, J. K. Liu, M. H. Au, M. F. Esgin, Q. Zhang, D. Gu

C.2 Ring Signature with Logarithm Size

– Setup. On input security parameter 1λ and the maximum size of ring N , it picks a group
G of prime order p and some generators g ∈ G,h = (h1, . . . , hN) ∈ GN . Suppose that Hj :
{0, 1}∗ → Zp for j = 4, 5 and H3 : {0, 1}∗ → G are collision resistant hash functions. Assume
these parameters are known in the system.

– KeyGen. For each user, he picks a random sk ∈ Zp as his secret key and computes his public
key as Y = gsk.

– Sign. On input the set of n ≤ N public keys as Y = (Y1, Y2, . . . , Yn), the signer index i∗ ∈ [1, n],
the signer secret key sk∗ and a message m, the signer runs as follows:
1. Prepare Signer Index. The sender generates a binary vector bL = (b1, . . . , bn), where bi = 1

when i = i∗ and bi = 0 otherwise. Define bR = bL − 1n. We will prove in zero knowledge
that bL is a binary vector with only one bit equal to 1. It is equivalent to showing:

bL ◦ bR = 0n, bL − bR = 1n, 〈bL,1n〉 = 1.

2. Signature Generation. It consists of the following steps.

Commit 1. It sets h = H3(Y), picks random α, β, ρ, rα, rsk,∈ Zp, sL, sR ∈ Znp and computes:

B = hαY bL = hαYi∗ , A = hβhbR , S1 = hrαgrsk , S2 = hρY sLhsR .

Challenge 1. Denote the concatenated string str′ = Y ||B||A|| S1||S2||U . It computes y =
H4(1, str), z = H4(2, str) and w = H4(3, str).

Commit 2. It can construct two degree 1 polynomials of variable X:

l(X) = bL − z · 1n + sL ·X,
r(X) = yn ◦ (w · bR + wz · 1n + sR ·X) + z2 · 1n.

Denote t(X) = 〈l(X), r(X)〉, which is a degree 2 polynomial. We can write t(X) = t0 +
t1X + t2X

2, and t0, t1, t2 can be computed by using (bL, bR, sL, sR, w, y, z). In particular,
observe that

t0 = w〈bL, bR ◦ yn〉+ zw〈bL − bR,y
n〉+ z2〈bL,1n〉 − wz2〈1n,yn〉 − z3〈1n,1n〉,

= z2 + w(z − z2)〈1n,yn〉 − z3〈1n,1n〉.

It picks random τ1, τ2 ∈ Zp, and computes:

T1 = gt1hτ1 , T2 = gt2hτ2 .

Challenge 2. It computes x = H5(v, w, y, z, T1, T2, m).

Response. It computes:

τx = τ1 · x+ τ2 · x2,
µ = α+ β · w + ρ · x,
zα = rα + α · x,
zsk = rsk + sk · x,
l = l(x) = bL − z · 1n + sL · x,
r = r(x) = yn ◦ (w · bR + wz · 1n + sR · x) + z2 · 1n,
t = 〈l, r〉.

It outputs σring = (B,A, S1, S2, T1, T2, τx, µ, zα, zsk, zδ, l, r, t).
Note that the two vectors l, r with length n can be reduced to π

.
= (P,L,R, a, b) (which consists

of 2 log(n) + 1 elements in G and 2 elements in Zp) by the inner product argument.

RingCT 3.0 for Blockchain Confidential Transaction: Shorter Size and Stronger Security 31

– Verify. On input a set of public keys Y , the signature σ, the message m, denote the concatenated
string str = Y ||B||A||S1||S2||U . It computes h = H3(Y), y = H4(1, str), z = H4(2, str), w =

H4(3, str) and x = H5(v, w, y, z, T1, T2, m). Define h′ = (h′1, . . . , h
′
n) ∈ Gn such that h′i = hy

−i+1

i

for i ∈ [1, n]. It checks if all of the following hold:

t = 〈l, r〉,

gthτx = gz
2+w(z−z2)〈1n,yn〉−z3〈1n,1n〉 · T x1 · T x

2

2 ,

hµY lh′r = B ·Aw · Sx2 · Y −z·1
n

· h′wz·y
n+z2·1n ,

hzαgzsk = S1B
x.

It returns 1 if all of the above hold and returns 0 otherwise.
If the signature is compressed by the inner product argument, it also runs the verification for
it.

Security. The security for unforgeability and anonymity can be reduced to the discrete logarithm
assumption in the random oracle model. We do not repeat the security proof here as it is very
similar to the proof of the security of RingCT3.0 and the set membership proof.

Efficiency. To sum up, the ring signature output is σ = (B,A, S1, S2, T1, T2, τx, µ, zα, zsk, t, π),
which has size 2 · dlog2(n)e+7 elements in G and 7 elements in Zp. The signer’s work is dominated
by three multi-exponentiations in G of size 2n+ 1, 2n and n+ 1, respectively. The verifier’s work
is dominated by two multi-exponentiations in G of size 2n+ 2 log2 n+ 1 and n+ 4, respectively.

D Comparison with Omniring

Recently, a parallel and independent work on RingCT, called Omniring, is proposed [23]. They
also used the inner product argument from the Bulletproof as a building block. However, they
used a different ring formation, especially for the case of multiple input. Even for M inputs, the
total ring size is still n (rather than the total ring size of nM in our RingCT3.0). The signature
size of Omniring is 2 log(3 + 2n+ 4M) + 9 G or Zp elements. Our scheme is 2 log(nM) +M + 17
G or Zp elements. In practice n is much larger than M (e.g., n ≥ 1024 and M < 5).

Another major difference between our paper and [23] is the modeling on privacy. They use a sin-
gle model on privacy to capture the indistinguishability of all possible combinations of transaction
input. We use two different models to capture the anonymity against ring insider and recipient.
We illustrate the differences with a simple example. Consider the Omniring [23] with a transaction
of two inputs, one output and ring size 8:

Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 Input 8 → Output 1
$2 $8 $3 $7 $4 $6 $12 $13 $10

Since their anonymity model allows the adversary to know the account balance for all parties,
their security proof guarantees that no PPT adversary can distinguish between the case of “Input
1 and 2 are real signers”, “Input 3 and 4 are real signers” and “Input 5 and 6 are real signers”. The
level of anonymity is only limited to the number of possible combinations of transaction input,
which is 1/3 in this case. In practice, a signer does not know the transaction amount of other
UTXOs in RingCT. The chances of having many possible combinations of transaction input is
relatively low, if the signer forms the ring by randomly picking UTXOs in the blockchain.

Recall that a honest signer does not know the transaction amount of other input. If the signer
is unfortunate that he picks the Omniring as:

32 T. H. Yuen, S.-F. Sun, J. K. Liu, M. H. Au, M. F. Esgin, Q. Zhang, D. Gu

Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 Input 8 → Output 1
$1 $8 $3 $7 $4 $4 $12 $13 $10

Then the honest signer has no security guarantees according to the anonymity model in [23]:
there is only one possible case, namely “Input 3 and 4”.

On the other hand, our RingCT 3.0 have a structure as follows:

Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 Input 8 → Output 1
Ring 1 $2 $8 $3 $7 $4 $6 $12 $13 $10
Ring 2 $7 $11 $6 $12 $4 $7 $5 $2

Our anonymity against ring insider shows that the real signer in ring 1 (resp. ring 2) is hidden
between input 1 to 8 of ring 1 (resp. ring 2), since the output amount is hidden from the adversary.
Our anonymity against recipient shows that the real signer in ring 1 (resp. ring 2) is also hidden
between input 1 to 8 of ring 1 (resp. ring 2), since the input amount are hidden from the adversary.
The level of anonymity is 1/8 in both cases.

	RingCT 3.0 for Blockchain Confidential Transaction: Shorter Size and Stronger Security
	 Tsz Hon Yuen, Shi-feng Sun, Joseph K. Liu, Man Ho Au, Muhammed F. Esgin, Qingzhao Zhang, Dawu Gu

