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ABSTRACT
In this paper, we propose a constant-time implementation of the

BLISS lattice-based signature scheme. BLISS is possibly the most

efficient lattice-based signature scheme proposed so far, with a level

of performance on par with widely used pre-quantum primitives

like ECDSA. It is only one of the few postquantum signatures to

have seen real-world deployment, as part of the strongSwan VPN

software suite.

The outstanding performance of the BLISS signature scheme

stems in large part from its reliance on discrete Gaussian distribu-

tions, which allow for better parameters and security reductions.

However, that advantage has also proved to be its Achilles’ heel,

as discrete Gaussians pose serious challenges in terms of secure

implementations. Implementations of BLISS so far have included

secret-dependent branches andmemory accesses, both as part of the

discrete Gaussian sampling and of the essential rejection sampling

step in signature generation. These defects have led to multiple

devastating timing attacks, and were a key reason why BLISS was

not submitted to the NIST postquantum standardization effort. In

fact, almost all of the actual candidates chose to stay away from

Gaussians despite their efficiency advantage, due to the serious

concerns surrounding implementation security.

Moreover, naive countermeasures will often not cut it: we show

that a reasonable-looking countermeasure suggested in previous

work to protect the BLISS rejection sampling can again be defeated

using novel timing attacks, in which the timing information is fed

to phase retrieval machine learning algorithm in order to achieve a

full key recovery.

Fortunately, we also present careful implementation techniques

that allow us to describe an implementation of BLISS with complete

timing attack protection, achieving the same level of efficiency as

the original unprotected code, without resorting on floating point

arithmetic or platform-specific optimizations like AVX intrinsics.

These techniques, including a new approach to the polynomial

approximation of transcendental function, can also be applied to

the masking of the BLISS signature scheme, and will hopefully

make more efficient and secure implementations of lattice-based

cryptography possible going forward.

KEYWORDS
Timing Attack; Phase Retrieval algorithms; Constant-time Imple-

mentation; Lattice-based Cryptography; Masking Countermeasure

INTRODUCTION
The looming threat of general-purpose quantum computers against

legacy public-key cryptographic schemes makes it a pressing prob-

lem to prepare the concrete transition to postquantum cryptgraphy.

Lattice-based cryptography, in particular, offers an attractive alter-

native to currently deployed schemes based e.g. on RSA and elliptic

curves, thanks to strong theoretical security guarantees, a large

array of achievable primitives, and a level of efficiency that can

rival pre-quantum constructions.

Despite their attractive theoretical properties, however, lattice-

based constructions present novel challenges in terms of implemen-

tation security, particularly with respect to side-channel attacks.

Taking signatures as an example, possibly the most efficient con-

struction proposed so far is the BLISS signature scheme of Ducas et

al. [17], which features excellent performance and has seen real-

world deployment via the VPN software suite strongSwan. However,

existing implementations of BLISS suffer from significant leakage

through timing side-channels, which have led to several devastat-

ing attacks against the scheme [7, 11, 22, 35]. The main feature of

BLISS exploited in these attacks in the use of discrete Gaussian dis-

tributions, either as part of the Gaussian sampling used to generate

the random nonces in BLISS signatures, or as part of the crucial

rejection sampling step that forms the core of the Fiat–Shamir with

aborts framework that supports BLISS’s security.

Generally speaking, Gaussian distributions are ubiquitous in

theoretical works on lattice-based cryptography, thanks to their

convenient behavior with respect to proofs of security and param-

eter choices. However, their role in practical implementations is

less clear, largely because of the concerns surrounding implemen-

tation attacks. For example, BLISS was not submitted to the NIST

postquantum standardization effort due to those concerns, and sec-

ond round candidate Dilithium [18], which can be seen as a direct

successor of BLISS, replaces Gaussian distributions by uniform ones,

at the cost of larger parameters and a less efficient implementation,

specifically citing implementation issues as their justification.

In this paper we study the security of the BLISS implementa-

tion against cache-based timing and power side-channel attacks.
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Specifically, we develop efficient implementations of BLISS that are

secure against these attacks. Although our results target BLISS in

particular, our techniques can be applied to the very large class

of constructions based on discrete Gaussian distributions (at least

those that use Gaussians with fixed standard deviation), which

form the bulk of works on lattice-based cryptography. Protecting

implementations for these constructions are challenging because

state-of-the-art techniques for constant-time and masked imple-

mentations mainly consider deterministic programs (and thus in

particular for programs with deterministic control-flow). However,

schemes that involve Gaussian sampling. In particular, signature

schemes within the Fiat–Shamir with aborts framework use re-

jection sampling, also called the acceptance-rejection method. To

sample from a distribution X , with density f , one uses samples

from the distribution Y with density д as follows:

(1) Get a sample y from distribution Y and a sample u from

the uniform distribution on (0, 1),

(2) If u < f (y)/Mд(y), accept y as a sample drawn from X ,
and reject otherwise.

This algorithm requiresM iterations on average to obtain a sample

and in particular does not have deterministic control flow. A further

difficulty with BLISS is that floating-point operations are gener-

ally not constant-time, and yet the computation of the function

f (y)/д(y) involves transcendental functions. It is thus an additional

difficulty to implement it purely in terms of integer arithmetic.

Our Contributions. First of all, we present a new timing attack

against a countermeasure previously suggested in [22] which avoids

some earlier attacks [7, 22]. Previous attacks target the Bernoulli

sampling algorithm, while we look at the implementation of the

hyperbolic cosine function. We show that the computation of this

transcendental function leaks secret information and that by mea-

suring the number of times this algorithm restarts, we can recover

the secret key. The available information is similar to the one used

in the phase retrieval problem, given |⟨a, s⟩| for known and random

samples a, recover s. The general phase retrieval problem [12] is

that ⟨a, s⟩ can be a complex value and we only get the amplitude

and not the phase of this value. In the particular case of this prob-

lem, where the scalar product is real, we devise 2 new efficient

algorithms. The first attack only uses the samples that the scalar

product is null, which is not too restrictive here since we have

many such samples and performs a Principal Component Analysis

algorithm. The second attack takes into account all the information

by using maximum likelihood estimator for combining the correla-

tion between many samples and perform a gradient descent. The

difficulties in our algorithms come from the truncation at the end

of BLISS, to make the signature compact, that introduces a lot of

noise in our samples. Finally, both attacks rely on a clever use of

lattice reduction algorithm to recover all the secret information

even though some errors are still present at the end of the descent.

Then, we propose a constant-time implementation of BLISS,

mainly relying on an alternate implementation of the rejection sam-

pling step, carried out by computing a sufficiently precise polyno-

mial approximation of the rejection probability using pure integer

arithmetic. We manage to do so using a novel technique for polyno-

mial approximation, relying on lattice reduction for the Euclidean

inner product derived from the Sobolev norm. This approach has

several advantageous properties compared to methods based on

minimax computations, as implemented e.g. in the Sollya software

package [13], especially in terms of its control on the shape of

polynomial approximants we can obtain. Our constant-time imple-

mentation, written in portable C using pure division-free integer

arithmetic, achieves the same level of efficiency as the original,

variable-time implementation of BLISS, and outperforms Dilithium

by a large margin.

Using similar techniques, together with a proof strategy analo-

gous to [4], we also show how to construct a masked implementa-

tion of BLISS secure against high-order side-channel attacks.

Related Work. Several works have exhibited side-channel attacks

against BLISS [7, 11, 22, 35]. These attacks epitomize the difficulties

to implement lattice-based schemes securely, particularly when

Gaussians are involved. However, there are also positive results

showing that it is possible to make this signature scheme secure

against such attacks. For instance, Barthe et al. [4] propose a se-

cure implementation against side-channel attack for the GLP signa-

ture [23]. This implementation is made secure using the classical

masking countermeasure used to prevent SPA and DPA analysis.

The security proof uses the strong non-interference property in-

troduced in [3], which allows to reason compositionally, and a

relaxation of masking called masking under public outputs. How-

ever, the masked implementation and security proof of GLP relies

critically on the fact that samplings are drawn from uniform distri-

butions as Dilithium.

There exist a number of works devoted to constant-time tech-

niques for sampling according to discrete Gaussian distributions [20,

27, 33] or related distributions, such as rounded Gaussians [25].

There are different methods according to the size of the standard

deviation, as well as whether it is constant or varies: encryption

scheme typically require small standard deviations, while signa-

tures use larger ones, which are fixed for Fiat–Shamir schemes

and vary for hash-and-sign constructions. To deal with large stan-

dard deviations, it is customary to use a small standard deviation

“base sampler” and build upon it to achieve the desired standard

deviation: this is the approach presented in [33]. These works can

also be distinguished according as whether they require floating

point arithmetic. In particular, the rounded Gaussians of [25] of-

fer numerous attractive properties, but they have some statistical

limitations in terms of distinguishing advantage, and they rely on

floating point implementations.

Approximating the exponential function with polynomials has

been recently proposed in implementations of Gaussian sampling

algorithms. Here, we apply this technique for the transcendental

functions used in the rejection sampling part of the signing al-

gorithm. Prest was the first to propose such ideas in [37] and he

showed that with 53-bit of precision for floating numbers we can

have 256-bit security when the number of signatures is limited

to 2
64
, as is stated in the requirements of the NIST standardiza-

tion process. NIST second round candidate Falcon [38] is based on

a Gaussian sampler that uses Padé approximants to evaluate the

exponential function of the rejection probability. More recently,

Zhao et al. have proposed a polynomial approximation without

floating point division [45], since that operation is known to not

be constant-time. They use floating point multiplications instead
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to compute the exponential, but this instruction does not always

have constant-time execution guarantees either, unfortunately. In

this paper, we approximate the exponential and the hyperbolic co-

sine functions over an interval using integer polynomials to avoid

floating operations. Moreover, we try to have small coefficients so

that we can use small-sized integers and obtained a straightforward

implementation of Horner’s algorithm.

Organisation of the paper. In Section 1, we recall the BLISS sig-

nature scheme and the implementation of the rejection sampling

algorithm. Then, we describe our timing attacks on the hyper-

bolic cosine implementation in Section 2. In Section 3, we present

our constant-time implementation of the BLISS signature scheme.

Section 4 presents the technique we used to approximate transcen-

dental functions with integral polynomials. Our masked implemen-

tation is introduced in the Appendix.

1 DESCRIPTION OF THE BLISS SCHEME
Notations. For any integer q, the ring Zq is represented by the in-

tegers in [−q/2,q/2) ∩ Z. Vectors are considered as column vectors

and will be written in bold lower case letters and matrices with

upper case letters. By default, we will use the L2 Euclidean norm,

∥v∥2 = (
∑
i v

2

i )
1/2

and L∞-norm as ∥v∥∞ = maxi |vi |.

Overall Description of BLISS. The BLISS signature scheme [17]

is possibly the most efficient lattice-based signature scheme so far.

It has been implemented in both software [17] and hardware [36].

BLISS can be seen as a ring-based optimization of the earlier lattice-

based scheme of Lyubashevsky [31], sharing the same “Fiat–Shamir

with aborts” structure [29].

One can give a simplified description of the scheme as follows:

the public key is an NTRU-like ratio of the form aq = s2/s1 mod q,
where the signing key polynomials s1, s2 ∈ R = Z[X ]/(Xn + 1) are

small and sparse. See Figure 2 for a description of the key generation.

κ,C, δ1, δ2,q are parameters detailed in BLISS specifications and

Nκ is the function depicted in Equation 3.2.3. To sign a message µ,
one first generates commitment values y1, y2 ∈ R with normally

distributed coefficients, and then computes a hash c of the message

µ together with u = −aqy1 + y2 mod q. The signature is then the

triple (c, z1, z2), with zi = yi + si c, and there is rejection sampling

to ensure that the distribution of zi is independent of the secret key.
Verification is possible because u = −aqz1 + z2 mod q.

The real BLISS signature procedure, described in Figure 1, in-

cludes several optimizations on top of the above description. In

particular, to improve the repetition rate, it targets a bimodal Gauss-

ian distribution for the zi ’s, so there is a random sign flip in their

definition. In addition, to reduce key size, the signature element z2
is actually transmitted in compressed form z†

2
, and accordingly the

hash input includes only a compressed version of u.
BLISS instanciation is given as a suite of four sets of parame-

ters, described in Table 4 for completeness purpose. The signature

schemes BLISS-I and BLISS-II are respectively optimized for speed

and compactness and both of them target 128 bits of security. The

signature schemes BLISS-III and BLISS-IV offer respectively 160

and 192 bits of security. A BLISS-0 variant is also given as a toy

exemple and only ensures 80 bits of security (see Appendix A).

1: function Sign(µ,pk = a1, sk = S)
2: y1 ← Dn

, y2 ← Dn

3: u = ζ · a1 · y1 + y2 mod 2q ▷ ζ (q − 2) = 1 mod 2q
4: c← H (⌊u⌉d mod q, µ)
5: choose a random bit b
6: z1 ← y1 + (−1)b s1c
7: z2 ← y2 + (−1)b s2c
8: rejection sampling: restart to step 2 except with prob-

ability 1/
(
M exp(−∥Sc∥2/(2σ 2)) cosh(⟨z, Sc⟩/σ 2)

)
9: z†

2
← (⌊u⌉d − ⌊u − z2⌉d ) mod q

10: return (z1, z†
2
, c)

11: end function

Figure 1: Description of the BLISS signature algorithm.

1: function KeyGen

2: Generate two polynomials f and g uniformly at random with

exactly nδ1 entries in {±1} and nδ2 entries in {±2}
3: S = (s1, s2) = (f, 2 · g + 1)t

4: rejection sampling: restart to step 2 if Nκ (S) ≥ C2 · 5 · ( ⌈δ1 ·
n ⌉ + 4 · ⌈δ2 · n ⌉) · κ

5: aq = (2 · g + 1)/f mod q (restart if f is not invertible.)
6: return (A, S) where A = (2 · aq , q − 2) mod 2q
7: end function

Figure 2: Description of the BLISS key generation algorithm.

2 A TIMING ATTACK ON BLISS
We use statistical learning techniques to recover the second part

s2 of the secret key by using either PCA or either Phase Retrieval

algorithm. The main difficulties come from the final compression

that adds a lot of noise to the samples. For some BLISS parameters,

the noise is too high for the first attack to succeed in a complete

key recovery. The second attack first uses a maximum likelihood

principle to recover an estimate of the of absolute value of the

scalar product given the timing information. Then, a phase retrieval

algorithm is run. However, since the noise is high and the problem

is non-convex, the initialization phase of the gradient descent is

crucial. To this end, we develop a new and refined initialization

process improving [28]. Finally, we use a lattice reduction to remove

a few errors on s2.

2.1 Leakage of the cosh sampler
Let us suppose in this section that the procedure SampleBernExp is

constant-time. Suppose that, as suggested by the countermeasures

of [22], the exponential sampler SampleBernExp is constant time.

From the specification of SampleBernCosh and following [17],

a natural implementation of this function would be given as the

pseudocode of Figure 3. However, there still exists a timing leakage

from this implementation of the hyperbolic cosine sampler.

Indeed, by definition of the function SampleBernCosh, the prob-

ability of outputting a is equal to the probability of the expression
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1: x ← |x |
2: Sample a ← SampleBernExp(x )
3: Sample b ← B

1/2

4: Sample c ← SampleBernExp(x )
5: if ¬a ∧ (b ∨ c) then restart
6: return a

Figure 3: Bernoulli of parameter 1/cosh with countermea-
sure

¬a ∧ (b ∨ c) to be false, which is

p(S, c, z) = 1 − Pr(¬a) Pr(b ∨ c)

= 1 − (1 − Pr(a))(1 − Pr(¬b ∧ ¬c))

= 1 −

(
1 − e

−
|⟨z,Sc⟩|
2σ 2

) ©«1 − 1 − e
−
|⟨z,Sc⟩|
2σ 2

2

ª®¬ = 1 + e
−
|⟨z,Sc⟩|
σ 2

2

.

Hence by measuring the differences in computation time, one

can derive traces that shape (z, c, t), where t ∈ N is the number of

restarts performed before outputting the value a. In the following

of this section, we describe two ways to exploit this leakage, leading

to a full key recovery.

2.2 Spectral attack with samples with t = 0

Remark that if a trace satisfies t = 0, then it is likely
1
for the

geometric distribution parameter p(S, c, z) to be close to 1, and so

⟨z, Sc⟩ is close to zero; that is to say that S is almost orthogonal to

the vector cz∗.
If the vector S was actually orthogonal to each of these cz∗ then

it would be enough to collect sufficiently of them so that they gener-

ate an hyperplaneH of the ambient spaceRn and return the unique

(up to sign) vector ofH⊥ of norm compatible with the specifica-

tion of BLISS
2
. This would practically translate in constructing the

empirical covariance matrixW =
∑
i

(
ciz∗i

)
·

(
ciz∗i

)T
for a serie of

trace (ci, z∗i , 0) and get a basis of its kernel. Remark now that since

the secret is not actually orthogonal to these vectors, the obtained

matrix is not singular. To overcome this difficulty we thus do not

seek a vector in the kernel but instead in the eigenspace associated

with the smallest eigenvalue ofW . This technique can be seen as a

continuous relaxation of the kernel computation in the ideal case.

It translates directly into pseudocode in Figure 9 of Appendix B.1,

where the computation of the eigenvector is performed iteratively

and N = ⌈δ1n⌉ + 4⌈δ2n⌉ is the norm of the secret key. Remark that

this technique does not recover exactly the secret but an approxi-

mate solution over the reals. To recover the secret we need to find

the closest integral vector to the output candidate, which is simply

done by rounding each coefficient to the nearest integral elements.

In addition, remark that by the contruction of the public key from

the secret one, recovering solely s2 is sufficient to reconstruct the

full secret key. Hence the rounding can be carried to
3
2Z on the

second part of the eigenvector to conclude.

1
Indeed, recall that for a unique sample the maximum likelyhood estimator of the

geometric distribution is the inverse of the sample.

2
All possible secret vectors in BLISS share the same norm by specification.

3
Indeed, s2 has its coefficients equal to 0, ±2 or ±4 by construction.

2.3 A timing attack by phase retrieval
Exploiting the leakage described in Section 2.1 boils down to re-

trieve S up to sign from a family of values of the shape (zi , ci , ti )
where ti is sampled under a geometric distribution of parameter

p(S, ci , zi ). A natural approach would then consist in starting by

estimating the values of p(S, ci , zi ) for each trace (ci , zi , ti ), yield-
ing a (noisy) estimate of the absolute value of the inner product

|⟨S, ci , zi ⟩| = |⟨Sc∗i , zi ⟩|. In a second time we then fall back on

retrieving S from samples of the form (|⟨S,wi ⟩|,wi ). This is an

instance of so-called (noisy) phase retrieval problem.

2.3.1 First phase: estimation of the phases. In order to get a

(noisy) evaluation of the phases, we devise an estimator of maxi-

mum likelihood. Set Li (α) to be the logarithm of the probability

Pr [|⟨S,wi ⟩| = x |t = α], p(S, ci , zi ). We then set the estimator yi to
be the arguments of the maximum of Li (ti ) for each trace. Such a

computation is classically done using Bayes’ theorem and seeking

for critical values from the derivates of Li (α).

2.3.2 Second phase: solving the phase retrieval instance. Phase
retrieval aims at solving quadratic equations of the shape

|⟨S,wi ⟩|
2 = yi i = 1, . . . ,m,

where S is the decision variable, thewi are known sampling vectors

and the yi ∈ R are the phase measurements. The noisy version

of this problem consists in retrieving the variable S from noisy

quadratic equations:

|⟨S,wi ⟩|
2 + ei = yi i = 1, . . . ,m,

for ei independents (usually gaussian) random variables. This prob-

lem has been widely studied in the fields of statistical learning

and the most common approach to tackle it consists of a two-step

strategy:

2.3.3 Initialization via spectral method. First, find a candidate

vector s0 that is sufficiently close to the actual solution to make the

second step converges towards the actual solution. The usual way

to initialize the candidate vector can be seen as a generalization of

the principal component analysis (PCA): the initial guess is given

via a spectral method; in short, s0 is the leading eigenvector of

the positive definite symmetric matrix

∑
i yiwiwT

i . However in

practice, we use a slightly different version of the spectral initializer,

outlined in Algorithm 10, which provides slightly better practical

results than the classical method of [12]. N(0, 1) is the centered

normal reduced distribution, K is a constant, set sufficiently large.

2.3.4 The descent phase. Once an initialization vector is found,

we iteratively try to make it closer to the actual secret by a series of

updates like in a gradient descent scheme. Note that in the problem

of phase retrieval the problem is non-convex so that a direct gradi-

ent descent would not be directly applicable. As stated in [12], the

phase retrieval problem can be stated as a minimization problem:

minimize

1

2m

m∑
r=1
ℓ(yr , |⟨wr , x⟩|2), z ∈ Rn, (1)

where ℓ is a distance function over the reals (such as the Euclidean

distance ℓ2(a,b) = (a − b)
2). The corresponding descent, called

Wirtinger flow, is then simply stated in Figure 11 (Appendix B.1)

where t 7→ µt is a step function, which has to be experimentally

4



tailored to optimize the convergence. ϵ > 0 is a small constant

giving the precision on which the solution is wanted.

It is well known that minimizing non-convex objectives, which

may have verymany stationary points is in general NP-hard. Nonethe-

less if the initialization s0 is sufficiently accurate, then the sequence

si will converge toward a solution to the problem given by Equa-

tion (1).

As in the first attack, the descent algorithm does not directly give

an integral solution to the retrieval problem, so that we eventually

need to round the coefficients before outputting the solution.

The full outline of the attack is given in Figure 12 in Appendix B.1.

2.4 Reducing the number of samples by error
localization and dimension reduction

By the inherent noisy nature of the problem, if not enough sam-

ples are used to mount the attack, the recovery might fail on a

certain amount of bits. In such a case one cannot figure a priori

where these errors are and would be forced to enumerate the pos-

sible errors, using, for instance, the hybrid MiTM technique of

Howgrave-Graham [24]. Since the dimension (n = 512) is large,

such an approach becomes quickly untractable as the number of

errors is greater than 8.

However, as the final step of both of the attacks consists of a

coefficient-wise rounding, we can study the distance of each coeffi-

cient to 2Z. Heuristically since the descent is supposed ultimately to

converge to the secret, the retrieved coefficients should be close to

2Z. Hence if some of them are far from this lattice, we can consider

them as problematic coefficients and likely to be prone to induce an

error after rounding. Suppose that we discriminate these problem-

atic coefficients in a finite setT and that each coefficient outsideT is

correctly retrieved by rounding. Then we can find the correct value

of the coefficients in T by lattice reduction in dimension slightly

larger than |T | by the exploitation of dimension reduction techniques

described in [21].

If this dimension is sufficiently small (less than 100 for typical

computers), this approach allows to still perform a full key recovery

in cases where the sole descent algorithm would have led to some

errors.

2.5 Practicality of the attacks and discussion
We provide the attack scripts in [5] and summarize in Table 1 the

number of samples required to perform a full key recovery with

both of the attacks. The first colunm corresponds to the first attack

described in Section 2.2 with the MiTM technique of [24] to correct

the errors. The second column corresponds the the Wirtinger flow

technique coupled with the lattice reduction and the localization of

Section 2.4. Since the descent attack is an improvement build on

a spectral method, it is natural to see that this algorithm indeed

requires far fewer samples to mount the attack than the first method

presented in Section 2.2. It should also be noticed that this attack

discards every samples for which t > 0, implying that a certain

amount of the information provided by the samples is not used.

For instance when attacking BLISS-II with compression, almost 30

millions of samples are necessary to retrieve the secret, but among

those, only 18 millions of them are actually conserved to mount

the attack.

Table 1: Experimental number of samples required to per-
form a full key recovery.

PCA0+MiTM Spectral+Descent

BLISS-I 180k 65k

BLISS-II 250k 130k

BLISS-III 209k 100k

BLISS-VI 308k 120k

w
/
o
c
o
m
p
r
e
s
s

BLISS-I 4200k 700k

BLISS-II 27500k 2000k

BLISS-III 2100k 350k

BLISS-VI unfeasible 200k

w
/
c
o
m
p
r
e
s
s

As far as the correction of errors is concerned, with the two

techniques introduced in Section 2.4 (i.e. the MiTM and the localiza-

tion), the two attacks have different behaviors. Indeed, the MiTM

exhaustive search appeared to be more tailored to the first attack

wheras the localization worked far better for the descent attack.

A more detailed discussion on the causes of this phenomena is

provided in Section B.2 of the Appendices.

A striking observation is that in both of the attacks the com-

pression on z2 used in actual BLISS signatures, makes the recovery

significantly harder: indeed, there is an order of magnitude between

the number of samples needed to make a full key recovery. Indeed

the bit dropping yields noisier estimates for the recovery problem.

Remark eventually that BLISS-II is actually the hardest variant to

attack with this method, as it is indeed the scheme providing the

highest rate of compression.

3 IMPLEMENTING BLISS IN CONSTANT TIME
In order to protect against timing attacks such as the one of Sec-

tion 2 and most types of microarchitectural side-channel attacks

(including [11, 22, 35]), it would be desirable to design an imple-

mentation of BLISS that runs in constant time.

As noted in the introduction, doing so seems to present funda-

mental difficulties related to the fact that the BLISS signing algo-

rithm, in keeping with the Fiat–Shamir with aborts framework,

includes a probabilistic rejection sampling step that makes the run-

ning time intrisically vary from one execution to the next. More-

over, the rejection probability computed at each step depends on

the secret key and the generated signature, so it may seem that

secret-dependent branching is unavoidable when implementing

the scheme.

Fortunately, the problem is in fact crucial, because the distribu-

tion of the number of repetitions in the signing algorithm is actually

independent of all secrets. As a result, it is possible to aim for an

implementation that is constant time with public outputs, where the

public outputs leak to the adversary the number of repetitions. Since

that number can be perfectly simulated independently of the secret

key, this is just as good as a truly constant time implementation.
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In fact, although it is not really discussed in those terms, the

same issue arises in existing “constant time” implementations of

Fiat–Shamir with aborts signature schemes such as the NIST second

round candidate Dilithium [18]. The main obstacle in implementing

BLISS in constant time lies elsewhere, in what forms the key differ-

ence between those two lattice-based schemes: BLISS’s reliance on

discrete Gaussian distributions, whereas Dilithium only uses uni-

form distributions, with the explicit goal of avoiding side-channel

vulnerabilities in the implementation.
4

The use of Gaussian distributions leads to two main implemen-

tation challenges: the constant time implementation of Gaussian

sampling, and that of the rejection sampling, corresponding to

Step 2 and Step 8 of Figure 1. In addition, some care must be taken

regarding the implementation of the ring-valued hash function

from Step 4, as well as the sign flips in Steps 6 and 7. We describe

our implementation choices below and provide further technical

details at the end of this section.

3.1 Overview of our constant-time
implementation

The main design goal of our implementation is to obtain a fast,

constant-time implementation of BLISS (focusing on the BLISS–I

parameter set, which offers the best trade-off between security and

efficiency) while maintaining a high degree of portability. With

the latter goal in mind, we choose to rely entirely on integer arith-

metic (limited to additions, multiplications and shifts on 32-bit and

64-bit operands). Indeed, division instructions and floating point

operations rarely offer constant-time execution guarantees.
5

The ingredients needed to implement the signing algorithm are

as follows: we need Gaussian sampling for Step 2 of Figure 1; ring

multiplication for Steps 3, 6 and 7; ring-valued hashing for Step 4; and

rejection sampling for Step 8. Other operations like constant-time

sign flips, ring additions and signature compression are straight-

forward. We now give a description of our implemention choices

for each of these steps. Note that in terms of efficiency, the critical

elements are the Gaussian sampling and the ring multiplication,

with the ring-valued hashing also taking up a significant amount

of time. The other operations take negligible time in comparison.

3.1.1 Gaussian sampling. The Gaussian sampling step is key

to obtaining a fast implementation of BLISS, as it represents half

or more of the computation time of signature generation: for each

signature, one needs to generate 1024 samples of the discrete Gauss-

ian distribution Dσ (possibly several times over, in case a rejection

occurs), and the standard deviation is relatively large (σ = 205 for

BLISS–I). This step has also been specifically targeted by cache

timing attacks such as [11].

Several approaches can be considered for implementing it in

constant time, but they have wildly different running times. All

approaches first generate samples from the non-negative Gaussian

4
In fact, the Dilithium specification also mentions a variant using Gaussian distri-

butions, Dilithium-G, but that variant comes with no implementation, and even no

explicit parameter selection, so it is not really a fully specified scheme.

5
Regarding floating point arithmetic, it is often variable time even in the presence

of an FPU, and even for simpler operations like multiplications. For example, the

fmul multiplication instruction can have variable latency on several x86 architectures,

including the Intel Pentium III!

D+σ , and then use a random sign flip (in constant time) to recover

the entire distribution.

The most naive way would be to rely on cumulative distribution

table (CDT) sampling: precompute a table of the cumulative dis-

tribution function of D+σ with around 128 bits of precision
6
; then,

to produce a sample, generate a random value in [0, 1] with 128

bits of precision, and return the index of the first entry in the table

greater than that value. In variable time, this can be done relatively

efficiently with a binary search, but this leaks the resulting sam-

ple through memory access patterns. As a result, a constant time

implementation has essentially no choice but to read the entire

table each time and carry out each and every comparison. Since

the table should contain σ
√
2λ log 2 ≈ 2730 entries for BLISS–I, we

are looking at 44 kB’s worth of memory access for every generated

sample. The resulting implementation is obviously highly ineffi-

cient. Other table-based approaches like the Knuth-Yao algorithm

similarly suffer from constant time constraints.

A less inefficient approach, originally proposed by Micciancio

and Walter [33], assumes that we can generate a base Gaussian

distribution D+σ0 with not too small standard deviation σ0, and
allows to then combine samples from that base distribution to

achieve larger standard deviations. For the parameters of BLISS–I,

one can check that the optimal choice is to let σ 2

0
= σ 2

(92+72)(32+22)
.

One can then generate a sample x statistically close to D+σ from

4 samples x0,0, x0,1, x1,0, x1,1 from D+σ0 , as x = 9x0 + 7x1, where
xi = 3xi ,0+2xi ,1. The complete security argument for that approach

is provided in Appendix D. Since σ0 ≈ 4.99 is much smaller than σ ,
using a CDT approach for the base sampler is more reasonable: the

CDT table now consists of 63 entries of 128 bits each, for a total of

just under 1 kB. Generating a sample requires reading through the

table 4 times, for a total of 4 kB of memory access and 128 bits of

randomness per sample. It turns out, however, that the performance

of the resulting implementation is still underwhelming.

Finally, yet another strategy is to generate a discrete Gaussian

of very small standard deviation, use it to construct a distribu-

tion that looks somewhat like D+σ but is not statistically close,

and use rejection sampling to correct the discrepancy. This is ac-

tually the approach taken in the original BLISS paper [17]. Con-

cretely, what that paper essentially does is sample some x from

the distribution D+σ2 where σ2 = σ/k , and some y uniform in

{0, . . . ,k − 1}. Then, z = kx + y looks “somewhat like” a sample

fromD+σ , and one can check that rejecting z except with probability
exp

(
−y(y+2kx)/(2σ 2)

)
yields a value that actually follows D+σ . As

observed in the BLISS paper, this rejection sampling step is exactly

of the same form as the one used for the overall signing algorithm.

The constant time implementation of that step is described in Sec-

tion 3.1.4 below, and we can simply reuse that work to obtain our

Gaussian sampling. The only ingredient to add is a base sampler

for the distribution D+σ2 , since the one in the original BLISS paper

does not lend itself to a convenient constant time implementation.

Fortunately, choosing k = 256, the standard deviation σ2 ≈ 0.80

is really small, and hence a CDT approach only requires 10 table

entries. In practice, this yields a Gaussian sampling of very reason-

able efficiency, whose cost is dominated by the cost of the rejection

6
Even taking Rényi divergence arguments into account, at least 117 bits are needed

for 128-bit security.
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sampling step, and of the generation of the uniform randomness.

This is the approach we choose for our implementation. Its security

directly follows from that of the rejection sampling (see Section 4

for technical details).

Finally, we note that the precision with which CDTs are repre-

sented can be reduced if we rely on conditional distribution functions

(CoDF) instead, as suggested in [37]. Doing so allows replacing 128-

bit comparisons (implemented as three 64-bit comparisons) with

a single 64-bit comparison for each table element. Unfortunately,

it also requires generating uniform randomness for each table ele-

ment as well; the resulting performance hit far exceeds any gain

from the reduced precision of operations.

3.1.2 Ringmultiplications. As usual in ideal lattice-based schemes,

ring multiplications such as the one in Step 3 of Figure 1 are car-

ried out using the number-theoretic transform (NTT). Since the

NTT does not use any secret-dependent conditional branches or

memory accesses, constant-time implementation does not pose

any particular difficulty. In our case, we directly adapt the NTT

from the reference implementation of Dilithium, which uses the

bit-reversed order for coefficients in the NTT domain, lazy modular

reductions, and the Montgomery representation for values modulo

q. Only a few simple changes are needed compared to Dilithium,

in order to account for the different modulus q = 12289 and the

higher degree n = 512 (instead of q = 8380417 and n = 256 respec-

tively). At the cost of more frequent modular reductions, we could

do the entire computation on 16-bit integers (which could yield

to faster automatic vectorization), but for simplicity, we keep the

32-bit arithmetic from the Dilithium NTT.

The implementation choice for the ring multiplications in Steps 6

and 7 of Figure 1 is less obvious. Indeed, those steps involve the

multiplication of the secret key elements, which are small, by the

hash value c, which has 23 coefficients equal to 1, and the others

equal to 0. Moreover, we can show that, under a non-standard but

reasonable LWE-like assumption, BLISS remains secure even when

u and hence c are made public (including for rejected instances).

It would therefore not jeopardize security to implement the mul-

tiplications s1c and s2c as repeated additions of shifted versions

of s1 and s2, where the memory access patterns in the shifts re-

veal the coefficients of c (but nothing about the secret key vectors

themselves). Interestingly, however, it turns out that, at least on

our target platform, implementing the multiplications that way is

not faster than using the NTT, probably because the NTT has a

much better cache locality. As a result, all ring multiplications in

our implementation simply use the NTT.

3.1.3 Ring-valued hashing. Step 4 of the signing algorithm in

Figure 1 computes the “challenge” ring element c = H (⌊u⌉d mod

q, µ) from the “commitment” u and the input message µ. That ring
element should be a polynomial uniformly sampled among those

with κ = 23 coefficients equal to 1, and all other coefficients equal

to 0. To construct such a polynomial, we first pass the inputs of H
to an extendable output function (XOF), in our case SHAKE128, and

then use the resulting random stream to sample the list (i1, . . . , iκ )
of indices in c equal to 1.

Concretely speaking, we again follow Dilithium’s approach,

which proceeds as follows. We pick i1 uniformly in {0, . . . ,n − κ}.
Then i2 is chosen uniformly in {0, . . . ,n−κ+1}, and if it happens to

collide with i1, it is set to n−κ + 1 instead. Continuing, ik is chosen

uniformly in {0, . . . ,n − κ − 1 + k}, and replaced by n − κ − 1 + k
if it coincides with one of the previous values. It is easy to check

that {i1, . . . , iκ } is then a uniformly distributed κ-element subset

of {0, . . . ,n − 1} as required.
However, Dilithium’s implementation of this strategy is not in

fact constant-time, as it works by updating an n-element array and

modifying the elements at indices ik and n − κ − 1 + k for each k .
As a result, the algorithm leaks the entirety of c through memory

accesses. This is not a critical problem, since as we have mentioned,

the values u and hence c are not really sensitive in BLISS (security

is still achieved for the variant in which those values are revealed,

albeit under a less standard hardness assumption).

Nevertheless, in order to avoid relying on additional assumptions

compared to the original BLISS paper, we opt for a completely

constant time implementation of the same approach instead. Our

idea is to add ik to the list of previously obtained indices using a

constant-time insertion sort, and do a constant-time swap between

ik and n − κ − 1 + k in case a collision occurs. In principle, that

approach has quadratic complexity in κ, but since κ is so small, the

overhead is negligible: we find that our constant-time approach is

only a few thousand cycles slower than the variable time algorithm

(about 1–2% of the entire running time of signature generation).

3.1.4 Rejection sampling. Finally, the last step we need to imple-

ment in constant time is the rejection sampling. In other words, at

the end of the signature generation algorithm, we need to sample

bits bexp and b
1/cosh that take the value 1 with probability

pexp = exp

(
−
K − ∥Sc∥2

2σ 2

)
and p

1/cosh = 1/cosh
( ⟨z, Sc⟩

σ 2

)
respectively (where K is a known constant).

To do so, the approach taken in the original BLISS paper relies

on iterated Bernoulli trials with known constant probabilities for

bexp, and recursively calls this exponential sampling algorithm to

sample b
1/cosh. Again, the variable time nature of these algorithms

has led to multiple attacks.

As mentioned in [22], it is relatively easy to modify the function

SampleBernExp from Figure 3 to run in constant time: simply carry

out every iteration every time, and accumulate the results of the

Bernoulli trials using constant time logic expressions. However,

the performance penalty of doing so is significant, due to the lack

of early aborts. This is not a serious problem for the rejection

sampling step itself, since it is only carried out a handful of times

per signature. However, since this exponential rejection sampling

function is also called as part of Gaussian sampling (as we recall

from Section 3.1.1 above), any slow down will strongly affect the

running time of the entire signature generation. Moreover, while

the bexp part can be made constant time, doing so is much harder

for b
1/cosh, as we have discussed in Section 2.

An alternate approach is to simply evaluate the values pexp and

p
1/cosh with sufficient precision, and compare them to uniform

random values in [0, 1]. The challenge is to do so in constant time,

using only integer arithmetic. In particular, we cannot rely on

floating point implementations of transcendental functions like exp

and cosh.
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The approach we take is to replace the exp function by a suf-

ficiently close polynomial approximation, and similarly for cosh.

Then, pexp can be evaluated in fixed point to sufficient precision

using an application of Horner’s algorithm, entirely with integer

arithmetic; and 1/p
1/cosh can be evaluated using the same code by

expressing cosh in terms of exp. There are several steps involved

in carrying out that strategy:

(1) determine the precision we need to ensure security. To do

so, we use a methodology introduced by Prest [37] based

on the Rényi divergence. It shows that 37 bits of relative

precision suffice for security, provided that the number of

generated signatures is at most qs = 2
64

(as specified in

the NIST competition).

(2) compute a polynomial approximation of f : x 7→ exp

(
x/(2σ 2)

)
on the required interval that achieves the relative precision

we need. To do so, we introduce a novel technique based on

lattice reduction for the Sobolev Euclidean norm on poly-

nomials. This technique lets us precisely control the shape

of the polynomial we get, in order to ensure that Horner’s

algorithm can be applied without any overflow using 64-bit

integer arithmetic. Compared to earlier techniques such as

the L∞ approximations of Brisebarre and Chevillard [10],

it also has the advantage of eliminating heuristics (since a

bound on the Sobolev norm directly yields a bound on the

functional ∥ · ∥∞ norm), and of avoiding the computation

of minimax polynomials (since the closest polynomial in

the Sobolev norm can be obtained using a simple Euclidean

projection).

(3) extend the range of that polynomial approximation in or-

der to support the larger interval required for the cosh

computation (as well as for the rejection step in Gaussian

sampling). This is done by computing a constant c such that

f (c) is very close to 2, so that f (k ·c +x) = f (c)k · f (x) can
be easily obtained from f (x) using small multiplications

and shifts.

(4) deduce an algorithm for the cosh part of the rejection sam-

pling. The nontrivial point here is that we end up eval-

uating a good approximation of p′ = 1/p
1/cosh. Testing

if u < p
1/cosh, for some u ∈ [0, 1], reduces to testing if

u · p′ < 1. The multiplication involves numbers with over

37 bits of precision, however, so the result does not fit

within 64 bits, and thus requires some degree of bit fid-

dling. Intermediate conditional branches also need to be

written in constant time.

Full technical details regarding these various steps are provided

in Section 4 below.

The idea of using polynomial approximations to evaluate pexp
already appears in earlier work: as part of the FACCT Gaussian

sampler described in [44]. In particular, our own Gaussian sampler

can be seen as a variant of FACCT. There are multiple differences

between our works, however: in particular, FACCT relies on floating

point arithmetic, which we specifically seek to avoid,
7
and uses

off-the-shelf software to obtain a double precision floating point

7
We think the argument from [44] to the effect that floating point multiplications

are constant time is overly optimistic. As mentioned earlier, this is not true on some

older x86 platforms, to say nothing of more exotic, more lightweight or FPU-less

architectures.

Table 2: Performance results and comparison (kcycles).

LQ Median UQ Const. time?

Dilithium (ref) 286 515 1526 !

Dilithium (avx2) 142 332 428 !

Original BLISS 188 194 313 %

Our implementation 192 194 217 !

polynomial approximation of the function f . Moreover, since it

focuses on Gaussian sampling, that paper does not directly address

the cosh issue.

3.2 Security and performance
Using the techniques described above, we wrote a constant-time

implementation of BLISS in portable C (specifically for the BLISS–I

parameters), that can be found in [5]. We now provide some data

regarding its performance, and provide a short formal treatment of

its security.

We point out that our code only implements signature generation

in constant time. Obviously, signature verification does not manip-

ulate any secret, and hence does not need to be made constant time;

however, one may wish to ensure that key generation is constant

time as well. We have not attempted to do so, since key generation

is carried out much less often and usually in much more controlled

conditions than actual signing. However, it is not difficult to modify

our implementation to make key generation constant time as well.

The building blocks involved are briefly discussed at the end of this

section.

3.2.1 Performance measurement and comparison. Our imple-

mentation is written for the SUPERCOP toolkit for measuring cryp-

tographic software performance [6]. Accordingly, it follows the

SUPERCOP API, and uses the corresponding utility functions for

operations like randomness generation (for which SUPERCOP au-

tomatically selects the most efficient machine-specific candidate, in

our case ChaCha20). We therefore use SUPERCOP’s latest version

as of this writing
8
to evaluate the performance its performance

on our testbench platform, and compare its speed with the closest

competitor Dilithium on the same machine.

We also provide a comparison to Ducas and Lepoint’s original,

variable-time implementation of BLISS on the same platform [19].

Unfortunately, that implementation does not follow the SUPER-

COP API, so the comparison is not entirely apples to apples: on

the one hand hashing and randomness generation are carried out

with OpenSSL’s implementation of SHA2 (instead of SHAKE128

and ChaCha20 respectively); on the other hand, all the serializa-

tion routines required by SUPERCOP are omitted. On balance, this

should not strongly bias the comparison in either direction.

Our testbench platform is an Intel Xeon Platinum 8160-based

server (Skylake-SP architecture) with Ubuntu 18.04 and gcc 7.3.0

with the default SUPERCOP compiler options (-march=native
-mtune=native -O3 -fomit-frame-pointer -fwrapv), with hy-

perthreading disabled and scaling governor set to performance.
The choice of machine may seem overkill, but it was the newest

8
https://bench.cr.yp.to/supercop/supercop-20190110.tar.xz

8
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CPU we had access to, and hence made it possible to compare

our portable C implementation with the hand-vectorized AVX2

implementation of Dilithium available in SUPERCOP.

Performance results are presented in Table 2: they indicate the

lower quartile, median and upper quartile cycle counts measured

by SUPERCOP (or in the case of BLISS, measured by the RDTSC

instruction) for the signature of a 59-byte message, which is the

standard performance figure presented on the eBATS website. The

Dilithium performance numbers are for the fastest parameter set

available in SUPERCOP, namely the dilithium2 implementation,

corresponding to “medium” security parameters in [18] (no imple-

mentation is provided for the “weak” parameters); we give timings

both for the portable C (ref) and AVX2 platform specific (avx2)
implementations.

As we can see in the table, we achieve a performance level very

similar to the original, variable-time BLISS implementation, while

preventing the serious timing attack vulnerabilities exposed in

multiple papers so far.

In addition, our implementation is almost 3 times faster than

the portable C implementation of Dilithium, and even outperforms

the AVX2 implementation by a significant margin, while providing

even stronger constant-time guarantees (since the Dilithium ring-

valued hash function presents a mild timing leakage that causes

the security in the constant-time model to rely on non-standard

assumptions). Admittedly, the Dilithium parameters were derived

using a more conservative methodology for assessing the cost of lat-

tice attacks, and hence probably achieve a significantly higher level

of security against them. Nevertheless, according to Wunderer’s re-

cent reevaluation [43] of what is likely the strongest attack against

BLISS (namely the Howgrave-Graham hybrid attack), it is reason-

able to think that BLISS–I does reach its stated security level of

around 128 bits.

Note that the “Const. time?” column in Table 2 indicates whether

the implementation satisfies constant-time security guarantees (i.e.

the absence of secret dependent branches and memory accesses).

This is of course achievablewithout having strictly constant running

time, since secret-independent branches and loops are permitted

and heavily relied on in Fiat–Shamir with aborts-type schemes.

3.2.2 Security argument. Let us now try and formalize the con-

stant time security guarantees that we claim are provided by our

implementation. To do so, we introduce the notion of existential un-

forgeablity under chosen message attack in the constant-time model

(CT-EUF-CMA), which combines standard EUF-CMA security prop-

erty with the security in the constant-time model. It can be seen

as a constant-time model counterpart of the “EUF-CMA in the d-
probing model” notion introduced in [4] in the context of masking

security.

Definition 3.1. An implementation (KeyGen, Sign, Verify) of a
signature scheme is EUF-CMA-secure in the constant-time model,

or CT-EUF-CMA secure for short, if any PPT adversary has a negli-

gible winning probability in the experiment from Figure 4. In that

security experiment, ExecObs is a universal RAM machine that

takes as input an algorithm and its arguments, executes the pro-

gram, and outputs the result of the computation together with the

timing leakage L , consisting of the sequence of visited program

points and memory accesses.

Adversary Challenger

(KeyGen,Sign,Verify)
←−−−−−−−−−−−−−−−−−−

pk

←−− (sk, pk) ← KeyGen(1λ)

q queries



µ (1)
−−−→ (

σ (1),L (1)Sign

)
← ExecObs(Sign, µ(1), pk, sk)

σ (1), L (1)

Sign
←−−−−−−−−−

...
µ (q)
−−−→ (

σ (q),L
(q)
Sign

)
← ExecObs(Sign, µ(q), pk, sk)

σ (q), L (q)
Sign

←−−−−−−−−−−

forgery

{ µ∗, σ ∗
−−−−−→

b ← Verify(pk, µ∗,σ ∗) ∧ (µ∗ < {µ(1), . . . , µ(q)})

Figure 4: The CT-EUF-CMA security game.

In the context of that definition, the constant-time properties

discussed in Section 3 above can be summed up as follows.

Proposition 3.2. For any execution of our implementation of

the signature generation

(
σ ,LSign

)
← ExecObs(Sign, µ, pk, sk), the

leakage LSign can be perfectly publicly simulated from the number

of executions the main loop (Steps 2–8 of Figure 1).

Proof. Indeed, we have made sure that each step of algorithm,

except for the execution or not of the rejection sampling, is devoid

of secret-dependent branches or memory accesses. As a result, the

sequence of visited program points and memory accesses from

each step is perfectly publicly simulatable, and the overall leakage

LSiдn is obtained from repeating those simulations a number of

times equal to the number of executions the main loop. □

From that result, together with the security of the rejection

sampling, we can deduce that our implementation achieves CT-

EUF-CMA security.

Theorem 3.3. The CT-EUF-CMA security of our implementation

in the random oracle model tightly reduces to the standard EUF-CMA

security of BLISS.

Proof. There are three hybrids to this security argument.

First, by Proposition 3.2, we can replace the CT-EUF-CMA se-

curity game by a game in which the signing oracle simply returns

pairs (σ , ℓ) where the value ℓ is the number of execution the main

signing loop when generating the signature σ .
Then, in a second hybrid, we replace the approximate discrete

Gaussian distributions for y1, y2 and the approximate values of

the rejection probabilities computed by our implementation by the

values. The Rényi divergence estimates of Section 4.1 below prove

that the advantage of an adversary in distinguishing this hybrid

from the previous one is negligible.

Finally, since the ring-valued hash function H in Figure 1 (or

at least the XOF it uses internally) is modeled as a random oracle,

one can easily show that the value ℓ exactly follows a geometric

distribution of parameter 1/M , whereM is the constant appearing in

Step 8 of Figure 1. This is already noted in the original BLISS paper [,

Lemma 2.1], and follows from a general result of Lyubashevsky [30,

Lemma 4.7]. Since the constantM is public, there is zero difference

in advantage with another game in which the value ℓ is removed

9



1: function Nκ (S)
2: T← St · S
3: T′ ←

(
NetworkSort(T1) |... |NetworkSort(Tn )

)
▷ where Ti

are the columns of T
4: (vk )0≤k≤n ← (

∑j=κ
j=0 T′[k , j])

0≤k≤n
5: v’← NetworkSort(v)
6: return Nκ (S) =

∑j=κ
j=0 v’[j]

7: end function

Figure 5: Computation of Nκ .

from oracle replies. But that game is exactly the standard EUF-CMA

security experiment for BLISS. □

3.2.3 Making key generation constant-time. As we have noted,
our implementation of the key generation algorithm of Figure 2 is

not actually constant time. However, there are no major obstacle

in making it constant time if desired. In this paragraph, we briefly

describe how this can be done.

There are mainly three steps in key generation that are not

trivially constant time: the sampling of the sparse polynomials f
and g in Step 1; the computation of the value Nκ (S) in Step 4; and

the ring division in Step 5. Note on the other hand that the rejection

sampling in and of itself is not problematic, because any secret

generated at that point is discarded if rejection happens; therefore,

the number of rejections leaks no secret information per se.

To implement the sampling of f and g in constant time, one pos-

sible approach is to use the same algorithm as the one we described

in Section 3.1.3 above for ring-valued hashing. Since the number of

coefficients is larger in this case, the approach is not highly efficient,

but it is not a serious issue for key generation.

Regarding the ring division, we implement it by computing the

NTT of f , and inverting the NTT coefficients modulo q in Mont-

gomery representation. The only change that needs to be done

to make it constant time is to use a constant time version of the

modular inversion, as described e.g. by Bos [8].

Finally, the more subtle problem is to obtain a constant time

implementation of the computation of:

Nκ (S) = max

I ⊂{1, ...,n }
#I=κ

(∑
i ∈I

max

J ⊂{1, ...,n }
#J=κ

(∑
j ∈J

Ti , j
))

where T = ST · S,

As explained in [17, Sec. 4.1], one possible approach to carry out

that computation is to constructT ∈ Zn×n = ST ·S, sort its columns,

sum the κ largest values of each line, sort the resulting vector and

sum its κ largest components. All these operations are naturally

constant-time, except for the sorting steps. To make sure that these

sorts implemented in constant time as well, we suggest to rely on a

data-oblivious sorting algorithm, such as a sorting network. The

resulting constant-time implementation is presented in Figure 5.

4 REJECTION SAMPLINGWITH
POLYNOMIAL APPROXIMATIONS

In the BLISS signing algorithm of Figure 1, candidate signatures

(z, c) are rejectedwith probability 1−1/
(
M exp(−

∥Sc∥2
2σ 2
)·cosh(

⟨z |Sc⟩
σ 2
)
)
.

1: Compute

x1 ∈ I1 :=
[
−
σ 2

α 2
, 0

]
and x2 ∈ I2 :=

[
−
2B2σ
α

,
2B2σ
α

]
such that

x1 = ∥Sc∥2 −
σ 2

α 2
and x2 = 2⟨z |Sc⟩

2: Generate a pair (u1, u2) of fixed-precision numbers

uniformly at random in [0, 1]2

3: Let a = 1 if u1 ≤ exp(
x1
2σ 2
), and a = 0 otherwise

4: Let b = 1 if cosh(
x2
2σ 2
) · u2 ≤ 1, and b = 0 otherwise

5: Return a ∧ b

Figure 6: The BLISS rejection sampling.

As this probability depends on the secret S, we aim at giving a con-

stant time implementation of this rejection step. This construction

relies on polynomial approximation to compute the transcendental

terms exp(−
∥Sc∥2
2σ 2
) and cosh(

⟨z |Sc⟩
σ 2
) in constant time, as explained

in Section 3 above.

More precisely, in view of the rejection sampling algorithm de-

scribed in Figure 6, our goal is to first determine the number of bits

of precision on the various values involved we need to ensure secu-

rity, and to then construct polynomial approximations of exp and

cosh that make it possible to evaluate the transcendental expression

in Steps 3 and 4 to that level of precision, in constant time, using

only integer arithmetic. As discussed previously, this construction is

carried out using a novel approach based on a Sobolev norm, which

is Euclidean and hence allows us to use lattice reduction techniques

to obtain approximations of our chosen shape easily.

In the following, we first recall the recent results based on Rényi

divergence that we use to evaluate the quality of our approximations.

Afterwards, we aim at deriving a polynomial that approximates

the exponential, and then the hyperbolic cosine. Finally, we wrap

the results in Corollary 4.7 that states the bit security provided by

these approximations.

4.1 Rényi Divergence
In [37], Prest introduces an inequality that evaluates the security

gap between two cryptographic schemes that query an ideal distri-

bution D and an approximate distribution D ′ using Rényi diver-

gence.

Definition 4.1 (Rényi Divergence). Let P, Q be two distributions

such that Supp(P) ⊆ Supp(Q). For a ∈ (1,+∞), we define the Rényi
divergence of order a by

Ra (P,Q) =
©«

∑
x ∈Supp(P)

P(x)a

Q(x)a−1
ª®¬

1

a−1

.

In addition, we define the Rényi divergence of order +∞ by

R∞(P,Q) = max

x ∈Supp(P)

P(x)

Q(x)
.

According to [37], by taking a = 2 · λ where λ is the security

parameter of the cryptosystem using D; the following inequation

ensures that the use of the approximate distribution D ′ provides

10



at least λ − 1 bits of security.

R
2·λ(D||D

′) ≤ 1 +
1

4qs
. (2)

The integer qs denotes the maximum number of queries to the

distributions. The NIST suggested qs = 2
64

for the post-quantum

standards.

Lemma 4.2 (Condition of the relative error ([37])). Assume

that Supp(D ′) = Supp(D) and that the cryptosystem using D pro-

vides λ + 1 ≤ 256 bits of security. For qs = 2
64
, the replacement of D

by a distribution D ′ satisfying���D − D ′
D

��� ≤ 2
−37

(3)

ensures at least λ bits of security.

The proof that directly follows [37] is in Appendix E.1.We denote

by K the exponent in Equation 3. This parameter represents the

quality of the approximation using the relative precision. Let us

introduce the notion of polynomial approximation of a distribution.

This is a particular case where D ′ is a polynomial.

Definition 4.3. We denote by P If a polynomial that satisfies

∀x ∈ I ,

�����P If (x ) − f (x )f (x )

����� =
�����P If (x )f (x )

− 1

����� < 2
−K . (4)

Such a polynomial is referred to as an approximation that coincides

with f up to K bits of relative precision on I .

4.2 Polynomial approximation of the
exponential

We aim to exhibit a polynomial that approximates function f =

exp

(
.

2σ 2

)
on I1 (defined in Figure 6) that we denote P I1

exp
. The latter

must minimize two parameters, namely

• η, the number of bits of its coefficients,

• γ , its degree,

in order to achieve Equation (4) as tightly as possible. The procedure

is as follows:

(1) In a first attempt, we exhibit a candidate polynomial for

exp whose coefficients are in R. This step gives us the

minimum degree γ that is needed.

(2) In a second attempt, the coefficient of the candidate polyno-

mial are rounded to fulfill the requirement on the number

of bits η.

(1). We start by looking for a polynomial PR in R[x] that ap-
proximates exp. We define the infinite norm as ∥ f ∥∞ = supI | f (x)|
where I is the interval I1. Such a bound is convenient for Equation

(4) as it manipulates function sup. However, the main drawback of

the infinite norm is that it is not Euclidean and then no projection is

defined. One possible efficient method to polynomially approximate

with the infinite norm is introduced in [9]. In the following, we

present a different method which trades efficiency with accuracy:

the approximation consists in the interpolation of a continuous

interval instead of a discrete set of samples. This procedure is more

adapted to our setting since we want an approximation for all x in

an interval I1. To approximate on I1, we can get use of Sobolev H2

inner product. This Euclidean metric was introduced in [42] and

allows an inequality with the infinite norm.

Definition 4.4 (Sobolev H2
inner product). For u and v two dif-

ferentiable functions defined on an interval I , Sobolev H2
inner

product is defined by

⟨u,v⟩ =
1

|I |

∫
I
uv + |I |

∫
I
xu ′v ′.

The corresponding norm |.|
S
is

|u |2
S
=

1

|I |

∫
I
u2 + |I |

∫
I
u ′2.

And we have the following result, whose proof is provided as

supplementary material in Section E.2.

Lemma 4.5. The Sobolev norm |.|
S
satisfies

∥u∥∞ ≤
√
2 · |u |

S
.

Based on this norm, we compute a polynomial PR minimizing���PR(·)/exp (
·

2σ 2

)
− 1

���
S

.

For several possible degrees d , we then compute the orthogonal

projection of the function x 7→ 1 on the space

E
1,d =

{
x 7→ P(x) · exp

(
−x

2σ 2

)
| P ∈ R<d [x]

}
with respect to Sobolev H2

inner product. Let Π denotes the projec-

tion of x 7→ 1 on E
1,d . With Lemma 4.5, ∥Π − 1∥∞ ≤

√
2 · |Π − 1|

S
.

With the application of the log function, a slightly underestimated

quality of the approximation can be obtained as

κ(d) = − log
2

(√
2 ·

��Π − 1��S ) .
Therefore, to achieve a precision K , it is sufficient to select the

degree γ as being the minimum degree d such that

κ(γ ) > K i.e. ∥Π − 1∥∞ < 2
−K

and set PR =Π · exp
(

.
2σ 2

)
.

(2). In order to obtain integer coefficients, we then minimize

the precision loss on the approximation and operate a rounding of

PR using lattice reduction. Concretely, to get an approximation of

exp

(
.

2σ 2

)
with a polynomial in Z[x], the float coefficients must be

rounded into integers of size η (introduced earlier in this Section

4.2). In a nutshell, the idea is to round PR with its closest element in

a Euclidean lattice that represents the elements in Zη [x] ·exp
(
−x
2σ 2

)
.

In this objective, let us create an Euclidean lattice with the following

basis

B1 =
(
2
−η · x i · exp

(
−x

2σ 2

))
i ∈[γ ]

.

Our notion of closeness still refers to the Sobolev norm, which is an

unusual norm for Euclidean lattices. The lattice reduction must be

adapted to use Sobolev norm (using Gramm matrix corresponding

to Sobolev inner product). Then, this lattice can be LLL-reduced
9

with respect to the Sobolev H2
norm. And a Babai rounding of the

polynomial Π with respect to the same Sobolev H2
norm gives a

9
A speedup using BKZ was not relevant for the sizes manipulated
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rounded element denoted ΠZ. The quality of the rounding can be

evaluated as

κround(γ ,η) = − log
2

(√
2 ·

��ΠZ −Π��S ) .
Finally, η must be chosen and the degree γ can be modified s.t.

2
−κ(γ ) + 2−κ

round(γ ,η) < 2
−K .

Hence, the following polynomial appears as an approximation

P I1
exp
=ΠZ · exp

(
.

2σ 2

)
∈ Z2η ,γ [x].

whose quality can be checked from Equation (4):

∀x ∈ I1,

���P I1exp(x )−exp( x
2σ 2

)������exp( x
2σ 2

)��� ≤

������ P I1exp−exp( .
2σ 2

)
exp

(
.

2σ 2

) ������
∞
= ∥ΠZ − 1∥∞

≤ ∥ΠZ −Π∥∞ + ∥Π − 1∥∞

≤
√
2 · |ΠZ −Π |S +

√
2 · |Π − 1|

S

= 2
−κ(γ ) + 2−κ

round(γ ,η)

≤ 2
−K .

4.3 Polynomial approximation of the
hyperbolic cosine

The above method to approximate exp

(
.

2σ 2

)
on I1 can be applied

to approximate cosh

(
.

2σ 2

)
on I2. However, the interval I2 is larger,

namely I2 =
[
−
2B2σ
α ,

2B2σ
α

]
≈ [−5534960, 5534960] for BLISS-I. A

direct application gives around 50 coefficients for the integer poly-

nomial (see Appendix E.6 for the polynomial P I2
cosh

obtained with

a direct approximation). This approximation is used for the mask-

ing countermeasure (see Section 5 in the supplementary material).

However, in constant time, shifting the interval with multiplica-

tions is not costly, so we present an optimization in the sequel.

For x ∈ I2, let c = 2σ 2
ln(2), we define t as the remainder of the

following Euclidean division

t(x) = x −
⌈x
c

⌉
c .

By definition, t(x) belongs in I3 := [−c, 0]. Thus, we apply all the

following shifts.

exp

(
x
2σ 2

)
= exp

(
⌊ xc ⌋c
2σ 2

)
· exp

(
t (x )
2σ 2

)
= 2
⌊ xc ⌋ exp

(
t (x )
2σ 2

)
.

We thus define P I2
cosh

as

P I2
cosh
(x) =

2
⌊ xc ⌋ · P I3

exp
(t (x)) + 2−⌊

x
c ⌋ · P I3

exp
(−t (x))

2

where P I3
exp

is the approximation of the exp

(
.

2σ 2

)
on I3 as obtained.

Remark 1. Since the difference between I1 and I3 is small, we

only compute P I3
exp

for both. Indeed, since I1 ⊂ I3, P
I3
exp

satisfies both

approximations.

Lemma 4.6. If P I3
exp

is a precision K approximation then, P I2
cosh

is a

precision (K-1) approximation.

Computations are provided in Section E.3. Note that the factor

2
⌊ xc ⌋ can be computed exactly in constant time in a fast way because⌊ x
c
⌋
≤ 86. Namely, it consists in at most 86 shifts.

Bit precision of the inputs and intermediate values. Prest’s
requirement in [37] imposes K > 37. To achieve Equation (3), the

precision of the exact elements x1 and x2 must be defined to be

at least 37 bits of precision. Actually, to overcome a precision loss

while evaluating the polynomial (with an algorithm such as Horner),

our experiment shows that increasing the precision of x1, x2 with
a margin of 2 extra bits is enough to reach 37 bits. Then, we choose

K = 40 so that the approximation for exp

(
.

2σ 2

)
(resp. cosh

(
.

2σ 2

)
)

have at least 40 bits precision (resp. 39 bits if we use Lemma 4.6

or 40 for a direct approximation). Thus, in Step 2 of the rejection

sampling procedure, u1 and u2 must be drawn uniformly at random

in I1 and I2 with 40 bits of precision.

For the constant time implementation, we face a precision issue

for applying Lemma 4.6. For an implementation with 64 bits inte-

gers, the value c can be stored with at most 64 − log(x2) = 24 bits

of precision. Thus, exp

(
c

2σ 2

)
is not exactly equal to 2. To preserve

Lemma 4.6’s K − 1 bit security, we add a fix in the implementation

that takes into account the following development:

exp

( c

2σ 2

)
= 2 ·

(
1 + 17933 · 2−43 + o

(
2
46

))
.

4.4 Implementation of the approximation
We provide a SageMath code [5] which takes a function and an

interval I as input and generates a polynomial approximation of

the function on I according to the previously described procedure.

This program was used to generate P I3
exp

, the approximation of exp

on I3 = [− ln(2), 0] and P I2
cosh

, the direct approximation of cosh

on I2 = [−
B2

σα ,
B2

σα ]. Given the refinement provided for cosh ap-

proximation, the direct approximation is not used for the constant

time implementation. Although, it is suited for the masking of the

Rejection Sampling of Section C.2.2.

Remark 2. We actually added some granularity on η and turned

it into a vector that indicates the number of bits for each coefficient

of the polynomial. This makes it possible to select more precision on

the high degree coefficients and less on the lower degree ones. In this

setting, η corresponds to the maximum size of the coefficients.

For K = 40 and BLISS-I parameters, we get the parameters{
exp on I3, (γ ,η) = (9, 40)
cosh on I2, (γ ,η) = (94, 78).

Note that P I2
cosh

has only 47 coefficients due to its symmetry. The

description of the polynomials are given in Appendix E.6.

4.5 General polynomial approximation result
In conclusion, we found P I3

exp
(resp. P I2

cosh
) that coincides with the

distribution exp

(
.

2σ 2

)
(resp. cosh

(
.

2σ 2

)
) on interval I3 (resp. I2)

up to 37 bits of relative precision. Formally, for all x ∈ I3 and I2

12



respectively, we get�������
P I3
exp
(x) − exp

(
x
2σ 2

)
exp

(
x
2σ 2

)
������� ≤ 2

−37
and

�������
P I2
cosh
(x) − cosh

(
x
2σ 2

)
cosh

(
x
2σ 2

)
������� ≤ 2

−37.

These equations allow to introduce a general result on polynomial

approximation for BLISS that is derived from Lemma 4.2.

Corollary 4.7 (Polynomial approximation for BLISS). As-

sume that an instance of BLISS signature scheme has λ + 1 ≤ 256 bits

of security under certain hypotheses and that the maximum amount

of signature queries of an attacker is qs = 2
64
. The modification of

BLISS where

• exp

(
.

2σ 2

)
is replaced by P I3

exp
in step 3 of Figure 6

• cosh

(
.

2σ 2

)
is replaced by P I2

cosh
in step 4 of Figure 6

• exp

(
.

2σ 2

)
is replaced by P I3

exp
in the Bernoulli sampling for

the Gaussian generation (Step 4 of Algorithm 11 in [17])

ensures at least λ bits of security for the same hypotheses.

5 HIGH ORDER MASKING OF BLISS
In this section, BLISS is turned into a functionally equivalent scheme

which is both constant-time (from the previous sections) and secure

against more powerful side-channel attacks which exploit the leak-

age of several executions. This can be done after a preliminary step

in which BLISS is slightly tweaked into a new scheme referred to

as u-BLISS which outputs u even in case of failure. Then, only the

key derivation scheme and the signature scheme must be protected,

since the verification step does not manipulate sensitive data.

5.1 Side-Channel Attacks and Masking
Theoretical leakage models have been introduced in order to prop-

erly reason on the security of implementations exposed to side-

channel attacks. The probing model or ISW model from its inven-

tors [26] is undoubtedly the most deployed. In a nutshell, a crypto-

graphic implementation is d-probing secure iff any set of at most d
intermediate variables is independent from the secrets. This model

is practically sound from the reduction established in [16] and

also convenient to prove the security of an implementation as it

manipulates finite sets of exact values.

The masking countermeasure, which performs computations

on secret-shared data, appears as a natural countermeasure in this

landscape. Basically, each input secret x is split into d + 1 variables
(xi )0≤i≤d referred to as shares. d of them are generated uniformly

at random whereas the last one is computed such that their additive

combination reveals the secret value x . d is called masking order

and represents the security level of an implementation.

While the conceptual idea behind the masking countermeasure

is pretty simple, implementing it to achieve d-probing security

has been shown to be a complex and error-prone task. Although

it is straightforward on linear operations on which masking is

equivalent to applying the original operation on each share of the

sensitive data, the procedure is much more complicated on non-

linear functions. In the latter, the mix of shares to compute the

result makes it mandatory to introduce random variables and the

bigger the program is, the more dependencies to be considered. This

is why Barthe et al. formally defined in [3] two security properties,

namely non-interference and strong non-interference, which (1) ease

the security proofs for small gadgets (as algorithms operating on

shared data), and (2) allows to securely combine secure gadgets by

inserting refreshing gadgets (which refresh sharings using fresh

randomness) at carefully chosen locations
10
. In a nutshell, a gadget

is d-non-interfering (d-NI) iff any set of at most d observations

can be perfectly simulated from at most d shares of each input. A

gadget is d-strong non-interfering (d-SNI) iff any set of at most

d observations whose dint observations on the internal data and

dout observations on the outputs can be perfectly simulated from

at most dint shares of each input. It is easy to check that d-SNI
impliesd-NIwhich impliesd-probing security. An additional notion
was introduced in [4] to reason on the security of lattices-based

schemes in which some intermediate variables may be revealed to

the adversary. Intuitively, a gadget with public outputs X is d-non-
interfering with public outputs (d-NIo) iff every set of at most d
intermediate variables can be perfectly simulated with the public

outputs and at most d shares of each input.

Letu-BLISS be the variant of BLISS that outputsu even in case of

failure. The following sections justify the security of u-BLISS and
prove the probing security of the key derivation and the signature

procedures from the security properties fulfilled by their gadgets

among d-NI, d-NIo, and d-SNI.

5.2 Overall Structure
To achieve d-probing security, we need to carefully mask both the

key derivation scheme and the signature scheme. For the sake of

clarity, we focus on a single iteration of the latter. In other words,

from now on, the signature algorithm considered is the same as in

Figure 1 except that if the rejection sampling asks for a restart, the

algorithm output ⊥. The masking can be generalized by calling the

masked signature algorithm when it fails.

For efficiency purposes, our masking countermeasure splits each

sensitive data into d + 1 shares, namely y1, y2, s1, s2, z1, z2, and
the intermediate variables that stricly depend on them. The public

variables (a1, a2) (i.e., the public key), µ (i.e., the message), RejSp
(i.e., the bit corresponding to the success of the rejection sampling),

f ail (i.e., the bit corresponding to the success of the public key

generation), (z1, z2, c) (i.e., the signature) are left unmasked. Fur-

thermore, because anyone can recombine ⌊u⌉d mod p, even if u is

an intermediate value, it is considered as a public output, as well as

bits RejSp and f ail .

Decompositions into sub-gadgets are provided in Figure 7 for

the key derivation scheme and in Figure 8 for the signature scheme.

Some of these sub-gadgets are either trivial to mask or an effi-

cient masked version is already provided in [4]. Efficient masked

versions are designed for the other ones in section C.2. To further

achieve global probing security for the signature, two calls of a

d-SNI refreshing gadget are inserted at the outputs of Sign’s calls
for the signature. Table 3 recalls the security property achieved

by the masked version of each one of the sub-gadgets used in the

10
Notice that non-interference was already used in practice [15, 40] to prove probing

security of implementations.
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SkGen

PkGen

PolyGen

PolyGen

RSKG FailTestKG

Lin Unmask GenA

(fi )0≤i≤d

(дi )0≤i≤d (Si )0≤i≤d

(aq )0≤i≤d (a1)0≤i≤d
a1

pk

f ail
Re jSp

(Si )0≤i≤d
or ⊥

(Si )0≤i≤d

Figure 7: Masked BLISS key generation (The white (resp.
blue, red) gadgets will be proved d-NI (resp. d-NIo with pub-
lic outputs, unmasked))

key derivation scheme, the signature scheme, or both. In all these

reported cases, masking is efficiently performed either through a

Boolean sharing or an arithmetic sharing coming with a dedicated

modulus, depending on the sub-gadget and the manipulated data.

To go from one sharing to another while preserving the d-probing
security, we need to apply a conversion algorithm. An efficient

algorithm between Boolean and arithmetic sharing for a non-prime

modulus is already defined in [4]. Two tweaks to convert between

two arithmetic sharings with different non-prime moduli are dis-

cussed afterwards.

Table 3: Gadgets and their security properties

Key Derivation

Gadget Property Reference

PolyGen d -NI sec. C.2

PkGen d -NIo sec. C.2

SkGen d -NI sec. C.2

RSKG d -NIo sec. C.2

FailTestKG d -NI sec. C.2

Lin d -NI sec. C.2

Unmask d -NIo [4]

GenA none

Signature

Gadget Property Reference

GaussGen d -NI sec. C.2

Comm d -NI [4]

Unmask d -NIo [4]

Hash none

BitGen d -NI sec. C.2

Sign d -NI [4]

Refresh d -SNI [26]

RS d -NIo sec. C.2

FailTest d -NI sec. C.2

The security of masked key derivation and signature schemes as

displayed in Figures 7 and 8 with gadgets’ security properties in

Table 3 is captured in Theorems 5.1 and 5.2. Proofs are given in the

supplementary material (sections C.1.1 and C.1.2, and C.2 for the

individual gadgets).

Theorem 5.1. The masked u-BLISS key generation algorithm is

d-NIo secure with public outputs pk , RejSp, and f ail .

Theorem 5.2. The masked u-BLISS sign algorithm is d-NIo secure

with public outputs u, RejSp, and f ail .

Theorems 5.1 and 5.2 allow to reduce the EUF-CMA security of

the BLISS signature scheme masked at order d in the d-probing
model and in the random oracle model to the EUF-CMA security

of the u-BLISS variant of the scheme in the random oracle model.

Based on the work of [4] we can prove that the security of u-
BLISS reduces to the EUF-CMA security of the orginal BLISS scheme

by introducing a mild computational assumption which is close

to the classical LWE problem. This problem informally states that

distinguishing the output distribution of u when a rejection occurs

from the uniform distribution on R2q is hard.

It can seem artifical and ad-hoc to introduce such a new problem.

However we can avoid it by hashing not u but f (u) for some statis-

tically hiding commitment f (which can itself be constructed under

standard lattice assumptions). The downside of that approach is

that it has a non negligible overhead in terms of key size, signature

size, and to a lesser extent signature generation time.
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A BLISS CONCRETE PARAMETERS

BLISS- 0 I II III IV

n 256 512 512 512 512

q 7681 12289 12289 12289 12289

δ1, δ2 .55 , .15 .3 , 0 .3 , 0 .42 , .03 .45, .06

Bits dropped 5 10 10 9 8

κ 12 23 23 30 39

α 0.5 1.0 0.5 0.7 0.55

Table 4: Practical instanciations of BLISS

B TIMING ATTACK: FURTHER DETAILS
B.1 Omitted pseudocode

1: Collectm traces (zi, ci, ti )
2: for i = 0 tom do
3: if ti = 0 thenW ← ciz∗i · ciz

∗
i
T end if

4: end for
5: S←

$
N(0, 1)n ; S← S

∥s0 ∥
6: for i = 0 to K then
7: S←W −1S; S← S

∥s0 ∥
8: end for
9: return round(

S
∥S∥N )

Figure 9: First timing attack on Bernoulli sampler.

1: A← [w1 | · · · |wm ]

2: s0 ←$
N(0, 1)n

3: for i = 0 to K then
4: s0 ← AT diag(y1, . . . , ym )As0
5: s0 ← (ATA)−1s0
6: s0 ←

s0
∥s0 ∥

7: end for
8: s0 ←

s0
∥s0 ∥

N
9: return rounding(s0)

Figure 10: Spectral initializer algorithm.

This appendix includes the pseudocode for the various algo-

rithms involved in the attacks of Section 2.

B.2 Convergence behavior
In 13 we present the result of an experiment picturing the distance

of each coefficient of the candidate secret from the lattice 2Z before
the final rounding, for both of the proposed attacks.

A striking observation is that the descent attack pushes way

more the distances towards either 0 or 1 and as such makes it easy

1: t ← 0

2: do
3: st+1 ← st −

µt
m∥s0 ∥2

∑m
r=1( | ⟨wr , st ⟩ |2 − yr )(wrwt

r )st
4: t ← t + 1
5: while ∥st − st+1 ∥ > ϵ
6: return S

Figure 11: Wirtinger flow descent algorithm.

1: Collectm traces (zi, ci, ti )
2: for i = 0 tom do
3: yi ←

(
argmaxx Li (ti )

)
2

4: end for
5: s0 ← Spectral initialization (Alg. 10)

6: S← Descent(s0) (Alg. 11)
7: return S

Figure 12: Timing attack on Bernoulli sampler

to localize the coefficients that are prone to be problematic. Indeed

setting a threshold at 0.5 clearly discriminates the "good" coeffi-

cients form the potentially problematic ones. On the contrary, the

situation is waymore blurry in the other attack, where the distances

are much more close to 0.5. As such being able to distinguish the

"good" coefficients from the "bad" ones is much more difficult in

order not to create false positives.

As a consequence, it is experimentally less costly to rely on

MitM technique to resolve the errors in this latter case as setting a

threshold too low would imply reducing lattices of dimension too

large.

C MASKING
C.1 Proofs of the overall security

C.1.1 Proof of Theorem 5.1.

Proof. From Table 3, all the sub-gadgets involved in the compu-

tation of the key derivation are either d-NI secure, d-NIo secure, or

they do not manipulate sensitive data. In all cases, this means that

no probing attack can be performed on only one of these gadgets.

We prove here the d-probing security with outputs of their com-

position. In the d-probing model, we assume that an attacker has

access to δ ≤ d exact variables in the whole execution of the key

derivation. Then, we want to prove that all these δ observations

can be perfectly simulated with at most δ shares of each secret

and the public variables. We consider the following distribution

of the attacker’s δ observations: δ1 (resp. δ2) on the instance of

PolyGenwhich produces f (resp. д), δ3 on SkGen, δ4 on RSKG, δ5 on
PkGen, δ6 on FailTest, δ7 on Lin, δ8 on Unmask, and δ9 on GenA,
such that

∑
9

i=1 δi = δ .

As first demonstrated in [3], we build the proof from right to

left. GenA only manipulates non-sensitive data, so any of the δ9
observations are non-sensitive as well and can be revealed. Unmask
is d-NIo secure with public output the public key part a1 and does

not return any sensitive variable. Then all its observations can be

perfectly simulated with at most δ8 shares of (a1)0≤i≤d and the

knowledge of the output a1. Lin is also d-NI secure with δ7 internal
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(a) Eigenvalue retrieval

(b) Descent technique

Figure 13: Comparison of the repartition of the distance to
the lattice 2Z.

observations and at most δ8 output observations. As δ7 + δ8 ≤ δ ,
all further observations can be perfectly simulated with at most

δ7 + δ8 shares of aq . FailTest is d-NI secure with δ6 observations.
Thus, the latter can be perfectly simulated with at most δ6 shares
of si and the knowledge of its non-sensitive Boolean inputs. PkGen
is d-NIo secure with δ5 observations on its internal data and at

most δ7 + δ8 observations on its outputs. δ5 + δ7 + δ8 ≤ δ so

all further observations can be perfectly simulated with at most

δ5 + δ7 + δ8 shares of fi and δ5 + δ7 + δ8 shares of дi and the

knowledge of the non-sensitive value RejSp and of its output. RSKG
isd-NIo secure with public output the Boolean valueRejSp. It comes

with δ4 ≤ δ observations on its internal data and its only output is

non-sensitive. All its observations can be perfectly simulated with

at most δ4 shares of si . SkGen is d-NI secure with δ3 observations
on its internal data and at most δ4 + δ6 observations on its outputs.

As δ3+δ4+δ6 ≤ δ , all these observations can be perfectly simulated

with atmostδ3+δ4+δ6 shares of fi andδ3+δ4+δ6 shares ofдi . At the
end, PolyGen is d-NI secure with no inputs. We thus need to check,

for each of its two instances, that the sum of all its observations

does not exceed δ . The instance involving fi gathers δ1 internal
observations and δ5 + δ7 + δ8 + δ3 + δ4 + δ6 output observations.

The instance involving дi gathers δ2 internal observations and

δ5 + δ7 + δ8 + δ3 + δ4 + δ6 output observations. The number of

observations remains less than δ , which concludes the proof. □

C.1.2 Proof of Theorem 5.2.

Proof. From Table 3, all the sub-gadgets involved in the compu-

tation of the signature are either d-NI secure, d-NIo secure, d-SNI
secure, or they do not manipulate sensitive data. In all cases, this

means that no probing attack can be performed on only one of

these gadgets. We prove here the d-probing security with outputs

of their composition. In the d-probing model, we assume that an

attacker has access to δ ≤ d exact variables in the whole execution

of the key derivation. Then, we want to prove that all these δ ob-

servations can be perfectly simulated with at most δ shares of each

secret amongy1,y2, s1, and s2, and the public variables. We consider

the following distribution of the attacker’s δ observations: δ1 (resp.
δ2) on the instance of GaussGen which produces y1 (resp. y2), δ3
on Comm, δ4 on the instance of Unmask following Comm, δ5 on Hash,
δ6 on BitGen, δ7 (resp. δ8) on the instance of Sign involving y1
(resp. y2), δ9 (resp. δ10) on the instance of Refresh which outputs

z1 (resp. z2), δ11 on RS, δ12 (resp. δ13 and δ14) on the instance of

FailTest involving c (resp. z1 and z2), and δ15 (resp. δ16) on the

instance of Unmask involving z1 (resp. z2), such that

∑
16

i=1 δi = δ .

We build the proof from right to left. Unmask isd-NIo secure with
public output both part of the signature z1 and z2. As a consequence,
all the observations from its call involving z1 (resp z2) can be per-

fectly simulated with at most δ15 ≤ δ shares of z1 (resp. at most

δ16 ≤ δ shares of z2) and the knowledge of the signature part z1
(resp z2). The algorithm referred to as FailTest is also d-NI secure.
Thus, all the observations from its call involving z1 (resp z2) can be

perfectly simulated with at most δ13 + δ15 ≤ δ shares of z1 (resp. at
most δ14 + δ16 ≤ δ shares of z2) and the bit RejSp which is public

information indicating whether or not the rejection sampling failed.

The third instance of FailTest involving c does not manipulate

any sensitive data and can be safely left unmasked. Then, RS is

d-NIo secure with public output RejSp and does not return any sen-

sitive element. All the observations performed in this gadget and its

output can be perfectly simulated with at most δ11 shares of each
input among s1, s2, z1, z2, the knowledge of c , which is here public,

and the knowledge of RejSp. Continuing from right to left, we con-

sider both instances of Refresh. From its d-SNI security property

and since the output and local observations are still less than δ , all
observations from its call an be perfectly simulated with at most

δ9 ≤ δ (resp. δ10 ≤ δ ) input shares. Both instances of Sign outputs

variables that are immediately refreshed. Sign is additionally d-NI
secure and has δ9 (resp. δ10) output observations and δ7 (resp. δ8)
internal ones. In both cases the addition of the internal and output

observations remains below δ and the d-NI property makes it pos-

sible to simulate all further observations with δ7 + δ9 ≤ δ shares

of y1,i , s1,i , bi , and the knowledge of c (resp. δ8 + δ10 ≤ δ shares

of y2,i , s2,i , bi , and the knowledge of c). BitGen is d-NI secure and
since it has no inputs, the fact that the δ7 +δ9 +δ8 +δ10 ≤ δ output

observations and δ6 internal observations are less than δ is enough

to guarantee the global security from its location. Hash only manip-

ulates public data. Unmask is d-NIo secure and does not return any

sensitive variable. Then all the observations performed from this
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gadget can be perfectly simulated with at most δ4 shares ofui . Comm
is d-NI secure. δ3 observations are performed on its intermediate

variables, and at most δ4 observations are performed on its outputs.

As δ3 + δ4 ≤ δ , all further observations can be perfectly simulated

with at most δ3+δ4 shares of y1, δ3+δ4 shares of y2 and the knowl-
edge of the public value A. The last step of the proof is to verify

that all the internal and output observations on each instance of

GaussGen are less than δ . Internal observations are respectively δ1
and δ2 while output observations are bounded by δ3 + δ4 + δ7 + δ9
and δ3+δ4+δ8+δ10 which are both less than δ . The d-NIo property
of GaussGen concludes the proof. □

C.2 Masked Gadgets
In this section, we give the masked versions of the sub-gadgets

listed in Table 3 that are involved in the computation of the key

derivation and/or the signature. They come with a sketch of proof

of the property they achieve from Table 3. All the proofs use the

security properties of smaller gadgets together with the composi-

tional properties of [3]. We additionally discuss new methods to go

from one arithmetic sharing to another with a different modulus,

which can be used as independent contributions in other masking

schemes.

C.2.1 Gadgets for Key Generation Scheme. As illustrated on

Figure 7, the masked key generation algorithm can be divided into

eight different sub-gadgets. We briefly describe the sub-gadgets for

which masked version is trivially achieved and we provide deeper

explanations for the more complex ones.

PolyGen. The first masked sub-gadget to be called is PolyGen for
the uniformly random generation of two polynomials f and g with

exactly d1 entries in {±1} and d2 entries in {±2} (Step 2 in Figure 2).

Basically, for each polynomial, we first attribute the d1 first coef-
ficients to 1 and the next d2 coefficients to 2. Then, a d-NI linear

refresh gadget from [40] is applied on the sharing of d + 1 elements

made by the newly generated polynomial and d zeros. Then each

shared coefficient of the polynomial is securely multiplied (using

d-SNI function SecMult from [40]) with an arithmetic sharing of 1

or −1 generated with function BitGen. The last step consists in a

random permutation of these coefficients, as in the constant-time

version.

Lemma C.1. PolyGen is d-NI secure.

Proof. The algorithm does not take any sensitive inputs. We

thus show that any set of δ ≤ d observations can be perfectly

simulated with at most δ shares of each coefficient of the output

polynomial f (resp. g). Since there is no cycle, from the composition

results of [3], it is enough to prove that each sub-gadget is d-NI
to achieve global security. The first generation of coefficients only

manipulates constants. Then, Linear-Refresh is d-NI from [3].

SecMult and BitGen are also proven to be d-NI, respectively in [3]

and further in Lemma C.8. Finally, the random permutation does not

mix coefficients and only switch sharings, it is thus also d-NI. □

RSKG. Once the secret key is generated, a rejection sampling step is

performed (Steps 4 and 5 in Figure 2). Its constant time version is

given in Section 3.2.3. In the masked version, the first step (Step 2

in Figure 5) consists in matrices multiplications where matrices are

defined by s1 and s2. For intermediate multiplications involving s1
and s2 (or their transposes) as operands, function d-SNI SecMult
can be applied. When both operands involve the same part of the

secret key, a secure refreshing function is called prior to the multi-

plication using FullRefresh (refreshing gadget introduced in [26]

and proven to be d-SNI in [3]). Function NetworkSort basically

compares and performs computations on coefficients of matrix T.
Each comparison can be performed using a d-SNI comparison al-

gorithm as given in [4], and the computations can make use of the

d-SNI SecMult function. For each row, theκ first matrix coefficients

are added together via their arithmetic sharings. Finally, a secure

comparison can be performed with a final call to Unmask to safely

output the Boolean value RejSp.

Lemma C.2. RSKG is d-NIo secure with public output RejSp.

Proof. Each step of RSKG is computed with a d-NI or d-SNI
function. Some cycles occur for functions taking as operands two

inputs issued from the same secret element. Nevertheless, they have

no impact since for each such cycle in Step 2, a d-SNI refreshing

algorithm is performed to break dependencies and the additions in

Steps 4 and 6 also manipulates data that are previously refreshed by

d-SNI multiplications. Finally, function Unmask to output a single

Boolean valuemakes function RSKGd-NIo secure with public output
RejSp. □

PkGen. Our masked version of PkGen is a bit more complicated

and we thus give its graphical description in Figure 14. Note that

SecArithBoolModp (SABModP on the figure) was introduced in [4]

and NTT is the classical Number Theoretic Transform and applies

independently on each share. SecIsNull tests whether a shared

value is equal to zero without revealing information on its sharing.

Basically, all the complementary sharings for each bit (by comple-

menting only the first share) are multiplied with function SecMult
and function Unmask is then applied on the result.

FailTest

NTT

NTT

SABModp SecIsNull

SecMult NTT−1

RejSp

(fi )0≤i≤d

(gi )0≤i≤d

f ail = False

f ail = True

⊥

(f̃i , j )0≤j≤n

(g̃i , j )0≤j≤n

(f̃i , j )0≤j≤n

(f̃i , j )0≤j≤n

(hi , j )0≤j≤n

f ail = False

⊥

f ail = True

(aqi )0≤i≤d

Figure 14: Public Key Generation (PkGen) (The green (resp.
white, blue, red) gadgets will be proved d-SNI (resp. d-NI, d-
NIo with public outputs, unmasked))

Lemma C.3. PkGen is d-NIo secure with public output f ail .

Proof. PkGen involves three external functions, namely NTT,
SecArithBoolModp, and SecIsNull. NTT applies independently on
each share and SecArithBoolModp was proven to be d-SNI secure

in [4]. We show that SecIsNull is d-NIo secure. Successive d-SNI
multiplications (i.e., SecMult) are first performed sequentially to
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multiply the complementary of every input bit. Each of these mul-

tiplications applies on the sharing resulting from the previous mul-

tiplication and on the sharing of a new bit. There is no cycle in

this procedure. Then, function d-NIo Unmask is applied on the re-

sult, making the whole scheme SecIsNull d-NIowith pubic output
f ail .

Let us now get back to PkGen algorithm. First, if RejSp is false,
NTT is applied on each share (or linear function of share) indepen-

dently for f andд inputs. Then, thed-SNI function SecArithBoolModp
is applied on the updated variable f , followed by thed-NIo SecIsNull

function. From this point, the current variable
˜f is processed with

д̃ with sharewise product. So far, no intermediate variable depends

on two shares of the same input. Finally, the inversion NTT−1 is

applied on the product result sharewisely to get the output. Since

there is no cycle in the successive calls of these secure functions,

the global algorithm PkGen is d-NIo secure with the public output

f ail . □

Other sub-gadgets. SkGen (Step 3 in Figure 2) only modifies poly-

nomial g with a linear transformation which can thus be applied

separately on each share for the masked version. It returns a shar-

ing of the secret key (s1, s2). Function FailTestKG takes as inputs

Boolean results from PkGen and RSKG and a sharing of the secret

key. It propagates the sharing if and only if both Boolean values are

true, and returns ⊥ otherwise. Its only change from the constant-

time version is the propagation of a sharing instead of the original

secret key. Lin simply doubles variable aq (cf. Step 7 of Figure 2).

In the masked version, it applies this constant-time linear transfor-

mation on each share of its input independently. Function Unmask
simply refreshes its input with FullRefresh (refreshing gadget

introduced in [26] and proven to be d-SNI in [3]) and unmasks the

resulting sharing through a basic addition. Eventually, GenA only

manipulates non-sensitive data and is left unmodified for a masked

implementation.

Lemma C.4. SkGen, FailTestKG and Lin are d-NI secure, and

Unmask is d-NIo secure with public output a1.

Proof. SkGen, FailTestKG and Lin are trivially d-NI secure

as they apply linear transformation on each share independently.

Unmask is d-NIo secure from [4] with public output a1. □

C.2.2 Gadgets for Signature Scheme. Sub-gadgets used in the

masked signature scheme are displayed on Figure 8. A brief de-

scription is given for sub-gadgets that are trivial to mask whereas

deeper explanations are given for the other ones.

GaussGen. As in the constant-time version, the masked Gaussian

generation relies on a table ofw Gaussian values pj . Basically the

idea is to generate a uniform value r and to return the index j such
that pj ≤ r < pj+1. In the masked version, r is a sensitive value
which is generated as a (d + 1) Boolean sharing (ri )0≤i≤d . Then at

each step j , a secure comparison is performed between the sharing

(ri )0≤i≤d and the current value pj . The result of the comparison is

a (d + 1) Boolean sharing (bj ,i )0≤i≤d which represents a value 0

when r < pj or 1 otherwise. This value is safely multiplied with the

complementary of (bj−1,i )0≤i≤d to ensure that the shared value

represents 1 only when pj ≤ r < pj+1. At that point, for 1 ≤

j ≤ w , each sharing (bj ,i )0≤i≤d is multiplied (with SecMult) with
the sharing (j, 0, . . . , 0) on log(w) + 1 bits. Thew resulting Boolean

sharings are all added together share by share. The result is a secure

(d+1) Boolean sharing of index j such thatpj ≤ r < pj+1. A Boolean

to arithmetic conversion is applied to output an arithmetic sharing.

Lemma C.5. GaussGen is d-NI secure.

Proof. Each step of the process above is performed with secure

operations, namely SecMult for logical and or multiplications or

linear transformations share by share. The comparison and the

conversion are provided in [4] and proven to be d-SNI secure. The

global composition contains cycles due to the dependency of the

last additions operands with the common input r . Nevertheless, the
dependency is broken with the use of the d-SNI SecMult function

for the multiplication of each sharing (bj ,i )0≤i≤d with (j, 0, . . . , 0).
□

Sign. Sign corresponds to Steps 6 and 7 of Figure 1. In the masked

version,
˜bi is an arithmetic sharing of (−1)b , and si and yi are

arithmetic sharings of si andyi . A first call to SecMult is performed

between
˜bi and si to safely compute a sharing of (−1)bsi . Then a

linear combination is applied to generate independently each share

of z from a share of the multiplication result, a share of yi, and the

commitment c.

Lemma C.6. Sign is d-NI secure.

Proof. The first multiplication step is perfectly handled with

algorithm SecMult from [40] which was proven to be d-SNI secure
in [3]. The second step is linear and manipulates two independent

inputs (an input of Sign and the output of a d-SNI gadget) share
by share. It is thus d-NI. The absence of cycles makes the masked

version of Sign d-NI secure from the compositional properties

established in [3]. □

RS. The steps which compose the constant-time version of RS are
given in Section 4. They can easily be transformed to ensure d-
probing security. Step 1 computes two elements x1 and x2 from
sensitive values s and z. Multiplications must be processed with

function SecMult in the masked version. As for Step 2, two sets of

d + 1 Boolean shares are generated at random in {0, 1} to represent

the secret bits u1 and u2. Steps 3 and 4 require the computation of

exp(x1) and cosh(x2) with x1 and x2 sensitive values shared in Step

1. Thanks to the polynomial approximation of these two functions,

as described in Section 4, the evaluation of exp and cosh for these

two sharings is only a combination of linear squarings and SecMult
operations. As for their comparison with functions of u1 and u2,
the computed arithmetic sharings are first converted into Boolean

sharings as suggested in [4] (sharing of u1 can be first converted

into an arithmetic masking to be subtracted to exp(x1) and allows

a comparison with public values). Then, a secure comparison is

performed between Boolean sharings and outputs two masked bits

of a and b. Finally, the last multiplication in Step 5 is computed

with SecMult, before a call to Unmask outputs RejSp.

Lemma C.7. RS is d-NIo secure with the public output RejSp.

Proof. All the steps in RS are either d-NI secure (random gener-

ations of Boolean sharings), d-NIo secure (Unmask) or d-SNI secure
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(masking conversions, comparisons, polynomial evaluation, and

multiplication). Thus, it is enough that each cycle is properly han-

dled. Basically, the algorithm produces one cycle since the logical

and of both Boolean values a and b takes as input variables that

both depend on the secret key. Nevertheless, both multiplication

inputs are refreshed with d-SNI gadgets which is enough to break

the dependency. □

Other Gadgets. The commitment function Comm takes as inputs

two arithmetic sharings and the public key. The linear transfor-

mation applied in the unmasked version (Step 3, Figure 1) is here

applied on each share of the secret inputs. As proven in [4], func-

tion Unmask is d-NIo secure with public output a signature part

or u. Hash applies on a public output, so it is left unchanged in

the masked version. BitGen first generates d + 1 bits uniformly at

random to build a Boolean sharing of a value in {0, 1}. The result-

ing sharing is then converted into an arithmetic sharing using the

secure conversion method provided in [4]. In the masked version

of the signature, FailTest simply returns ⊥ if RejSp is true and

the input sharing (zi )0≤i≤d or c otherwise.

Lemma C.8. Comm, BitGen, and FailTest are d-NI secure and

Unmask is d-NIo secure with the public output a signature part or u.

Proof. Functions Comm and FailTest manipulates shares sepa-

rately and thus are trivially d-NI secure. The first step of BitGen
separately generates uniform random bits. They are then processed

in a d-SNI secure conversion function as proven in [4]. BitGen is
thus (at least) d-NI secure. Unmask is d-NIo secure from [4] with

public output u or the signature. □

C.2.3 Masking Conversion. The state of the art provides efficient

techniques to convert Boolean masking into arithmetic masking

with power-of-two modulus and the reverse for higher-order im-

plementations [14]. A recent paper additionally extends these tools

to convert from Boolean masking to arithmetic masking with any

modulus [4]. To efficiently mask the polynomial approximation in

our constant-time implementation of BLISS, we need an unusual

conversion between arithmetic masking with a modulusq and arith-
metic masking with a modulus q′ ≫ q. Our approximations being

of high degrees, we need to update our modulus accordingly. One

easy way to do it is to convert the first arithmetic masking with

modulus q into a Boolean masking and then to convert it back to

the second arithmetic masking with modulus q′. This requires two
full conversions. Another possible method is to adapt one of the

conversion algorithms given in [14] and extended in [4] for any

modulus to an arithmetic to arithmetic masking. The only step to

modify is the operation SecAdd which takes two Boolean sharings

of x and y in inputs and outputs a Boolean sharing of z such that

z = x + y with the arithmetic modulus. In our case, the Boolean

sharings are replaced by arithmetic sharings with a modulus q′ and
the arithmetic addition to perform is to be done with a modulus

q ≪ q′. Namely, we have two arithmetic sharings (xi )0≤i≤d and

(yi )0≤i≤d modulo q′ of values x and y and we want to obtain an

arithmetic (zi )0≤i≤d modulo q′ of a value z such that z = x + y
mod q. Basically, we can perform an arithmetic addition modulo q
of the lowest part (i.e., the less significant bits) of x and y’s sharings
to avoid the carry management. Then, only the highest part (i.e.,

the most significant bits) of the sharings are to be converted into

Boolean shares. The addition is then performed as in the paper [4]

and a final Boolean to arithmetic conversion ends the operation.

Note that in this case, we also need to have an arithmetic to Boolean

and a Boolean to arithmetic conversions. However, these two con-

versions are dependent on the number of bits to convert. And by

saving the less significant bits of the sharings, both conversions

are cheaper. Concretely, as x and y are values between 0 and q − 1,
we can save log

2
(q) − log

2
(2(d + 1)) bits in the lowest part, leaving

log
2
(q′) − log

2
(q) + log

2
(2(d + 1)) to convert.

D ALTERNATIVE TO THE GAUSSIAN
GENERATION USING [11] AND A CDT

The efficiency of constant time Gaussian samplings has been exten-

sively studied because it is a complexity bottleneck (see [1, 20, 33,

34, 41]). In BLISS setting, the discrete Gaussian for the generation

of y1 and y2 is centered and its standard deviation σ is defined as

a public parameter. One simple way to implement it efficiently in

constant time is to use [33] and to rely on recent works for optimiz-

ing the parameters. One advantage of this method is the simplicity

and the avoidance of floating points.

Presentation of the general idea of Micciancio-Walter sampler. The au-

thors of [33] propose a general method for constant time Gaussian

sampling. However in BLISS setting, a simplified version of their

results < allows to draw elements in constant time with a fixed

centered Gaussian distribution. It relies on a recursion calling a

base sampler.

As for the recursion, the algorithm recursively calls a base sam-

pler denoted SampleBs0 with a lower standard deviation s0. For
BLISS-I parameters, σ is already relatively low. We will see in the

sequel that, with a correct choice of s0, only two levels of recursion

are needed, which means only 4 calls to SampleBs0 . Also, with a

good choice of a parameter called z in [33] (renamed as ℓ in this pa-

per), the last recursion will be such that s2 = σ . This two-recursion-
algorithm is denoted Sampleσ and is represented in Figure 15. For

the details of the computation of the parameters, see Lemma D.3 in

Section D.

As for the base sampler, in [33], the authors specify that any

base sampler SampleBs0 can be utilized as long as it is within a

Figure 15: Simplified Sample Micciancio-Walter

1: function Sampleσ
2: e1 ← SampleBs0 ()
3: e2 ← SampleBs0 ()
4: e3 ← SampleBs0 ()
5: e4 ← SampleBs0 ()
6: f1 ← ℓ1 · e1 + ℓ2 · e2
7: f2 ← ℓ1 · e3 + ℓ2 · e3
8: return ℓ3 · f1 + ℓ4 · f2
9: end function
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small distance from the exact Gaussian with standard deviation s0.
We opt for an inversion sampling which consists of precomputing

and storing a cumulative distibution function (CDF) table of a half-

Gaussian with standard deviation s0. Although [37] recommends to

use a conditional distribution function (CoDF) which is better scaled

for using Renyi divergence, [39] suggests that Renyi divergence

can still be quite efficient if the distribution is increasing. And, the

distribution of the first half of a Gaussian is increasing. Thus, in the

following, we choose to use a CDF instead of a CoDF which avoid

computing too much randomness (see the CoDF sampler algorithm

in [37]).

Definition D.1. For a distributionD over a support S , we call the
cumulative distribution function (CDF) of D the function defined

as CDFD (z) =
∑i=z
i=min(S )D(i) for all z ∈ S

We introduce w and θ1 as the number of elements of the CDF

table and the number of bits of precision of the elements of the

table. One can sample on the half Gaussian using a CDF with a

table of w elements with θ1 bits of precision according to Figure

17. This sampler is denoted Sample-Half-CDFw ,θ1 . Then, the sign

of the output is drawn with probability 1/2, see Figure 16. For the

details of the computation of the parameters, see Lemma D.4 in

Section D.

Security study for the recursion. To apply [33] framework, one must

introduce a sequence si that represents the successive standard de-

viations. In BLISS setting, only two recursions (s0,s1,s2) are needed.
Before applying [33] results (see Lemma D.2), we introduce the

sequence. For s0 > 0, we define s1 and s2 such that

Figure 16: Sampling with CDF

1: function SampleCDFw ,θ1
2: z ← Sample-Half-CDFw ,θ1 ()

3: b ← {0, 1}
4: return (−1)b · z
5: end function

Figure 17: Constant time CDF sampling for the negative half
of a Gaussian

1: function Sample-Half-CDFw ,θ1
2: z ← 0

3: u ← [0, 1) uniformly with log(θ1) bits of precision
4: b1 ← (u ≥ CDF (−w )) b1 = 1 if it is true and 0 otherwise

5: for −w + 1 ≤ i ≤ 0 do
6: b2 ← (u ≥ CDF (i))
7: z ← z + ((1 − b2) ∧ b1) × i
8: b1 ← b2
9: end for
10: return z
11: end function

s2
1
=
(
ℓ2
1
+ ℓ2

2

)
· s2

0

s2
2
=
(
ℓ2
3
+ ℓ2

4

)
· s2

1

(Definition of s1 and s2)

where (ℓ1, ℓ2, ℓ3, ℓ4) are parameters. One can note that s1 and s2 are
functions of s0 and (ℓ1, ℓ2, ℓ3, ℓ4).

Remark 3. This definition follows Lemma 5.1 of [33] with the

particularity that the sequence called z is replaced by a more general

parameters (according to Corollary 4.1 of the same paper) for more

flexibility.

For ϵ1 a fixed parameter, we denote by ηϵ1 = ηϵ1 (Z) the smooth-

ing parameter of the integers. The details on this parameter are out

of the scope for this paper but we refer to [32] for more details. Let

us now apply a slightly modified version of Corollary 5.1 of [33]

for the security of the recursion.

Lemma D.2. Let ϵ1, ϵ2 and a be parameters. Let s0 > 0 and

(ℓ1, ℓ2, ℓ3, ℓ4) be such that
s2 = σ
gcd(ℓ1, ℓ2) = gcd(ℓ3, ℓ4) = 1
√
2max(ℓ1, ℓ2) · ηϵ1 ≤ s0√
2max(ℓ3, ℓ4) · ηϵ1 ≤ s1

If Ra (SampleBs0 ,DZ,s0 ) ≤ 1 +
aϵ 2

2

2
where Ra denotes the Rényi

divergence of parameter a, then

Ra (Sampleσ ,DZ,s2 ) ≤ 1 +
a(8ϵ1 + 4ϵ2)

2

2

Proof. According to Lemma 5.1 and Corollary 4.1 of [33], with

two recursions,

∆ML(SampleBs0 ,DZ,s0 ) ≤ ϵ2

=⇒ ∆ML(Sampleσ ,DZ,s2 ) ≤ (2ϵ1 + ϵ2) · 2
2

where ∆ML denotes the MaxLog distance.

We then apply Lemma 4 of [37] to transform the MaxLog distance

into a Rényi divergence. □

Finding the recursion parameters.We propose the following Lemma

which sets the parameters for the recursion.

Lemma D.3. For BLISS-I parameters, if{
(s0,a, ϵ1, ϵ2) = ( 13.11, 256, 2−40, 2−39)

(ℓ1, ℓ2, ℓ3, ℓ4) = ( 2, 3, 7, 9)

And if

Ra (SampleBs0 ,DZ,s0 ) ≤ 1 +
aϵ2

2

2

then Sampleσ as defined in Figure 15 reaches 128 bits of security with

at most qs = 2
64

signature queries.

The proof can be found in Appendix E.3.

Security study for the base sampler. To finish the construction of

the sampler and validate Lemma D.3 hypothesis, we need to define

SampleBs0 that satisfy

Ra (SampleBs0 ,DZ,s0 ) ≤ 1 +
aϵ2

2

2

(5)
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where (s0,a, ϵ2) = (13.11, 256, 2
−39).

Lemma D.4. For BLISS-I parameters, Equation 5 is verified with

SampleBs0 = SampleCDFw ,θ1 where the table has w = 63 elements

with log
2
(θ1) = 113 bits of precision. This corresponds to a storage of

about 7, 000 bits.

The proof can be found in Appendix E.5

Variant using polynomial approximation.A recentwork [45] presents

a generic efficient constant time Gaussian sampler which uses a dif-

ferent convolution method including a polynomial approximation.

Although the standard deviation of the base sampler SampleBs0 for
otwo recursions is lower (≈ 5.67), the generic optimization needs

floating-points which we could avoid for BLISS setting.

E PROOFS
E.1 Proof of Corollary 4.2

Proof. Let us suppose that

���D−D′D

��� ≤ 2
−37

is verified. Then,

1 − 2−37 ≤ D
′

D
≤ 1 + 2−37. Since Supp(D ′) = Supp(D), we apply

the relative error Lemma (Lemma 3 of [37]), and get

R
2·λ(D||D

′) ≤ 1 + 2·λ ·2−2·37
2

≤ 1 + 256 · 2−2·37

≤ 1 + 2−66

= 1 + 1

4qs .

This corresponds to Equation 2 and completes the proof.

□

E.2 Proof of Lemma 4.5
Proof. Let x0 ∈ I be such that |u(x)| ≥ |u(x0)| for all x ∈ I . We

then write

u(x) = u(x0) +

∫ x

x0
u ′

Hence,

|u(x)| ≤ |u(x0)| +

∫ x

x0
|u ′ | ≤

1

|I |

∫
I
|u | +

∫
I
|u ′ |

Using Cauchy-Schwarz, we have

( ∫
I |u |

)
2

≤ |I |
∫
I |u |

2
and

( ∫
I |u
′ |
)
2

≤

|I |
∫
I |u
′ |2. Then,

|u(x)| ≤
1

|I |

√
|I |

∫
I
|u |2 +

√
|I |

∫
I
|u ′ |2

Using the equality x + y ≤
√
2

√
x2 + y2 for x,y ≥ 0, we have

|u(x)| ≤
√
2

√
1

|I |2
· |I |

∫
I
|u |2 + |I |

∫
I
|u ′ |2

Then,

| |u | |∞ ≤
√
2 · |u |

S

which concludes the proof. □

E.3 Proof of Lemma 4.6
Proof. By hypothesis,

∀t ∈ I3
|P I3
exp
(t) − exp

(
t

2σ 2

)
|

| exp

(
t

2σ 2

)
|

≤

������P I3exp − exp
(

.
2σ 2

)
exp

(
.

2σ 2

) ������
∞
≤ 2
−K

Then, let us compute the relative error for P I2
cosh

. For x ∈ I2,

|P I2
cosh
(x )−cosh

(
x

2σ 2

)
|

| cosh

(
x

2σ 2

)
|

=

����� P I2
cosh
(x )

cosh

(
x

2σ 2

) − 1�����
=

����� 2 ⌊ xc ⌋ ·P I3exp(t (x ))+2 ⌊ −xc ⌋ ·P I3exp(−t (x ))exp

(
x

2σ 2

)
+exp

(
−x
2σ 2

) − 1

�����
=

����� 2 ⌊ xc ⌋ ·P I3exp(t (x ))+2 ⌊ −xc ⌋ ·P I3exp(−t (x ))−exp
(

x
2σ 2

)
−exp

(
−x
2σ 2

)
exp

(
x

2σ 2

)
+exp

(
−x
2σ 2

) �����
≤

����� 2 ⌊ xc ⌋ ·P I3exp(t (x ))−exp
(

x
2σ 2

)
(exp

(
x

2σ 2

)
+exp

(
−x
2σ 2

)
)

����� +
����� 2 ⌊ −xc ⌋ ·P I3exp(−t (x ))−exp

(
−x
2σ 2

)
exp

(
x

2σ 2

)
+exp

(
−x
2σ 2

)
)

�����
≤

���2 ⌊ xc ⌋ ·P I3exp(t (x ))−exp( x
2σ 2

)�������������exp
(

x
2σ 2

)
+exp

(
−x

2σ 2

)
︸       ︷︷       ︸

>0

����������
+

���2 ⌊ −xc ⌋ ·P I3exp(−t (x ))−exp( −x
2σ 2

)�������������(exp
( x

2σ 2

)
︸       ︷︷       ︸

>0

+ exp
(
−x
2σ 2

)
)

����������
=

����� 2 ⌊ xc ⌋ ·P I3exp(t (x ))−exp
(

x
2σ 2

)
exp

(
x

2σ 2

) �����
+

����� 2 ⌊ −xc ⌋ ·P I3exp(−t (x ))−exp
(
−x
2σ 2

)
exp

(
−x
2σ 2

) �����
=

����� P I3exp(t (x ))exp

(
t (x )
2σ 2

) − 1����� +
����� P I3exp(−t (x ))exp

(
−t (x )
2σ 2

) − 1�����
≤

������ P I3exp−exp( .
2σ 2

)
exp

(
.

2σ 2

) ������
∞
+

������ P I3exp−exp( .
2σ 2

)
exp

(
.

2σ 2

) ������
∞

≤ 2
−K + 2−K

≤ 2
−K+1

□

E.4 Proof of Lemma D.3
Proof. We first list all the additional constraints on the param-

eters (s0,a, ϵ1, ϵ2) for the desired security.

• To reach qs = 2
64

signature queries, we must choose

(ϵ1, ϵ2,a, s0) such that

Ra (Sampleσ ,DZ,s1 ) ≤ 1 +
1

4qs

• To reach 128 bits of security, we must choose a = 2 × 128.
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Then, we seek (ϵ1, ϵ2, s0, ℓ1, ℓ2, ℓ3, ℓ4) such that

1) a = 256

2)
a(8ϵ1+4ϵ2)2

2
≤ 2
−64−2

3) s2 = σ
4) gcd(ℓ1, ℓ2) = gcd(ℓ3, ℓ4) = 1

5)
√
2max(ℓ1, ℓ2) · ηϵ1 ≤ s0

6)
√
2max(ℓ3, ℓ4) · ηϵ1 ≤ s1

2) Let us fix

ϵ1 = 2
−40

and ϵ2 = 2
−39

These parameters indeed are sufficient to lead to
a(8ϵ1+4ϵ2)2

2
=

2
8×26×2−2×40

2
= 2
−67 ≤ 2

−64−2
.

3) and 4)We aim at inverting the equation at the beginning of

section D such that s2 = σ

s0 =

√
2π

(ℓ2
3
+ ℓ2

4
)(ℓ2

1
+ ℓ2

2
)
· σ

To acheive that, we choose

(ℓ1, ℓ2, ℓ3, ℓ4) = (2, 3, 7, 9)

Indeed, we have gcd(ℓ1, ℓ2) = gcd(ℓ3, ℓ4) = 1 and we find

s0 =
215 ·

√
2π

√
130 · 13

≈ 13.11

5) and 6) The value of the smoothing parameter must be upper

bounded with the following lemma.

Lemma E.1 (Lemma 4.4 of [32]).

√
ln

(
2 + 2

ϵ1

)
/π ≥ ηϵ1

Then,

√
2max(ℓ1, ℓ2) · ηϵ1 ≤

√
2 · ℓ2 ·

√
ln

(
2 +

2

ϵ1

)
/π ≈ 12.76 ≤ s0

And,

√
2max(ℓ3, ℓ4) · ηϵ1 ≤

√
2 · ℓ4 ·

√
ln

(
2 + 2

ϵ1

)
/π

≈ 38.28 ≤ 47.26 = s1

All the variables are fixed and the hypothesis are completed,

now we suppose that Ra (SampleBs0 ,DZ,s0 ) ≤ 1 +
aϵ 2

2

2
and apply

Lemma D.2 to conclude the proof.

□

E.5 Proof of Lemma D.4
Proof. To prove this result, we introduce one intermediate dis-

tribution. Let us list all the distributions.

• Let D−
1
be the first half of a centered Gaussian of standard

deviation s0. We denote D−
1
=
{
x ← DZ,s0 | x ≤ 0

}
.

• LetD−
2
be the first half of a centered Gaussian with tailcut,

in other words the distribution is modified such that its

support is [−w, 0], ie, D−
2
=
{
x ← DZ,s0 | −w ≤ x ≤ 0

}
• LetD−

3
be the distribution of the output of Sample-Half-CDFw ,θ1

(See Figure 17)

We will use the following setting to find the values forw and θ1.

D−Z,s0
= D−

1

Tailcut lemma

−−−−−−−−−−−→ D−
2

D−
2

Relative error bound

−−−−−−−−−−−−−−−−→ D−
3
= Sample-Half-CDFw ,θ1

Tailcut Lemma. Let us denote by θ2 the value D−
1
(−w) = θ2. To

still have a true measure of probability, D−
2
is scaled by a factor

1

1−D−
1
(−w ) ≈ 1 +D−

1
(−w) = 1 + θ2.

Then, Supp(D−
2
) ⊆ Supp(D−

1
) and

D−
2

D−
1

≤ 1+ θ2 over Supp(D
−
2
).

We apply the Tailcut lemma of [37] and get

∀a1 ∈ (1,+∞) Ra1 (D
−
1
,D−

2
) ≤ 1 + θ2

Relative error bound Let f2 = CDFD−
2

be the CDF of D−
2
. For

θ1 > 0, let f3 be an approximation of f2 such that, over Supp(D−
2
)

1 − θ1 ≤
f3
f2
≤ 1 + θ1 (6)

In other words, f3 is the CDF of D3 which has a precision of θ1
bits.

With Definition D.1, for any distribution D,

D(z + 1) = CDFD (z + 1) −CDFD (z).
Thus, for z ∈ Supp(D2),

D−
3
(z + 1)

D−
2
(z + 1)

=
f3(z + 1) − f3(z)

f2(z + 1) − f2(z)

Then, combining it with Equation 6,

1 − θ1 ·
f2(z + 1) + f2(z)

f2(z + 1) − f2(z)
≤
D−

3
(z + 1)

D−
2
(z + 1)

≤ 1 + θ1 ·
f2(z + 1) + f2(z)

f2(z + 1) − f2(z)

And thanks to the increasing property of f2,

∀z ∈ Supp(D−
2
)
f2(z + 1) + f2(z)

f2(z + 1) − f2(z)
≤

1 + 1

D−
2
(−w)

≤
2

θ2

We apply Lemma 3 of [37] and get for a = 256

Ra (D
−
2
,D−

3
) ≤ 1 +

a(2θ1θ
−1
2
)2

2

Choice of parameters By definition of the Renyi divergence

(see Definition 4.1), we can prove that the Renyi divergence of the

half Gaussian is the same for the full Gaussian. Indeed, let D1 be

DZ,s0 and D3 be the output probability of SampleBs0 .

Ra (DZ,s0 , SampleBs0 )
a−1

=
∑w
−w

D1(x )a

D3(x )a−1

=
∑−1
−w

D1(x )a

D3(x )a−1
+
∑w
1

D1(x )a

D3(x )a−1
+ 1

=
∑−1
−w

(D−
1
(x )· 1

2
)a

(D−
3
(x )· 1

2
)a−1
+
∑w
1

(D−
1
(x )· 1

2
)a

(D−
3
(x )· 1

2
)a−1
+ 1

= 1

2

∑−1
−w

D−
1
(x )a

D−
3
(x )a−1 +

1

2
+ 1

2

∑w
1

D−
1
(x )a

D−
3
(x )a−1 +

1

2

= 1

2

∑
0

−w
D−

1
(x )a

D−
3
(x )a−1 +

1

2

∑w
0

D−
1
(x )a

D−
3
(x )a−1

=
∑
0

−w
D−

1
(x )a

D−
3
(x )a−1

= Ra (D
−
1
,D−

3
)a−1

Then,

Ra (DZ,s0 , SampleBs0 ) = Ra (D
−
Z,s0
, Sample-Half-CDFw ,θ1 )

= Ra (D
−
1
,D−

3
)
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Using Rényi weak triangle ineguality on Ra (D
−
1
,D−

3
) for a = 256

(see [2] for its statement), we have

Ra (DZ,s0 , SampleBs0 )

≤ R∞(D
−
1
,D−

2
)

a
a−1 · Ra (D

−
2
,D−

3
)

= (1 + θ2)
a
a−1 ·

(
1 +

a ·(2θ1θ−1
2
)2

2

)
∼

θ2→0

(
1 +

aθ2
a−1

)
·

(
1 +

a ·(2θ1θ−1
2
)2

2

)
∼

θ2,θ1→0

1 +
aθ2
a−1 +

a ·(2θ1θ−1
2
)2

2

So, the condition on θ2 and θ1 is

aθ2
a − 1

+
a(2θ1θ

−1
2
)2

2

≤
aϵ2

2

2

which simplifies into

2θ2
a − 1

+ (2θ1θ
−1
2
)2 ≤ ϵ2

2

The next inequations are then sufficient to acheive the security{
2θ2
a−1 ≤

ϵ 2
2

2

(2θ1θ
−1
2
)2 ≤

ϵ 2
2

2

For ϵ2 = 2
−39

and s0 = 13.11, we first find

θ2 =
ϵ2
2
· (a − 1)

4

=
2
−39×2 · 255

4

≈ 2
−72

which leads to

w = −
(
D−

1

)−1
(θ2)

= 1

2
· (D1)

−1 (θ2)

=

√
−2s2

0
· ln(
√
2Π · s0 · θ2)/2

≈ 63

And then

θ1 =

√
ϵ2
2
θ2
2

8

≈ 2
−113

In conclusion, to acheive the desired level of security, for BLISS-I,

the CDF table must contain 63 elements of 113 bits each. □

E.6 Values of Section 4 polynomials
Here are the values of the polynomials that approximate exp

(
.

2σ 2

)
on I3 and cosh

(
.

2σ 2

)
on I2

P I3
exp
(x) = 1

+779422325990 · 2−56 · x
+552517269260 · 2−73 · x2

+1044449863565 · 2−92 · x3

+740389683140 · 2−110 · x4

+839743195196 · 2−129 · x5

+793458729393 · 2−148 · x6

+640044605092 · 2−167 · x7

+869510703817 · 2−187 · x8

+809453130452 · 2−207 · x9

P I2
cosh
(x) = 37778931862957158000000 · 2−75

+18984348820444753000000 · 2−108 · x2

+25439611082260756000000 · 2−145 · x4

+27271888781130076000000 · 2−183 · x6

+31324430935902493000000 · 2−222 · x8

+22387040269699700000000 · 2−261 · x10

+21817688900404180000000 · 2−301 · x12

+30842768069031988000000 · 2−342 · x14

+33064205964897235000000 · 2−383 · x16

+27800503547667367000000 · 2−424 · x18

+37645671902296475000000 · 2−466 · x20

+20964720018730657000000 · 2−507 · x22

+19543213955769304000000 · 2−549 · x24

+30942724445582857000000 · 2−592 · x26

+21061199008583454000000 · 2−634 · x28

+24913684750302090000000 · 2−677 · x30

+25847086594370686000000 · 2−720 · x32

+23705567553217810000000 · 2−763 · x34

+19371171546553690000000 · 2−806 · x36

+28302214580184094000000 · 2−850 · x38

+37640884250608250000000 · 2−894 · x40

+21811256832332620000000 · 2−937 · x42

+26433514292978993000000 · 2−981 · x44

+17042801627125137000000 · 2−1025 · x46

+85825716276337210000000 · 2−1070 · x48

−34330419181963604000000 · 2−1113 · x50

+261649651566585130000000 · 2−1158 · x52

−53140640045230420000000 · 2−1199 · x54

+94385726949793480000000 · 2−1243 · x56

−66233951376070150000000 · 2−1286 · x58

+41705010546304430000000 · 2−1329 · x60

−44259801766327710000000 · 2−1373 · x62

+20076883340374886000000 · 2−1416 · x64

−15024821565117694000000 · 2−1460 · x66

+8910050420532579000000 · 2−1504 · x68

−7241033114492169000000 · 2−1549 · x70

+623177365295177300000 · 2−1593 · x72

+4145223376384326000000 · 2−1638 · x74

−4517242135230994000000 · 2−1682 · x76

+11998282492836342000000 · 2−1728 · x78

−11897374292981940000000 · 2−1773 · x80

+9251107243710316000000 · 2−1818 · x82

−11379592499083392000000 · 2−1864 · x84

+21906405921652015000000 · 2−1911 · x86

−16026641458827849000000 · 2−1957 · x88

+16882942200718004000000 · 2−2004 · x90

−22983046916171960000000 · 2−2052 · x92

+15427090766598538000000 · 2−2100 · x94
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