
Tight Leakage-Resilient CCA-Security from
Quasi-Adaptive Hash Proof System?

Shuai Han1,4, Shengli Liu1,2,3(�), Lin Lyu1, and Dawu Gu1

1 School of Electronic Information and Electrical Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China

{dalen17,slliu,lvlin,dwgu}@sjtu.edu.cn
2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

3 Westone Cryptologic Research Center, Beijing 100070, China
4 Ant Financial, Hangzhou 310012, China

Abstract. We propose the concept of quasi-adaptive hash proof system (QAHPS), where the
projection key is allowed to depend on the specific language for which hash values are computed.
We formalize leakage-resilient(LR)-ardency for QAHPS by defining two statistical properties,
including LR-〈L0,L1〉-universal and LR-〈L0,L1〉-key-switching.

We provide a generic approach to tightly leakage-resilient CCA (LR-CCA) secure public-key
encryption (PKE) from LR-ardent QAHPS. Our approach is reminiscent of the seminal work
of Cramer and Shoup (Eurocrypt’02), and employ three QAHPS schemes, one for generating
a uniform string to hide the plaintext, and the other two for proving the well-formedness of
the ciphertext. The LR-ardency of QAHPS makes possible the tight LR-CCA security. We
give instantiations based on the standard k-Linear (k-LIN) assumptions over asymmetric and
symmetric pairing groups, respectively, and obtain fully compact PKE with tight LR-CCA
security. The security loss is O(logQe) where Qe denotes the number of encryption queries.
Specifically, our tightly LR-CCA secure PKE instantiation from SXDH has only 4 group elements
in the public key and 7 group elements in the ciphertext, thus is the most efficient one.

1 Introduction

Tightly Secure Public-Key Encryption. Usually, the security proof of a public-key encryption
(PKE) scheme is accomplished through a security reduction. In a security reduction, any probabilistic
polynomial-time (PPT) adversary A successfully attacking the PKE scheme with advantage εA is
converted to another PPT algorithm B that solves a specific problem with advantage εB, such that
εA ≤ ` · εB. Here ` is called the security loss factor. If ` is a polynomial in the number of encryption
queries Qe and/or the number of decryption queries Qd, the security reduction is called a loose one.
To achieve a target security level, one has to augment the security parameter λ to compensate for
the security loss `. If Qe (Qd) is large, say 230, a loose reduction will pay the price of inefficiency,
since the compensation will slow the algorithms of PKE and enlarge the sizes of public/secret key and
ciphertexts. Therefore, it is desirable that ` is a constant or only linear in the security parameter λ.
Such a security reduction is called a tight one or an almost tight one.

Starting from the work of Bellare et al. [BBM00], brilliant works have been done in the construc-
tion of tightly (multi-challenge) IND-CCA secure PKE. Hofheinz and Jager [HJ12] designed the first
tightly IND-CCA secure PKE from a standard assumption. More efficient constructions follow in
[CW13, LPJY14, LPJY15, AHY15, GCD+16, Hof16, GHKW16, Hof17, GHK17].

Leakage-Resilient Security. The traditional security requirements for PKE are indistinguishability
under chosen-plaintext attacks (IND-CPA) and chosen-ciphertext attacks (IND-CCA), which implic-
itly assume that the secret key of PKE is completely hidden from adversaries. In practice, however,
various kinds of side-channel attacks on the physical implementation of the PKE algorithms [HSH+08]
demonstrated that partial information about the secret key might be leaked to the attackers, thus
threaten the security of PKE. To deal with key leakage, Akavia et al. [AGV09] and Naor and Segev

? A preliminary version of this paper was accepted by CRYPTO 2019 and this is the full version.

[NS09] formalized the leakage-resilient (LR) security model and defined LR-CPA/CCA securities,
which stipulate the PKE remain IND-CPA/CCA secure even if an adversary has access to a leakage
oracle and obtains additional information about the secret key. In this work, we focus on the bounded
leakage-resilient model [AGV09], where the total amount of key leakage is bounded.

Generally, there are two approaches for designing PKE with LR-CCA security. The first is an
adaption of the Naor-Yung double encryption paradigm [NY90] to the LR setting. Through this ap-
proach, an LR-CPA secure PKE can be upgraded to an LR-CCA secure one, with the help of a
simulation-sound non-interactive zero-knowledge proof system (SS-NIZK) [NS09, KW15] or a true-
simulation extractable NIZK (tSE-NIZK) [DHLAW10]. However, the resulting PKE may not be
efficient due to the usage of SS-NIZK/tSE-NIZK. The second approach utilizes the more efficient
Cramer-Shoup hash proof system (HPS) paradigm [CS02] based on the fact that HPS is intrinsically
leakage-resilient [NS09]. Through this approach, many efficient LR-CCA secure PKE schemes were
designed [QL13, FV16, FX16].

Efficient PKE with Tight LR-CCA Security. Although great progress was made on tight
IND-CCA security, only Abe et al. [ADK+13] ever considered LR-CCA secure PKE with a tight
security reduction. They followed the Naor-Yung paradigm and employed a tightly secure tSE-NIZK.
Due to the tightness-preserving of the Naor-Yung paradigm, the resulting PKE is tightly LR-CCA
secure. However, their PKE is highly impractical. The ciphertext of their PKE contains more than
800 group elements. Even plugging in the recent efficient and tightly secure SS-NIZKs/tSE-NIZKs
[GHKW16, GHKP18]1, the resulting LR-CCA secure PKE still contains over 100 group elements in
the public key or around 40 group elements in the ciphertext, thus is far from practical. A most recent
work by Abe et al. [AJOR18a] presented a construction of quasi-adaptive NIZK (QA-NIZK) with tight
unbounded simulation-soundness (USS) based on the MDDH assumptions and tried to use it to obtain
a tightly CCA-secure PKE via the paradigm of CPA-PKE + USS-QA-NIZK. It is also possible to
achieve tight LR-CCA security if the underlying PKE building block is LR-CPA secure. Unfortunately,
their USS-QA-NIZK suffers from an attack, as shown in their full-version paper [AJOR18b] (in which
the QA-NIZK was updated to a new one but its USS security remains to be justified).

For the sake of efficiency, one might like to try the second approach to LR-CCA security. However,
the Cramer-Shoup HPS paradigm [CS02, NS09] does not work well in the face of multi-challenge
ciphertexts (cf. Subsect. 1.1 for a detailed explanation). To pursue tight security reduction, great
effort has been devoted to new designs of PKE from variants of HPS [GHKW16, GHK17]. Gay et
al. [GHKW16] used combinations of multiple HPSs to construct PKE and proved its tight IND-CCA
security (not LR-CCA), but at the price of more than 100 group elements in the public key. Gay et
al. [GHK17] evolved HPS to a so-called “qualified proof system” (QPS) to obtain tightly IND-CCA
secure PKE with full compactness (compact ciphertext and compact public key). However, their PKE
is unlikely to be LR-CCA secure.2 Up to now, there is no available approach to efficient PKE with
tight LR-CCA security.

Our Contribution. In this paper, we propose a novel approach to the design of tightly LR-CCA
secure PKE. More precisely,

– We propose the concept of quasi-adaptive HPS (QAHPS), and formalize LR-ardency for QAHPS
by defining two statistical properties, including LR-〈L0,L1〉-universal and LR-〈L0,L1〉-key-
switching. Our LR-ardent QAHPS generalizes the well-known universal1, universal2 [CS02] and
extracting [DKPW12] HPSs.

1 Gay et al. [GHKP18] constructed the state-of-the-art tightly secure (structure-preserving) signature
schemes, where the signature is comprised of 14 group elements. By applying the framework in
[HJ12, ADK+13], this signature scheme can be transformed to a tightly secure SS-NIZK/tSE-NIZK whose
proof contains around 40 group elements.

2 The properties of “constrained soundness” and “extensibility” of QPS are needed for the tight IND-CCA
security proof of the PKE proposed by Gay et al. [GHK17]. We note that these two properties of their
QPS are unlikely to hold when partial information about the secret key of QPS is leaked to adversary. See
Appendix B for more details. Thus it is reasonable to conjecture that their PKE is not LR-CCA secure.

2

Table 1. Comparison among tightly (LR-)CCA secure PKE schemes. Here λ denotes the security parameter and Qe = poly(λ)
the number of challenge ciphertexts. |PK| and |C|− |M | show the size of public key and ciphertext overhead, where size means
the number of group elements in the underlying groups. “k-LIN” is short for the k-Linear assumption. For pairing-free groups,
1-LIN = DDH; for asymmetric pairing groups, 1-LIN = SXDH, which requires the DDH assumption hold in both G1 and G2.
“sym” stands for symmetric pairing groups and “asym” asymmetric pairing groups. “LR?” asks whether the security is proved
in the leakage-resilient setting. We note that the security loss O(logQe)= O(log λ) is lower than O(λ).

Scheme |PK| |C| − |M | Sec. loss Assumption Pairing LR?

LPJY15 [LPJY14, LPJY15] O(λ) 47 O(λ) 2-LIN yes (sym) —

AHY15 [AHY15] O(λ) 12 O(λ) 2-LIN yes (sym) —

GCDCT16 [GCD+16] O(λ) 6k O(λ) k-LIN (k ≥ 1) yes (asym) —

GHKW16 [GHKW16] O(λ) 3k O(λ) k-LIN (k ≥ 1) no —

Hof16 [Hof16] 2 60 O(λ) 1-LIN = SXDH yes (asym) —

Hof17 [Hof17] 28 (resp. 2k2 + 10k) 6 (resp. k + 4) O(λ) 2-LIN (resp. k-LIN) yes (sym) —

Hof17 [Hof17] 20 28 O(λ) DCR — —

GHK17 [GHK17] 6 3 O(λ) 1-LIN = DDH no —

GHK17 [GHK17] 20 (resp. k3 + k2 + 4k) 8 (resp. k2 + 2k) O(λ) 2-LIN (resp. k-LIN) no —

ADKNO13 [ADK+13] ≥ 40 861 O(1) 2-LIN yes (sym)
√

Ours: PKElr
asym 4 (resp. k2 + 3k) 7 (resp. 4k + 3) O(logQe)= O(log λ) 1-LIN = SXDH (resp. k-LIN) yes (asym)

√

Ours: PKElr
syma 10 (resp. k2 + 3k) 6 (resp. 2k + 2) O(logQe)= O(log λ) 2-LIN (resp. k-LIN) yes (sym)

√

– We provide a generic approach to tightly LR-CCA secure PKE from LR-ardent QAHPS, inheriting
the spirit of the Cramer-Shoup HPS paradigm to LR-CCA security [CS02, NS09], but in the multi-
challenge setting. Ignoring leakage resilience, our construction provides a new approach to tightly
IND-CCA secure PKE with full compactness, which may be of independent interest.

– We give efficient instantiations based on the matrix DDH (MDDH) assumptions [EHK+13] (which
include the standard k-linear (k-LIN) and SXDH assumptions) over asymmetric and symmetric
pairing groups, respectively. This results in the most efficient PKE schemes with tight LR-CCA
security.

Specifically, our tightly LR-CCA secure PKE instantiation from SXDH over asymmetric pairing
groups has only 4 group elements in the public key and 7 group elements in the ciphertext, hence a
couple of hundred times smaller than that of [ADK+13] (which has to be over symmetric pairing
groups)3. The security loss of LR-CCA security is O(logQe) = O(log λ), where Qe= poly(λ)
denotes the number of encryption queries and λ the security parameter.

In Table 1, we compare our tightly (LR-)CCA secure PKE with existing ones.

1.1 Technical Overview

We firstly recall the Cramer-Shoup paradigm for constructing (LR-)CCA secure PKE [CS02, NS09],
explain the difficulty of extending it to the multi-challenge setting, then detail our new approach for
designing tightly LR-CCA secure PKE.

The Cramer-Shoup Paradigm: (LR-)CCA Secure PKE from HPS. Hash Proof System
(HPS) was originated in [CS02] and can be instantiated from a collection of assumptions. The power
of HPS was firstly shown by Cramer and Shoup [CS02], who proposed a paradigm for constructing
IND-CCA secure PKE from a smooth-HPS and a universal2 tag-based (labeled) HPS. Naor and Segev
[NS09] showed that HPS is a natural candidate for LR-CCA secure PKE, and proved a variant of
the Cramer-Shoup PKE scheme to be LR-CCA secure. Over the years, HPS and its variants have
demonstrated their charm with a variety of applications in public-key cryptosystem [KD04, ADN+10,
Wee12, QL13, FV16], to name a few.

Roughly speaking, an HPS is associated with an NP-language L ⊆ X and has two evaluation modes.
In the private evaluation mode, the hash value Λsk(x) of an arbitrary x ∈ X can be efficiently computed
from the hashing key sk and x, i.e., Priv(sk, x) = Λsk(x); in the public evaluation mode, the hash
value Λsk(x) of an instance x ∈ L is completely determined by the projection key pk = α(sk), and can

3 To the best of our knowledge, the PKE scheme in [ADK+13] is the only tightly LR-CCA secure one prior
to our work.

3

be efficiently computed from pk with the help of any witness w for x ∈ L, i.e., Pub(pk, x, w) = Λsk(x).
The notion of HPS can be generalized to tag-based HPS, where a tag τ serves as an auxiliary input
for Λsk, Pub and Priv.

A typical construction of CCA-secure PKE from a smooth HPS = (Λ(·), α, Pub,Priv) and a

universal2 tag-based H̃PS = (Λ̃(·), α̃, P̃ub, P̃riv) works as follows [CS02]. The public key contains

pk = α(sk) and p̃k = α̃(s̃k). The ciphertext is

C =
(
x, d = Pub(pk, x, w) +M, π = P̃ub(p̃k, x, w, τ)

)
,

where M is a plaintext, x ← $ L with witness w and τ = H(x, d) with H a collision-resistant hash
function. The CCA-security with a single challenge ciphertext C∗ = (x∗, d∗, π∗) is justified by the
following arguments.

(1) By the hardness of the subset membership problem (SMP) related to HPS and H̃PS, we can
replace x∗ ← $ L in the challenge ciphertext with x∗ ← $ X \ L, and compute C∗ =

(
x∗, d∗ =

Λsk(x∗) +M, π∗ = Λ̃
s̃k

(x∗, τ∗)
)
.

(2) By the (perfectly) universal2 property of tag-based H̃PS, any ill-formed ciphertext C =
(
x ∈

X \ L, d, π′
)

results in a uniformly distributed π = Λ̃
s̃k

(x, τ), even conditioned on p̃k = α̃(s̃k)

and π∗ = Λ̃
s̃k

(x∗, τ∗). Thus any decryption query on ill-formed ciphertexts will be rejected (due
to the fact that π′ = π holds with a negligible probability).

(3) Now the information that the decryption oracle leaks about sk is limited to pk = α(sk). By the
smoothness of HPS, Λsk(x∗) involved in the challenge ciphertext is uniformly random conditioned
on pk = α(sk), thus it perfectly hides M and the IND-CCA security follows.

LR-CCA security is also easy to achieve since the universal2 property of H̃PS is intrinsically leakage-
resilient, and the smoothness of HPS guarantees that Λsk(x∗) still has enough entropy in case of key
leakage, then an extractor can be applied to Λsk(x∗) to distill a uniform string to hide M .

Note that the above arguments only apply to the single-challenge setting. In the more realistic

setting of multiple challenge ciphertexts, the universal2 property of H̃PS and the smoothness of HPS
are too weak to support arguments (2) and (3). More precisely, argument (2) fails since multiple

{π∗ = Λ̃
s̃k

(x∗, τ∗)} involved in the challenge ciphertexts might leak too much information about s̃k,
and argument (3) fails since the limited entropy contained in sk is not enough to randomize multiple
{Λsk(x∗)} involved in the challenge ciphertexts. Consequently, one has to resort to a hybrid argument
to prove (multi-challenge) (LR-)CCA security, which inevitably introduces a security loss of factor Qe
[BBM00].

Quasi-Adaptive HPS. We provide a novel approach to tightly (LR)-CCA secure PKE in the
multi-challenge setting. The core building block in our approach is a new technical tool named quasi-
adaptive HPS (QAHPS), which generalizes HPS in a quasi-adaptive setting [JR13]. Different from
(traditional) HPS [CS02], QAHPS is associated with a collection L = {Lρ}ρ of NP-languages, and
the projection key pkρ is allowed to depend on the language Lρ. In particular, QAHPS possesses a
family of projection functions α(·) indexed by a language parameter ρ, so that the action of Λsk(·)
on Lρ is completely determined by pkρ = αρ(sk). Intuitively, this allows us to distribute different
projection keys for computing hash values of instances from different languages. Tag-based QAHPS
can be similarly defined by allowing Λsk, Pub and Priv to take a tag τ as an auxiliary input.

Our Approach: Tightly LR-CCA Secure PKE from QAHPS. We need three QAHPS schemes

for our PKE construction, QAHPS = (Λ(·), α(·),Pub,Priv), Q̂AHPS = (Λ̂(·), α̂(·), P̂ub, P̂riv) and a tag-

based Q̃AHPS = (Λ̃(·), α̃(·), P̃ub, P̃riv). The public key is comprised of pkρ = αρ(sk), p̂kρ = α̂ρ(ŝk) and

p̃kρ = α̃ρ(s̃k). The ciphertext is

C =
(
x, d = Pub(pkρ, x, w) +M, π = P̂ub(p̂kρ, x, w) + P̃ub(p̃kρ, x, w, τ)

)
=
(
x, d = Λsk(x) +M, π = π̂ + π̃ = Λ̂

ŝk
(x) + Λ̃

s̃k
(x, τ)

)
,

4

where M is a plaintext, x ←$ Lρ with witness w and τ = H(x, d) with H a collision-resistant hash
function.

For a simple exposition, we first briefly explain why our approach works in the multi-challenge
setting and provide a high-level proof of its tight IND-CCA security. Then we show how to extend
our approach to the leakage-resilient setting.

Intuition of Tight CCA-Security Proof. Similar to the single-challenge (LR-)CCA security proof
of the PKE from HPS, our proof goes with three steps.

(1) Replace all {x∗ ←$ Lρ} in the challenge ciphertexts with {x∗ ←$ Lρ0}.4 This step is computa-
tionally indistinguishable due to the hardness of SMP.

(2) Reject any decryption query on ill-formed ciphertext C = (x ∈ X \ Lρ, d, π′).
(3) Replace all {Λsk(x∗)} involved in the challenge ciphertexts with uniform strings. Then CCA-

security follows.

As shown before, the universal2 and smooth properties are insufficient to support (2) and (3) to achieve
tight CCA-security. Thus, stronger properties are needed from QAHPS.

Technical Tool for (2): Ardent QAHPS. We define two statistical properties for QAHPS. Let
L0 = {Lρ0}ρ0 and L1 = {Lρ1}ρ1 be two language collections.

• (Perfectly 〈L0,L1〉-Universal). It demands the uniformity of Λsk(x) conditioned on αρ0(sk)
and αρ1(sk) for any x ∈ X \ (Lρ0 ∪ Lρ1), i.e.,(

αρ0(sk), αρ1(sk),
∣∣Λsk(x)

)
≡

(
αρ0(sk), αρ1(sk),

∣∣π ←$ Π
)
. (1)

• (Perfectly 〈L0,L1〉-Key-Switching). It requires that αρ1(sk) can be switched to αρ1(sk′) for
an independent sk′ in the presence of αρ0(sk), i.e.,(

αρ0(sk),
∣∣αρ1(sk)

)
≡

(
αρ0(sk),

∣∣αρ1(sk′)
)
. (2)

It is also reasonable to define 〈L ,L0〉-universal and 〈L ,L0〉-key-switching. We call QAHPS enjoying
these two kinds of properties a perfectly ardent QAHPS. Ardency of QAHPS can be naturally adapted
for tag-based QAHPS.

With ardent QAHPS, Q̂AHPS and tag-based Q̃AHPS, we describe the high-level idea of justifying
(2). By modifying and adapting the latest techniques for proving tight security [GHKP18] (which in
turn built upon [GHKW16, Hof17, GHK17]), we partition the ciphertext space economically according
to a counter ctr ∈ {1, · · · , Qe}, which records the serial number of each encryption query issued by the
adversary. Taking ctr as a binary string of length n := dlogQee, our proof proceeds with n hybrids. In

the i-th hybrid, i ∈ {0, 1, · · · , n}, a random function RFi(ctr|i) on the first i bits of ctr (instead of s̃k)

is employed to compute π̃∗ = Λ̃RFi(ctr|i)(x
∗, τ∗) for the challenge ciphertexts; meanwhile, it is also used

to compute π̃ = Λ̃RFi(ctr|i)(x, τ) for the decryption of ciphertexts with x /∈ Lρ. In order to go from the
i-th hybrid to the (i+1)-th hybrid, firstly we replace all {x∗ ←$ Lρ0} in the challenge ciphertexts with
{x∗ ←$ Lρ0 ∪Lρ1 s.t. x∗ ∈ Lρ0 if ctri+1 = 0 and x∗ ∈ Lρ1 if ctri+1 = 1}; next we employ the ardency

of Q̂AHPS and Q̃AHPS to add a dependency of RFi(ctr|i) on the (i+1)-th bit ctri+1 so that RFi(ctr|i)
moves to RFi+1(ctr|i+1), as shown below.

• (〈L0,L1〉-universal forces the instances in decryption queries to fall in Lρ0 ∪ Lρ1). By

the 〈L0,L1〉-universal property of Q̂AHPS, any decryption query on ciphertext with x /∈ Lρ0∪Lρ1
is rejected. The reason is that, the information of ŝk leaked by the challenge ciphertexts and by

the decryption of ciphertexts with x ∈ Lρ0 ∪ Lρ1 is limited to α̂ρ0(ŝk) and α̂ρ1(ŝk).

4 Here Lρ0 is from another language collection L0 and only appears in the security proof. The same is true
for Lρ1 and L1, as shown later.

5

• (〈L0,L1〉-key-switching allows the usage of two independent keys for Lρ0 and Lρ1).
Note that for x ∈ Lρ0 , π̃ = Λ̃RFi(ctr|i)(x, τ) is completely determined by α̃ρ0(RFi(ctr|i)), while for
x ∈ Lρ1 , it is completely determined by α̃ρ1(RFi(ctr|i)). By the 〈L0,L1〉-key-switching property

of Q̃AHPS,(
α̃ρ0(RFi(ctr|i)), α̃ρ1(RFi(ctr|i))

)
≡

(
α̃ρ0(RFi(ctr|i)), α̃ρ1(RFi(ctr|i))

)
,

where RFi is an independent random function. Consequently, we can use RFi(ctr|i) to compute π̃∗

for challenge ciphertexts with x∗ ∈ Lρ1 , and to compute π̃ for the decryption of ciphertexts with
x ∈ Lρ1 .

Now we successfully double the entropy in RFi(ctr|i) to get RFi+1(ctr|i+1) (which equals RFi(ctr|i)

if ctri+1 = 0 and RFi(ctr|i) if ctri+1 = 1)5 and this leads us to the (i+ 1)-th hybrid. After n hybrids,

for any ill-formed ciphertext with x /∈ Lρ, π̃ = Λ̃RFn(ctr)(x, τ) is fully randomized by RFn(ctr), thus
the decryption on such ciphertexts will be rejected.

Technical Tool for (3): Multi-Extracting. We define a computational property for QAHPS so
that it can amplify the (limited) entropy of a uniform sk to randomize multiple {Λsk(x∗)}.

• (L0-Multi-Extracting). It demands the pseudorandomness of Λsk(xj) for multiple instances
xj uniformly chosen from Lρ0 , i.e.,

{xj ←$ Lρ0 ,
∣∣Λsk(xj) }j∈[Qe]

c
≈ {xj ←$ Lρ0 ,

∣∣πj ←$ Π }j∈[Qe].

By requiring ardent QAHPS to be L0-multi-extracting, we are able to justify (3). Note that af-
ter the change in (2), the decryption oracle might leak pkρ = αρ(sk) about sk, therefore, the L0-
multi-extracting property is not applicable immediately. We solve this problem by first applying the
〈L ,L0〉-key-switching property of QAHPS to switch sk to an independent sk′ in the computation of
{Λsk′(x∗)}. Under uniform sk′, the L0-multi-extracting property applies and the {Λsk′(x∗)} involved
in the challenge ciphertexts can be replaced with uniform strings {rand}. Then CCA-security follows.

Extension to Tight LR-CCA Security. Like the leakage-resilient PKE [NS09, ADN+10, QL13]
from HPS, it is easy to upgrade the tight CCA-security of our PKE construction to tight LR-CCA, as
long as the 〈L0,L1〉-universal and 〈L0,L1〉-key-switching properties of QAHPS holds even if some
information L(sk) about sk is leaked. The LR-CCA security proof almost verbatim follows the proof
of IND-CCA security. We refer to the main body for more details.

By instantiating leakage-resilient ardent QAHPS over pairing-friendly groups, our approach yields
the most efficient tightly LR-CCA secure PKE from the MDDH assumptions, with security loss
O(logQe).

1.2 Relation to Existing Techniques for Tight Security

To obtain tight (LR-)CCA security, it is inevitable to implement “consistency check”, explicitly or
implicitly, to reject decryption queries on ill-formed ciphertexts. In [HJ12, ADK+13, LPJY14, LPJY15,
Hof16], a NIZK proof is added in the ciphertext as an explicit consistency check, where NIZK is
required to have tight unbounded simulation-soundness (SS) or true-simulation extractability (tSE).
Efficient NIZK with tight SS/tSE is very hard to construct, thus leading to large public keys or
ciphertexts in these schemes. Gay et al. [GHKW16] implicitly employed a designated-verifier NIZK
(DV-NIZK) with tight SS in their construction, which results in large public keys (of over 100 group
elements).

5 Note that for the instance x∗ ∈ Lρ0 ∪ Lρ1 in challenge ciphertext, the bit indicating whether x∗ ∈ Lρ0 or
x∗ ∈ Lρ1 is consistent with the (i+ 1)-th bit of ctr, i.e., x∗ ∈ Lρ0 if ctri+1 = 0 and x∗ ∈ Lρ1 if ctri+1 = 1.
But this might not be true for the instances x ∈ Lρ0 ∪ Lρ1 in the decryption queries. This problem is
circumvented by borrowing the trick from [Hof17, GHK17]. We refer to the main body for details.

6

In order to get more efficient constructions, Hofheinz [Hof17] used benign proof system (BPS) as a
main technical tool, which is essentially a DV-NIZK with strong soundness, but not as strong as SS.
Gay et al. [GHK17] proposed qualified proof system (QPS), which is a combination of a DV-NIZK and
an HPS. The weak (computational) soundness requirement for QPS enables efficient instantiations,
hence resulting in the most compact PKE with tight CCA-security from the DDH assumption over
non-pairing groups.

Our construction of PKE employs LR-ardent QAHPS, with LR-〈L0,L1〉-universal and LR-〈L0,L1〉-
key-switching properties. QAHPS can be regarded as a (deterministic) DV-NIZK, and the LR-〈L0,L1〉-
universal property corresponds to (statistical) soundness which is weaker than BPS but stronger than
QPS. Our LR-ardent QAHPS can be instantiated over pairing-friendly groups.

The key-leakage resilience of (QA)HPS enables us to obtain tight LR-CCA security. However, this
feature does not apply to the PKE constructions [Hof17, GHK17] from BPS or QPS. For example,
the soundness of QPS is a computational notion and might not be justified in the LR setting (cf.
Appendix B for the reasons). Thus, the PKE in [GHK17] is unlikely to be tightly LR-CCA secure but
is pairing-free, while ours are over pairing-groups but achieve tight LR-CCA security.

2 Preliminaries

Let λ ∈ N denote the security parameter. For i, j ∈ N with i < j, define [i, j] := {i, i + 1, · · · , j}
and [j] := {1, 2, · · · , j}. Denote by x ← $ X the operation of picking an element x according to a
distribution X . If X is a set, then this denotes that x is sampled uniformly at random from X . For an
algorithm A, denote by y ←$ A(x; r), or simply y ←$ A(x), the operation of running A with input x
and randomness r and assigning the output to y, and by T(A) the running time of A. “PPT” is short
for probabilistic polynomial-time. Denote by poly some polynomial function, and negl some negligible
function. For a primitive XX and a security notion YY, we typically denote the advantage of a PPT
adversary A by AdvYY

XX,A(λ) and define AdvYY
XX(λ) := maxPPTA AdvYY

XX,A(λ). For an ` × k matrix A

with ` > k, denote the upper k rows of A by A and the lower ` − k rows of A by A. For a string
τ ∈ {0, 1}λ and an integer i ∈ [0, λ], denote by τi ∈ {0, 1} the i-th bit of τ and τ|i ∈ {0, 1}i the first
i bits of τ . Let ε denote an empty string. For random variables X, Y , Z, let ∆(X, Y) denote the

statistical distance between X and Y , ∆(X, Y |Z) a shorthand for ∆((X,Z), (Y,Z)), and H̃∞(X |Y)
the average min-entropy of X conditioned on Y . The formal definitions and basic tools are shown in
Subsect. 2.1.

2.1 Basic Tools

Let X and Y be two random variables. The min-entropy of X is defined as

H∞(X) := − log(maxx Pr[X = x]),

and the average min-entropy of X conditioned on Y is defined as

H̃∞(X |Y) := − log
(
Ey←$Y

[
maxx Pr[X = x |Y = y]

])
.

The statistical distance between X and Y is defined by

∆(X, Y) := 1
2 ·
∑
x

∣∣ Pr[X = x]− Pr[Y = x]
∣∣.

We use ∆(X, Y |Z) as a shorthand for ∆((X,Z), (Y, Z)).

Lemma 1 ([DORS08]). Let X,Y, Z be three (possibly correlated) random variables. If Z has at most

2λ possible values, then H̃∞(X |Y, Z) ≥ H̃∞(X |Y)− λ.

Lemma 2 ([Sho06]). Let f : X −→ Z be a (possibly randomized) function, and X,Y two random
variables on X . Then ∆(f(X), f(Y)) ≤ ∆(X,Y).

7

Definition 1 (Universal Hashing [WC81]). A family of functions H = {H : X −→ Y} is called a
universal hashing, if for all distinct x, x′ ∈ X , it follows that

Pr
[
H←$ H : H(x) = H(x′)

]
≤ 1/|Y|.

Lemma 3 (Generalized Leftover Hash Lemma [DORS08]). Let H = {H : X −→ Y} be a
family of universal hashing, X a random variable on X and I a random variable. Then for H ←$ H
(where H is independent of X and I) and U ←$ Y, it holds that

∆
((

H, H(X)
)
,
(
H, U

) ∣∣ I) ≤ √
|Y| · 2−H̃∞(X |I).

Next, we develop a specific multi-fold generalized leftover hash lemma. It considers the uniformity
of H(X1), . . . ,H(Xm), when a universal hashing H is applied to mutually independent inputs {Xj}j∈[m]

given not only individual auxiliary variable related to each Xj but also universal auxiliary variable
related to all of {Xj}j∈[m].

Lemma 4 (Multi-fold Generalized Leftover Hash Lemma). Let H = {H : X −→ Y} be a
family of universal hashing, X1, · · · , Xm mutually independent random variables on X , f : X −→ Z
a (possibly randomized) function, and g : Xm −→ W a function. Then for H ← $ H (where H is
independent of X1, · · · , Xm and f, g) and U1, · · · , Um ←$ Y, it holds that

∆

((
H, H(X1), · · · , H(Xm)

)
,(

H, U1, · · · , Um
) ∣∣∣∣∣ f(X1), · · · , f(Xm),

g(X1, · · · , Xm)

)
≤
∑
j∈[m]

√
|Y| · |Z| · |W| · 2−H∞(Xj).

Proof. It suffices to prove

∆j := ∆

 (
H, U1, · · · , Uj−1,

∣∣H(Xj) , H(Xj+1), · · · , H(Xm)
)
,(

H, U1, · · · , Uj−1,
∣∣Uj , H(Xj+1), · · · , H(Xm)

)
∣∣∣∣∣∣ f(X1), · · · , f(Xm),

g(X1, · · · , Xm)

≤
√
|Y| · |Z| · |W| · 2−H∞(Xj) (3)

for any j ∈ [m]. Then Lemma 4 follows from the triangle inequality.
Observe that

∆j ≤ ∆

((
H,

∣∣H(Xj)
)
,
(
H,

∣∣Uj)
∣∣∣∣∣ X1, · · · , Xj−1, Xj+1, · · · , Xm,

f(Xj), g(X1, · · · , Xm)

)
(4)

=
∑

x1,··· ,xj−1,xj+1,··· ,xm

Pr
[

(X1, · · · , Xj−1, Xj+1, · · · , Xm) = (x1, · · · , xj−1, xj+1, · · · , xm)
]

· ∆
((

H,
∣∣H(Xj)

)
,
(
H,

∣∣Uj) ∣∣ f(Xj), g(x1, · · · , xj−1, Xj , xj+1, · · · , xm)
)

(5)

≤
∑

x1,··· ,xj−1,xj+1,··· ,xm

Pr
[

(X1, · · · , Xj−1, Xj+1, · · · , Xm) = (x1, · · · , xj−1, xj+1, · · · , xm)
]

·
√
|Y| · 2−H̃∞(Xj |f(Xj), g(x1,··· ,xj−1,Xj ,xj+1,··· ,xm)) (6)

≤
∑

x1,··· ,xj−1,xj+1,··· ,xm

Pr
[

(X1, · · · , Xj−1, Xj+1, · · · , Xm) = (x1, · · · , xj−1, xj+1, · · · , xm)
]

·
√
|Y| · 2−

(
H∞(Xj)−log |Z|−log |W|

)
(7)

=
√
|Y| · |Z| · |W| · 2−H∞(Xj),

where (4) follows from Lemma 2, (5) holds since (X1, · · · , Xj−1, Xj+1, · · · , Xm) is independent of
(H, Xj , Uj), (6) follows from the generalized leftover hash lemma (i.e., Lemma 3), and (7) holds due
to Lemma 1.

Therefore, (3) holds and this completes the proof of Lemma 4. ut

8

2.2 Games

Our security proof will consist of game-based security reductions. A game G starts with an Ini-
tialize procedure and ends with a Finalize procedure. There are also some optional procedures
Proc1, · · · ,Procn performing as oracles. All procedures are described using pseudo-code, where ini-
tially all variables are empty strings ε and all sets are empty. That an adversary A is executed in G
implies the following procedure: A first calls Initialize, obtaining the corresponding output; then it
may make arbitrary oracle-queries to Proci according to their specifications, and obtain their out-
puts; finally it makes one single call to Finalize. The output of Finalize is called the output of the
game G. The symbol “⇒” stands for “Return” in the description of algorithms and procedures. By
GA ⇒ b we mean that G outputs b after interacting with A. By Pri[·] we denote the probability of a
particular event occurring in game Gi.

2.3 Public-Key Encryption

A public-key encryption (PKE) scheme PKE = (Param,Gen,Enc,Dec) with message spaceM consists
of a tuple of PPT algorithms: the parameter generation algorithm PP←$ Param(1λ) outputs a public
parameter PP, and we require PP to be an implicit input of other algorithms; the key generation
algorithm (PK,SK) ←$ Gen(PP) outputs a pair of public key PK and secret key SK; the encryption
algorithm C ←$ Enc(PK,M) takes as input a public key PK and a message M ∈ M, and outputs
a ciphertext C; the decryption algorithm M/⊥ ← Dec(SK, C) takes as input a secret key SK and
a ciphertext C, and outputs either a message M or a failure symbol ⊥. Perfect correctness of PKE
requires that, for all PP←$ Param(1λ) and (PK,SK)←$ Gen(PP), all messages M ∈M, it holds that
Dec(SK, Enc(PK,M)) = M .

LR-CCA Security for PKE. Naor and Segev [NS09] defined the leakage-resilient CCA (LR-CCA)
security for PKE. In contrast to IND-CCA, the LR-CCA security also allows the adversary A to make
Leak (key leakage) queries adaptively and obtain additional information L(SK) about the secret key
SK, where L : SK −→ {0, 1}∗ \ {ε} is the leakage function submitted by A. According to [NS09], two
restrictions are necessary: (i) the total amount of leakage bits is bounded by some positive integer κ;
(ii) A can only access the Leak oracle before it obtains a challenge ciphertext (otherwise A could
trivially win by querying the first few bits of Dec(·, C∗) after receiving a challenge ciphertext C∗).

We present the definition of the κ-leakage-resilient CCA security in its multi-ciphertext version.
The leakage-rate of the LR-CCA security is defined as the ratio of κ to the bit-length of secret key,
i.e., κ/BitLength(SK).

Definition 2 (Multi-Ciphertext κ-Leakage-Resilient CCA Security). Let κ = κ(λ). A PKE
scheme PKE is κ-LR-CCA secure, if for any PPT adversary A, it holds that

Advκ-lr-ccaPKE,A (λ) :=
∣∣Pr[κ-lr-ccaA ⇒ 1]− 1

2

∣∣ ≤ negl(λ),

where game κ-lr-cca is specified in Fig. 1.

If κ = 0, κ-LR-CCA security is reduced to the traditional IND-CCA security.

Proc. Initialize:

PP←$ Param(1λ).
(PK, SK)←$ Gen(PP).
β ←$ {0, 1}. // challenge bit
l := 0. // bit length of leakage
chal := false.
Return (PP,PK).

Proc. Leak(L):

If (chal = true)
∨ (l + |L(SK)| > κ),

Return ⊥.
l := l + |L(SK)|.
Return L(SK).

Proc. Enc(M0,M1):

chal := true.
If |M0| 6= |M1|, Return ⊥.
C∗ ←$ Enc(PK,Mβ).
QENC := QENC ∪ {C∗}.
Return C∗.

Proc. Dec(C):

If C ∈ QENC,
Return ⊥.

Return Dec(SK, C).

Proc. Finalize(β′):

Return (β′ = β).

Fig. 1. κ-lr-cca security game for PKE, where |L(SK)| denotes the bit length of L(SK).

9

2.4 Pairing Groups

Let PGGen(1λ) be a PPT algorithm outputting a description of pairing group PG = (G1,G2,GT , p, e,
P1, P2, PT), where G1, G2 and GT are additive cyclic groups of order p, p is a prime number of
bit-length at least λ, e : G1 × G2 −→ GT is a non-degenerated bilinear pairing, and P1, P2, PT are
generators of G1,G2,GT , respectively, with PT := e(P1, P2). We assume that the operations in G1,
G2, GT and the pairing e are efficiently computable. We require the pairing group PG to be an implicit
input of other algorithms.

We use the implicit representation of group elements following [EHK+13]. For a matrix A = (ai,j)
over Zp, denote by [A]s := (ai,j · Ps) the implicit representation of A in Gs (which may be G1, G2,
or GT). Clearly, given A, [B]s, [C]s and D with composable dimensions, one can efficiently compute
[AB]s, [B + C]s, [CD]s; given [A]1 and [B]2, one can efficiently compute [AB]T with the pairing e.
PG is said to be a Type-I symmetric pairing group if G1 = G2. In this case, we let G1 = G2 = G

and P1 = P2 = P , abbreviate PG = (G,GT , p, e, P, PT), and denote [A]1 = [A]2 = [A]. PG is said to
be a Type-III asymmetric pairing group if G1 6= G2, and there does not exist an efficiently computable
isomorphism between G1 and G2.

Let `, k ≥ 1 be integers with ` > k. A probabilistic distribution D`,k is called a matrix distribution,
if it outputs matrices in Z`×kp of full rank k in polynomial time. Without loss of generality, we assume
that the first k rows of A ← $ D`,k are linearly independent. Let Dk := Dk+1,k. Denote by U`,k
the uniform distribution over all matrices in Z`×kp . Let Uk := Uk+1,k. We review the Matrix DDH
(MDDH) and Q-fold MDDH assumptions relative to PGGen, as well as the random self-reducibility
of the MDDH assumptions below.

The D`,k-Matrix DDH (D`,k-MDDH) problem over group Gs (which may be G1 or G2), is to
distinguish the two distributions ([A]s, [Aw]s) and ([A]s, [u]s). The distinguishing advantage of an
adversary A is denoted by

AdvmddhD`,k,Gs,A(λ) := |Pr[A([A]s, [Aw]s) = 1]− Pr[A([A]s, [u]s) = 1]|,

where A←$ D`,k, w ←$ Zkp and u←$ Z`p. The D`,k-MDDH assumption over Gs assumes that for all

PPT adversaries A, AdvmddhD`,k,Gs,A(λ) is negligible.
The MDDH assumption covers many well-studied assumptions, such as the DDH and the k-LIN

assumptions, by specifying the matrix distribution as LIN 1 and LIN k respectively [EHK+13], where

LIN k : A =

a1

. . .
ak

1 · · · 1

 ∈ Z(k+1)×k
p .

Several relations among MDDH assumptions w.r.t. different matrix distributions were established
in [EHK+13, GHKW16].

Lemma 5 (D`,k-MDDH ⇒ Uk-MDDH [EHK+13] ⇒ U`,k-MDDH [GHKW16]). For any
adversary A, there exists an adversary B such that T(B) ≈ T(A) and

AdvmddhUk,Gs,A(λ) ≤ AdvmddhD`,k,Gs,B(λ).

For any adversary A, there exists an adversary B such that T(B) ≈ T(A) and

AdvmddhU`,k,Gs,A(λ) ≤ AdvmddhUk,Gs,B(λ).

Consequently, for any ` > k, U`,k-MDDH assumption is tightly implied by the k-LIN assumption
(i.e., LIN k-MDDH).

For Q ≥ 1, consider the Q-fold D`,k-MDDH problem over group Gs, which is to distinguish
two distributions ([A]s, [AW]s) and ([A]s, [U]s). The distinguishing advantage of an adversary A is
denoted by

AdvQ-mddh
D`,k,Gs,A(λ) := |Pr[A([A]s, [AW]s) = 1]− Pr[A([A]s, [U]s) = 1]|,

10

where A←$ D`,k, W←$ Zk×Qp and U←$ Z`×Qp . The Q-fold D`,k-MDDH assumption over Gs assumes

that for all PPT adversaries A, AdvQ-mddh
D`,k,Gs,A(λ) is negligible.

D`,k-MDDH problem is random self-reducible [EHK+13], so Q-fold and (1-fold) D`,k-MDDH prob-
lems can be tightly reduced to each other. In particular, for the uniform distribution U`,k, the reduction
is even tighter.

Lemma 6 (Random Self-Reducibility of D`,k-MDDH & U`,k-MDDH [EHK+13]). Let Q >
` − k. For any adversary A, there exists an adversary B, such that T(B) ≈ T(A) + Q · poly(λ) with
poly(λ) independent of T(A), and

AdvQ-mddh
D`,k,Gs,A(λ) ≤ (`− k) · AdvmddhD`,k,Gs,B(λ) + 1/(p− 1).

For any adversary A, there exists an adversary B, such that T(B) ≈ T(A) +Q · poly(λ) with poly(λ)
independent of T(A), and

AdvQ-mddh
U`,k,Gs,A(λ) ≤ AdvmddhU`,k,Gs,B(λ) + 1/(p− 1).

2.5 Collision-Resistant Hashing

Definition 3 (Collision-Resistant Hashing). A family of functions H = {H : X −→ Y} is
collision-resistant, if for any PPT adversary A, it holds that

AdvcrH,A(λ) := Pr
[
H←$ H, (x, x′)←$ A(H) : H(x) = H(x′) ∧ x 6= x′

]
≤ negl(λ).

3 Quasi-Adaptive HPS: Ardency and Leakage Resilience

For hash proof system (HPS) defined in [CS02], the associated NP-language L is generated in the
setup phase once and for all, and the projection key pk is used for computing hash values of instances
in this fixed L.

In this section, we formalize the notion of quasi-adaptive HPS (QAHPS),6 which is associated with
a collection L = {Lρ}ρ of NP-languages. Different from HPS, the projection key pkρ of QAHPS is
allowed to depend on the specific language Lρ for which hash values are computed.

As the main technical novelty, we propose two new statistical properties for QAHPS, including
κ-LR-〈L0,L1〉-universal and κ-LR-〈L0,L1〉-key-switching. This type of QAHPS is termed as LR-
ardent QAHPS. We also define the tag-based version of QAHPS and adapt the notion of LR-ardency
for it. LR-ardent QAHPS and tag-based one will serve as our core technical tools.

3.1 Language Distribution

In this subsection, we formalize the collection of NP-languages, with which a QAHPS is associated,
as a language distribution.

Definition 4 (Language Distribution). A language distribution L is a probability distribution that
outputs a language parameter ρ as well as a trapdoor td in polynomial time. The language parameter
ρ publicly defines an NP-language Lρ ⊆ Xρ. For simplicity, we assume that the universe Xρ is the
same for all languages Lρ, denoted by X . The trapdoor td is required to contain enough information
for deciding whether or not an instance x ∈ X is in Lρ. We require that there are PPT algorithms for
sampling x←$ Lρ uniformly together with a witness w and sampling x←$ X uniformly.

We define a subset membership problem (SMP) for a language distribution L , which asks whether
an element is uniformly chosen from Lρ or X .

6 Quasi-adaptiveness of HPS was discussed in [JR15]. Here we give a formal definition of QAHPS and build
our novel LR-ardency notion over it.

11

Definition 5 (Subset Membership Problem). The subset membership problem (SMP) related to
a language distribution L is hard, if for any PPT adversary A, it holds that

AdvsmpL ,A(λ) := |Pr [A(ρ, x) = 1]− Pr [A(ρ, x′) = 1] | ≤ negl(λ),

where (ρ, td)←$ L , x←$ Lρ and x′ ←$ X .

We also define a multi-fold version of SMP, which is to distinguish multiple instances, all of which
are uniformly chosen either from Lρ or from X .

Definition 6 (Multi-fold SMP). The multi-fold SMP related to a language distribution L is hard,
if for any PPT adversary A, any polynomial Q = poly(λ), it holds that

AdvQ-msmp
L ,A (λ) :=

∣∣Pr
[
A(ρ, {xj }j∈[Q]) = 1

]
− Pr

[
A(ρ, {x′j }j∈[Q]) = 1

]∣∣ ≤ negl(λ)

where (ρ, td)←$ L , x1, · · · , xQ ←$ Lρ and x′1, · · · , x′Q ←$ X .

By a standard hybrid argument, SMP and multi-fold SMP are equivalent. For some language
distributions, such as those for linear subspaces (cf. Subsect. 5.2), the hardness of multi-fold SMP can
be tightly reduced to that of SMP.

3.2 Quasi-Adaptive HPS

Definition 7 (Quasi-Adaptive Hash Proof System). A quasi-adaptive hash proof system (QAHPS)
QAHPS = (Setup, α(·),Pub,Priv) for a language distribution L consists of a tuple of PPT algorithms:

– pp ← $ Setup(1λ): The setup algorithm outputs a public parameter pp, which implicitly defines
(SK, Π, Λ(·)), where
• SK is the hashing key space and Π is the hash value space;
• Λ(·) : X −→ Π is a family of hash functions indexed by a hashing key sk ∈ SK, where X is

the universe for languages output by L .
We assume that Λ(·) is efficiently computable and there are PPT algorithms for sampling sk ←
$ SK uniformly and sampling π ←$ Π uniformly. We require pp to be an implicit input of other
algorithms.

– pkρ ← αρ(sk): The projection algorithm outputs a projection key pkρ of hashing key sk ∈ SK
w.r.t. the language parameter ρ.

– π ← Pub(pkρ, x, w): The public evaluation algorithm outputs the hash value π = Λsk(x) ∈ Π of
x ∈ Lρ, with the help of the projection key pkρ = αρ(sk) specified by ρ and a witness w for x ∈ Lρ.

– π ← Priv(sk, x): The private evaluation algorithm outputs the hash value π = Λsk(x) ∈ Π of
x ∈ X , directly using the hashing key sk.

Perfect correctness (a.k.a. projectiveness) of QAHPS requires that, for all possible pp ← $ Setup(1λ)
and (ρ, td)←$ L , all hashing keys sk ∈ SK with pkρ = αρ(sk) the corresponding projection key w.r.t.
ρ, all x ∈ Lρ with all possible witnesses w, it holds that

Pub(pkρ, x, w) = Λsk(x) = Priv(sk, x).

Remark 1 (Relation to HPS). In contrast to the HPS defined by Cramer and Shoup [CS02] (cf.
Definition 14 in Appendix A.2), there are two main differences:

• Instead of a single language, QAHPS is associated with a collection of languages L = {Lρ}ρ
characterized by a language distribution. In particular, the specific language Lρ is no longer
generated in the setup phase Setup.

• Instead of a single projection function, QAHPS possesses a family of projection functions α(·) :
SK −→ PK(·) indexed by a language parameter ρ, so that the action of Λsk(·) on Lρ is completely
determined by pkρ := αρ(sk).

12

In a nutshell, the relation between HPS and QAHPS is analogous to the relation between NIZK and
QA-NIZK [JR13].

Remark 2 (Relation to DV-QA-NIZK). An HPS is essentially a (deterministic) designated-
verifier non-interactive zero-knowledge (DV-NIZK) proof system [GHKW16]. Similarly, our QAHPS
can be viewed as a (deterministic) DV-QA-NIZK.

Dodis et al. [DKPW12] defined an extracting property for (traditional) HPS, which requires the
hash value Λsk(x) to be uniformly distributed over Π for any x ∈ X , as long as sk is uniformly chosen
from SK. Intuitively, Λ(·)(x) acts as an extractor and extracts the entropy from sk. Here, we introduce
a computational analogue of the extracting property in a multi-fold version for QAHPS, called multi-
extracting property, which demands the pseudorandomness of Λsk(xj) for multiple instances xj , j ∈
[Q].

Definition 8 (L0-Multi-Extracting QAHPS). Let L0 be a language distribution (which might
be different from L). QAHPS for L is called L0-multi-extracting, if for any PPT adversary A, any
Q = poly(λ), the following advantage is negligible

AdvQ-L0-mext
QAHPS,A (λ) :=

∣∣ Pr
[
A
(
pp, ρ0, {xj ,

∣∣Λsk(xj) }j∈[Q]

)
= 1
]
− Pr

[
A
(
pp, ρ0, {xj ,

∣∣πj }j∈[Q]

)
= 1
] ∣∣,

where pp←$ Setup(1λ), (ρ0, td0)←$ L0, sk ←$ SK, x1, · · · , xQ ←$ Lρ0 , and π1, · · · , πQ ←$ Π.

We note that the L0-multi-extracting property is defined in an average-case flavor, i.e., the in-
stances xj , j ∈ [Q], are uniformly chosen from Lρ0 .

3.3 Ardent QAHPS with Leakage Resilience

In this subsection, we introduce two statistical properties for QAHPS, including κ-LR-〈L0,L1〉-
universal and κ-LR-〈L0,L1〉-key-switching. These two properties are formalized in a general manner
and are parameterized by κ ∈ N and two language distributions 〈L0,L1〉. We name QAHPS enjoying
these properties as LR-ardent QAHPS. We highlight the leakage L(sk) with gray boxes, in order to
show the difference from the perfectly ardent QAHPS as stated in Subsect. 1.1.

Definition 9 (Leakage-Resilient Ardent QAHPS). Let κ = κ(λ) ∈ N, and let L0,L1 be a
pair of language distributions. A QAHPS scheme QAHPS for a language distribution L is called
κ-leakage-resilient 〈L0,L1〉-ardent (κ-LR-〈L0,L1〉-ardent), if the following two properties hold:

• (κ-LR-〈L0,L1〉-Universal). With overwhelming probability 1 − 2−Ω(λ) over pp ←$ Setup(1λ),
(ρ0, td0) ← $ L0 and (ρ1, td1) ← $ L1, for all x ∈ X \ (Lρ0 ∪ Lρ1) and all leakage functions
L : SK −→ {0, 1}κ, if sk ←$ SK, then

H̃∞
(
Λsk(x)

∣∣ αρ0(sk), αρ1(sk), L(sk)
)
≥ Ω(λ). (8)

We require the inequality to hold for adaptive choices of x and L, where x and L can arbitrarily
depend on ρ0, ρ1, αρ0(sk), αρ1(sk).

• (κ-LR-〈L0,L1〉-Key-Switching). With overwhelming probability 1−2−Ω(λ) over pp←$ Setup(1λ)
and (ρ0, td0)←$ L0, for all leakage functions L : SK −→ {0, 1}κ, it holds that:

∆
((

ρ1,
∣∣αρ1(sk)

)
,
(
ρ1,

∣∣αρ1(sk′)
) ∣∣ αρ0(sk), L(sk)

)
≤ 2−Ω(λ), (9)

where the probability is over sk, sk′ ←$ SK and (ρ1, td1)←$ L1. We require the inequality to hold
for L that is arbitrarily dependent on ρ0, αρ0(sk). However, L is required to be independent of ρ1.

When κ = 0, the term “κ-LR” is omitted from these properties. The parameter 〈L0,L1〉 is also
omitted when it is clear from context.

13

Remark 3. In the above definition, the public parameter pp is implicitly included in the conditions
in (8) and (9). Meanwhile, L0,L1 implicitly take pp as an input.

Remark 4 (Game-Based Definition for LR-Ardency). The definition of LR-ardency goes with
a concise style which is consistent with the definition of perfectly ardent QAHPS as shown in Eqs.
(1) and (2) in Subsect. 1.1. It can also be formalized via games. Appendix C shows the game-based
definition which is more friendly to our security proof of LR-CCA security.

Definition 10 (Ardent QAHPS). QAHPS is called 〈L0,L1〉-ardent if it is 0-leakage-resilient 〈L0,
L1〉-ardent.

Furthermore, if (8) and (9) are replaced by (1) and (2), then it is perfectly 〈L0,L1〉-universal
and key-switching which is obviously (0-LR-)〈L0,L1〉-universal and key-switching. Observe that,
perfectly universal property itself carries leakage resilience to some extent as shown in Lemma 7.

Lemma 7 (Perfectly 〈L0,L1〉-Universal ⇒ LR-〈L0,L1〉-Universal). If a QAHPS scheme is
perfectly 〈L0,L1〉-universal, then it is κ-LR-〈L0,L1〉-universal for any κ ≤ log |Π| −Ω(λ), where Π
is the hash value space of QAHPS.

Proof. Suppose that QAHPS is perfectly 〈L0,L1〉-universal. Then by (1), for all x ∈ X \ (Lρ0 ∪Lρ1),
we have:

H̃∞
(
Λsk(x)

∣∣ αρ0(sk), αρ1(sk)
)

= log |Π|,

where sk ← $ SK. Note that, x can arbitrarily depend on sk. Since L(sk) has at most 2κ possible
values, by Lemma 1,

H̃∞
(
Λsk(x)

∣∣ αρ0(sk), αρ1(sk), L(sk)
)
≥ H̃∞

(
Λsk(x)

∣∣ αρ0(sk), αρ1(sk)
)
− κ,

which is Ω(λ) for κ ≤ log |Π| −Ω(λ). This completes the proof of Lemma 7. ut

Remark 5 (On the Independence between L(·) and ρ1). We stress that, in the definition of
κ-LR-〈L0,L1〉-key-switching, the independence between the leakage function L(·) and the language
parameter ρ1 is necessary. Otherwise, this property is unsatisfiable by simply taking L(·) as the first
κ bits of αρ1(·).

Remark 6 (On the Choices of 〈L0,L1〉). We stress that, in the above definition, L0 or L1 is
allowed to be L itself. In particular, it is reasonable to define κ-LR-〈L ,L0〉-ardency for a QAHPS
scheme QAHPS for L . Besides, we note that κ-LR-〈L0,L1〉-universal is identical to κ-LR-〈L1,L0〉-
universal.

Remark 7 (Relation to the Universal1, Universal2 and Extracting Properties). The 〈L0,
L1〉-universal property of QAHPS generalizes the currently available universal and extracting prop-
erties of (traditional) HPS. With different choices of L0 and L1, it will turn into the universal1, the
universal2 and the extracting properties of HPS defined in [CS02, DKPW12], respectively.

More precisely, let L⊥ (or simply ⊥) denote a special empty language distribution, which always
outputs ρ⊥ defining the empty language Lρ⊥ = {}, and let Lsing denote a special singleton language
distribution, which samples x←$ X uniformly and outputs ρx defining a singleton language Lρx = {x}.
We assume that αρ⊥(sk) = ⊥ and αρx(sk) = Λsk(x) hold for any sk ∈ SK and x ∈ X , both of which
are very natural and are satisfied by our instantiations in Sect. 5 and Sect. 6. Then: (i) 〈L ,⊥〉-
universal corresponds to the average-case universal1 property; (ii) 〈L ,Lsing〉-universal corresponds
to the average-case universal2 property; (iii) Perfectly 〈⊥,⊥〉-universal corresponds to the extracting
property.

The leakage-resilient ardency of QAHPS can be adapted to a weak version.

Definition 11 (Leakage-Resilient Weak-Ardent QAHPS). Let κ = κ(λ) ∈ N, and let L0,L1

be a pair of language distributions. A QAHPS scheme QAHPS for a language distribution L is called
κ-leakage-resilient 〈L0,L1〉-weak-ardent (κ-LR-〈L0,L1〉-weak-ardent), if QAHPS is 〈⊥,⊥〉-universal
and supports κ-LR-〈L0,L1〉-key-switching. Similarly, κ = 0 leads to weak-ardent QAHPS.

14

3.4 Extension to the Tag-Based Setting

The notion of (traditional) HPS was generalized to extended HPS (a.k.a. labeled HPS) in [CS02] and
tag-based HPS in [QLC15], respectively, by allowing the hash functions Λ(·) to have an additional
element called label/tag as input.

Similarly, in a tag-based QAHPS, the public parameter pp also implicitly defines a tag space
T . Meanwhile, the hash functions Λ(·), the public evaluation algorithm Pub and the private eval-
uation algorithm Priv also take a tag τ ∈ T as input. Accordingly, perfect correctness requires
Pub(pkρ, x, w, τ) = Λsk(x, τ) = Priv(sk, x, τ) for all tags τ ∈ T . The formal definition of tag-based
QAHPS is shown below.

Definition 12 (Tag-Based QAHPS). A tag-based QAHPS scheme QAHPS = (Setup, α(·),Pub,Priv)
for a language distribution L consists of a tuple of PPT algorithms:

– pp ← $ Setup(1λ): The setup algorithm outputs a public parameter pp, which implicitly defines
(SK, T ,Π,Λ(·)), where

• SK is the hashing key space, T the tag space and Π the hash value space;
• Λ(·) : X × T −→ Π is a family of hash functions indexed by a hashing key sk ∈ SK, where X

is the universe for languages output by L .

We assume that Λ(·) is efficiently computable and there are PPT algorithms for sampling sk ←
$ SK uniformly and sampling π ←$ Π uniformly. We require pp to be an implicit input of other
algorithms.

– pkρ ← αρ(sk): The projection algorithm outputs a projection key pkρ of hashing key sk ∈ SK
w.r.t. the language parameter ρ.

– π ← Pub(pkρ, x, w, τ): The public evaluation algorithm outputs the hash value π = Λsk(x, τ) ∈ Π
of x ∈ Lρ and τ ∈ T , with the help of the projection key pkρ = αρ(sk) specified by ρ and a witness
w for x ∈ Lρ.

– π ← Priv(sk, x, τ): The private evaluation algorithm outputs the hash value π = Λsk(x, τ) ∈ Π of
x ∈ X and τ ∈ T , directly using the hashing key sk.

Perfect correctness of tag-based QAHPS requires that, for all possible pp ←$ Setup(1λ) and (ρ, td) ←
$ L , all hashing keys sk ∈ SK with pkρ = αρ(sk) the corresponding projection key w.r.t. ρ, all x ∈ Lρ
with all possible witnesses w, and all tags τ ∈ T , it holds that

Pub(pkρ, x, w, τ) = Λsk(x, τ) = Priv(sk, x, τ).

The notion of LR-ardency is naturally adapted for tag-based QAHPS. A tag-based QAHPS is
κ-leakage-resilient 〈L0,L1〉-ardent (κ-LR-〈L0,L1〉-ardent), if it is both κ-LR-〈L0,L1〉-universal and
κ-LR-〈L0,L1〉-key-switching.

• (κ-LR-〈L0,L1〉-Universal for Tag-Based QAHPS). It takes tags into account and consid-
ers two hash values with different tags. With overwhelming probability 1 − 2−Ω(λ) over pp ←
$ Setup(1λ), (ρ0, td0) ← $ L0 and (ρ1, td1) ← $ L1, for all x ∈ X \ (Lρ0 ∪ Lρ1), all x′ ∈ X , all
τ, τ ′ ∈ T with τ 6= τ ′and all leakage functions L : SK −→ {0, 1}κ, if sk ←$ SK, then

H̃∞
(
Λsk(x, τ)

∣∣ αρ0(sk), αρ1(sk), Λsk(x′, τ ′), L(sk)
)
≥ Ω(λ).

We require the inequality to hold for adaptive choices of x, x′, τ, τ ′ and L, where they can arbitrarily
depend on ρ0, ρ1, αρ0(sk), αρ1(sk).

• (κ-LR-〈L0,L1〉-Key-Switching for Tag-Based QAHPS). This property remains the same
as (9) for the non-tag-based QAHPS, since no tag is involved in the projection algorithm α(·).

Similarly, the κ-LR-〈L0,L1〉-weak-ardency of tag-based QAHPS asks for both 〈⊥,⊥〉-universal
and κ-LR-〈L0,L1〉-key-switching properties.

15

• (〈⊥,⊥〉-Universal for Tag-Based QAHPS). With overwhelming probability 1− 2−Ω(λ) over
pp←$ Setup(1λ), for all x, x′ ∈ X and all τ, τ ′ ∈ T with τ 6= τ ′, it holds that:

H̃∞
(
Λsk(x, τ)

∣∣ Λsk(x′, τ ′)
)
≥ Ω(λ),

where the probability is over sk ←$ SK and x, τ can arbitrarily depend on Λsk(x′, τ ′).

We also give a game-based definition for LR-ardency of tag-based QAHPS in Appendix C.

4 LR-CCA-Secure PKE via LR-Ardent QAHPS

We present a modular approach to tightly LR-CCA secure PKE from LR-ardent QAHPS. Our ap-

proach employs an LR-weak-ardent QAHPS, an LR-ardent Q̂AHPS and an LR-weak-ardent tag-based

Q̃AHPS, all of which are associated with the same language distribution L .

4.1 The Generic Construction of PKE

Our PKE construction makes use of the following building blocks.

• Three language distributions L ,L0 and L1, all of which have hard subset membership problems.

• An LR-weak-ardent QAHPS = (Setup, α(·),Pub,Priv) for L , whose hash value space Π is an
(additive) group.

• An LR-ardent Q̂AHPS = (Ŝetup, α̂(·), P̂ub, P̂riv) for L .

• An LR-weak-ardent tag-based Q̃AHPS = (S̃etup, α̃(·), P̃ub, P̃riv) for L , whose tag space is T̃ .

• A collision-resistant function family H = {H : X ×Π −→ T̃ }.

The LR-ardency requirements for the QAHPS schemes are listed in Table 2.

Table 2. Requirements on QAHPS, Q̂AHPS and tag-based Q̃AHPS for κ-LR-CCA security of PKE. Here

〈L0,L1〉-key-switching for Q̂AHPS is not listed, since it is not necessary in the κ-LR-CCA security proof.

We stress that the 〈⊥,⊥〉-universal property of QAHPS, the 〈L0,L1〉-universal property of Q̂AHPS, and the

〈⊥,⊥〉-universal and 〈L0,L1〉-key-switching properties of Q̃AHPS do not have to be leakage-resilient.

LR-weak-ardency of QAHPS LR-ardency of Q̂AHPS LR-weak-ardency of Q̃AHPS

universal 〈⊥,⊥〉 κ-LR-〈L ,L0〉, 〈L0,L1〉 〈⊥,⊥〉

key-switching κ-LR-〈L ,L0〉 κ-LR-〈L ,L0〉 κ-LR-〈L ,L0〉, 〈L0,L1〉

The proposed scheme PKE = (Param,Gen,Enc,Dec) with message space M = Π is presented in

Fig. 2. The perfect correctness of PKE follows from the perfect correctness of QAHPS, Q̂AHPS and

Q̃AHPS directly.

Remark 8 (A More Efficient Variant). If Q̂AHPS and tag-based Q̃AHPS share the same hash

value space (i.e., Π̂ = Π̃) and Π̂ (= Π̃) is an (additive) group7, the hash values π̂ and π̃ can be
combined into π̂ + π̃, thus saving one element from the ciphertext. This more efficient variant of
generic PKE construction is shown in Fig. 15 in Appendix D.

7 In fact, this condition can be weakened by only requiring Π̂ and Π̃ to be subsets of an (additive) group.

16

PP←$ Param(1λ):

pp←$ Setup(1λ), which defines (SK, Π,Λ(·)).

p̂p←$ Ŝetup(1λ), which defines (ŜK, Π̂, Λ̂(·)).

p̃p←$ S̃etup(1λ), which defines (S̃K, T̃ , Π̃, Λ̃(·)).

(ρ, td)←$ L . H←$ H.

⇒ PP := (pp, p̂p, p̃p, ρ,H).

C ←$ Enc(PK,M):

x←$ Lρ with witness w.

d := Pub(pkρ, x, w) +M ∈ Π.

τ := H(x, d) ∈ T̃ .

π̂ := P̂ub(p̂kρ, x, w) ∈ Π̂.

π̃ := P̃ub(p̃kρ, x, w, τ) ∈ Π̃.

⇒ C := (x, d, π̂, π̃).

(PK, SK)←$ Gen(PP):

sk ←$ SK. pkρ := αρ(sk).

ŝk ←$ ŜK. p̂kρ := α̂ρ(ŝk).

s̃k ←$ S̃K. p̃kρ := α̃ρ(s̃k).

⇒ PK := (pkρ, p̂kρ, p̃kρ),

SK := (sk, ŝk, s̃k).

M/⊥ ← Dec(SK, C):

Parse C = (x, d, π̂′, π̃′).

M := d− Priv(sk, x) ∈ Π.

τ := H(x, d) ∈ T̃ .

π̂ := P̂riv(ŝk, x) ∈ Π̂.

π̃ := P̃riv(s̃k, x, τ) ∈ Π̃.

⇒ If π̂′ = π̂ and π̃′ = π̃, Return M ;
Else, Return ⊥.

Fig. 2. Generic construction of PKE from QAHPS, Q̂AHPS and tag-based Q̃AHPS.

4.2 LR-CCA Security of PKE

In this subsection, we prove the LR-CCA security of our generic PKE construction in Fig. 2. The
security proof and the concrete security bound also apply to the more efficient variant PKE as shown
in Fig. 15 (see Remark 8).

Theorem 1 (LR-CCA Security of PKE). If (i) L , L0 and L1 have hard subset membership prob-

lems, (ii) QAHPS is a κ-LR-weak-ardent QAHPS scheme for L , Q̂AHPS is a κ-LR-ardent QAHPS

scheme for L and Q̃AHPS is a κ-LR-weak-ardent tag-based QAHPS scheme for L , which satisfy the
properties listed in Table 2, (iii) QAHPS is L0-multi-extracting, (iv) H is a collision-resistant function
family, then the proposed PKE scheme in Fig. 2 is κ-LR-CCA secure.

Concretely, for any adversary A who makes at most Qe times of Enc queries and Qd times of
Dec queries, there exist adversaries B1, · · · ,B5, such that T(B1) ≈ T(B4) ≈ T(B5) ≈ T(A) + (Qe +
Qd) · poly(λ), T(B2) ≈ T(B3) ≈ T(A) + (Qe + Qe ·Qd) · poly(λ), with poly(λ) independent of T(A),
and

Advκ-lr-ccaPKE,A (λ) ≤ AdvQe-msmpL ,B1
(λ) + (2n+ 1) · AdvQe-msmpL0,B2

(λ) + 2n · AdvQe-msmpL1,B3
(λ)

+ AdvcrH,B4
(λ) + AdvQe-L0-mext

QAHPS,B5
(λ)

+ (3 +Qd +QdQe + n(Qd +Qe +QdQe)) · 2−Ω(λ), for n = dlogQee.

Remark 9. The last term (. . .) · 2−Ω(λ) in the above security bound encompasses the statistical
differences introduced by the LR-universal and LR-key-switching properties of the three QAHPS
schemes. We stress that only factors of computational reductions matter to the tightness of a security
reduction.

Proof of Theorem 1. We prove the theorem by defining a sequence of games G0–G6 and showing
adjacent games indistinguishable. (We also illustrate the games in Fig. 16 in Appendix E.) A brief
description of differences between adjacent games is summarized in Table 3.

Game G0: This is the κ-lr-cca security game (cf. Fig. 1). Let Win denote the event that β′ = β. By
definition, Advκ-lr-ccaPKE,A (λ) =

∣∣Pr0[Win]− 1
2

∣∣.
In this game, when answering an Enc query (M0,M1), the challenger samples x∗ ←$ Lρ with wit-

ness w∗, computes d∗ := Pub(pkρ, x
∗, w∗)+Mβ ∈ Π, τ∗ := H(x∗, d∗) ∈ T̃ , π̂∗ := P̂ub(p̂kρ, x

∗, w∗) ∈ Π̂

17

Table 3. Brief Description of Games G0 –G6 for the κ-LR-CCA security proof of PKE. Here column “Enc”
suggests how the challenge ciphertext C∗ = (x∗, d∗, π̂∗, π̃∗) is generated: sub-column “x∗ from” refers to the
language from which x∗ is chosen; sub-column “d∗ using” (resp. “π̂∗ using”, “π̃∗ using”) indicates the keys that
are used in the computation of d∗ (resp. π̂∗, π̃∗). Column “Dec checks” describes the additional check made
by Dec upon a decryption query C = (x, d, π̂′, π̃′), besides the routine check C /∈ QENC ∧ π̂′ = π̂ ∧ π̃′ = π̃;
Dec outputs ⊥ if the check fails.

Enc
Dec checks Remark/Assumption

x∗ from d∗ using π̂∗ using π̃∗ using

G0 Lρ pkρ p̂kρ p̃kρ κ-LR-CCA game

G1 Lρ sk ŝk s̃k
perfect correctness of

QAHPS, Q̂AHPS, Q̃AHPS

G2 Lρ sk ŝk s̃k τ /∈ QTAG collision-resistance of H

G3 Lρ0 sk ŝk s̃k τ /∈ QTAG multi-fold SMP of L and L0

G4 Lρ0 sk ŝk s̃k τ /∈ QTAG, x ∈ Lρ
Lemma 8 (Rejection Lemma)

see Table 4 and Table 5

G5 Lρ0 sk′ ŝk s̃k τ /∈ QTAG, x ∈ Lρ LR-〈L ,L0〉-key-switching of QAHPS

G6 Lρ0 = rand ŝk s̃k τ /∈ QTAG, x ∈ Lρ L0-multi-extracting of QAHPS

and π̃∗ := P̃ub(p̃kρ, x
∗, w∗, τ∗) ∈ Π̃. Then, the challenger returns the challenge ciphertext C∗ =

(x∗, d∗, π̂∗, π̃∗) to the adversary A and puts C∗ to a set QENC. Upon a Dec query C = (x, d, π̂′, π̃′),

the challenger answers A as follows. Compute M := d − Priv(sk, x) ∈ Π, τ := H(x, d) ∈ T̃ ,

π̂ := P̂riv(ŝk, x) ∈ Π̂ and π̃ := P̃riv(s̃k, x, τ) ∈ Π̃. If C /∈ QENC ∧ π̂′ = π̂ ∧ π̃′ = π̃, return M ;
otherwise return ⊥.

Game G1: It is the same as G0, except that, when answering Enc(M0,M1), the challenger computes

d∗, π̂∗ and π̃∗ directly using the secret key SK = (sk, ŝk, s̃k):
• d∗ := Priv(sk, x∗) +Mβ ∈ Π,

• π̂∗ := P̂riv(ŝk, x∗) ∈ Π̂ and π̃∗ := P̃riv(s̃k, x∗, τ∗) ∈ Π̃.

Since x∗ ∈ Lρ with witness w∗, by the perfect correctness of QAHPS, Q̂AHPS and Q̃AHPS, the
changes are just conceptual. Consequently, Pr0[Win] = Pr1[Win].

Game G2: It is the same as G1, except that, when answering Enc(M0,M1), the challenger also puts
τ∗ to a set QTAG, and when answering Dec

(
C = (x, d, π̂′, π̃′)

)
, the challenger adds the following new

rejection rule:

• If τ ∈ QTAG, return ⊥ directly.

Claim 1.
∣∣Pr1[Win]− Pr2[Win]

∣∣ ≤ AdvcrH(λ).

Proof. By Coll denote the event that A ever queries Dec
(
C = (x, d, π̂′, π̃′)

)
s.t.

∃ C∗ = (x∗, d∗, π̂∗, π̃∗) ∈ QENC, s.t. C = (x, d, π̂′, π̃′) 6= (x∗, d∗, π̂∗, π̃∗) = C∗

∧ π̂′ = π̂ ∧ π̃′ = π̃ ∧ τ = H(x, d) = H(x∗, d∗) = τ∗ ∈ QTAG.

Clearly, G1 and G2 are the same until Coll occurs, therefore
∣∣Pr1[Win] − Pr2[Win]

∣∣ ≤ Pr2[Coll]. Note
that (x, d) = (x∗, d∗) implies (π̂, π̃) = (π̂∗, π̃∗). Hence Coll happens if and only if (x, d) 6= (x∗, d∗),
which suggests a collision.

Thus,
∣∣Pr1[Win]− Pr2[Win]

∣∣ ≤ Pr2[Coll] ≤ AdvcrH(λ), and Claim 1 follows.

Game G3: This game is the same as game G2, except that, in Initialize, the challenger picks
(ρ0, td0) ← $ L0 as well, and for all the Enc queries, the challenger samples x∗ ← $ Lρ0 instead of
x∗ ←$ Lρ.

18

Claim 2.
∣∣Pr2[Win]− Pr3[Win]

∣∣ ≤ AdvQe-msmpL (λ) + AdvQe-msmpL0
(λ).

Proof. We introduce an intermediate game G2.5 between G2 and G3:

– Game G2.5: It is the same as game G2, except that x∗ ←$ X in Enc.

Since witness w∗ for x∗ is not used at all in games G2, G2.5 and G3, we can directly construct two
adversaries B and B′ for solving the multi-fold SMP related to L and the multi-fold SMP related
to L0 respectively, so that

∣∣Pr2[Win]− Pr2.5[Win]
∣∣ ≤ AdvQe-msmpL ,B (λ) and

∣∣Pr2.5[Win]− Pr3[Win]
∣∣ ≤

AdvQe-msmpL0,B′ (λ).

Game G4: This game is the same as game G3, except that, when answering Dec
(
C = (x, d, π̂′, π̃′)

)
,

the challenger adds another new rejection rule:

• If x /∈ Lρ, return ⊥ directly.

Lemma 8 (Rejection Lemma). For n = dlogQee,
∣∣Pr3[Win]−Pr4[Win]

∣∣ ≤ 2n ·
(
AdvQe-msmpL0

(λ) +

AdvQe-msmpL1
(λ)
)

+ (2 +Qd +QdQe + n · (Qd +Qe +QdQe)) · 2−Ω(λ).

The proof of Lemma 8 is very modular and relies on the LR-ardency of the three QAHPS schemes.
We postpone it to the end of Theorem 1.

Game G5: It is the same as G4, except that, in Initialize, the challenger picks another sk′ ←$ SK
besides sk, and when answering Enc(M0,M1), the challenger computes d∗ using sk′ rather than sk:

• d∗ := Priv(sk′, x∗) +Mβ ∈ Π.

The challenger still uses sk to compute the public key in Initialize and to answer Dec queries.

Claim 3. |Pr4[Win]− Pr5[Win]| ≤ 2−Ω(λ).

Proof. We analyze the information about sk (resp. sk and sk′) that A may obtain in G4 (resp. G5).

• In Initialize, A obtains pkρ = αρ(sk) from the public key PK.
• In Enc, since x∗ ← $ Lρ0 , the behavior of Enc is completely determined by αρ0(sk) (resp.

αρ0(sk′)).
• In Dec, the challenger will not output M unless x ∈ Lρ (due to the new rejection rule added in
G4), thus the behavior of Dec is completely determined by αρ(sk).
• From oracle Leak(L), A obtains at most κ-bit information of sk.

Note that, L is indeed independent of ρ0. The reason is as follows: (1) ρ0 is used only in Enc; (2) A
is not allowed to query Leak as long as it has queried Enc.

By the κ-LR-〈L ,L0〉-key-switching property of QAHPS (cf. (9)), we have

∆
((

ρ0,
∣∣αρ0(sk)

)
,
(
ρ0,

∣∣αρ0(sk′)
) ∣∣ αρ(sk), L(sk)

)
≤ 2−Ω(λ).

Thus, |Pr4[Win]− Pr5[Win]| ≤ 2−Ω(λ), and Claim 3 follows.

Game G6: This game is the same as game G5, except that, for all the Enc queries, the challenger
samples d∗ ←$ Π uniformly at random.

Claim 4.
∣∣Pr5[Win]− Pr6[Win]

∣∣ ≤ AdvQe-L0-mext
QAHPS (λ).

Proof. The difference between G5 and G6 lies in Enc and can be characterized by the following two
distributions:

• G5:
(
x∗j ←$ Lρ0 , d∗j := Priv(sk′, x∗j) +Mβ,j ∈ Π

)
j∈[Qe]

,

• G6:
(
x∗j ←$ Lρ0 , d∗j ←$ Π

)
j∈[Qe]

,

19

where x∗j , d
∗
j , Mβ,j denote the x∗, d∗, Mβ in the j-th Enc query, respectively.

We note that sk′ is used only in the computations of d∗ in Enc. By the L0-multi-extracting
property of QAHPS, the above two distributions are computationally indistinguishable. Consequently,
Claim 4 follows.

Finally in game G6, d∗ is uniformly chosen from Π regardless of the value of β, thus the challenge
bit β is completely hidden to A. Then Pr6[Win] = 1

2 . Taking all things together, Theorem 1 follows. ut

Proof of Lemma 8 (Rejection Lemma). The difference between game G3 and game G4 is the

rejection of all ill-formed ciphertexts with x /∈ Lρ in game G4. This lemma shows that this rejection rule

is undetectable by the adversary A, due to the LR-weak-ardency of QAHPS, the LR-ardency of Q̂AHPS

and the LR-weak-ardency of tag-based Q̃AHPS. Technically speaking, we modified and adapted the
latest partitioning techniques in [GHKP18] (which in turn built upon [GHKW16, Hof17, GHK17]) for

our strategy, so that the hash values π̃ = Λ̃
s̃k

(x, τ) for x /∈ Lρ are fully randomized to π̃ = Λ̃RF(ctr)(x, τ)
by RF(ctr), where RF is a random function. This is accomplished in only O(logQe) = O(log λ) steps.
Each step is moved forward from RFi(ctr|i) to RFi+1(ctr|i+1), making use of the LR-universal and

LR-key-switching properties of QAHPS, Q̂AHPS and Q̃AHPS, together with language switching among
Lρ, Lρ0 and Lρ1 (cf. Subsect. 1.1).

Let Bad denote the event that A ever queries Dec
(
C = (x, d, π̂′, π̃′)

)
, such that C /∈ QENC ∧ π̂′ =

π̂ ∧ π̃′ = π̃ ∧ τ /∈ QTAG but x /∈ Lρ. Clearly, game G3 and game G4 are the same until Bad happens,
thus ∣∣Pr3[Win]− Pr4[Win]

∣∣ ≤ Pr4[Bad]. (10)

It remains to bound the probability Pr4[Bad]. The analysis of this probability is not an easy task.
We will defer Pr4[Bad] to a sequence of hybrids H0 –H4. (We also illustrate the hybrids in Fig. 17 in
Appendix E.) A brief description of differences between adjacent hybrids is summarized in Table 4.

Hybrid H0: It is the same as game G4. In this hybrid, when answering Dec
(
C = (x, d, π̂′, π̃′)

)
, the

challenger will detect whether or not Bad occurs, and if so, the challenger sets a Boolean variable Bad
as true. (As a slight abuse of notation, we use Bad to denote both the event Bad and the Boolean
variable Bad.) Therefore, we have

Pr4[Bad] = PrH0[Bad]. (11)

Hybrid H1: It is the same as hybrid H0, except that, when answering Dec
(
C = (x, d, π̂′, π̃′)

)
, the

challenger adds the following new rule:

• If x /∈ Lρ ∪ Lρ0 , do not check the occurrence of Bad (and return ⊥ directly).

That is, the challenger will not set the Boolean variable Bad as true unless x ∈ Lρ0 .

Claim 5.
∣∣PrH0[Bad]− PrH1[Bad]

∣∣ ≤ Qd · 2−Ω(λ).

Proof. Let Forge denote the event that A ever queries Dec
(
C = (x, d, π̂′, π̃′)

)
, such that π̂′ = π̂ but

x /∈ Lρ ∪ Lρ0 . Clearly, hybrid H0 and hybrid H1 are the same unless Forge happens, thus∣∣PrH0[Bad]− PrH1[Bad]
∣∣ ≤ PrH1[Forge].

We analyze the event Forge in hybrid H1.

– Observe that the information about ŝk that A may obtain in H1 is only p̂kρ = α̂ρ(ŝk) and α̂ρ0(ŝk):

in Initialize, A obtains p̂kρ from PK; in Enc, since x∗ ←$ Lρ0 , Enc reveals nothing about ŝk

beyond α̂ρ0(ŝk); in Dec, the challenger will not output M unless x ∈ Lρ (due to the new rejection

rule added in G4), thus Dec reveals nothing about ŝk beyond p̂kρ; from Leak(L), A obtains at

most κ-bit information of ŝk.

20

Table 4. Brief Description of Hybrids H0 –H4 for the κ-LR-CCA security proof of PKE. Here column “Enc (x∗

from Lρ0)” suggests how the challenge ciphertext C∗ = (x∗, d∗, π̂∗, π̃∗) is generated: x∗ is always uniformly
chosen from Lρ0 ; sub-column “π̂∗ using” (resp. “π̃∗ using”) indicates the keys that are used in the computation
of π̂∗ (resp. π̃∗). Column “Dec (for x /∈ Lρ)” suggests how a decryption query C = (x, d, π̂′, π̃′) with x /∈ Lρ
is handled to check the occurrence of Bad: sub-column “checks” describes the additional check made by Dec
besides the routine check C /∈ QENC ∧ π̂′ = π̂ ∧ π̃′ = π̃ ∧ τ /∈ QTAG (Bad := true if the check succeeds);
sub-column “π̂ using” (resp. “π̃ using”) indicates the keys that are used in the computation of π̂ (resp. π̃).

Enc (x∗ from Lρ0) Dec (for x /∈ Lρ)
Remark/Assumption

π̂∗ using π̃∗ using checks π̂ using π̃ using

H0 ŝk s̃k ŝk s̃k H0 = G4

H1 ŝk s̃k x ∈ Lρ0 ŝk s̃k LR-〈L ,L0〉-universal of Q̂AHPS

H2 ŝk′ s̃k′ x ∈ Lρ0 ŝk′ s̃k′
LR-〈L ,L0〉-key-switching of

Q̂AHPS, Q̃AHPS

H3 ŝk′ s̃k′ ŝk′ s̃k′ win. chances increase

H3.i ŝk′ RFi(ctr|i) ŝk′
RFi(ctr|i)

for all ctr ∈ [Qe]

H3 = H3.0

see Table 5

H4 ŝk′ RFdlogQee(ctr) ŝk′
RFdlogQee(ctr)

for all ctr ∈ [Qe]

H4 = H3.dlogQee

PrH4[Bad] = negl:

〈⊥,⊥〉-universal of Q̃AHPS

ctr ∈ [Qe] is a counter recording the number of times that the adversary has queried the Enc oracle and is

treated as a bit string of length dlogQee.

RFi : {0, 1}i −→ S̃K and RFdlogQee : {0, 1}dlogQee −→ S̃K are truly random functions.

“π̃ using RFi(ctr|i)” means π̃ := P̃riv
(
RFi(ctr|i), x, τ

)
∈ Π̃.

These π̃’s for all ctr ∈ [Qe] form a set

S :=
{
π̃ := P̃riv

(
RFi(ctr|i), x, τ

)
∈ Π̃

∣∣ ctr ∈ [Qe]
}
.

From hybrid H3.i on, the routine check made by Dec
(
C = (x, d, π̂′, π̃′)

)
for x /∈ Lρ is

C /∈ QENC ∧ π̂′ = π̂ ∧ π̃′ ∈ S ∧ τ /∈ QTAG .

– The event Forge occurs in H1 implies that A ever makes a Dec query C = (x, d, π̂′, π̃′) such that
π̂′ = π̂ but x /∈ Lρ ∪ Lρ0 hold, where

π̂ = P̂riv(ŝk, x) = Λ̂
ŝk

(x) ∈ Π̂.

Since Q̂AHPS is κ-〈L ,L0〉-universal, π̂ has enough entropy even conditioned on p̂kρ = α̂ρ(ŝk),

α̂ρ0(ŝk) and L(ŝk), i.e.

H̃∞
(
Λ̂
ŝk

(x)
∣∣ α̂ρ(ŝk), α̂ρ0(ŝk), L(ŝk)

)
≥ Ω(λ).

Consequently, in one Dec query, Forge occurs with probability at most 2−Ω(λ).

By a union bound, we get that PrH1[Forge] ≤ Qd · 2−Ω(λ), thus Claim 5 follows.

Hybrid H2: This hybrid is the same as hybrid H1, except that, in Initialize, the challenger picks

another pair of ŝk′ ←$ ŜK, s̃k′ ←$ S̃K besides ŝk, s̃k. Moreover, when answering Enc(M0,M1), the

challenger computes π̂∗, π̃∗ using ŝk′, s̃k′ rather than ŝk, s̃k, respectively:

• π̂∗ := P̂riv(ŝk′, x∗) ∈ Π̂, π̃∗ := P̃riv(s̃k′, x∗, τ∗) ∈ Π̃.

21

Furthermore, when answering Dec
(
C = (x, d, π̂′, π̃′)

)
, for x ∈ Lρ0 , the challenger computes π̂, π̃

using ŝk′, s̃k′ (to detect the occurrence of Bad), rather than ŝk, s̃k, respectively:

• π̂ := P̂riv(ŝk′, x) ∈ Π̂, π̃ := P̃riv(s̃k′, x, τ) ∈ Π̃.

The challenger still uses ŝk, s̃k to compute the public key in Initialize and to answer Dec queries
for x ∈ Lρ.

Claim 6. |PrH1[Bad]− PrH2[Bad]| ≤ 2 · 2−Ω(λ).

Proof. We analyze the information about ŝk, s̃k (resp. ŝk, s̃k, ŝk′ , s̃k′) that are involved in H1 (resp.
H2).

• In Initialize, the public key PK contains p̂kρ = α̂ρ(ŝk) and p̃kρ = α̃ρ(s̃k).

• In Enc, since x∗ ←$ Lρ0 , the behavior of Enc is completely determined by α̂ρ0(ŝk), α̃ρ0(s̃k) (resp.

α̂ρ0(ŝk′), α̃ρ0(s̃k′)).
• In Dec, the challenger will not compute π̂ and π̃ unless x ∈ Lρ ∪ Lρ0 (due to the new rule

added in H1), thus: for x ∈ Lρ, the behavior of Dec is completely determined by α̂ρ(ŝk), α̃ρ(s̃k);

for x ∈ Lρ0 , the behavior of Dec is completely determined by α̂ρ0(ŝk), α̃ρ0(s̃k) (resp. α̂ρ0(ŝk′),

α̃ρ0(s̃k′)).

• From Leak(L), A obtains at most κ-bit information of ŝk and s̃k.

Note that, L is indeed independent of ρ0. The reason is as follows: (1) The only way that A learns
information about ρ0 is through oracle Enc (for Dec queries, A receives ⊥ immediately if x /∈ Lρ, no
matter x ∈ Lρ0 or x /∈ Lρ ∪ Lρ0); (2) A is not allowed to query oracle Leak as long as it has queried
oracle Enc.

By the κ-LR-〈L ,L0〉-key-switching property of Q̂AHPS and Q̃AHPS, we have

∆
((

ρ0,
∣∣α̂ρ0(ŝk)

)
,
(
ρ0,

∣∣α̂ρ0(ŝk′)
) ∣∣ α̂ρ(ŝk), L(ŝk)

)
≤ 2−Ω(λ),

∆
((

ρ0,
∣∣α̃ρ0(s̃k)

)
,
(
ρ0,

∣∣α̃ρ0(s̃k′)
) ∣∣ α̃ρ(s̃k), L(s̃k)

)
≤ 2−Ω(λ),

where |L(ŝk)| ≤ κ and |L(s̃k)| ≤ κ. Consequently, |PrH1[Bad]− PrH2[Bad]| ≤ 2 · 2−Ω(λ), and Claim 6
follows.

Hybrid H3: This hybrid is the same as hybrid H2, except that, when answering Dec
(
C = (x, d, π̂′, π̃′)

)
,

the challenger removes the new rule added in hybrid H1. In other words,

• If x /∈ Lρ, the challenger detects whether or not Bad occurs no matter x ∈ Lρ0 or x /∈ Lρ ∪ Lρ0 .

Note that, with this removal, the trapdoor td0 for Lρ0 is not needed any more in hybrid H3. (Jumping
ahead, this serves as a preparation for the language switching in hybrid H3.i.1.)

Obviously, this change can only increase the probability of Bad. Thus, we have PrH2[Bad] ≤
PrH3[Bad].

Hybrid H3.i, i ∈ [0, n] with n = dlogQee: This hybrid is the same as H3, except that, when answering
the ctr-th Enc(M0,M1) query, where ctr ∈ [Qe], the challenger computes π̃∗ using RFi(ctr|i) rather

than s̃k′:

• π̃∗ := P̃riv
(
RFi(ctr|i), x

∗, τ∗
)
∈ Π̃.

Here ctr ∈ [Qe] is a counter recording the serial number of Enc query issued by the adversary and
is treated as a bit string of length n = dlogQee, ctr|i ∈ {0, 1}i denotes the first i bits of ctr, and

RFi : {0, 1}i −→ S̃K is a truly random function implemented by the challenger on the fly. Moreover,
when answering Dec

(
C = (x, d, π̂′, π̃′)

)
, for x /∈ Lρ, the challenger computes a set S of π̃’s using

RFi(ctr|i) rather than s̃k′ for all ctr ∈ [Qe]:

22

• S :=
{
π̃ := P̃riv

(
RFi(ctr|i), x, τ

)
∈ Π̃

∣∣ ctr ∈ [Qe]
}

,

and sets the Boolean variable Bad as true as long as π̃′ ∈ S (as well as C /∈ QENC∧ π̂′ = π̂∧ (τ, d) /∈ QTAG
holds).

In hybrid H3.0, the challenger will use RF0(ctr|0) = RF0(ε) in Enc and Dec. Since RF0(ε) is a

single random element in S̃K, the same as s̃k′, H3.0 is essentially the same as H3. Consequently, we
have PrH3[Bad] = PrH3.0[Bad].

Next, we will defer Bad from hybrid H3.i to H3.i+1, for any i ∈ [0, n − 1]. To this end, we introduce
a sequence of hybrids {H3.i.1–H3.i.6}i∈[0,n−1] in-between. (We also illustrate the intermediate hybrids
in Fig. 18 in Appendix E.) A brief description of differences between adjacent hybrids is summarized
in Table 5.

Hybrid H3.i.1, i ∈ [0, n− 1]: This hybrid is the same as hybrid H3.i, except that, in Initialize, the
challenger picks another (ρ1, td1)←$ L1 besides (ρ, td)←$ L and (ρ0, td0)←$ L0, and for the ctr-th
Enc query, where ctr ∈ [Qe], the challenger samples x∗ ←$ Lρctri+1

according to the (i+ 1)-th bit of
ctr, i.e., x∗ ←$ Lρ0 if ctri+1 = 0 and x∗ ←$ Lρ1 if ctri+1 = 1.

Claim 7.
∣∣PrH3.i[Bad]− PrH3.i.1[Bad]

∣∣ ≤ AdvQe-msmpL0
(λ) + AdvQe-msmpL1

(λ).

Proof. For convenience, we introduce an intermediate hybrid H3.i.0 between H3.i and H3.i.1:

– Hybrid H3.i.0: It is the same as hybrid H3.i, except that, for the ctr-th Enc query, where ctr ∈
[Qe], the challenger samples x∗ ←$ Lρ0 if ctri+1 = 0 and x∗ ←$ X if ctri+1 = 1.

Since witness w∗ for x∗ is not used at all in hybrids H3.i, H3.i.0 and H3.i.1, we can directly
construct two adversaries B and B′ for solving the multi-fold SMP related to L0 and the multi-
fold SMP related to L1 respectively, such that

∣∣PrH3.i[Bad] − PrH3.i.0[Bad]
∣∣ ≤ AdvQe-msmpL0,B (λ) and∣∣PrH3.i.0[Bad] − PrH3.i.1[Bad]

∣∣ ≤ AdvQe-msmpL1,B′ (λ). More precisely, B and B′ generate (ρ, td) ← $ L ,

the secret key SK = (sk, ŝk, s̃k), ŝk′ and implement the random function RFi themselves, thus they
can answer Dec queries perfectly for A and check the occurrence of Bad (by using td to determine
whether or not x ∈ Lρ); as for Enc queries, B and B′ sample x∗ ←$ Lρ0 honestly if ctri+1 = 0 and
embed their challenges directly to x∗ if ctri+1 = 1, then compute d∗, π̂∗ and π̃∗ from x∗ with the help

of sk, ŝk′ and RFi(ctr|i), without knowing a witness for x∗; finally, B and B′ output 1 if Bad occurs.

Consequently, Claim 7 follows.

Hybrid H3.i.2, i ∈ [0, n−1]: This hybrid is the same as H3.i.1, except that, when answering Dec
(
C =

(x, d, π̂′, π̃′)
)
, the challenger adds the following new rule:

• If x /∈ Lρ ∪ Lρ0 ∪ Lρ1 , do not check the occurrence of Bad (and return ⊥ directly).

That is, the challenger will not set the Boolean variable Bad as true unless x ∈ Lρ0 ∪ Lρ1 .

Claim 8.
∣∣PrH3.i.1[Bad]− PrH3.i.2[Bad]

∣∣ ≤ Qd · 2−Ω(λ).

Proof. Let Forge denote the event that A ever queries Dec
(
C = (x, d, π̂′, π̃′)

)
, such that π̂′ = π̂ but

x /∈ Lρ ∪ Lρ0 ∪ Lρ1 . Clearly, hybrid H3.i.1 and hybrid H3.i.2 are the same unless Forge happens, thus∣∣PrH3.i.1[Bad]− PrH3.i.2[Bad]
∣∣ ≤ PrH3.i.2[Forge].

We analyze the event Forge in hybrid H3.i.2.

– Observe that the information about ŝk′ that A may obtain in H3.i.2 is only α̂ρ0(ŝk′) and α̂ρ1(ŝk′):

in Initialize, the computation of PK does not involve ŝk′ (recall that it uses ŝk); in Enc, since
x∗ ←$ Lρctri+1

according to the (i+ 1)-th bit of ctr so that x∗ ∈ Lρ0 ∪ Lρ1 , Enc reveals nothing

23

Table 5. Brief Description of Hybrids H3.i, H3.i.1 –H3.i.6, H3.(i+1) for the κ-LR-CCA security proof of PKE.
Here column “Enc” suggests how the challenge ciphertext C∗ = (x∗, d∗, π̂∗, π̃∗) is generated: sub-column “x∗

from” refers to the language from which x∗ is chosen; sub-column “π̂∗ using” (resp. “π̃∗ using”) indicates the
keys that are used in the computation of π̂∗ (resp. π̃∗). Column “Dec (for x /∈ Lρ)” suggests how a decryption
query C = (x, d, π̂′, π̃′) with x /∈ Lρ is handled to check the occurrence of Bad: sub-column “checks” describes
the additional check made by Dec besides the routine check C /∈ QENC ∧ π̂′ = π̂ ∧ π̃′ ∈ S ∧ τ /∈ QTAG
(Bad := true if the check succeeds); sub-column “π̂ using” (resp. “π̃ using”) indicates the keys that are used
in the computation of π̂ (resp. π̃).

Enc Dec (for x /∈ Lρ)
Remark/Assumption

x∗ from π̂∗ using π̃∗ using checks π̂ using
π̃ using

(for all ctr ∈ [Qe])

H3.i Lρ0

ŝk′

RFi(ctr|i)

ŝk′

RFi(ctr|i)

H3.i.1 Lρctri+1
RFi(ctr|i) RFi(ctr|i) multi-fold SMP of L0 and L1

H3.i.2 Lρctri+1
RFi(ctr|i) x ∈ Lρ0 ∪ Lρ1 RFi(ctr|i) 〈L0,L1〉-universal of Q̂AHPS

H3.i.3 Lρctri+1
RFi+1(ctr|i+1) x ∈ Lρ0 ∪ Lρ1 RFi+1(ctr|i||dx) 〈L0,L1〉-key-switching of Q̃AHPS

H3.i.4 Lρctri+1
RFi+1(ctr|i+1) x ∈ Lρ0 ∪ Lρ1

RFi+1(ctr|i||b)
for b ∈ {0, 1} win. chances increase

H3.i.5 Lρctri+1
RFi+1(ctr|i+1) x ∈ Lρ0 ∪ Lρ1 RFi+1(ctr|i+1) 〈⊥,⊥〉-universal of Q̃AHPS

H3.i.6 Lρctri+1
RFi+1(ctr|i+1) RFi+1(ctr|i+1) win. chances increase

H3.(i+1) Lρ0 RFi+1(ctr|i+1) RFi+1(ctr|i+1) multi-fold SMP of L0 and L1

RFi : {0, 1}i −→ S̃K and RFi+1 : {0, 1}i+1 −→ S̃K are truly random functions.

For x ∈ Lρ0 ∪ Lρ1 , dx := 0 if x ∈ Lρ0 and dx := 1 if x ∈ Lρ1 .

“π̃ using RFi(ctr|i)” means π̃ := P̃riv
(
RFi(ctr|i), x, τ

)
∈ Π̃.

These π̃’s for all ctr ∈ [Qe] form a set

S :=
{
π̃ := P̃riv

(
RFi(ctr|i), x, τ

)
∈ Π̃

∣∣ ctr ∈ [Qe]
}
.

about ŝk′ beyond α̂ρ0(ŝk′) and α̂ρ1(ŝk′); in Dec, the challenger will not output M unless x ∈ Lρ,
and for x ∈ Lρ, the computation of π̂ uses ŝk rather than ŝk′, thus Dec reveals nothing about ŝk′

to A. Note that Leak only leaks information about SK = (sk, ŝk, s̃k) and no information about

ŝk′ is leaked to A.

– The event Forge occurs in H3.i.2 implies that A ever makes a Dec query C = (x, d, π̂′, π̃′) such
that π̂′ = π̂ but x /∈ Lρ ∪ Lρ0 ∪ Lρ1 hold, where

π̂ = P̂riv(ŝk′, x) = Λ̂
ŝk′

(x) ∈ Π̂.

Since Q̂AHPS is 〈L0,L1〉-universal, π̂ has enough entropy conditioned on α̂ρ0(ŝk′) and α̂ρ1(ŝk′),
i.e.,

H̃∞
(
Λ̂
ŝk′

(x)
∣∣ α̂ρ0(ŝk′), α̂ρ1(ŝk′)

)
≥ Ω(λ).

Consequently, in one Dec query, Forge occurs with probability at most 2−Ω(λ).

By a union bound, PrH3.i.2[Forge] ≤ Qd · 2−Ω(λ), thus Claim 8 follows.

Hybrid H3.i.3, i ∈ [0, n − 1]: This hybrid is the same as hybrid H3.i.2, except that, when answering
the ctr-th Enc query, where ctr ∈ [Qe], the challenger computes π̃∗ using RFi+1(ctr|i+1) rather than
RFi(ctr|i):

24

• π̃∗ := P̃riv
(
RFi+1(ctr|i+1), x∗, τ∗

)
∈ Π̃.

Moreover, when answering Dec
(
C = (x, d, π̂′, π̃′)

)
, for x ∈ Lρ0 ∪ Lρ1 , the challenger computes the

set S using RFi+1(ctr|i||dx) rather than RFi(ctr|i):

• S :=
{
π̃ := P̃riv

(
RFi+1(ctr|i||dx), x, τ

)
∈ Π̃

∣∣ ctr ∈ [Qe]
}

.

Here dx ∈ {0, 1} is defined as

dx :=

{
0, if x ∈ Lρ0
1, if x ∈ Lρ1

,

and RFi+1 : {0, 1}i+1 −→ S̃K is a truly random function implemented by the challenger on the fly.
For the convenience of our analysis, we assume that RFi+1 is implemented via

RFi+1(ctr|i||b) :=

{
RFi(ctr|i), if b = 0

RFi(ctr|i), if b = 1
,

where RFi : {0, 1}i −→ S̃K is an independent random function.

Claim 9.
∣∣PrH3.i.2[Bad]− PrH3.i.3[Bad]

∣∣ ≤ Qe · 2−Ω(λ).

Proof. We analyze the information about RFi(ctr|i) (resp. RFi(ctr|i) and RFi(ctr|i)) that are involved

in H3.i.2 (resp. H3.i.3).

• In Enc, x∗ ←$ Lρctri+1
according to the (i+ 1)-th bit of ctr:

– if ctri+1 = 0, then x∗ ∈ Lρ0 , thus the behavior of Enc is completely determined by α̃ρ0(RFi(ctr|i))
(resp. α̃ρ0(RFi+1(ctr|i+1)) = α̃ρ0(RFi(ctr|i)));

– if ctri+1 = 1, then x∗ ∈ Lρ1 , thus the behavior of Enc is completely determined by α̃ρ1(RFi(ctr|i))

(resp. α̃ρ1(RFi+1(ctr|i+1)) = α̃ρ1(RFi(ctr|i))).
• In Dec, the challenger will not compute π̃ unless x ∈ Lρ ∪ Lρ0 ∪ Lρ1 (due to the new rule added

in H3.i.2):

– for x ∈ Lρ, π̃ is computed using s̃k, neither RFi(ctr|i) nor RFi(ctr|i) is involved;
– for x ∈ Lρ0 , dx = 0, thus the behavior of Dec is completely determined by α̃ρ0(RFi(ctr|i))

(resp. α̃ρ0(RFi+1(ctr|i||dx)) = α̃ρ0(RFi(ctr|i)));
– for x ∈ Lρ1 , dx = 1, thus the behavior of Dec is completely determined by α̃ρ1(RFi(ctr|i))

(resp. α̃ρ1(RFi+1(ctr|i||dx)) = α̃ρ1(RFi(ctr|i))).

• Leak only leaks information about SK = (sk, ŝk, s̃k) and no information about RFi(ctr|i) is leaked
to A.

By the 〈L0,L1〉-key-switching property of Q̃AHPS, for any ctr ∈ [Qe], we have

∆
((

ρ1, α̃ρ1(RFi(ctr|i))
)
,
(
ρ1, α̃ρ1(RFi(ctr|i))

) ∣∣ α̃ρ0(RFi(ctr|i))
)
≤ 2−Ω(λ).

Consequently, H3.i.2 and H3.i.3 are statistically close. By a standard hybrid argument over ctr ∈
[Qe], we have that

∣∣PrH3.i.2[Bad]− PrH3.i.3[Bad]
∣∣ ≤ Qe · 2−Ω(λ), thus Claim 9 follows.

Hybrid H3.i.4, i ∈ [0, n−1]: This hybrid is the same as H3.i.3, except that, when answering Dec
(
C =

(x, d, π̂′, π̃′)
)
, for x ∈ Lρ0 ∪ Lρ1 , the challenger computes the set S as follows:

• S :=
{
π̃ := P̃riv

(
RFi+1(ctr|i||b), x, τ

)
∈ Π̃

∣∣ ctr ∈ [Qe], b ∈ {0, 1}
}

.

Note that the set S in H3.i.4 contains the set S in H3.i.3. Thus, this change can only increase the
probability of Bad, and we have PrH3.i.3[Bad] ≤ PrH3.i.4[Bad].

Hybrid H3.i.5, i ∈ [0, n − 1]: This hybrid is the same as hybrid H3.i.4, except that, when answering
Dec

(
C = (x, d, π̂′, π̃′)

)
(to detect the occurrence of Bad), for x ∈ Lρ0 ∪Lρ1 , the challenger computes

the set S as follows:

25

• S :=
{
π̃ := P̃riv

(
RFi+1(ctr|i+1), x, τ

)
∈ Π̃

∣∣ ctr ∈ [Qe]
}

.

Claim 10.
∣∣PrH3.i.4[Bad]− PrH3.i.5[Bad]

∣∣ ≤ Qd ·Qe · 2−Ω(λ).

Proof. For clarity, we denote the set S in H3.i.4 by S3.i.4 and the set S in H3.i.5 by S3.i.5. Obviously,
S3.i.5 (S3.i.4. Let Forge denote the event that A ever queries Dec

(
C = (x, d, π̂′, π̃′)

)
, such that

π̃′ ∈ S3.i.4 \ S3.i.5. Clearly, hybrid H3.i.4 and hybrid H3.i.5 are the same unless Forge happens, thus∣∣PrH3.i.4[Bad]− PrH3.i.5[Bad]
∣∣ ≤ PrH3.i.5[Forge].

We analyze the event Forge in H3.i.5.

– Observe that the information about RFi+1 thatAmay obtain in H3.i.5 is limited to
{
RFi+1(ctr|i+1) |

ctr ∈ [Qe]
}

: in Enc, RFi+1(ctr|i+1) is used in the computation of π̃∗; in Dec, the challenger will
not output M unless x ∈ Lρ, and for x ∈ Lρ, the computation of π̃ does not involve RFi+1.

– The event Forge occurs in H3.i.5 means that A ever makes a Dec query C = (x, d, π̂′, π̃′) such
that π̃′ ∈ S3.i.4 \ S3.i.5 holds.

For any π̃ = P̃riv
(
RFi+1(ctr|i||b), x, τ

)
∈ S3.i.4\S3.i.5, it must hold that ctr|i||b /∈

{
ctr|i+1 | ctr ∈

[Qe]
}

. Consequently, RFi+1(ctr|i||b) ∈ S̃K is not involved in Enc and is completely random to A.

Since Q̃AHPS is 〈⊥,⊥〉-universal, π̃ = P̃riv
(
RFi+1(ctr|i||b), x, τ

)
= Λ̃RFi+1(ctr|i||b)(x, τ) has enough

entropy, i.e.,
H̃∞

(
Λ̃RFi+1(ctr|i||b)(x, τ)

)
≥ Ω(λ).

Thus, for such a π̃, π̃′ = π̃ occurs with probability at most 2−Ω(λ). By a union bound over
π̃ ∈ S3.i.4 \ S3.i.5, in one Dec query, Forge occurs with probability at most Qe · 2−Ω(λ).

By a union bound over the Qd times of Dec queries made by A, we get that PrH3.i.5[Forge] ≤
Qd ·Qe · 2−Ω(λ). Consequently, Claim 10 follows.

Hybrid H3.i.6, i ∈ [0, n−1]: This hybrid is the same as H3.i.5, except that, when answering Dec
(
C =

(x, d, π̂′, π̃′)
)
, the challenger removes the new rule added in hybrid H3.i.2. In other words,

• When x /∈ Lρ, the challenger detects whether Bad occurs (no matter x ∈ Lρ0 ∪ Lρ1 or not).

Obviously, this change can only increase the probability of Bad. Thus, we have

PrH3.i.5[Bad] ≤ PrH3.i.6[Bad].

Claim 11.
∣∣PrH3.i.6[Bad]− PrH3.(i+1)[Bad]

∣∣ ≤ AdvQe-msmpL0
(λ) + AdvQe-msmpL1

(λ).

The only difference between hybrid H3.i.6 and hybrid H3.(i+1) lies in the distribution of x∗ in Enc:
for the ctr-th Enc query, where ctr ∈ [Qe], x

∗ ←$ Lρctri+1
in H3.i.6, while x∗ ←$ Lρ0 in H3.(i+1). The

proof of Claim 11 is essentially the same as that for Claim 7, since the change from H3.i.6 to H3.(i+1)

is symmetric to the change from H3.i to H3.i.1.

Hybrid H4: It is the same as H3.dlogQee. Thus, PrH3.dlogQee[Bad] = PrH4[Bad].
In this hybrid, when answering the ctr-th Enc query, where ctr ∈ [Qe], the challenger computes

π̃∗ using RFdlogQee(ctr):

• π̃∗ := P̃riv
(
RFdlogQee(ctr), x

∗, τ∗
)
∈ Π̃.

Moreover, when answering Dec
(
C = (x, d, π̂′, π̃′)

)
, for x /∈ Lρ, the challenger computes the set S

using RFdlogQee(ctr) to detect the occurrence of Bad:

• S :=
{
π̃ := P̃riv

(
RFdlogQee(ctr), x, τ

)
∈ Π̃

∣∣ ctr ∈ [Qe]
}

.

26

Here RFdlogQee : ([Qe] ⊆) {0, 1}dlogQee −→ S̃K is a truly random function implemented by the
challenger on the fly.

Claim 12. PrH4[Bad] ≤ Qd ·Qe · 2−Ω(λ).

Proof. We analyze the event Bad in H4.

– Observe that the information about RFdlogQee thatAmay obtain in H4 is limited to
{
RFdlogQee(ctr)

| ctr ∈ [Qe]
}

: in the ctr-th Enc query, where ctr ∈ [Qe], RFdlogQee(ctr) is used in the computation
of π̃∗; in Dec, the challenger will not output M unless x ∈ Lρ, and for x ∈ Lρ, the computa-

tion of π̃ does not involve RFdlogQee (recall that it uses s̃k); Leak only leaks information about

SK = (sk, ŝk, s̃k), and for all ctr ∈ [Qe], no information about RFdlogQee(ctr) is leaked to A.

– The event Bad occurs in H4 implies that A ever makes a Dec query C = (x, d, π̂′, π̃′) such that
τ /∈ QTAG ∧ x /∈ Lρ but π̃′ ∈ S hold.

For any π̃ = P̃riv
(
RFdlogQee(ctr), x, τ

)
∈ S, we observe that RFdlogQee (ctr) ∈ S̃K is

only used once in the ctr-th Enc query for computing π̃∗ := P̃riv
(
RFdlogQee(ctr), x

∗, τ∗
)

=

Λ̃RFdlogQee(ctr)
(x∗, τ∗) ∈ Π̃. Recall that, tag-based Q̃AHPS is 〈⊥,⊥〉-universal and τ 6= τ∗, so

π̃ = P̃riv
(
RFdlogQee(ctr), x, τ

)
= Λ̃RFdlogQee(ctr)

(x, τ) has enough entropy even conditioned on π̃∗,
i.e.,

H̃∞
(
Λ̃RFdlogQee(ctr)

(x, τ)
∣∣ Λ̃RFdlogQee(ctr)

(x∗, τ∗)
)
≥ Ω(λ).

In this case, π̃′ = π̃ occurs with probability at most 2−Ω(λ). By a union bound over π̃ ∈ S, in one
Dec query, Bad occurs with probability at most Qe · 2−Ω(λ).

By a union bound over theQd times of Dec queries made byA, we get that PrH4[Bad] ≤ Qd·Qe·2−Ω(λ),
thus Claim 12 follows.

All in all, by combining (10), (11) and the above claims, Lemma 8 follows. ut

5 Instantiations over Asymmetric Pairing Groups

Now we instantiate our generic PKE construction in Sect. 4 based on the matrix DDH assumptions
over asymmetric pairing groups. Specifically, we present the instantiations of the language distribu-

tions L ,L0,L1, the LR-weak-ardent QAHPS, the LR-ardent Q̂AHPS, the LR-weak-ardent tag-based

Q̃AHPS and the resulting scheme PKElr
asym, in Subsects. 5.2, 5.3, 5.4, 5.5, and 5.6, respectively.

5.1 The Language Distribution for Linear Subspaces

Let PG = (G1,G2,GT , p, e, P1, P2, PT) be an asymmetric pairing group. For any matrix distribution
D`,k, which outputs matrices in Z`×kp , it naturally gives rise to a language distribution LD`,k for linear
subspaces over groups G1 and G2:

– LD`,k invokes A1,A2 ←$ D`,k, and outputs a language parameter ρ = ([A1]1, [A2]2) ∈ G`×k1 ×
G`×k2 together with a trapdoor td = (A1,A2).

The matrix ρ defines a linear subspace language Lρ on G`1 ×G`2:

Lρ =
{

([c1]1, [c2]2)
∣∣ ∃ w1,w2 ∈ Zkp \ {0}, s.t. [c1]1 = [A1w1]1 ∧ [c2]2 = [A2w2]2

}
= span([A1]1)× span([A2]2) ⊆ X =

(
G`1 \ {[0]1}

)
×
(
G`2 \ {[0]2}

)
.8

8 For technical reasons, the zero vector [0]1 (resp. [0]2) must be excluded from span([A1]1) and G`1 (resp.
span([A2]2) and G`2). For the sake of simplicity, we forgo making this explicit in the sequel.

27

The trapdoor td can be used to decide whether or not an instance ([c1]1, [c2]2) is in Lρ efficiently:
with td = (A1,A2), one can first compute a basis of the kernel space of A>1 (resp. A>2), namely

A⊥1 ∈ Z`×(`−k)p satisfying A>1 ·A⊥1 = 0 (resp. A⊥2 ∈ Z`×(`−k)p satisfying A>2 ·A⊥2 = 0), then check
whether [c>1]1 ·A⊥1 = [0]1 ∧ [c>2]2 ·A⊥2 = [0]2 holds.

Clearly, the SMP related to LD`,k corresponds to a hybrid of the D`,k-MDDH assumptions over G1

and G2, and the multi-fold SMP related to LD`,k corresponds to a hybrid of the Q-fold D`,k-MDDH
assumptions over G1 and G2 for any Q = poly(λ). The same also holds for the uniform distribution
U`,k. Formally, we have the following lemma, which is a corollary of the random self-reducibility of
D`,k-MDDH and U`,k-MDDH (i.e., Lemma 6).

Lemma 9 (D`,k/U`,k-MDDH ⇒ Multi-fold SMP related to LD`,k /LU`,k). Let Q > `− k. For
any adversary A, there exist adversaries B1 and B2 such that T(B1) ≈ T(B2) ≈ T(A) + Q · poly(λ)
with poly(λ) independent of T(A), and

AdvQ-msmp
LD`,k ,A

(λ) ≤ (`− k) · AdvmddhD`,k,G1,B1
(λ) + (`− k) · AdvmddhD`,k,G2,B2

(λ) + 2/(p− 1).

For any adversary A, there exist adversaries B1 and B2 such that T(B1) ≈ T(B2) ≈ T(A)+Q ·poly(λ)
with poly(λ) independent of T(A), and

AdvQ-msmp
LU`,k ,A

(λ) ≤ AdvmddhU`,k,G1,B1
(λ) + AdvmddhU`,k,G2,B2

(λ) + 2/(p− 1).

5.2 The Instantiation of Language Distributions

To instantiate the generic PKE construction in Sect. 4, the first thing we need to do is to determine
three language distributions L , L0 and L1 carefully.

Let ` ≥ 2k + 1. Let D`,k be an (arbitrary) matrix distribution, and U`,k, U ′`,k independent copies

of the uniform distribution, all of which output matrices in Z`×kp . Based on the previous subsection,
we designate the language distributions L , L0 and L1 as follows.

• L := LD`,k , which invokes A1,A2 ←$ D`,k and outputs (ρ = ([A1]1, [A2]2), td = (A1,A2));
• L0 := LU`,k , which invokes A0,1,A0,2 ← $ U`,k and outputs (ρ0 = ([A0,1]1, [A0,2]2), td0 =

(A0,1,A0,2));
• L1 := LU ′`,k , which invokes A1,1,A1,2 ← $ U ′`,k and outputs (ρ1 = ([A1,1]1, [A1,2]2), td1 =

(A1,1,A1,2)).

5.3 The Instantiation of LR-Weak-Ardent QAHPS

We present the construction of QAHPS = (Setup, α(·),Pub,Priv) for the language distribution L
(= LD`,k) in Fig. 3. It is straightforward to check the perfect correctness of QAHPS.

Theorem 2 (L0-Multi-Extracting of QAHPS). If the Uk+1,k-MDDH assumption holds over G2,
then the proposed QAHPS in Fig. 3 is L0-multi-extracting, where the language distribution L0 (=
LU`,k) is specified in Subsect. 5.2.

Concretely, for any adversary A, any polynomial Q = poly(λ), there exists an adversary B, such
that T(B) ≈ T(A) +Q · poly(λ) with poly(λ) independent of T(A), and

AdvQ-L0-mext
QAHPS,A (λ) ≤ AdvmddhUk+1,k,G2,B(λ) + 1/(p− 1).

Proof of Theorem 2. Firstly, we construct an adversary B′ against the Q-fold Uk+1,k-MDDH over

G2, so that AdvQ-L0-mext
QAHPS,A (λ) ≤ AdvQ-mddh

Uk+1,k,G2,B′(λ). Then by the random self-reducibility of Uk+1,k-

MDDH (i.e., Lemma 6), Theorem 2 follows.

Given a challenge ([B]2, [U]2), B′ wants to distinguish [U]2 = [BW]2 from [U]2 ← $ G(k+1)×Q
2 ,

where B ←$ Uk+1,k, W ←$ Zk×Qp . Let [uj]2 ∈ Gk+1
2 denote the j-th column of [U]2, j ∈ [Q]. B′ is

constructed as follows.

28

pp←$ Setup(1λ):

PG = (G1,G2,GT , p, e, P1, P2, PT)←$ PGGen(1λ).

⇒ pp := PG, which implicitly defines

(SK := Z`p, Π := G2, Λ(·)),

where Λsk([c1]1, [c2]2) := k> · [c2]2 ∈ G2 for

any sk = k ∈ Z`p and ([c1]1, [c2]2) ∈ X = G`1 ×G`2.

[π]2 ← Pub(pkρ, ([c1]1, [c2]2), (w1,w2) ∈ Zkp × Zkp),

where ([c1]1, [c2]2) ∈ Lρ for ρ = ([A1]1, [A2]2):

Parse pkρ = [p>]2 ∈ G1×k
2 .

⇒ [π]2 := [p>]2 ·w2 ∈ G2.

pkρ ← αρ(sk),

where ρ = ([A1]1, [A2]2) ∈ G`×k1 ×G`×k2 :

Parse sk = k ∈ Z`p.

[p>]2 := k> · [A2]2 ∈ G1×k
2 .

⇒ pkρ := [p>]2.

[π]2 ← Priv(sk, ([c1]1, [c2]2) ∈ X):

Parse sk = k ∈ Z`p.

⇒ [π]2 := k> · [c2]2 ∈ G2.

Fig. 3. Construction of LR-weak-ardent QAHPS over asymmetric pairing groups.

– B′ chooses V ←$ Z`×kp uniformly, computes [A0,2]2 := V[B]2 ∈ G`×k2 , picks A0,1 ←$ U`,k, and
sets ρ0 := ([A0,1]1, [A0,2]2) as the language parameter.

– B′ implicitly sets sk = k←$ Z`p with k> · [A0,2]2 = [B]2.

– For each [uj]2, B′ computes [c2,j]2 := V[uj]2 ∈ G`2 and [πj]2 := [uj]2 ∈ G2, samples rj ←$ Zkp,

and computes [c1,j]1 = [A0,1rj]1.
– Finally, B′ submits

(
ρ0,

{
([c1,j]1, [c2,j]2), [πj]2

}
j∈[Q]

)
to A, and outputs whatever A outputs.

Clearly, [A0,2]2 is uniformly distributed over G`×k2 , due to the randomness of V. Thus the sim-
ulation of ρ0 = ([A0,1]1, [A0,2]2) is perfect. Besides, the simulation of sk = k is perfect due to the
randomness of B ∈ Z1×k

p .

– If [U]2 = [BW]2, then each [uj]2 = [Bwj]2 with wj ←$ Zkp. Consequently,

• [c2,j]2 := V[uj]2 = [VBwj]2 = [A0,2wj]2. Together with [c1,j]1 = [A0,1rj]1, we have
([c1,j]1, [c2,j]2) is uniformly distributed over span([A0,1]1)× span([A0,2]2) = Lρ0 .

• [πj]2 := [uj]2 = [Bwj]2 = k> · [A0,2wj]2 = k> · [c2,j]2 = Λsk([c1,j]1, [c2,j]2).

– If [U]2 ←$ G(k+1)×Q, then each [uj]2 ←$ Gk+1
2 .

• [c2,j]2 := V[uj]2 = [VBB
−1

uj]2 = [A0,2B
−1

uj]2 which is uniformly distributed over span([A0,2]2).
Together with [c1,j]1 = [A0,1rj]1, we have ([c1,j]1, [c2,j]2) is uniformly distributed over Lρ0 .

• [πj]2 := [uj]2 ∈ G2, which is uniformly distributed over Π = G2 (and in particular, is inde-

pendent of ([c1,j]1, [c2,j]2)).

Consequently, we get AdvQ-L0-mext
QAHPS,A (λ) ≤ AdvQ-mddh

Uk+1,k,G2,B′(λ), as desired. This completes the proof
of Theorem 2. ut

The LR-weak-ardency of QAHPS follows from the theorem below.

Theorem 3 (LR-weak-ardency of QAHPS). Let ` ≥ 2k + 1 and κ ≤ log p − Ω(λ). The proposed
QAHPS for L in Fig. 3 satisfies the properties listed in Table 2, i.e., (1) it is perfectly 〈⊥,⊥〉-universal
and (2) it supports κ-LR-〈L ,L0〉-key-switching, where the language distributions L = LD`,k and
L0 = LU`,k are specified in Subsect. 5.2.

Proof of Theorem 3. Let (ρ = ([A1]1, [A2]2) ∈ G`×k1 ×G`×k2 , td)←$ L and (ρ0 = ([A0,1]1, [A0,2]2) ∈
G`×k1 × G`×k2 , td0) ←$ L0. With overwhelming probability 1 − 2−Ω(λ), both (A1,A0,1) ∈ Z`×2kp and

(A2,A0,2) ∈ Z`×2kp are of full column rank. In the following analysis, we take it for granted.

[Perfectly 〈⊥,⊥〉-Universal.] For sk = k ←$ Z`p and any ([c1]1, [c2]2) ∈ X \ (Lρ⊥ ∪ Lρ⊥) = X , we

have [c2]2 6= [0]2 (recall that G`1 ×{[0]2} is excluded from X), thus Λsk([c1]1, [c2]2) = k> · [c2]2 is
uniformly distributed over G2. This implies that QAHPS is perfectly 〈⊥,⊥〉-universal.

29

[κ-LR-〈L ,L0〉-Key-Switching.] Let L : SK −→ {0, 1}κ be an arbitrary leakage function. For
sk = k←$ Z`p, sk

′ = k′ ←$ Z`p, we aim to prove

∆
((

ρ0,
∣∣k>[A0,2]2︸ ︷︷ ︸
αρ0 (sk)

)
,
(
ρ0,

∣∣k′>[A0,2]2︸ ︷︷ ︸
αρ0 (sk

′)

) ∣∣ k>[A2]2︸ ︷︷ ︸
αρ(sk)

, L(k)
)
≤ 2−Ω(λ). (12)

Taking [A0,2]2 as a universal hash function and k as an independent input, we have that

∆
((

[A0,2]2,
∣∣k>[A0,2]2

)
,
(

[A0,2]2,
∣∣[u>]2

) ∣∣ k>[A2]2, L(k)
)
≤ 2−Ω(λ). (13)

where u←$ Zkp, by the generalized leftover hash lemma (i.e., Lemma 3). Meanwhile, k′ is uniform
and independent of A0,2,A2 and k. So,(

[A0,2]2,
∣∣[u>]2 ,k

>[A2]2, L(k)
)
≡
(

[A0,2]2,
∣∣k′>[A0,2]2 ,k

>[A2]2, L(k)
)
. (14)

(13) and (14) implies

∆
((

[A0,2]2,k
>[A0,2]2

)
,
(

[A0,2]2, k′>[A0,2]2
) ∣∣ k>[A2]2, L(k)

)
≤ 2−Ω(λ).

(12) follows from the fact that A0,1 is independent of A0,2,A2,k and k′.
This completes the proof of κ-LR-〈L ,L0〉-key-switching. ut

5.4 The Instantiation of LR-Ardent QAHPS

We present the construction of Q̂AHPS = (Ŝetup, α̂(·), P̂ub, P̂riv) for L (= LD`,k) in Fig. 4. It is

straightforward to check the perfect correctness of Q̂AHPS. The construction is inspired by the “OR-
proof” proposed in [ABP15] and the QA-NIZK for linear subspaces proposed in [KW15].

p̂p←$ Ŝetup(1λ):

PG = (G1,G2,GT , p, e, P1, P2, PT)←$ PGGen(1λ).

⇒ p̂p := PG, which implicitly defines

(ŜK := Z`×`p , Π̂ := GT , Λ̂(·)),

where Λ̂ŝk([c1]1, [c2]2) := [c2]>2 · K̂ · [c1]1 ∈ GT for

any ŝk = K̂ ∈ Z`×`p and ([c1]1, [c2]2) ∈ X = G`1 ×G`2.

[π̂]T ← P̂ub(p̂kρ, ([c1]1, [c2]2), (w1,w2) ∈ Zkp × Zkp),

where ([c1]1, [c2]2) ∈ Lρ for ρ = ([A1]1, [A2]2):

Parse p̂kρ = [P̂]T ∈ Gk×kT .

⇒ [π̂]T := w>2 · [P̂]T ·w1 ∈ GT .

p̂kρ ← α̂ρ(ŝk),

where ρ = ([A1]1, [A2]2) ∈ G`×k1 ×G`×k2 :

Parse ŝk = K̂ ∈ Z`×`p .

[P̂]T := [A2]>2 · K̂ · [A1]1 ∈ Gk×kT .

⇒ p̂kρ := [P̂]T .

[π̂]T ← P̂riv(ŝk, ([c1]1, [c2]2) ∈ X):

Parse ŝk = K̂ ∈ Z`×`p .

⇒ [π̂]T := [c2]>2 · K̂ · [c1]1 ∈ GT .

Fig. 4. Construction of LR-ardent Q̂AHPS over asymmetric pairing groups.

The hash function Λ̂
ŝk

([c1]1, [c2]2) multiplies K̂ with [c1]1 and [c2]2. The LR-ardency of Q̂AHPS
is proved in Theorem 4.

Theorem 4 (LR-ardency of Q̂AHPS). Let ` ≥ 2k+ 1 and κ ≤ log p−Ω(λ). The proposed Q̂AHPS
scheme for L in Fig. 4 satisfies the properties listed in Table 2, more precisely, (1) it is κ-LR-〈L ,L0〉-
and perfectly 〈L0,L1〉-universal and (2) it supports κ-LR-〈L ,L0〉-key-switching, where the language
distributions L = LD`,k , L0 = LU`,k and L1 = LU ′`,k are specified in Subsect. 5.2.

30

Proof of Theorem 4.

[Perfectly 〈L ,L0〉-Universal.] Let (ρ = ([A1]1, [A2]2) ∈ G`×k1 × G`×k2 , td) ← $ L and (ρ0 =
([A0,1]1, [A0,2]2) ∈ G`×k1 × G`×k2 , td0) ←$ L0. With overwhelming probability 1 − 2−Ω(λ), both

(A1,A0,1) ∈ Z`×2kp and (A2,A0,2) ∈ Z`×2kp are of full column rank. For ŝk = K̂ ← $ Z`×`p and

any ([c1]1, [c2]2) ∈ X \ (Lρ ∪ Lρ0), we consider the distribution of Λ̂
ŝk

([c1]1, [c2]2) conditioned on

p̂kρ = α̂ρ(ŝk) and p̂kρ0 = α̂ρ0(ŝk).

Let a⊥1 ∈ Z`p (resp. a⊥2 ∈ Z`p, a⊥0,1 ∈ Z`p, a⊥0,2 ∈ Z`p) be an arbitrary non-zero vector in the kernel

space of A>1 (resp. A>2 , A>0,1, A>0,2) such that A>1 · a⊥1 = 0 (resp. A>2 · a⊥2 = 0, A>0,1 · a⊥0,1 = 0,

A>0,2 ·a⊥0,2 = 0) holds. For the convenience of our analysis, we sample ŝk = K̂←$ Z`×`p equivalently
via

ŝk = K̂ := K̃ + µ1 · a⊥0,2 · (a⊥1)> + µ2 · a⊥2 · (a⊥0,1)> ∈ Z`×`p ,

where K̃←$ Z`×`p and µ1, µ2 ←$ Zp. Consequently, we have

p̂kρ = α̂ρ(ŝk) = [A2]>2 · K̂ · [A1]1 = [A2]>2 · K̃ · [A1]1,

p̂kρ0 = α̂ρ0(ŝk) = [A0,2]>2 · K̂ · [A0,1]1 = [A0,2]>2 · K̃ · [A0,1]1,

which may leak K̃, but µ1 and µ2 are completely hidden. Besides,

Λ̂
ŝk

([c1]1, [c2]2) = [c2]>2 · K̂ · [c1]1

= [c2]>2 · K̃ · [c1]1 + µ1 · [c>2 a⊥0,2]2 · [c>1 a⊥1]>1 + µ2 · [c>2 a⊥2]2 · [c>1 a⊥0,1]>1 .

We divide the condition ([c1]1, [c2]2) ∈ X \ (Lρ ∪ Lρ0) into three cases:

– Case I: [c1]1 ∈ span([A1]1).
It must hold that [c1]1 /∈ span([A0,1]1) and [c2]2 /∈ span([A2]2): the former holds since

span([A1]1)∩ span([A0,1]1) = ∅ (recall that the zero vector [0]1 is excluded from span spaces)
and the latter is due to the fact that ([c1]1, [c2]2) /∈ Lρ = span([A1]1)× span([A2]2).

Thus, we can always find an a⊥2 ∈ Z`p such that [c>2 a⊥2]2 6= [0]2 holds and find an a⊥0,1 ∈ Z`p
such that [c>1 a⊥0,1]1 6= [0]1 holds. Then, conditioned on p̂kρ and p̂kρ0 , µ2 · [c>2 a⊥2]2 · [c>1 a⊥0,1]>1
is uniformly distributed over GT due to the randomness of µ2, so is Λ̂

ŝk
([c1]1, [c2]2).

– Case II: [c2]2 ∈ span([A0,2]2).
It must hold that [c1]1 /∈ span([A0,1]1) and [c2]2 /∈ span([A2]2): the former is due to

the fact that ([c1]1, [c2]2) /∈ Lρ0 = span([A0,1]1) × span([A0,2]2) and the latter holds since
span([A2]2)∩ span([A0,2]2) = ∅ (recall that the zero vector [0]2 is excluded from span spaces).

Similar to the analysis of Case I, conditioned on p̂kρ and p̂kρ0 , Λ̂
ŝk

([c1]1, [c2]2) is uniformly
distributed over GT .

– Case III: [c1]1 /∈ span([A1]1) ∧ [c2]2 /∈ span([A0,2]2).
In this case, we can always find an a⊥1 ∈ Z`p such that [c>1 a⊥1]1 6= [0]1 holds and find an a⊥0,2 ∈

Z`p such that [c>2 a⊥0,2]2 6= [0]2 holds. Then, conditioned on p̂kρ and p̂kρ0 , µ1 · [c>2 a⊥0,2]2 · [c>1 a⊥1]>1
is uniformly distributed over GT due to the randomness of µ1, so is Λ̂

ŝk
([c1]1, [c2]2).

In summary, Λ̂
ŝk

([c1]1, [c2]2) is uniformly distributed over GT conditioned on p̂kρ and p̂kρ0 no
matter which case it is.

This implies that Q̂AHPS is perfectly 〈L ,L0〉-universal.

[Perfectly 〈L0,L1〉-Universal.] It can be proved in a similar way as the perfectly 〈L ,L0〉-universal.

[κ-LR-〈L ,L0〉-Universal.] It follows from Lemma 7.

[κ-LR-〈L ,L0〉-Key-Switching.] Let (ρ = ([A1]1, [A2]2) ∈ G`×k1 × G`×k2 , td) ← $ L and let L :

ŜK −→ {0, 1}κ be an arbitrary leakage function. For ŝk = K̂ ←$ Z`×`p , ŝk′ = K̂′ ←$ Z`×`p and

31

(ρ0 = ([A0,1]1, [A0,2]2) ∈ G`×k1 ×G`×k2 , td0)←$ L0, we aim to prove

∆
((

ρ0,
∣∣[A0,2]>2 K̂[A0,1]1︸ ︷︷ ︸

α̂ρ0 (ŝk)

)
,
(
ρ0,

∣∣[A0,2]>2 K̂′[A0,1]1︸ ︷︷ ︸
α̂ρ0 (ŝk

′)

) ∣∣ [A2]>2 K̂[A1]1︸ ︷︷ ︸
α̂ρ(ŝk)

, L(K̂)
)
≤ 2−Ω(λ). (15)

Taking [A0,1]1 as a universal hash function and the ` rows of K̂ as ` independent inputs, we have
that

∆
((

[A0,1]1,
∣∣K̂[A0,1]1

)
,
(

[A0,1]1,
∣∣[U]1

) ∣∣ K̂[A1]1, L(K̂)
)
≤ 2−Ω(λ), (16)

where U ←$ Z`×kp , by the multi-fold generalized leftover hash lemma (i.e., Lemma 4 in Subsect.

2.1). Meanwhile, K̂′ is uniform and independent of A0,1,A1 and K̂. So,(
[A0,1]1,

∣∣[U]1 , K̂[A1]1, L(K̂)
)
≡
(

[A0,1]1,
∣∣K̂′[A0,1]1 , K̂[A1]1, L(K̂)

)
. (17)

(16) and (17) implies

∆
((

[A0,1]1,
∣∣K̂[A0,1]1

)
,
(

[A0,1]1,
∣∣K̂′[A0,1]1

) ∣∣ K̂[A1]1, L(K̂)
)
≤ 2−Ω(λ). (18)

Note that the variables in ∆() of (15) can be regarded as outputs of certain randomized function
of the variables in ∆() of (18). By Lemma 2, (15) holds.

This completes the proof of κ-LR-〈L ,L0〉-key-switching. ut

5.5 The Instantiation of LR-Weak-Ardent Tag-Based QAHPS

We present the construction of tag-based Q̃AHPS = (S̃etup, α̃(·), P̃ub, P̃riv) for the language distribu-

tion L (= LD`,k) in Fig. 5. It is straightforward to check the perfect correctness of Q̃AHPS.

p̃p←$ S̃etup(1λ):

PG = (G1,G2,GT , p, e, P1, P2, PT)←$ PGGen(1λ).

⇒ p̃p := PG, which implicitly defines

(S̃K := Z2×`
p , T̃ := G2, Π̃ := GT , Λ̃(·)),

where Λ̃s̃k(([c1]1, [c2]2), [τ]2) := [1, τ]2 · K̃ · [c1]1 ∈ GT
for any s̃k = K̃ ∈ Z2×`

p , ([c1]1, [c2]2) ∈ X = G`1 ×G`2 and [τ]2 ∈ G2.

[π̃]T ← P̃ub(p̃kρ, ([c1]1, [c2]2), (w1,w2) ∈ Zkp × Zkp, [τ]2 ∈ G2),

where ([c1]1, [c2]2) ∈ Lρ for ρ = ([A1]1, [A2]2):

Parse p̃kρ = [P̃]1 ∈ G2×k
1 .

⇒ [π̃]T := [1, τ]2 · [P̃]1 ·w1 ∈ GT .

p̃kρ ← α̃ρ(s̃k),

where ρ = ([A1]1, [A2]2) ∈ G`×k1 ×G`×k2 :

Parse s̃k = K̃ ∈ Z2×`
p .

[P̃]1 := K̃ · [A1]1 ∈ G2×k
1 .

⇒ p̃kρ := [P̃]1.

[π̃]T ← P̃riv(s̃k, ([c1]1, [c2]2) ∈ X , [τ]2):

Parse s̃k = K̃ ∈ Z2×`
p .

⇒ [π̃]T := [1, τ]2 · K̃ · [c1]1 ∈ GT .

Fig. 5. Construction of LR-weak-ardent tag-based Q̃AHPS over asymmetric pairing groups.

Theorem 5 (LR-weak-ardency of Tag-Based Q̃AHPS). Let ` ≥ 2k+1 and κ ≤ log p−Ω(λ). The

proposed tag-based Q̃AHPS scheme for L in Fig. 5 satisfies the properties listed in Table 2, i.e., (1) it
is 〈⊥,⊥〉-universal and (2) it supports κ-LR-〈L ,L0〉- and 〈L0,L1〉-key-switching, where L = LD`,k ,
L0 = LU`,k and L1 = LU ′`,k are specified in Subsect. 5.2.

Proof of Theorem 5.

32

[(Perfectly) 〈⊥,⊥〉-Universal.] For s̃k = K̃ ← $ Z2×`
p , any ([c1]1, [c2]2) ∈ X \ Lρ⊥ = X , any

([c′1]1, [c
′
2]2) ∈ X and any [τ]2, [τ

′]2 ∈ G2 with [τ]2 6= [τ ′]2, we consider the distribution of

Λ̃
s̃k

(([c1]1, [c2]2), [τ]2) conditioned on Λ̃
s̃k

(([c′1]1, [c
′
2]2), [τ ′]2).

Observe that [1, τ ′]2 is linearly independent of [1, τ]2 when [τ]2 6= [τ ′]2, thus we can always find

a vector a =
(
τ ′

−1
)
∈ Z2

p orthogonal to [1, τ ′]2 but non-orthogonal to [1, τ]2, i.e., [1, τ ′]2 · a = [0]2

but [1, τ]2 · a 6= [0]2. For convenience, we sample s̃k = K̃←$ Z2×`
p equivalently via

s̃k = K̃ := K + a · k> ∈ Z2×`
p ,

where K←$ Z2×`
p and k←$ Z`p. Consequently, we have

Λ̃
s̃k

(([c′1]1, [c
′
2]2), [τ ′]2) = [1, τ ′]2 · K̃ · [c′1]1 = [1, τ ′]2 ·K · [c′1]1,

which may leak K, but the value of k is perfectly hidden. Besides,

Λ̃
s̃k

(([c1]1, [c2]2), [τ]2) = [1, τ]2 · K̃ · [c1]1 = [1, τ]2 ·K · [c1]1 + [1, τ]2 · a · k
> · [c1]1 .

Since ([c1]1, [c2]2) 6= ([0]1, [0]2) (recall that ([0]1, [0]2) is excluded from X), k
> · [c1]1 is uniformly

distributed over G1 conditioned on Λ̃
s̃k

(([c′1]1, [c
′
2]2), [τ ′]2), due to the randomness of k. Together

with the fact that [1, τ]2 ·a 6= [0], [1, τ]2 ·a ·k
> · [c1]1 is uniformly distributed over GT conditioned

on Λ̃
s̃k

(([c′1]1, [c
′
2]2), [τ ′]2), and so is Λ̃

s̃k
(([c1]1, [c2]2), [τ]2). Hence

H̃∞
(
Λ̃
s̃k

(([c1]1, [c2]2), [τ]2)
∣∣ Λ̃

s̃k
(([c′1]1, [c

′
2]2), [τ ′]2)

)
= log p ≥ Ω(λ).

This implies that Q̃AHPS is (perfectly) 〈⊥,⊥〉-universal.

[κ-LR-〈L ,L0〉-Key-Switching.] The proof is a simplified version of that for Q̂AHPS (cf. Theorem
4). In fact, (16), (17) and (18) suffice for the proof.

[〈L0,L1〉-Key-Switching.] 〈L0,L1〉-key-switching is proved similarly. ut

5.6 Tightly LR-CCA-Secure PKE over Asymmetric Pairing Groups

We are able to instantiate (the more efficient variant of) our generic construction of LR-CCA secure
PKE in Sect. 4 (cf. Remark 8 and Fig. 15 in Appendix D) with the LR-weak-ardent QAHPS (cf. Fig.

3), the LR-ardent Q̂AHPS (cf. Fig. 4) and the LR-weak-ardent tag-based Q̃AHPS (cf. Fig. 5) over
asymmetric pairing groups PG = (G1,G2,GT , p, e, P1, P2, PT) based on the D`,k-MDDH assumptions.
Let H = {H : G`1×G`+1

2 −→ G2} be a collision-resistant function family. We present the instantiation
PKElr

asym with message spaceM = G2 in Fig. 6. The scheme can be easily extended to encrypt vectors
over G2, by replacing the vector k in the secret key with a matrix.

For ` ≥ 2k + 1 and κ ≤ log p − Ω(λ), by combining Theorem 1, Lemma 9 and Theorems 2, 3,
4, 5 together, we obtain the following corollary regarding the LR-CCA security of our instantiation
PKElr

asym.

Corollary 1 (LR-CCA Security of PKElr
asym). Let ` ≥ 2k+1 and κ ≤ log p−Ω(λ). If (i) the D`,k-

MDDH assumption holds over both G1 and G2, (ii) H is a collision-resistant function family, then the
instantiation PKElr

asym in Fig. 6 is κ-LR-CCA secure. Concretely, for any adversary A who makes at
most Qe times of Enc queries and Qd times of Dec queries, there exist adversaries B1, B2 and B3,
such that T(B3) ≈ T(A) + (Qe + Qd) · poly(λ), T(B1) ≈ T(B2) ≈ T(A) + (Qe + Qe · Qd) · poly(λ),
with poly(λ) independent of T(A), and

Advκ-lr-ccaPKElr
asym,A

(λ) ≤ (4dlogQee+ `− k + 2) ·
(
AdvmddhD`,k,G1,B1

(λ) + AdvmddhD`,k,G2,B2
(λ)
)

+ AdvcrH,B3
(λ) + (4 +Qd +QdQe + dlogQee · (Qd +Qe +QdQe)) · 2−Ω(λ).

33

PP←$ Param(1λ):

PG = (G1,G2,GT , p, e, P1, P2, PT)←$ PGGen(1λ).

A1,A2 ←$ D`,k. H←$ H.

⇒ PP := (PG, [A1]1, [A2]2,H).

C ←$ Enc(PK, [M]2 ∈ G2):

w1 ←$ Zkp. [c1]1 := [A1]1 ·w1 ∈ G`1.

w2 ←$ Zkp. [c2]2 := [A2]2 ·w2 ∈ G`2.

[d]2 := [p>]2 ·w2 + [M]2 ∈ G2.

[τ]2 := H([c1]1, [c2]2, [d]2) ∈ G2.

[π]T := w>2 · [P̂]T ·w1︸ ︷︷ ︸
[π̂]T

+ [1, τ]2 · [P̃]1 ·w1︸ ︷︷ ︸
[π̃]T

∈ GT .

⇒ C := ([c1]1, [c2]2, [d]2, [π]T) ∈ G`1 ×G`+1
2 ×GT .

(PK,SK)←$ Gen(PP):

k←$ Z`p. [p>]2 := k> · [A2]2 ∈ G1×k
2 .

K̂←$ Z`×`p . [P̂]T := [A2]>2 · K̂ · [A1]1 ∈ Gk×kT .

K̃←$ Z2×`
p . [P̃]1 := K̃ · [A1]1 ∈ G2×k

1 .

⇒ PK := ([p]2, [P̂]T , [P̃]1), SK := (k, K̂, K̃).

[M]2 /⊥ ← Dec(SK, C):

Parse C = ([c1]1, [c2]2, [d]2, [π
′]T).

[M]2 := [d]2 − k> · [c2]2 ∈ G2.

[τ]2 := H([c1]1, [c2]2, [d]2) ∈ G2.

[π]T := [c2]>2 · K̂ · [c1]1︸ ︷︷ ︸
[π̂]T

+ [1, τ]2 · K̃ · [c1]1︸ ︷︷ ︸
[π̃]T

∈ GT .

⇒ If [π′]T = [π]T , Return [M]2 ∈ G2;

Else, Return ⊥.

Fig. 6. The instantiation PKElr
asym over asymmetric pairing groups. The message space is M = G2. Here

H = {H : G`1 ×G`+1
2 −→ G2} is a collision-resistant function family.

Tight LR-CCA Security, Efficiency and Leakage-Rate of PKElr
asym. When D`,k := U`,k, the LR-

CCA security of PKElr
asym is tightly reduced to the standard k-LIN assumption since k-LIN implies U`,k-

MDDH by Lemma 5. Let kG denote k elements in G. By taking ` = 2k+1, we have PP : (2k2+k)G1+
(2k2+k)G2, PK : 2kG1+kG2+k2GT , SK : (4k2+10k+4)Zp, and C : (2k+1)G1+(2k+2)G2+1GT . See
Table 1 for details. Furthermore, if we choose κ = log p−Ω(λ), then the leakage-rate of the LR-CCA

security is κ/BitLength(SK) = 1
4k2+10k+4 · (1−

Ω(λ)
log p), which is arbitrarily close to 1/(4k2 + 10k+ 4) if

we choose a sufficiently large p.
Particularly, in case k = 1, the tight LR-CCA security of PKElr

asym is based on the SXDH assumption
and it has PK : 2G1 + 1G2 + 1GT , C : 3G1 + 4G2 + 1GT and leakage-rate = 1/18− o(1).

Remark 10 (Tight LR-CCA Security in the Multi-User Setting). For better readability, we
merely considered the LR-CCA security in the single-user setting so far. Our results extend naturally
to the multi-user setting. (The definition of LR-CCA security in the multi-user setting is presented in
Appendix A.1.) In our single-user LR-CCA security proof (i.e., the proof of Theorem 1), most steps are
statistical arguments (e.g., using the LR-universal or LR-key-switching properties of the underlying
QAHPS schemes), thus could be easily carried over to the multi-user setting. The only points that
are not statistical and hence need to be adapted is the use of the SMP assumptions (e.g., the game
transition G2 → G3 in the proof of Theorem 1) and the multi-extracting property (the game transition
G5 → G6). The adaptions are straightforward: the former is essentially unchanged, since the language
parameter ρ that the SMP is w.r.t. is part of the public parameters PP, shared by all users; the latter
could be tightly reduced to the MDDH assumptions for multiple users, by the random self-reducibility
of MDDH.

6 Instantiations over Symmetric Pairing Groups

In this section, we instantiate our generic construction of LR-CCA secure PKE in Sect. 4 over sym-
metric pairing groups and obtain a PKE scheme PKElr

sym. This is essentially a simplification of the
instantiations over asymmetric pairing groups shown in Sect. 5.

6.1 The Language Distribution for Linear Subspaces

Let PG = (G,GT , p, e, P, PT) be a symmetric pairing group. For any matrix distribution D`,k, which
outputs matrices in Z`×kp , it naturally gives rise to a language distribution LD`,k for linear subspaces
over group G:

34

– LD`,k invokes A ← $ D`,k, and outputs a language parameter ρ = [A] ∈ G`×k together with a

trapdoor td = A ∈ Z`×kp .

The matrix ρ defines a linear subspace language Lρ on G`:

Lρ = span([A]) =
{

[c]
∣∣ ∃ w ∈ Zkp \ {0}, s.t. [c] = [Aw]

}
⊆ X = G` \ {[0]}.9

The trapdoor td can be used to decide whether or not an instance [c] is in Lρ efficiently: first

compute a basis of the kernel space of A>, namely A⊥ ∈ Z`×(`−k)p satisfying A> ·A⊥ = 0, then check
whether [c> ·A⊥] = [0] holds.

Clearly, the SMP related to LD`,k corresponds to the D`,k-MDDH over group G, and the multi-
fold SMP related to LD`,k corresponds to the Q-fold D`,k-MDDH over G for any Q = poly(λ). The
same also holds for the uniform distribution U`,k. Formally, we have the following lemma, which is a
corollary of the random self-reducibility of D`,k-MDDH and U`,k-MDDH (i.e., Lemma 6).

Lemma 10 (D`,k/U`,k-MDDH ⇒ Multi-fold SMP related to LD`,k /LU`,k). Let Q > ` − k.
For any adversary A, there exists an adversary B, such that T(B) ≈ T(A) +Q · poly(λ) with poly(λ)
independent of T(A), and

AdvQ-msmp
LD`,k ,A

(λ) ≤ (`− k) · AdvmddhD`,k,G,B(λ) + 1/(p− 1).

For any adversary A, there exists an adversary B, such that T(B) ≈ T(A) +Q · poly(λ) with poly(λ)
independent of T(A), and

AdvQ-msmp
LU`,k ,A

(λ) ≤ AdvmddhU`,k,G,B(λ) + 1/(p− 1).

6.2 The Instantiation of Language Distributions

To instantiate the generic PKE construction in Sect. 4, the first thing we need to do is to determine
three language distributions L , L0 and L1 carefully.

Let ` ≥ 2k + 1. Let D`,k be an (arbitrary) matrix distribution, and U`,k, U ′`,k independent copies

of the uniform distribution, all of which output matrices in Z`×kp . Based on the previous subsection,
we designate the language distributions L , L0 and L1 as follows.

• L := LD`,k , which invokes A←$ D`,k and outputs (ρ = [A], td = A);

• L0 := LU`,k , which invokes A0 ←$ U`,k and outputs (ρ0 = [A0], td0 = A0);

• L1 := LU ′`,k , which invokes A1 ←$ U ′`,k and outputs (ρ1 = [A1], td1 = A1).

6.3 The Instantiation of LR-Weak-Ardent QAHPS

We present the construction of QAHPS = (Setup, α(·),Pub,Priv) for the language distribution L
(= LD`,k) in Fig. 7. It is straightforward to check the perfect correctness of QAHPS: for all language

parameters ρ = [A] ∈ G`×k, all sk = k ∈ Z`p and pkρ = αρ(sk) = [p>] = k> · [A] ∈ G1×k, all [c] =

[Aw] ∈ Lρ with witness w ∈ Zkp, it follows that Pub(pkρ, [c],w) = [p>] ·w = k> · [Aw] = Priv(sk, [c]).

Theorem 6 (L0-Multi-Extracting of QAHPS). If the Uk+1,k-MDDH assumption holds over G,
then the proposed QAHPS in Fig. 7 is L0-multi-extracting, where the language distribution L0 (=
LU`,k) is specified in Subsect. 6.2.

Concretely, for any adversary A, any polynomial Q = poly(λ), there exists an adversary B, such
that T(B) ≈ T(A) +Q · poly(λ) with poly(λ) independent of T(A), and

AdvQ-L0-mext
QAHPS,A (λ) ≤ AdvmddhUk+1,k,G,B(λ) + 1/(p− 1).

9 For technical reasons, the zero vector [0] must be excluded from both Lρ and X . For the sake of simplicity,
we forgo making this explicit in the sequel.

35

pp←$ Setup(1λ):

PG = (G,GT , p, e, P, PT)←$ PGGen(1λ).

⇒ pp := PG, which implicitly defines

(SK := Z`p, Π := G, Λ(·)),

where Λsk([c]) := k> · [c] ∈ G for

any sk = k ∈ Z`p and [c] ∈ X = G`.

[π]← Pub(pkρ, [c] ∈ G`,w ∈ Zkp),

where [c] = [Aw] ∈ Lρ for ρ = [A] ∈ G`×k:

Parse pkρ = [p>] ∈ G1×k.

⇒ [π] := [p>] ·w ∈ G.

pkρ ← αρ(sk),

where ρ = [A] ∈ G`×k:

Parse sk = k ∈ Z`p.

[p>] := k> · [A] ∈ G1×k.

⇒ pkρ := [p>].

[π]← Priv(sk, [c] ∈ G`):

Parse sk = k ∈ Z`p.

⇒ [π] := k> · [c] ∈ G.

Fig. 7. Construction of LR-weak-ardent QAHPS over symmetric pairing groups.

The proof for Theorem 6 is just a simple adaptation of the proof for Theorem 2 over group G.

The LR-weak-ardency of QAHPS follows from the theorem below. The proof of the theorem is just
a simple adaptation of the proof for Theorem 3 over group G.

Theorem 7 (LR-weak-ardency of QAHPS). Let ` ≥ 2k + 1 and κ ≤ log p − Ω(λ). The proposed
QAHPS for L in Fig. 7 satisfies the properties listed in Table 2, i.e., (1) it is perfectly 〈⊥,⊥〉-universal
and (2) it supports κ-LR-〈L ,L0〉-key-switching, where the language distributions L = LD`,k and
L0 = LU`,k are specified in Subsect. 6.2.

6.4 The Instantiation of LR-Ardent QAHPS

We present the construction of Q̂AHPS = (Ŝetup, α̂(·), P̂ub, P̂riv) for L (= LD`,k) in Fig. 8. It is

straightforward to check the perfect correctness of Q̂AHPS.

p̂p←$ Ŝetup(1λ):

PG = (G,GT , p, e, P, PT)←$ PGGen(1λ).

⇒ p̂p := PG, which implicitly defines

(ŜK := Z`×`p , Π̂ := GT , Λ̂(·)),

where Λ̂ŝk([c]) := [c]> · K̂ · [c] ∈ GT for

any ŝk = K̂ ∈ Z`×`p and [c] ∈ X = G`.

[π̂]T ← P̂ub(p̂kρ, [c] ∈ G`,w ∈ Zkp),

where [c] = [Aw] ∈ Lρ for ρ = [A] ∈ G`×k:

Parse p̂kρ = [P̂]T ∈ Gk×kT .

⇒ [π̂]T := w> · [P̂]T ·w ∈ GT .

p̂kρ ← α̂ρ(ŝk),

where ρ = [A] ∈ G`×k:

Parse ŝk = K̂ ∈ Z`×`p .

[P̂]T := [A]> · K̂ · [A] ∈ Gk×kT .

⇒ p̂kρ := [P̂]T .

[π̂]T ← P̂riv(ŝk, [c] ∈ G`):

Parse ŝk = K̂ ∈ Z`×`p .

⇒ [π̂]T := [c]> · K̂ · [c] ∈ GT .

Fig. 8. Construction of LR-ardent Q̂AHPS over symmetric pairing groups.

Theorem 8 (LR-ardency of Q̂AHPS). Let ` ≥ 2k+ 1 and κ ≤ log p−Ω(λ). The proposed Q̂AHPS
scheme for L in Fig. 8 satisfies the properties listed in Table 2, i.e., (1) it is κ-LR-〈L ,L0〉- and

36

perfectly 〈L0,L1〉-universal and (2) it supports κ-LR-〈L ,L0〉-key-switching, where the language dis-
tributions L = LD`,k , L0 = LU`,k and L1 = LU ′`,k are specified in Subsect. 6.2.

Proof of Theorem 8.

[Perfectly 〈L ,L0〉-Universal.] Let (ρ = [A] ∈ G`×k, td) ← $ L and (ρ0 = [A0] ∈ G`×k, td0) ←
$ L0. With overwhelming probability 1 − 2−Ω(λ), (A,A0) ∈ Z`×2kp is of full column rank. For

ŝk = K̂ ←$ Z`×`p and any [c] ∈ X \ (Lρ ∪ Lρ0) = G` \ (span([A]) ∪ span([A0])), we consider the

distribution of Λ̂
ŝk

([c]) conditioned on p̂kρ = α̂ρ(ŝk) and p̂kρ0 = α̂ρ0(ŝk).
Let a⊥ ∈ Z`p (resp. a⊥0 ∈ Z`p) be an arbitrary non-zero vector in the kernel space of A> (resp.

A>0) such that A> · a⊥ = 0 (resp. A>0 · a⊥0 = 0) holds. For the convenience of our analysis, we

sample ŝk = K̂←$ Z`×`p equivalently via

ŝk = K̂ := K̃ + µ · a⊥0 · (a⊥)> ∈ Z`×`p ,

where K̃←$ Z`×`p and µ←$ Zp. Consequently, we have

p̂kρ = α̂ρ(ŝk) = [A]> · K̂ · [A] = [A]> · K̃ · [A],

p̂kρ0 = α̂ρ0(ŝk) = [A0]> · K̂ · [A0] = [A0]> · K̃ · [A0],

which may leak K̃, but the value of µ is completely hidden. Besides,

Λ̂
ŝk

([c]) = [c]> · K̂ · [c] = [c]> · K̃ · [c] + µ · [c>a⊥0] · [c>a⊥]> .

Since [c] /∈ span([A]) and [c] /∈ span([A0]), we can always find an a⊥ ∈ Z`p such that [c>a⊥] 6= [0]

holds and find an a⊥0 ∈ Z`p such that [c>a⊥0] 6= [0] holds. Then, conditioned on p̂kρ and p̂kρ0 ,

µ · [c>a⊥0] · [c>a⊥]> is uniformly distributed over GT due to the randomness of µ, so is Λ̂
ŝk

([c]).

This implies that Q̂AHPS is perfectly 〈L ,L0〉-universal.

[Perfectly 〈L0,L1〉-Universal.] It can be proved in a similar way as the perfectly 〈L ,L0〉-universal.

[κ-LR-〈L ,L0〉-Universal.] It follows from Lemma 7.

[κ-LR-〈L ,L0〉-Key-Switching.] Let (ρ = [A] ∈ G`×k, td)←$ L and let L : ŜK −→ {0, 1}κ be an

arbitrary leakage function. For ŝk = K̂←$ Z`×`p , ŝk′ = K̂′ ←$ Z`×`p and (ρ0 = [A0] ∈ G`×k, td0)←
$ L0, we aim to prove

∆
((

[A0]︸︷︷︸
ρ0

,
∣∣[A0]>K̂[A0]︸ ︷︷ ︸

α̂ρ0 (ŝk)

)
,
(

[A0]︸︷︷︸
ρ0

,
∣∣[A0]>K̂′[A0]︸ ︷︷ ︸

α̂ρ0 (ŝk
′)

) ∣∣ [A]>K̂[A]︸ ︷︷ ︸
α̂ρ(ŝk)

, L(K̂)
)
≤ 2−Ω(λ). (19)

Similarly to the proof of (15) and by the multi-fold generalized leftover hash lemma (i.e.,
Lemma 4), we have that

∆
((

[A0], K̂[A0]
)
,
(

[A0], K̂′[A0]
) ∣∣ K̂[A], L(K̂)

)
≤ 2−Ω(λ). (20)

Note that (19) is deterministic in (20), then by Lemma 2, (19) holds.
This completes the proof of κ-LR-〈L ,L0〉-key-switching. ut

6.5 The Instantiation of LR-Weak-Ardent Tag-Based QAHPS

We present the construction of tag-based Q̃AHPS = (S̃etup, α̃(·), P̃ub, P̃riv) for the language distribu-

tion L (= LD`,k) in Fig. 9. It is straightforward to check the perfect correctness of Q̃AHPS.

The LR-weak-ardency of Q̃AHPS follows from the theorem below. The proof of the theorem is just
a simple adaptation of the proof for Theorem 5 over group G.

Theorem 9 (LR-weak-ardency of Tag-Based Q̃AHPS). Let ` ≥ 2k + 1 and κ ≤ log p − Ω(λ).

The proposed tag-based Q̃AHPS scheme for L in Fig. 9 satisfies the properties listed in Table 2, i.e.,
(1) it is 〈⊥,⊥〉-universal and (2) it supports κ-LR-〈L ,L0〉- and 〈L0,L1〉-key-switching, where the
language distributions L = LD`,k , L0 = LU`,k and L1 = LU ′`,k are specified in Subsect. 6.2.

37

p̃p←$ S̃etup(1λ):

PG = (G,GT , p, e, P, PT)←$ PGGen(1λ).

⇒ p̃p := PG, which implicitly defines

(S̃K := Z2×`
p , T̃ := G, Π̃ := GT , Λ̃(·)),

where Λ̃s̃k([c], [τ]) := [1, τ] · K̃ · [c] ∈ GT for

any s̃k = K̃ ∈ Z2×`
p , [c] ∈ X = G` and [τ] ∈ G.

[π̃]T ← P̃ub(p̃kρ, [c] ∈ G`,w ∈ Zkp, [τ] ∈ G),

where [c] = [Aw] ∈ Lρ for ρ = [A] ∈ G`×k:

Parse p̃kρ = [P̃] ∈ G2×k.

⇒ [π̃]T := [1, τ] · [P̃] ·w ∈ GT .

p̃kρ ← α̃ρ(s̃k),

where ρ = [A] ∈ G`×k:

Parse s̃k = K̃ ∈ Z2×`
p .

[P̃] := K̃ · [A] ∈ G2×k.

⇒ p̃kρ := [P̃].

[π̃]T ← P̃riv(s̃k, [c] ∈ G`, [τ] ∈ G):

Parse s̃k = K̃ ∈ Z2×`
p .

⇒ [π̃]T := [1, τ] · K̃ · [c] ∈ GT .

Fig. 9. Construction of LR-weak-ardent tag-based Q̃AHPS over symmetric pairing groups.

6.6 Tightly LR-CCA-Secure PKE over Symmetric Pairing Groups

We are able to instantiate our generic construction of LR-CCA secure PKE in Sect. 4 with the

LR-weak-ardent QAHPS (cf. Fig. 7), the LR-ardent Q̂AHPS (cf. Fig. 8) and the LR-weak-ardent

tag-based Q̃AHPS (cf. Fig. 9) over symmetric pairing groups PG = (G,GT , p, e, P, PT) based on the

D`,k-MDDH assumptions. Observe that Π̂ = Π̃ in our instantiation, hence it supports the more
efficient variant of generic PKE construction, as shown in Remark 8 and Fig. 15 in Appendix D. Let
H = {H : G`+1 −→ G} be a collision-resistant function family. We present the instantiation PKElr

sym

with message spaceM = G in Fig. 10. The scheme can be easily extended to encrypt vectors over G,
by replacing the vector k in the secret key with a matrix.

PP←$ Param(1λ):

PG = (G,GT , p, e, P, PT)←$ PGGen(1λ).

A←$ D`,k. H←$ H.

⇒ PP := (PG, [A],H).

C ←$ Enc(PK, [M] ∈ G):

w←$ Zkp. [c] := [A]w ∈ G`.

[d] := [p>] ·w + [M] ∈ G.

[τ] := H([c], [d]) ∈ G.

[π]T := w> · [P̂]T ·w︸ ︷︷ ︸
[π̂]T

+ [1, τ] · [P̃] ·w︸ ︷︷ ︸
[π̃]T

∈ GT .

⇒ C := ([c], [d], [π]T) ∈ G`+1 ×GT .

(PK,SK)←$ Gen(PP):

k←$ Z`p. [p>] := k> · [A] ∈ G1×k.

K̂←$ Z`×`p . [P̂]T := [A]> · K̂ · [A] ∈ Gk×kT .

K̃←$ Z2×`
p . [P̃] := K̃ · [A] ∈ G2×k.

⇒ PK := ([p], [P̂]T , [P̃]), SK := (k, K̂, K̃).

[M]/⊥ ← Dec(SK, C):

Parse C = ([c], [d], [π′]T).

[M] := [d]− k> · [c] ∈ G.

[τ] := H([c], [d]) ∈ G.

[π]T := [c]> · K̂ · [c]︸ ︷︷ ︸
[π̂]T

+ [1, τ] · K̃ · [c]︸ ︷︷ ︸
[π̃]T

∈ GT .

⇒ If [π′]T = [π]T , Return [M] ∈ G;

Else, Return ⊥.

Fig. 10. The instantiation PKElr
sym over symmetric pairing groups. The message space is M = G. Here H =

{H : G`+1 −→ G} is a collision-resistant function family.

For ` ≥ 2k + 1 and κ ≤ log p − Ω(λ), by combining Theorem 1 , Lemma 10 and Theorems 6, 7,
8, 9 together, we obtain the following corollary regarding the LR-CCA security of our instantiation
PKElr

sym.

38

Corollary 2 (LR-CCA Security of PKElr
sym). Let ` ≥ 2k+ 1 and κ ≤ log p−Ω(λ). If (i) the D`,k-

MDDH assumption holds over G, (ii) H is a collision-resistant function family, then the instantiation
PKElr

sym in Fig. 10 is κ-LR-CCA secure. Concretely, for any adversary A who makes at most Qe
times of Enc queries and Qd times of Dec queries, there exist adversaries B1 and B2, such that
T(B2) ≈ T(A)+(Qe+Qd) ·poly(λ), T(B1) ≈ T(A)+(Qe+Qe ·Qd) ·poly(λ), with poly(λ) independent
of T(A), and

Advκ-lr-ccaPKElr
sym,A

(λ) ≤ (4dlogQee+ `− k + 2) · AdvmddhD`,k,G,B1
(λ) + AdvcrH,B2

(λ)

+ (4 +Qd +QdQe + dlogQee · (Qd +Qe +QdQe)) · 2−Ω(λ).

Tight LR-CCA Security, Efficiency and Leakage-Rate of PKElr
sym, and Extension to the

Multi-User Setting. When D`,k := U`,k, the LR-CCA security of PKElr
sym is tightly reduced to the

standard k-LIN assumption over symmetric pairing groups, since k-LIN implies U`,k-MDDH by Lemma
5. Let kG denote k elements in G. By taking ` = 2k + 1, we have PP : (2k2 + k)G, PK : 3kG + k2GT ,
SK : (4k2+10k+4)Zp, and C : (2k+2)G+1GT . See Table 1 for details. Furthermore, if we choose κ =

log p−Ω(λ), then the leakage-rate of the LR-CCA security is κ/BitLength(SK) = 1
4k2+10k+4 ·(1−

Ω(λ)
log p),

which is arbitrarily close to 1/(4k2 + 10k + 4) if we choose a sufficiently large p.
Particularly, in case k = 2, the tight LR-CCA security of PKElr

sym is based on the 2-LIN assumption
and it has PK : 6G + 4GT , C : 6G + 1GT and leakage-rate = 1/40− o(1).

The tight LR-CCA security of PKElr
sym also extends naturally to the multi-user setting, following

the same analysis in Remark 10.

Remark 11. Our instantiations PKElr
asym in Fig. 6 and PKElr

sym in Fig. 10 can be changed into non-
LR but more efficient PKE schemes, namely PKEasym and PKEsym, by setting ` = 2k (instead of

` ≥ 2k + 1). Without key leakage, primitives QAHPS, Q̂AHPS and tag-based Q̃AHPS parameterized
with ` = 2k can be proved to be perfectly universal and perfectly key-switching, which implies 0-
LR-(weak-)ardency. Consequently, PKEasym and PKEsym have tight multi-challenge (and multi-user)
IND-CCA security.

Acknowledgments. We would like to thank the anonymous reviewers for their comments and sug-
gestions. We are grateful to Dennis Hofheinz and Jiaxin Pan for helpful discussions and advices. Shuai
Han, Shengli Liu and Lin Lyu are supported by the National Natural Science Foundation of China
Grant (No. 61672346). Dawu Gu is supported by the National Natural Science Foundation of China
Grant (No. U1636217) together with Program of Shanghai Academic Research Leader (16XD1401300).

References

[ABP15] Abdalla, M., Benhamouda, F., Pointcheval, D.: Disjunctions for hash proof systems: New con-
structions and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II,
LNCS, vol. 9057, pp. 69–100. Springer (2015)

[ADK+13] Abe, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Tagged one-time signatures:
Tight security and optimal tag size. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013, LNCS,
vol. 7778, pp. 312–331. Springer (2013)

[ADN+10] Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-key encryption in
the bounded-retrieval model. In: Gilbert, H. (ed.) EUROCRYPT 2010, LNCS, vol. 6110, pp.
113–134. Springer (2010)

[AGV09] Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and cryptography
against memory attacks. In: Reingold, O. (ed.) TCC 2009, LNCS, vol. 5444, pp. 474–495 (2009)

[AHY15] Attrapadung, N., Hanaoka, G., Yamada, S.: A framework for identity-based encryption with
almost tight security. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part I, LNCS, vol.
9452, pp. 521–549. Springer (2015)

[AJOR18a] Abe, M., Jutla, C.S., Ohkubo, M., Roy, A.: Improved (almost) tightly-secure simulation-sound
QA-NIZK with applications. In: Peyrin, T., Galbraith, S.D. (eds.) ASIACRYPT 2018, Part I,
LNCS, vol. 11272, pp. 627–656. Springer (2018)

39

[AJOR18b] Abe, M., Jutla, C.S., Ohkubo, M., Roy, A.: Improved (almost) tightly-secure simulation-sound
QA-NIZK with applications. IACR Cryptology ePrint Archive, Report 2018/849 (2018), http:
//eprint.iacr.org/2018/849/20190207:025738

[BBM00] Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting: Security
proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000, LNCS, vol. 1807, pp.
259–274 (2000)

[CS02] Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext
secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002, LNCS, vol. 2332,
pp. 45–64 (2002)

[CS04] Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure
against adaptive chosen ciphertext attack. SIAM J. Comput. vol. 33(1), pp. 167–226 (2004)

[CW13] Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II, pp. 435–460 (2013)

[DHLAW10] Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptography in the
presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010, LNCS, vol. 6477, pp. 613–631
(2010)

[DKPW12] Dodis, Y., Kiltz, E., Pietrzak, K., Wichs, D.: Message authentication, revisited. In: Pointcheval,
D., Johansson, T. (eds.) EUROCRYPT 2012, pp. 355–374 (2012)

[DORS08] Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys
from biometrics and other noisy data. SIAM J. Comput. vol. 38(1), pp. 97–139 (2008)

[EHK+13] Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.L.: An algebraic framework for Diffie-
Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II, pp. 129–147
(2013)

[FV16] Faonio, A., Venturi, D.: Efficient public-key cryptography with bounded leakage and tamper
resilience. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I, LNCS, vol. 10031, pp.
877–907 (2016)

[FX16] Fujisaki, E., Xagawa, K.: Public-key cryptosystems resilient to continuous tampering and leak-
age of arbitrary functions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I, LNCS,
vol. 10031, pp. 908–938 (2016)

[GCD+16] Gong, J., Chen, J., Dong, X., Cao, Z., Tang, S.: Extended nested dual system groups, revisited.
In: Cheng, C., Chung, K., Persiano, G., Yang, B. (eds.) PKC 2016, Part I, pp. 133–163 (2016)

[GHK17] Gay, R., Hofheinz, D., Kohl, L.: Kurosawa-Desmedt meets tight security. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017, Part III, LNCS, vol. 10403, pp. 133–160. Springer (2017)

[GHKP18] Gay, R., Hofheinz, D., Kohl, L., Pan, J.: More efficient (almost) tightly secure structure-
preserving signatures. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II, LNCS,
vol. 10821, pp. 230–258. Springer (2018)

[GHKW16] Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without pairings. In:
Fischlin, M., Coron, J. (eds.) EUROCRYPT 2016, Part I, pp. 1–27 (2016)

[HJ12] Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In: Safavi-Naini,
R., Canetti, R. (eds.) CRYPTO 2012, LNCS, vol. 7417, pp. 590–607 (2012)

[Hof16] Hofheinz, D.: Algebraic partitioning: Fully compact and (almost) tightly secure cryptography.
In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016-A, Part I, LNCS, vol. 9562, pp. 251–281.
Springer (2016)

[Hof17] Hofheinz, D.: Adaptive partitioning. In: Coron, J., Nielsen, J.B. (eds.) EUROCRYPT 2017,
Part III, LNCS, vol. 10212, pp. 489–518 (2017)

[HSH+08] Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino, J.A., Feld-
man, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: Cold boot attacks on encryption
keys. In: van Oorschot, P.C. (ed.) USENIX Security Symposium 2008, pp. 45–60. USENIX
Association (2008)

[JR13] Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In: Sako, K.,
Sarkar, P. (eds.) ASIACRYPT 2013, Part I, LNCS, vol. 8269, pp. 1–20 (2013)

[JR15] Jutla, C.S., Roy, A.: Dual-system simulation-soundness with applications to UC-PAKE and
more. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part I, LNCS, vol. 9452, pp. 630–
655. Springer (2015)

[KD04] Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In: Franklin, M.K.
(ed.) CRYPTO 2004, LNCS, vol. 3152, pp. 426–442. Springer (2004)

[KW15] Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015, Part II, LNCS, vol. 9057, pp. 101–128. Springer (2015)

40

http://eprint.iacr.org/2018/849/20190207:025738
http://eprint.iacr.org/2018/849/20190207:025738

[LPJY14] Libert, B., Peters, T., Joye, M., Yung, M.: Non-malleability from malleability: Simulation-sound
quasi-adaptive NIZK proofs and CCA2-secure encryption from homomorphic signatures. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014, LNCS, vol. 8441, pp. 514–532. Springer
(2014)

[LPJY15] Libert, B., Peters, T., Joye, M., Yung, M.: Compactly hiding linear spans - tightly secure
constant-size simulation-sound QA-NIZK proofs and applications. In: Iwata, T., Cheon, J.H.
(eds.) ASIACRYPT 2015, Part I, pp. 681–707 (2015)

[NS09] Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi, S. (ed.)
CRYPTO 2009, pp. 18–35 (2009)

[NY90] Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext at-
tacks. In: Ortiz, H. (ed.) STOC 1990, pp. 427–437. ACM (1990)

[QL13] Qin, B., Liu, S.: Leakage-resilient chosen-ciphertext secure public-key encryption from hash
proof system and one-time lossy filter. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013,
Part II, LNCS, vol. 8270, pp. 381–400. Springer (2013)

[QLC15] Qin, B., Liu, S., Chen, K.: Efficient chosen-ciphertext secure public-key encryption scheme with
high leakage-resilience. IET Information Security vol. 9(1), pp. 32–42 (2015)

[Sho06] Shoup, V.: A computational introduction to number theory and algebra. Cambridge University
Press (2006)

[WC81] Wegman, M.N., Carter, L.: New hash functions and their use in authentication and set equality.
Journal of Computer and System Sciences vol. 22(3), pp. 265–279 (1981)

[Wee12] Wee, H.: Dual projective hashing and its applications - lossy trapdoor functions and more. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012, pp. 246–262 (2012)

41

A Formal Definitions

A.1 LR-CCA Security in the Multi-User Setting

Definition 13 (Multi-Ciphertext κ-LR-CCA Security in the Multi-User Setting). Let κ =
κ(λ). A PKE scheme PKE is κ-LR-CCA secure in the multi-user setting, if for any PPT adversary
A, any polynomial Qu = poly(λ), it holds that

Adv
(κ,Qu)-lr-cca
PKE,A (λ) :=

∣∣Pr[(κ,Qu)-lr-ccaA ⇒ 1]− 1
2

∣∣ ≤ negl(λ),

where game (κ,Qu)-lr-cca in the multi-user setting is specified in Fig. 11.

If Qu = 1, the security is reduced to the (single-user) LR-CCA security as defined in Definition 2.

Proc. Initialize:

PP←$ Param(1λ).
β ←$ {0, 1}. // challenge bit
For j ∈ [Qu],

(PKj ,SKj)←$ Gen(PP).
lj := 0. // bit length of leakage

chal := false.
Return (PP, (PKj)j∈[Qu]).

Proc. Leak(L, j):

If (chal = true)
∨ (lj + |L(SKj)| > κ),

Return ⊥.
lj := lj + |L(SKj)|.
Return L(SKj).

Proc. Enc(M0,M1, j):

chal := true.
If |M0| 6= |M1|, Return ⊥.
C∗ ←$ Enc(PKj ,Mβ).
QENC ,j := QENC ,j ∪ {C∗}.
Return C∗.

Proc. Dec(C, j):

If C ∈ QENC ,j ,
Return ⊥.

Return Dec(SKj , C).

Proc. Finalize(β′):

Return (β′ = β).

Fig. 11. (κ,Qu)-lr-cca security game for PKE in the multi-user setting.

A.2 Hash Proof System

Hash proof system (HPS) was proposed by Cramer and Shoup in the seminal work [CS02], and turned
out to be a very powerful tool in a wide range of applications, such as PKE and KEM [CS04, KD04].
We give the formal definition according to [CS02].

Definition 14 (Hash Proof System). A hash proof system HPS = (Setup, Pub,Priv) consists of a
tuple of PPT algorithms:

– pp ← $ Setup(1λ): The setup algorithm outputs a public parameter pp, which implicitly defines
(L,X ,SK,PK, Π, Λ(·), α), where L ⊆ X is an NP-language with universe X , SK is the hashing
key space, PK is the projection key space, Π is the hash value space, Λ(·) : X −→ Π is a family of
hash functions indexed by a hashing key sk ∈ SK, and α : SK −→ PK is the projection function.

We assume that Λ(·) and α are efficiently computable and there are PPT algorithms for sampling
x←$ L uniformly together with a witness w, sampling x←$ X uniformly, and sampling sk ←$ SK
uniformly. We require pp to be an implicit input of other algorithms.

– π ← Pub(pk, x, w): The public evaluation algorithm outputs the hash value π = Λsk(x) ∈ Π of
x ∈ L, with the help of a projection key pk = α(sk) and a witness w for x ∈ L.

– π ← Priv(sk, x): The private evaluation algorithm outputs the hash value π = Λsk(x) ∈ Π of
x ∈ X , directly using the hashing key sk.

Perfect correctness (a.k.a. projectiveness) of HPS requires that, for all possible pp ←$ Setup(1λ), all
hashing keys sk ∈ SK with pk := α(sk) the corresponding projection key, all x ∈ L with all possible
witnesses w, it holds that

Pub(pk, x, w) = Λsk(x) = Priv(sk, x).

42

B The Non-Triviality for Achieving Tight LR-CCA

In this work, we employed ardent QAHPS as an important building block, and illustrated in detail
that the “universal” and “key-switching” properties of QAHPS do hold in the LR setting. Moreover,
we designed our LR-CCA secure PKE by combining several LR-ardent QAHPS schemes carefully and
we instantiated these QAHPS from the MDDH assumptions.

For example, for the PKE instantiation over asymmetric pairing groups (i.e., the PKElr
asym in Fig.

6), the instance x∗ = ([A1w1]1, [A2w2]2)←$ Lρ(= span([A1]1)× span([A2]2)) in challenge ciphertext
can be changed to x∗ = ([A0,1w1]1, [A0,2w2]2) ←$ Lρ0(= span([A0,1]1) × span([A0,2]2)) in the LR-
CCA security proof, due to the MDDH assumption. An important observation is that the adversary
does not know ρ0 = ([A0,1]1, [A0,2]2) before the challenge ciphertexts are generated. Meanwhile, A is
not allowed to query key leakage after it sees the first challenge ciphertext. Consequently, the leakage
function L(·) submitted by A is definitely independent of ([A0,1]1, [A0,2]2), so ([A0,1]1, [A0,2]2) can
behave as an index of a universal hash function and applies to the secret key of QAHPS. As a result,
the (multi-fold) generalized leftover hash lemma guarantees that the LR-universal and the LR-key-
switching hold for QAHPS, which make possible the LR-CCA security proof of our PKElr

asym.
In contrast, Gay et al. [GHK17] used “qualified proof system” (QPS) in their PKE construction,

and the tight IND-CCA security of PKE depends on the “constrained soundness” and “extensibility”
properties of QPS. However, the proofs for these two properties seem hard to be adapted to the LR
setting. The technical reasons are as follows.

1) “Constrained soundness” of [GHK17]’s QPS might not hold in the LR setting.
Note that [GHK17] employed two universal hash functions h0 and h1 in their QPS construction,
which help to map the group elements in G back to the scalars in Zp. In the “constrained sound-
ness” proof (cf. [GHK17, Lemma 6]), they applied the Leftover Hash Lemma (LHL) to argue that
the outputs of h0 and h1 are uniformly distributed. For example, in the last game of the proof,
y = h1(Ky[c]) is uniform due to LHL. However, this argument is invalid in the LR setting, due to
the inapplicability of LHL. This is because, the (generalized) LHL (cf. Lemma 3) works only if the
auxiliary information about the input is independent of the universal hash function h1, while here
the leakage information L(KX,Ky) might depend on h1, since the leakage function L is chosen
by the adversary after obtaining h1 from the public parameters.

2) “Extensibility” of [GHK17]’s QPS might not hold in the LR setting.
In the “extensibility” proof (cf. [GHK17, Lemma 7]), they essentially argued that (KXA,KXA0)

is identically distributed to (KXA, K̃XA0), thus the proof system PS is indistinguishable from

P̃S. However, this argument is invalid in the LR setting. For example, the adversary may simply
let L(KX,Ky) be the first few bits of KXA0 (note that A0 is contained in the public parameters),

thus can trivially distinguish (KXA,KXA0) from (KXA, K̃XA0). (We stress that, in contrast,
the “key-switching” property of our QAHPS works well in the LR setting smoothly, since A0 is
not contained in our public parameters and is not leaked to the adversary unless the adversary
finished the leakage queries.)

Besides the above observations, there are also some other game hops in [GHK17] that seem hard to
be adapted to the LR setting. As such, it is reasonable to conjecture that the tightly IND-CCA secure
PKE proposed in [GHK17] is not leakage-resilient.

43

C Game-Based Definition for Leakage-Resilient Ardency of QAHPS

We present game-based definition for LR-ardency of QAHPS by defining κ-LR-〈L0,L1〉-universal and
κ-LR-〈L0,L1〉-key-switching properties via games.

Definition 15 (Leakage-Resilient Ardent QAHPS, Game-Based Version). Let κ = κ(λ) ∈ N,
and let L0,L1 be a pair of language distributions. A QAHPS scheme QAHPS = (Setup, α(·),Pub,Priv)
for a language distribution L is called κ-leakage-resilient 〈L0,L1〉-ardent (κ-LR-〈L0,L1〉-ardent), if
the following two properties hold:

• (κ-LR-〈L0,L1〉-Universal). For any (possibly unbounded) adversary A, it holds that

Pr[κ-lr-universalA ⇒ 1] ≤ 2−Ω(λ),

where game κ-lr-universal is specified in Fig. 12.

Proc. Initialize:

pp←$ Setup(1λ).
(ρ0, td0)←$ L0.
(ρ1, td1)←$ L1.
sk ←$ SK.
l := 0. // bit length of leakage
Return (pp, ρ0, ρ1, αρ0(sk), αρ1(sk)).

Proc. Leak(L):

If (l + |L(sk)| > κ),
Return ⊥.

l := l + |L(sk)|.
Return L(sk).

Proc. Finalize(x, π):

If (x ∈ X \ (Lρ0 ∪ Lρ1))
∧ (π = Λsk(x)),

Return 1.
Return 0.

Fig. 12. κ-lr-universal security game for QAHPS.

• (κ-LR-〈L0,L1〉-Key-Switching). For any (possibly unbounded) adversary A, it holds that∣∣ Pr[κ-lr-key-switchingA ⇒ 1]− 1
2

∣∣ ≤ 2−Ω(λ),

where game κ-lr-key-switching is specified in Fig. 13.

Proc. Initialize:

pp←$ Setup(1λ).
(ρ0, td0)←$ L0.
(ρ1, td1)←$ L1.
sk, sk′ ←$ SK.
β ←$ {0, 1}. // challenge bit
l := 0. // bit length of leakage
chal := false.
Return (pp, ρ0, αρ0(sk)).

Proc. Leak(L):

If (chal = true)
∨ (l + |L(sk)| > κ),

Return ⊥.
l := l + |L(sk)|.
Return L(sk).

Proc. Chal():

chal := true.
If β = 0,

Return (ρ1, αρ1(sk)).
Else β = 1,

Return (ρ1, αρ1(sk′)).

Proc. Finalize(β′):

Return (β′ = β).

Fig. 13. κ-lr-key-switching security game for QAHPS.

Similarly, game-based definition for LR-ardency of tag-based QAHPS is presented as follows.

Definition 16 (Leakage-Resilient Ardent Tag-Based QAHPS, Game-Based Version). Let
κ = κ(λ) ∈ N, and let L0,L1 be a pair of language distributions. A tag-based QAHPS scheme
QAHPS = (Setup, α(·),Pub,Priv) for a language distribution L is called κ-leakage-resilient 〈L0,L1〉-
ardent (κ-LR-〈L0,L1〉-ardent), if the following two properties hold:

• (κ-LR-〈L0,L1〉-Universal for Tag-Based QAHPS). For any (possibly unbounded) adversary
A, it holds that

Pr[κ-lr-tag-universalA ⇒ 1] ≤ 2−Ω(λ),

where game κ-lr-tag-universal is specified in Fig. 14.

• (κ-LR-〈L0,L1〉-Key-Switching for Tag-Based QAHPS). This property is the same as that
defined for the non-tag-based QAHPS in Definition 15, since no tag is involved in the projection
algorithm α(·).

44

Proc. Initialize:

pp←$ Setup(1λ).
(ρ0, td0)←$ L0.
(ρ1, td1)←$ L1.
sk ←$ SK.
l := 0. // bit length of leakage
chal := false.
Return (pp, ρ0, ρ1, αρ0(sk), αρ1(sk)).

Proc. Leak(L):

If (chal = true)
∨ (l + |L(sk)| > κ),

Return ⊥.
l := l + |L(sk)|.
Return L(sk).

Proc. Chal(x′, τ ′):

chal := true.
Return Λsk(x′, τ ′).

Proc. Finalize(x, τ, π):

If (x ∈ X \ (Lρ0 ∪ Lρ1))
∧ (τ 6= τ ′) ∧ (π = Λsk(x, τ)),

Return 1.
Return 0.

Fig. 14. κ-lr-tag-universal security game for tag-based QAHPS.

D A More Efficient Variant of Generic PKE Construction

See Fig. 15.

PP←$ Param(1λ):

pp←$ Setup(1λ), which defines (SK, Π,Λ(·)).

p̂p←$ Ŝetup(1λ), which defines (ŜK, Π̂, Λ̂(·)).

p̃p←$ S̃etup(1λ), which defines (S̃K, T̃ , Π̃, Λ̃(·)).

(ρ, td)←$ L . H←$ H.

⇒ PP := (pp, p̂p, p̃p, ρ,H).

C ←$ Enc(PK,M):

x←$ Lρ with witness w.

d := Pub(pkρ, x, w) +M ∈ Π.

τ := H(x, d) ∈ T̃ .

π := P̂ub(p̂kρ, x, w)︸ ︷︷ ︸
π̂

+ P̃ub(p̃kρ, x, w, τ)︸ ︷︷ ︸
π̃

∈ Π̂.

⇒ C := (x, d, π).

(PK,SK)←$ Gen(PP):

sk ←$ SK. pkρ := αρ(sk).

ŝk ←$ ŜK. p̂kρ := α̂ρ(ŝk).

s̃k ←$ S̃K. p̃kρ := α̃ρ(s̃k).

⇒ PK := (pkρ, p̂kρ, p̃kρ),

SK := (sk, ŝk, s̃k).

M/⊥ ← Dec(SK, C):

Parse C = (x, d, π′).

M := d− Priv(sk, x) ∈ Π.

τ := H(x, d) ∈ T̃ .

π := P̂riv(ŝk, x)︸ ︷︷ ︸
π̂

+ P̃riv(s̃k, x, τ)︸ ︷︷ ︸
π̃

∈ Π̂.

⇒ If π′ = π, Return M ;

Else, Return ⊥.

Fig. 15. A more efficient construction of PKE from QAHPS, Q̂AHPS and tag-based Q̃AHPS when Π̂ = Π̃.

45

E Figures for Proof of Theorem 1

G0 –G6, G1 –G6 , G2 –G6 ,
�� ��G3 –G6 , G4 –G6 , G5 –G6 , G6

Initialize:

pp←$ Setup(1λ).

p̂p←$ Ŝetup(1λ).

p̃p←$ S̃etup(1λ).

(ρ, td)←$ L .�� ��(ρ0, td0)←$ L0.

H←$ H.

PP := (pp, p̂p, p̃p, ρ,H).

sk, sk′ ←$ SK.

ŝk ←$ ŜK.

s̃k ←$ S̃K.

pkρ := αρ(sk).

p̂kρ := α̂ρ(ŝk).

p̃kρ := α̃ρ(s̃k).

PK := (pkρ, p̂kρ, p̃kρ).

SK := (sk, ŝk, s̃k).

β ←$ {0, 1}.
// challenge bit

l := 0.

// bit length of leakage

chal := false.

⇒ (PP,PK).

Leak(L):

If (chal = true) ∨ (l + |L(SK)| > κ),

Return ⊥.

l := l + |L(SK)|.
Return L(SK).

Enc(M0,M1):

chal := true.

If |M0| 6= |M1|, Return ⊥.

x∗ ←$ Lρ with witness w∗.�� ��x∗ ←$ Lρ0 .

d∗ := Pub(pkρ, x
∗, w∗) +Mβ ∈ Π.

d∗ := Priv(sk, x∗) +Mβ ∈ Π.

d∗ := Priv(sk′, x∗) +Mβ ∈ Π.

d∗ ←$ Π.

τ∗ := H(x∗, d∗) ∈ T̃ .

π̂∗ := P̂ub(p̂kρ, x
∗, w∗) ∈ Π̂.

π̃∗ := P̃ub(p̃kρ, x
∗, w∗, τ∗) ∈ Π̃.

π̂∗ := P̂riv(ŝk, x∗) ∈ Π̂.

π̃∗ := P̃riv(s̃k, x∗, τ∗) ∈ Π̃.

QENC := QENC ∪ {C∗ = (x∗, d∗, π̂∗, π̃∗)}.
QTAG := QTAG ∪ {τ∗ }.

⇒ C∗ := (x∗, d∗, π̂∗, π̃∗).

Dec
(
C = (x, d, π̂′, π̃′)

)
:

M := d− Priv(sk, x) ∈ Π.

τ := H(x, d) ∈ T̃ .

π̂ := P̂riv(ŝk, x) ∈ Π̂.

π̃ := P̃riv(s̃k, x, τ) ∈ Π̃.

If C /∈ QENC ∧ π̂′ = π̂ ∧ π̃′ = π̃

∧ τ /∈ QTAG
∧ x ∈ Lρ ,

Return M .

Else,

Return ⊥.

Finalize(β′):

⇒ (β′ = β).

Fig. 16. Games G0 –G6 for the κ-LR-CCA security proof of PKE.

46

H0, H1 , H2 , H3, H3.i,
�� ��H3.dlogQee = H4

Initialize:

ctr ← 0.

pp←$ Setup(1λ).

p̂p←$ Ŝetup(1λ).

p̃p←$ S̃etup(1λ).

(ρ, td)←$ L .

(ρ0, td0)←$ L0.

H←$ H.

PP := (pp, p̂p, p̃p, ρ,H).

sk ←$ SK.

ŝk, ŝk′ ←$ ŜK.

s̃k, s̃k′ ←$ S̃K.

pkρ := αρ(sk).

p̂kρ := α̂ρ(ŝk).

p̃kρ := α̃ρ(s̃k).

PK := (pkρ, p̂kρ, p̃kρ).

SK := (sk, ŝk, s̃k).

β ←$ {0, 1}.

l := 0.

chal := false.

⇒ (PP,PK).

Leak(L):

If (chal = true) ∨ (l + |L(SK)| > κ),

Return ⊥.

l := l + |L(SK)|.

Return L(SK).

Enc(M0,M1):

chal := true.

If |M0| 6= |M1|, Return ⊥.

ctr ← ctr + 1.

x∗ ←$ Lρ0 .

d∗ := Priv(sk, x∗) +Mβ ∈ Π.

τ∗ := H(x∗, d∗) ∈ T̃ .

π̂∗ := P̂riv(ŝk, x∗) ∈ Π̂.

π̂∗ := P̂riv(ŝk′, x∗) ∈ Π̂.

π̃∗ := P̃riv(s̃k, x∗, τ∗) ∈ Π̃.

π̃∗ := P̃riv(s̃k′, x∗, τ∗) ∈ Π̃.

π̃∗ := P̃riv
(
RFi(ctr|i), x

∗, τ∗
)
.�� ��π̃∗ := P̃riv

(
RFdlogQee(ctr), x

∗, τ∗
)
.

QENC := QENC ∪ {C∗ = (x∗, d∗, π̂∗, π̃∗)}.

QTAG := QTAG ∪ {τ∗ }.

⇒ C∗ := (x∗, d∗, π̂∗, π̃∗).

Dec
(
C = (x, d, π̂′, π̃′)

)
:

τ := H(x, d) ∈ T̃ .

If C /∈ QENC ∧ τ /∈ QTAG,

M := d− Priv(sk, x) ∈ Π.

If x ∈ Lρ,

π̂ := P̂riv(ŝk, x) ∈ Π̂.

π̃ := P̃riv(s̃k, x, τ) ∈ Π̃.

If π̂′ = π̂ ∧ π̃′ = π̃,

Return M .

Else If x ∈ Lρ0 ,

π̂ := P̂riv(ŝk, x) ∈ Π̂.

π̂ := P̂riv(ŝk′, x) ∈ Π̂.

π̃ := P̃riv(s̃k, x, τ) ∈ Π̃.

π̃ := P̃riv(s̃k′, x, τ) ∈ Π̃.

S :=
{
π̃ := P̃riv

(
RFi(ctr|i), x, τ

) ∣∣ ctr ∈ [Qe]
}

.�� ��S :=
{
π̃ := P̃riv

(
RFdlogQee(ctr), x, τ

) ∣∣ ctr ∈ [Qe]
}

.

If π̂′ = π̂ ∧ π̃′ = π̃,

If π̂′ = π̂ ∧ π̃′ ∈ S,

Bad := true & Return ⊥.

Return ⊥.

Finalize(β′):

⇒ Bad.

Fig. 17. Hybrids H0 –H4 for the κ-LR-CCA security proof of PKE.

47

H3.i, H3.i.1, H3.i.2, H3.i.3,
�� ��H3.i.4, H3.i.5, H3.i.6

Initialize:

ctr ←$ 0.

pp←$ Setup(1λ).

p̂p←$ Ŝetup(1λ).

p̃p←$ S̃etup(1λ).

(ρ, td)←$ L .

(ρ0, td0)←$ L0.

(ρ1, td1)←$ L1.

H←$ H.

PP := (pp, p̂p, p̃p, ρ,H).

sk ←$ SK.

ŝk, ŝk′ ←$ ŜK.

s̃k ←$ S̃K.

pkρ := αρ(sk).

p̂kρ := α̂ρ(ŝk).

p̃kρ := α̃ρ(s̃k).

PK := (pkρ, p̂kρ, p̃kρ).

SK := (sk, ŝk, s̃k).

β ←$ {0, 1}.

l := 0.

chal := false.

⇒ (PP,PK).

Leak(L):

If (chal = true) ∨ (l + |L(SK)| > κ),

Return ⊥.

l := l + |L(SK)|.

Return L(SK).

Enc(M0,M1):

chal := true.

If |M0| 6= |M1|, Return ⊥.

ctr ←$ ctr + 1.

x∗ ←$ Lρ0 .

x∗ ←$ Lρctri+1
.

d∗ := Priv(sk, x∗) +Mβ ∈ Π.

τ∗ := H(x∗, d∗) ∈ T̃ .

π̂∗ := P̂riv(ŝk′, x∗) ∈ Π̂.

π̃∗ := P̃riv
(
RFi(ctr|i), x

∗, τ∗
)
.

π̃∗ := P̃riv
(
RFi+1(ctr|i+1), x∗, τ∗

)
.

QENC := QENC ∪ {C∗ = (x∗, d∗, π̂∗, π̃∗)}.

QTAG := QTAG ∪ {τ∗ }.

⇒ C∗ := (x∗, d∗, π̂∗, π̃∗).

Dec
(
C = (x, d, π̂′, π̃′)

)
:

τ := H(x, d) ∈ T̃ .

If C /∈ QENC ∧ τ /∈ QTAG,

M := d− Priv(sk, x) ∈ Π.

If x ∈ Lρ,

π̂ := P̂riv(ŝk, x) ∈ Π̂.

π̃ := P̃riv(s̃k, x, τ) ∈ Π̃.

If π̂′ = π̂ ∧ π̃′ = π̃,

Return M .

Else If x ∈ Lρ0 ∪ Lρ1 ,

π̂ := P̂riv(ŝk′, x) ∈ Π̂.

S :=
{
π̃ := P̃riv

(
RFi(ctr|i), x, τ

) ∣∣ ctr ∈ [Qe]
}

.

S :=
{
π̃ := P̃riv

(
RFi+1(ctr|i||dx), x, τ

) ∣∣ ctr ∈ [Qe]
}

.�� ��S :=
{
π̃ := P̃riv

(
RFi+1(ctr|i||b), x, τ

) ∣∣ ctr ∈ [Qe], b ∈ {0, 1}
}

.

S :=
{
π̃ := P̃riv

(
RFi+1(ctr|i+1), x, τ

) ∣∣ ctr ∈ [Qe]
}

.

If π̂′ = π̂ ∧ π̃′ ∈ S,

Bad := true & Return ⊥.

Return ⊥.

Finalize(β′):

⇒ Bad.

Fig. 18. Hybrids H3.i, H3.i.1 –H3.i.6 for the κ-LR-CCA security proof of PKE.

48

Table of Contents

Tight Leakage-Resilient CCA-Security from Quasi-Adaptive Hash Proof System 1
Shuai Han, Shengli Liu(�), Lin Lyu, and Dawu Gu

1 Introduction . 1
1.1 Technical Overview . 3
1.2 Relation to Existing Techniques for Tight Security . 6

2 Preliminaries . 7
2.1 Basic Tools . 7
2.2 Games . 9
2.3 Public-Key Encryption . 9
2.4 Pairing Groups . 10
2.5 Collision-Resistant Hashing . 11

3 Quasi-Adaptive HPS: Ardency and Leakage Resilience . 11
3.1 Language Distribution . 11
3.2 Quasi-Adaptive HPS . 12
3.3 Ardent QAHPS with Leakage Resilience . 13
3.4 Extension to the Tag-Based Setting . 15

4 LR-CCA-Secure PKE via LR-Ardent QAHPS . 16
4.1 The Generic Construction of PKE . 16
4.2 LR-CCA Security of PKE . 17

5 Instantiations over Asymmetric Pairing Groups . 27
5.1 The Language Distribution for Linear Subspaces . 27
5.2 The Instantiation of Language Distributions . 28
5.3 The Instantiation of LR-Weak-Ardent QAHPS . 28
5.4 The Instantiation of LR-Ardent QAHPS . 30
5.5 The Instantiation of LR-Weak-Ardent Tag-Based QAHPS . 32
5.6 Tightly LR-CCA-Secure PKE over Asymmetric Pairing Groups . 33

6 Instantiations over Symmetric Pairing Groups . 34
6.1 The Language Distribution for Linear Subspaces . 34
6.2 The Instantiation of Language Distributions . 35
6.3 The Instantiation of LR-Weak-Ardent QAHPS . 35
6.4 The Instantiation of LR-Ardent QAHPS . 36
6.5 The Instantiation of LR-Weak-Ardent Tag-Based QAHPS . 37
6.6 Tightly LR-CCA-Secure PKE over Symmetric Pairing Groups . 38

A Formal Definitions . 42
A.1 LR-CCA Security in the Multi-User Setting . 42
A.2 Hash Proof System . 42

B The Non-Triviality for Achieving Tight LR-CCA . 43
C Game-Based Definition for Leakage-Resilient Ardency of QAHPS . 44
D A More Efficient Variant of Generic PKE Construction . 45
E Figures for Proof of Theorem 1 . 46

	Tight Leakage-Resilient CCA-Security fromQuasi-Adaptive Hash Proof System
	Introduction
	Technical Overview
	Relation to Existing Techniques for Tight Security

	Preliminaries
	Basic Tools
	Games
	Public-Key Encryption
	Pairing Groups
	Collision-Resistant Hashing

	Quasi-Adaptive HPS: Ardency and Leakage Resilience
	Language Distribution
	Quasi-Adaptive HPS
	Ardent QAHPS with Leakage Resilience
	Extension to the Tag-Based Setting

	LR-CCA-Secure PKE via LR-Ardent QAHPS
	The Generic Construction of PKE
	LR-CCA Security of PKE

	Instantiations over Asymmetric Pairing Groups
	The Language Distribution for Linear Subspaces
	The Instantiation of Language Distributions
	The Instantiation of LR-Weak-Ardent QAHPS
	The Instantiation of LR-Ardent QAHPS
	The Instantiation of LR-Weak-Ardent Tag-Based QAHPS
	Tightly LR-CCA-Secure PKE over Asymmetric Pairing Groups

	Instantiations over Symmetric Pairing Groups
	The Language Distribution for Linear Subspaces
	The Instantiation of Language Distributions
	The Instantiation of LR-Weak-Ardent QAHPS
	The Instantiation of LR-Ardent QAHPS
	The Instantiation of LR-Weak-Ardent Tag-Based QAHPS
	Tightly LR-CCA-Secure PKE over Symmetric Pairing Groups

	Formal Definitions
	LR-CCA Security in the Multi-User Setting
	Hash Proof System

	The Non-Triviality for Achieving Tight LR-CCA
	Game-Based Definition for Leakage-Resilient Ardency of QAHPS
	A More Efficient Variant of Generic PKE Construction
	Figures for Proof of Theorem 1

