
Pixel: Multi-signatures for Consensus
Manu Drijvers

DFINITY

manu@dfinity.org

Sergey Gorbunov

Algorand and University of Waterloo

sergey@algorand.com

Gregory Neven

DFINITY

gregory@dfinity.org

Hoeteck Wee

Algorand and CNRS, ENS, PSL

hoeteck@algorand.com

ABSTRACT
Multi-signatures enable a group of signers to jointly generate a short

and efficiently verifiable signature on a common message. They are

commonly used in proof-of-stake and permissioned blockchains,

where reaching consensus usually involves a committee of nodes

signing the next block. Adaptive corruptions, however, pose a com-

mon threat to such designs, because the adversary can corrupt

committee members after they certified a block (and possibly after

they sold their stake) and use their signing keys to fork the chain by

certifying a different block, thereby undermining the main security

goal of a blockchain. Forward-secure signatures protect against

such attacks by letting signers evolve their keys over time, while

keeping the verification key constant. We present Pixel, a pairing-
based forward-secure multi-signature scheme optimized for use in

blockchains, that achieves substantial savings in bandwidth, stor-

age requirements, and verification effort. Pixel signatures consist
of two group elements, regardless of the number of signers, and

can be verified using three pairings and one exponentiation; they

also support non-interactive aggregation of individual signatures

into a multi-signature. We prove our scheme secure in the random-

oracle model under a suitable variant of the bilinear Diffie-Hellman

inversion problem.

1 INTRODUCTION
Blockchain technologies are quickly gaining popularity for pay-

ments, financial applications, and other distributed applications.

A blockchain is an append-only public ledger to which anyone

can write and read. At the core of the blockchains is a consensus

mechanism that allows nodes to agree on changes to the ledger,

while ensuring that changes once confirmed cannot be altered; we

refer to the latter as the safety requirement. The key question in

any blockchain design is: “How to choose and agree on the next

block?”

In the first generation of blockchain implementations, such as

Bitcoin, Ethereum, Litecoin, the nodes with the largest computa-

tional resources choose the next block. These implementations

suffer from large computational waste, high transaction costs, low

throughput, high latency, and centralization due to the formation of

mining pools [11, 19, 37]. To overcome these problems, the current

generation of blockchain implementations such as Algorand, Car-

dano, Ethereum Casper and Dfinity turn to proofs of stake (PoS),

where nodes with larger stakes in the system —as measured for

instance by the amount of money in their account— are more likely

to participate in choosing the next block [14, 17, 21, 24, 26, 29, 35].

At a high level, PoS-based blockchains share the following struc-

ture: (a) a committee of selected users runs a consensus sub-protocol

to agree on what block B to be added next, (b) each committee mem-

ber then signs that block B, and (c) each node then appends a block

B to their view of the ledger if it sees sufficiently many committee

member signatures on the block B. We refer to this collection of

committee signatures on the block B as the block certificate. The
way in which the committees are selected and the consensus sub-

protocol varies quite substantially amongst the various designs.

This work. In this work, we focus on the common cryptographic

core of all PoS-based blockchains, namely the signature scheme

used by the committee, and how we can simultaneously meet the

requirements for efficiency and security.

In terms of efficiency, amajor cost of PoS protocols are bandwidth

and space needed to propagate committee signatures and to store

the block certificate, as well as the computational resources needed

for signature verification of these certificates. The former can be

mitigated with the use multi-signatures [1, 4, 6, 23, 27, 31, 32, 36, 38],

where a single short signature validates that amessagemwas signed

by N different parties. Multi-signatures based on the BLS signature

scheme [6, 9, 10, 39] are particularly well-suited to the distributed

setting of PoS blockchains as no communication is required between

the signers; anybody can aggregate individual signatures into a

multi-signature.

In terms of security, we require that the signatures be forward-
secure. That is, each signature is associated with the current time

period in addition to the signed message, and after each time in-

terval, a user’s secret key can be updated in such a way that it can

only be used to sign messages for future time periods, but not pre-

vious ones. The use of forward-secure signatures prevents adaptive
attacks on a PoS-based blockchain, where an adversary waits until

the agreement on a block B is reached for a round r , and then at

some time in the future, it corrupts all the committee members that

signed the block to obtain their signing keys.
1
Using the keys, the

adversary can produce a valid certificate for a different block B′ for
the same round r . Note that this attack is prevented if committee

members use a forward-secure signature scheme and update their

keys as soon as they sign a block B.

1
In a typical PoS protocol, a committee is a tiny fraction of the total number of users

in the system so that an adaptive adversary can corrupt an entire committee while

controlling only a tiny fraction of the total stake. Also, the stakes of the committee

members may decrease significantly over time.

scheme key update sign verify |σ | |pk | |sk | forward security

BLS multi-signatures [6, 9, 39] – 1 exp 2 pair 1 1 O(1) no

Pixel multi-signatures (this work) 2 exp 4 exp 3 pair + 1 exp 2 1 O((logT)2) yes

Figure 1: Comparing our scheme with BLS signatures. Here, “exp” and “pair” refer to number of exponentiations and pairings
respectively. T denotes the maximum number of time periods. We omit additive overheads of O(logT) multiplications. The
column “key update” refers to amortized cost of updating the key for time t to t + 1. The columns |σ |, |pk |, and |sk | denote
the sizes of signatures, public keys, and secret keys, respectively, in terms of group elements. Aggregate verification for N
signatures requires an additional N − 1 multiplications over basic verification.

1.1 Our Results
We present the Pixel signature scheme, which is a pairing-based

forward-secure multi-signature scheme for use in PoS-based block-

chains that achieves substantial savings in bandwidth and storage

requirements. To support a total of T time periods and a com-

mittee of size N , the block certificate comprises just two group

elements (in addition to the identities of the committee members),

whereas verifying each committee member’s signature as well as

the block certificate requires only three pairings plus one expo-

nentiation. Pixel signatures are almost as efficient as BLS multi-

signatures, as depicted in Figure 1, while also preventing adaptive

attacks; moreover, like in BLS multi-signatures, anybody can non-

interactively, aggregate individual signatures into a multi-signature.

In contrast, using existing forward-secure signature yields much

larger block certificate of size O(N) to O(N logT) group elements

[3, 12, 28, 30, 33]; this is the case even if we were to instantiate the

tree-based constructions with aggregatable BLS signatures.

Our construction builds on prior forward-secure signatures based

on hierarchical identity-based encryption (HIBE) [7, 12, 15, 18] and

adds the ability to securely aggregate signatures on the same mes-

sage. We achieve security under a standard q-type assumption in

the random oracle model.

Overview of our scheme. Starting with a bilinear group (G1,G2,

Gt) with e : G1 ×G2 → Gt of prime order q and generators д1,д2

for G1,G2 respectively, a signature on M ∈ Zq at time t under
public key дx

2
is of the form:

σ = (σ ′,σ ′′) = (hx · F (t,M)r ,дr
2
) ∈ G1 ×G2

where the function F (t,M) can be computed with some public

parameters (two group elements in G1 in addition to h ∈ G1) and

r is fresh randomness used for signing. Verification relies on the

relation:

e(σ ′,д2) = e(h,y) · e(F (t,M),σ ′′)

and completeness follows directly:

e(σ ′,д2) = e(hx · F (t,M)r ,д2)

= e(hx ,д2) · e(F (t,M)
r ,д2)

= e(h,дx
2
) · e(F (t,M),дr

2
)

= e(h,y) · e(F (t,M),σ ′′) .

Note that e(h,y) can be precomputed to save verification computa-

tion.

Given N signatures σ1, . . . ,σN ∈ G1 ×G2 on the same message

M at time t under N public keys дx1

2
, . . . ,дxN

2
, we can produce a

multi-signature Σ onM by computing the coordinate-wise product

of σ1, . . . ,σN . Concretely, if σi = (h
xi · F (t,M)ri ,дri

2
), then

Σ = (hx1+· · ·+xN · F (t,M)r
′

,дr
′

2
)

where r ′ = r1 + · · · + rN . To verify Σ, we first compute a single

aggregate public key that is a compressed version of allN individual

public keys

apk ← y1 · . . . · yN ,

and verify Σ against apk using the standard verification equation.

How to generate and update keys. To complete this overview, we

describe a simplified version of the secret keys and update mecha-

nism, where the secret keys are of size O(T) instead of O((logT)2).
The construction exploits the fact that the function F satisfies

F (t,M) = F (t, 0) · F ′M

for some constant F ′. This means that in order to sign messages at

time t , it suffices to know

s̃kt = {hx · F (t, 0)r , F ′r ,дr2 }

from which we can compute (hx · F (t,M)r ,дr
2
).

The secret key skt for time t is given by:

s̃kt , s̃kt+1, · · · , s̃kT

generated using independent randomness. To update from the key

skt to skt+1, we simply erase s̃kt . Forward security follows from

the fact that an adversary who corrupts a signer at time t only

learns skt and, in particular, does not learn s̃kt ′ for t ′ < t , and is

unable to create signatures for past time slots.

To compress the secret keys down toO((logT)2)without increas-
ing the signature size, we combine the tree-based approach in [15]

with the compact HIBE in [7]. Roughly speaking, each skt now

contains logT sub-keys, each of which contains O(logT) group

elements and looks like an “expanded” version of s̃kt . (In the sim-

plified scheme, each skt contains T − t + 1 sub-keys, each of which

contains three group elements.)

Security against rogue-key attacks. A well-known challenge in

constructing secure multi-signature schemes is to avoid rogue-key

attacks, where an adversary forges a multi-signature by providing

specially crafted public keys that are correlated with the public

keys of the honest parties. We achieve security against rogue-key

attacks by having users provide a proof of possession of their secret

key [6, 39]; it suffices here for each user to provide a standard BLS

signature y′ on its public key y.

2

Committee members
sign blocks using Pixel
then update keys

Relay nodes
verify & aggregate

Blockchain

Figure 2: Using Pixel in PoS-based blockchains

1.2 Pixel in PoS-based Blockchains
Next, we describe how to integrate Pixel during consensus in a

PoS-based blockchain. The consensus sub-protocol begins by se-

lecting a committee members, each of whom votes on a block B
by signing the block B using Pixel with the current block number,

and consensus is reached when we see a collection of N committee

member signatures σ1, . . . ,σN on the same block B, where N is

some fixed threshold, typically in the range of 1000 to 5000. Note

that to tolerate malicious committee members, we will need to

start with a committee of size much larger than N . Finally, we will

aggregate these N signatures into a single multi-signature Σ, and
the pair (B, Σ) constitute a so-called block certificate and the block

B is appended to the blockchain.

1. block B3 is proposed as the third block.

B3

2. committee member i signs B3 using ski
3
to produce σi

sk1

3
sk2

3
sk3

3

3. (σ1, σ2, σ3) are aggregated into a multi-signature Σ3.

4. B3 is appended to the blockchain with certificate Σ3

B1 B2 B3

Figure 3: Using Pixel to sign the third block

Propagating signatures. Individual committee signatures will be

propagated through the network via so-called relay nodes, until

we see N committee member signatures on the same block B. Note
that Pixel supports non-interactive and incremental aggregation:

the former means that signatures can be aggregated by any party

after broadcast without communicating with the original signers,

and the latter means that we can incorporate a new signature to

an aggregate signature to obtain a new aggregate signature. In

practice, this means that relay nodes can perform intermediate

aggregation on any number of committee signatures and propagate

the result, until the block certificate is formed. In order to speed

up verification of individual committee member signatures, a relay

node could pre-compute e(h,y) for the y’s corresponding to the

users with the highest stakes.

Registering public keys. In order to be eligible for selection as

a committee member, a user needs to first register a public key y
for Pixel along with the corresponding y′ for the proof of posses-
sion. Registration here means that y must appear in a block B on

the blockchain. The committee member that signs the block B is

responsible for verifying the proof of possession y′ and we stress

that only y and not y′ appears in the block B, and therefore only y
but not y′ will stored on the blockchain.

Tweaking the scheme. The blockchain stores Pixel public keys
of all eligible committee members, as well as multi-signatures on

each block. It is easy to see that we can tweak the Pixel scheme so

that public keys live in the group G1 (which has a more compact

description) instead of G2; this way, we can minimize the size of

the blockchain as well as the cost of aggregate verification, which is

dominated by the cost of multiplyingN public keys for largeN . This

change does come at a small cost since signing is performed over

the slower G2 instead of G1. When instantiated with the BLS12-

381 pairing-friendly curve, each public key is 48 bytes, and each

multi-signature is 48+96=144 bytes independent ofN . Moreover, we

estimate signing to take less than 3 ms, and signature verification

less than 5 ms for T = 2
30
. More details are provided in Section 5.

Key updates. When using Pixel in block-chains, time corresponds

to the block number. Naively, this means that all eligible committee

members should update their Pixel secret keys for each time a new

block is formed and the round number is updated. As it turns out,

we can in fact support less frequent updates while still guaranteeing

security. Assume for simplicity that each committee member signs

at most one block (if not, simply append a counter to the block

number and use that as the time). If a user is selected to be on the

committee at block number t , it should first update its key to skt
(Pixel supports “fast-forward” key updates from skt to skt ′ for any
t ′ > t), and as soon as it signs a block, updates its key to skt+1 and

then propagates the signature. In particular, there is no need for

key updates when a user is not selected to be on the committee,

which yields significant savings in computation for users with small

stakes. With the infrequent updates, it is possible that an adversary

corrupts a user at block number 999 and obtains her Pixel secret key
for block number 997, but the adversary is still unable to rewrite

block 997 if the user was last selected to be on the committee for

block number 996.

Avoiding trusted set-up. Note that the common parameters con-

tain uniformly random group elementsh,h0, . . . ,hlogT inG2 which

are used to define the function F . These elements can be generated

using a indifferentiable hash-to-curve algorithm [13, 40] evaluated

on some fixed sequence of inputs (e.g. determined by the digits of

pi), thereby avoiding any trusted set-up.

3

1.3 Discussion
Related works. The use of HIBE schemes for forward secrecy

originates in the context of encryption [15] and has been used in

signatures [12, 18], key exchange [25] and proxy re-encryption

[22]. Our signature scheme is quite similar to the forward-secure

signatures of Boyen et al. [12] and achieves the same asymptotic

complexity; their construction is more complex in order to achieve

security against untrusted updates. Thewaywe achieve aggregation

is similar to the multi-signatures in [31].

Alternative approaches to adaptive security. There are two vari-

ants of the adaptive attack: (i) a short-range variant, where an

adversary tries to corrupt a committee member prior to comple-

tion of the consensus sub-protocol, and (ii) a long-range variant

as explained earlier. Dfinity [26], Ouroboros [29] and Casper [14]

cope with the short-range attacks by assuming a delay in attacks

that is longer than the running time of the consensus sub-protocol.

For long-range attacks, Casper adopts a fork choice rule to never

revert a finalized block, and in addition, assumes that clients log on

with sufficient regularity to gain a complete update-to-date view of

the chain. We note that forward-secure signatures provide a clean

solution against both attacks, without the need for fork choice rules

or additional assumptions about the adversary and the clients.

Application to permissioned blockchains. Consensus protocols,
such as PBFT, are also at the core of many permissioned blockchains

(e.g. Hyperledger), where only approved parties may join the net-

work. Our signature scheme can similarly be applied to this setting

to achieve forward secrecy, reduce communication bandwidth, and

produce compact block certificates.

2 PRELIMINARIES
Let G1,G2,Gt be multiplicative groups of prime order q with an

admissible pairing function e : G1 × G2 → Gt. Let д1 and д2 be

generators of G1 and G2, respectively.

In analogy with the weak bilinear Diffie-Hellman inversion prob-

lem ℓ-wBDHI
∗
[8], whichwas originally defined for Type-1 pairings

(i.e., symmetric pairings where we have G1 = G2), we define the

following variant for Type-3 pairings denoted ℓ-wBDHI
∗
3
.

Input: A1 = д
α
1
, A2 = д

(α 2)

1
, . . . , Aℓ = д

(α ℓ)

1
,

B1 = д
α
2
, B2 = д

(α 2)

2
, . . . , Bℓ = д

(α ℓ)

2
,

C1 = д
γ
1
, C2 = д

γ
2

for α,γ ←$ Zq

Compute: e(д1,д2)
(γ ·α ℓ+1)

The advantage Adv
ℓ-wBDHI

∗
3

G1×G2

(𝒜) of an adversary𝒜 is defined as its

probability in solving this problem.

Alternatively, our scheme could be proved secure under a vari-

ant of the above assumption where the adversary has to output

д
(α ℓ+1)

1
given as inputA1, . . . ,Aℓ,B1, . . . ,Bℓ and given access to an

oracle ψ : дx
2
7→ дx

1
. Because of the ψ oracle, this assumption is

incomparable to the ℓ-wBDHI assumption described above.

3 FORWARD-SECURE SIGNATURES
We begin by describing a forward-secure signature scheme, and

then extend the construction to a multi-signature scheme in Sec-

tion 4.

3.1 Definition
We use the Bellare-Miner model [3] to define syntax and security

of a forward-secure signature scheme. A forward-secure signature

scheme ℱ𝒮 for a message space ℳ consists of the following algo-

rithms:

Setup: pp←$ Setup(T). All parties agree on the public parameters

pp. The setup algorithm mainly fixes the distribution of the

parameters given the maximum number of time periodsT . The
parameters may be generated by a trusted third party, through a

distributed protocol, or set to “nothing-up-my-sleeve” numbers.

The public parameters are taken to be an implicit input to all

of the following algorithms.

Key generation: (pk, sk1) ←
$ Kg. The signer runs the key genera-

tion algorithm on input the maximum number of time periods

T to generate a public verification key pk and an initial secret

signing key sk1 for the first time period.

Key update: skt+1 ←
$ Upd(skt). The signer updates its secret key

skt for time period t to skt+1 for the next period using the key

update algorithm. The scheme could also offer a “fast-forward”

update algorithm skt ′ ←$ Upd′(skt , t ′) for any t ′ > t that is
more efficient than repetitively applying Upd.

Signing: σ ←$ Sign(skt ,M). On input the current signing key skt
andmessageM ∈ℳ, the signer uses this algorithm to compute

a signature σ .
Verification. b ← Vf(pk, t,M,σ). Anyone can verify a signature

σ for on messageM for time period t under public key pk by

running the verification algorithm, which returns 1 to indicate

that the signature is valid and 0 otherwise.

Correctness. Correctness requires that for all messagesM ∈ℳ and

for all time periods t ∈ [T] it holds that

Pr[Vf(pk, t,M, Sign(skt ,M)) = 1] = 1

where the coin tosses are over pp←$ Setup(T), (pk, sk1) ←
$ Kg, and

ski ← Upd(ski−1) for i = 2, . . . , t .
Moreover, if the scheme has a fast-forward update algorithm,

then the keys it produces must be distributed identically to those

produced by repetitive application of the regular update algorithm.

Meaning, for all t, t ′ ∈ [T] with t < t ′ ≤ T and for all skt it

holds that sk′t ′ ←
$ Upd′(skt , t ′) follows the same distribution as skt

produced as ski ←$ Upd(ski−1) for i = t + 1, . . . , t ′.

Security. Unforgeability under chosen-message attack for forward-

secure signatures is defined through the following game. The ex-

periment generates a fresh key pair (pk, sk1) and hands the public

key pk to the adversary 𝒜. The adversary is given access to the

following oracles:

Key update. If the current time period t (initially set to t = 1) is

less than T , then this oracle updates the key skt to skt+1 and

increases t .

4

t = 1, t = ε

t = 2, t = 1

t = 3, t = 11 t = 4, t = 12

t = 5, t = 2

t = 6, t = 21 t = 7, t = 22

Figure 4: Tree structure illustrating bijection between t ∈

[2ℓ] and t ∈ {1, 2}≤ℓ−1 for ℓ = 3.

Signing. On input a messageM , this oracle runs the signing oracle

with the current secret key skt and message M , and returns

the resulting signature σ .
Break in. The experiment records the break-in time t̄ ← t and

hands the current signing key skt̄ to the adversary. This oracle
can only be queried once, and after it has been queried, the

adversary can make no further queries to the key update or

signing oracles.

At the end of the game, the adversary outputs its forgery (t∗,M∗,σ ∗).
It wins the game if σ ∗ verifies correctly under pk for time period t∗

and messageM∗, if it never queried the signing oracle onM∗ during
time period t∗, and if it queried the break-in oracle, then it did so

in a time period t̄ > t∗. We define 𝒜’s advantage Advfu-cma

ℱ𝒮 (𝒜) as
its probability in winning the above game.

We also define a selective variant of the above notion, referred

to as sfu-cma, where the adversary first has to commit to t̄ , t∗, and
M∗. More specifically, 𝒜 first outputs (t̄, t∗,M∗), then receives the

public key pk, is allowed to make signature and key update queries

until time period t = t̄ is reached, at which point it is given skt̄ and
outputs its forgery σ ∗.

3.2 Encoding time periods
We describe a bijection between t = t1∥t2∥ . . . ∈ {1, 2}

≤ℓ−1
and

t ∈ [2ℓ − 1] for any integer ℓ given by

t(t) = 1 +

|t |∑
i=1

(1 + 2
ℓ−i (ti − 1)) .

For instance, for ℓ = 3, thismaps ε, 1, 11, 12, 2, 21, 22 to 1, 2, 3, 4, 5, 6, 7.

The inverse of the bijection can be described as

t(1) = ε

t(t) = t(t − 1)∥1 if |t(t − 1)| < ℓ − 1

t(t) = t̄∥2 if |t(t − 1)| = ℓ − 1

where t̄ is the longest string such that t̄∥1 is a prefix of t(t − 1).

The bijection induces a natural precedence relation over {1, 2}≤ℓ−1

where t ⪯ t′ iff either t is a prefix of t′ or exists t̄ s.t. t̄∥1 is a prefix

of t and t̄∥2 is a prefix of t′. We also write t, t + 1 corresponding to

t, t + 1.

When interpreting t ∈ {1, 2}≤ℓ−1
as a path to a node in a binary

tree, where 1 denotes taking the left branch and 2 denotes taking

the right branch, then this precedence relation corresponds to a

pre-order traversal of the tree. An example of such a tree is depicted

in Figure 4.

Next, we associate any t ∈ {1, 2}≤ℓ−1
with a set Γt ⊂ {1, 2}

≤ℓ−1

given by

Γt :=
{
t
}
∪

{
t̄∥2 : t̄∥1 prefix of t

}
that corresponds to the set containing t and all the right-hand

siblings of nodes on the path from t to the root, which also happens

to be the smallest set of nodes that includes a prefix of all t′ ⪰ t.
For instance, for ℓ = 3, we have

Γ1 = {1, 2}, Γ11 = {11, 12, 2}, Γ12 = {12, 2} .

The sets Γt satisfy the following properties:

• t′ ⪰ t iff there exists u ∈ Γt s.t. u is a prefix of t′;
• For all t, we have Γt+1 = Γt \ {t} if |t| = ℓ − 1 or Γt+1 =

(Γt \ {t}) ∪ { t∥1, t∥2 } otherwise;
• For all t′ ≻ t, we have that for all u′ ∈ Γt′ , there exists u ∈ Γt
such that u is a prefix of u′.

The first property is used for verification and for reasoning about

security; the second and third properties are used for key updates.

3.3 Construction
We assume the bound T is of the form 2

ℓ − 1. We use the above

bijection so that the algorithms take input t ∈ {1, 2}≤ℓ−1
instead

of t ∈ [T]. The following scheme is roughly the result of applying

the Canetti-Halevi-Katz technique to obtain forward security from

hierarchical identity-based encryption (HIBE) [16] to the signature

scheme determined by the key structure of the Boneh-Boyen-Goh

HIBE scheme [7]; we describe the differences at the end of this

subsection.

Setup. Let ℳ be the message space of the scheme and let Hq :

ℳ → {0, 1}κ be a hash function that maps messages to bit

strings of length κ such that 2
κ < q. Apart from the description

of the groups, the common system parameters also contain

the maximum number of time slots T = 2
ℓ − 1 and random

group elements h,h0, . . . ,hℓ ←
$ G1. These parameters could,

for example, be generated as the output of a hash function

modeled as a random oracle.

Key generation. Each signer chooses x ←$ Zq and computesy ←
дx

2
. It sets its public to pk = y and computes its initial secret

key sk1 ← {s̃kε } where

s̃kε =
(
дr

2
, hxhr

0
, hr

1
, . . . ,hrℓ

)
for r ←$ Zq .

Key update. We associate with each w ∈ {1, 2}k with k ≤ ℓ − 1 a

key s̃kw of the form

s̃kw = (c,d, ek+1
, . . . , eℓ)

=

(
дr

2
, hx (h0

k∏
j=1

h
w j
j)

r , hrk+1
, . . . , hrℓ

)
(1)

for r ←$ Zq . Given s̃kw, one can derive a key for any w′ ∈
{1, 2}k

′

which contains w as a prefix as

(c ′,d ′, e ′k ′+1
, . . . , e ′ℓ) =

(
c · дr

′

2
, d ·

k ′∏
j=k+1

e
w j
j · (h0

k ′∏
j=1

h
w j
j)

r ′ ,

ek ′+1
· hr

′

k ′+1
, . . . , eℓ · h

r ′
ℓ

)
(2)

5

for r ′ ←$ Zq .
The secret key skt at time period t is given by

skt = {s̃kw : w ∈ Γt} ,

which, by the first property of Γt, contains a key s̃kw for a prefix

w of all nodes t′ ⪰ t.
To perform a regular update of skt to skt+1, the signer users

the second property of Γt. Namely, if |t| < ℓ− 1, then the signer

looks up s̃kt = (c,d, e |t |+1
, . . . , eℓ) ∈ skt, computes

s̃kt∥1 ← (c,d · e |t |+1
, e |t |+2

, . . . , eℓ) ,

and derives s̃kt∥2 from s̃kt using Equation (2). The signer then

sets skt+1 ← (skt \ s̃kt) ∪ {s̃kt∥1, s̃kt∥2} and securely deletes

skt as well as the re-randomization exponent r ′ used in the

derivation of s̃kt∥2.
If |t| = ℓ − 1, then the signer simply sets skt+1 ← skt \ {s̃kt}
and securely deletes skt.
To perform a fast-forward update of its key to any time t′ ⪰ t,
the signer derives keys s̃kw′ for all nodes w′ ∈ Γt′ \ Γt by

applying Equation (2) to the key s̃kw ∈ skt such that w is a

prefix of w′, which must exist due to the third property of Γt.

The signer then sets skt′ ← {s̃kw′ : w′ ∈ Γt′} and securely

deletes skt as well as all re-randomization exponents used in

the key derivations.

Signing. To generate a signature on message M ∈ ℳ in time

period t ∈ {1, 2}≤ℓ−1
, the signer looks up

s̃kt = (c,d, e |t |+1
, . . . , eℓ) ∈ skt ,

chooses r ′ ←$ Zq , and outputs

(σ1,σ2) =

(
d · e

Hq (M)
ℓ

·
(
h0 ·

|t |∏
j=1

h
tj
j · h

Hq (M)
ℓ

)r ′
, c · дr

′

2

)
.

Verification. Anyone can verify a signature (σ1,σ2) ∈ G1 × G2

on message M under public key pk = y in time period t by
checking whether

e(σ1,д2) = e(h,y) · e
(
h0 ·

|t |∏
j=1

h
tj
j · h

Hq (M)
ℓ

, σ2

)
.

Note that the pairing e(h,y) can be pre-computed from the

public key ahead of time, so that verification only requires two

pairing computations.

Differences from prior works. We highlight the differences be-

tween our scheme and those in [7, 12, 15], assuming some familiar-

ity with these prior constructions.

• We rely on asymmetric bilinear groups for efficiency, and

our signature sits in G2 ×G1 instead of G2

2
. This way, it is

sufficient to give out the public parameters h0, . . . ,hℓ in G1

(which we can then instantiate using hash-to-curve without

trusted set-up) instead of having to generate “consistent”

public parameters (hi ,h
′
i) = (д

xi
1
,дxi

2
) ∈ G1 ×G2.

• Our key-generation algorithm also deviates from that in the

Boneh-Boyen-Goh HIBE, which would set

pk = e(д1,д2)
x ,h = д1, s̃kε =

(
дr

2
,дx

1
hr

0
,hr

1
, . . . ,hrℓ

)
.

3.4 Correctness
We say that a secret key skt for time period t is well-formed if

skt = {s̃kw : w ∈ Γt}, where each s̃kw is of the form of Equation (1)

for an independent uniformly distributed exponent r ←$ Zq . We

first show that all honestly generated and updated secret keys are

well-formed, and then proceed to the verification of signatures.

The key skt is trivially well-formed for t = 1, i.e., t = ε , as can
be seen from the key generation algorithm. We now show that skt
is also well-formed after a regular update from time t to t + 1 and

after a fast-forward update from t to t′ ≻ t.
In a regular update, assume that skt is well-formed. If |t| = ℓ − 1,

then the update procedure sets skt+1 ← skt \ {s̃kt}, which by the

second property of Γt and the induction hypothesis means that

skt+1 is also well-formed. If |t| < ℓ − 1, the update procedure

adds keys s̃kt∥1 and s̃kt∥2 and removes s̃kt from skt, which by the

second property of Γt indeed corresponds to {w : w ∈ Γt+1}. More-

over, s̃kt∥1 is derived from s̃kt = s̃kt∥1 ← (c,d, e |t |+1
, . . . , eℓ) as

s̃kt∥1 ← (c,d · e |t |+1
, e |t |+2

, . . . , eℓ), which satisfies Equation (1)

with randomness r that is independent from all other keys in skt+1

because s̃kt < skt+1. Similarly, s̃kt∥2 satisfies Equation (1) because

it is generated as

c ′ = c · дr
′

2
= дr+r

′

2

d ′ = d · ek+1
· (h0

k∏
j=1

h
tj
j · h

wk+1

k+1
)r
′

= hx (h0

k∏
j=1

h
tj
j · h

2

k+1
)r+r

′

e ′k+2
= ek+2

· hr
′

k+2
= hr+r

′

k+2

...

e ′ℓ = eℓ · h
r ′
ℓ = hr+r

′

ℓ

satisfying Equation (1) with randomness r+r ′, which is independent
of the randomness of other keys in skt+1 due to the uniform choice

of r ′.
For the fast-forward update procedure, one can see that if skt is

well-formed, then the updated key skt′ for t′ ≻ t is well-formed as

well. Indeed, by adding the keys for nodes in Γt′ \ Γt and removing

those for Γt \ Γt′ , we have that skt′ contains keys s̃kw for all w ∈ Γt′ .
The randomness independence is guaranteed by the random choice

of r ′ in Equation (2). In the optimized variant, all keys still have

independent randomness because one key s̃kw′ ∈ skt′ will have
the same randomness r as some key s̃kw ∈ skt where w is a prefix

of w′. That randomness is independent from all other keys in skt′ ,
however, because the key s̃kw does not occur in skt′ . Indeed, by the
definition of Γt′ , one can see that Γt′ cannot have elements w , w′

with w a prefix of w′.
To see why signature verification works, observe that a signature

for time period t and message M is computed from a key s̃kt =
(c,d, e |t |+1

, . . . , eℓ) in a well-formed key skt. The left-hand side of

6

the verification equation is therefore

e(σ1,д2) = e

(
d · e

Hq (M)
ℓ

·
(
h0 ·

|t |∏
j=1

h
tj
j · h

Hq (M)
ℓ

)r ′
, д2

)
= e

(
hx

(
h0 ·

|t |∏
j=1

h
tj
j · h

Hq (M)
ℓ

)r+r ′
, д2

)
= e(hx ,д2) · e

(
h0 ·

|t |∏
j=1

h
tj
j · h

Hq (M)
ℓ

, д2

)r+r ′
= e(h,y) · e

(
h0 ·

|t |∏
j=1

h
tj
j · h

Hq (M)
ℓ

, σ2

)
.

3.5 Security
Theorem 3.1. For any fu-cma adversary 𝒜 against the above

forward-secure signature scheme in the random-oracle model for
T = 2

ℓ−1 time periods, there exists an adversaryℬwith essentially the
same running time and advantage in solving the ℓ-wBDHI

∗
3
problem

Adv
ℓ-wBDHI

∗
3

G1×G2

(ℬ) ≥ 1

T · qH

· Advfu-cma

ℱ𝒮 (𝒜) −
q2

H

2
κ ,

where qH is the number of random-oracle queries made by 𝒜.

Proof. We prove the theorem in two steps. First, we show that

the scheme is selectively secure when the message space ℳ =

{0, 1}κ and Hq is the identity function, meaning, interpreting a

κ-bit string as an integer in Zq .
Step 1: sfu-cma. We show that the above scheme with message

space ℳ = {0, 1}κ and Hq the identity function is sfu-cma-secure

under the ℓ-wBDHI
∗
3
assumption by describing an algorithm ℬ that,

given a successful sfu-cma forger𝒜′, solves the ℓ-wBDHI
∗
3
problem.

On input (A1 = д
α
1
,A2 = д

(α 2)

1
, . . . ,Aℓ = д

(α ℓ)

1
,B1 = д

α
2
, . . . ,ℬℓ =

д
(α ℓ)

2
,C), algorithm ℬ proceeds as follows.

It first runs 𝒜 to obtain (t̄, t∗,M∗). That is, 𝒜 receives skt̄ and
produces a forgery on t∗,M∗. Let w∗ ∈ {0, 1, 2}ℓ−1

such that w∗ =
w∗

1
∥ . . . ∥w∗

ℓ−1
= t∗∥0ℓ−1−|t∗ |

. It then sets the public key and public

parameters as

y ← B1

h ← д
γ
1
· Aℓ

h0 ← д
γ0

1
·

ℓ−1∏
i=1

A
−w∗i
ℓ−i+1

· A−M
∗

1

hi ← д
γi
1
· Aℓ−i+1

for i = 1, . . . , ℓ ,

where γ ,γ0, . . . ,γℓ ←
$ Zq .

By setting the parameters as such, ℬ implicitly sets x = α and

hx = A
γ
1
· д
(α ℓ+1)

1
. The reduction allows us to achieve two goals:

• extract the value of hx from a forgery on t∗,M∗ (provided
by𝒜′), allowing ℬ to easily compute its ℓ-wBDHI

∗
3
solution

e(д1,C)
(α ℓ+1)

;

• simulate s̃kw′ for allw′ ∈ {0, 1, 2}≤ℓ−1
which are not a prefix

of w∗; this would be useful for simulating both the signing

and the break-in oracle.

Algorithm ℬ responds to 𝒜′’s oracle queries as follows.

Key update. There is no need for ℬ to simulate anything beyond

keeping track of the current time period t.
Signing. We first describe how to answer a signing query for a

message M in time period t , t∗, and then describe the case

that t = t∗ and M , M∗. Let w ∈ {0, 1, 2}ℓ−1
be such that

w = t∥0ℓ−1−|t |
.

Case 1: t , t∗. It is easy to see that

t , t∗ ⇒ w , w∗.

(This crucially uses the fact that t, t∗ ∈ {1, 2}∗.) Then, let w′ =
w1∥ · · · ∥wk denote the shortest prefix ofwwhich is not a prefix

ofw∗. Extending the notation of s̃kw′ tow′ ∈ {0, 1, 2}≤ℓ−1
, we

describe how ℬ can derive a valid key s̃kw′ , from which it is

straight-forward to derive both s̃kw and a signature for t,M .

Recall that s̃kw′ has the structure

(c,d, ek+1
, . . . , eℓ) =(

дr
2
, hx

(
h0

k∏
i=1

hwi
i

)r
, hrk+1

, . . . , hrℓ

)
for a uniformly distributed value of r . Focusing on the second

component d first, we have that

d = hx ·

(
h0 ·

k∏
i=1

hwi
i

)r
=

(
д
γ
1
Aℓ

)α
·

((
д
γ0

1

ℓ−1∏
i=1

A
−w∗i
ℓ−i+1

A−M
∗

1

)
·

k∏
i=1

(
д
γi
1
𝒜ℓ−i+1

)wi
)r

= A
γ
1
д
(α ℓ+1)

1
·

(
д
γ0+

∑k
i=1

γiwi
1

A
wk−w∗k
ℓ−k+1

·

ℓ−1∏
i=k+1

A
−w∗i
ℓ−i+1

A−M
∗

1

)r
,

where the third equality holds becausewi = w
∗
i for 1 ≤ i < k

and wk , w∗k . (Note that in the product notation

∏ℓ−1

i=k+1

above, we let the result of the product simply be the unity

element if k +1 > ℓ−1.) Let us denote the four factors between

parentheses in the last equation as F1, F2, F3, and F4, and denote

their product as F . If we let

r ← r ′ +
αk

w∗k −wk
mod q

for a random r ′ ←$ Zq , then we have that

d = A
γ
1
· д
(α ℓ+1)

1
· F r

′

· F
αk

w∗k −wk .

The first and third factors in this product are easy to compute.

The second factor would allow ℬ to compute the solution its

ℓ-wBDHI
∗
3
problem as e(д

(α ℓ+1)

1
,C), so ℬ cannot simply com-

pute it. The last factor F
αk

w∗k −wk can be written as the product

7

of

F

αk
w∗k −wk

1
= A

γ
0
+
∑k
i=1

γi wi
w∗k −wk

k

F

αk
w∗k −wk

2
= A−α

k

ℓ−k+1
= д

−(α ℓ+1)

1

F

αk
w∗k −wk

3
=

ℓ−1∏
i=k+1

A

−w∗i
w∗k −wk

ℓ+k−i+1
=

ℓ−k−2∏
i=0

A

−w∗k+2+i
w∗k −wk

ℓ−i

F

αk
w∗k −wk

4
= A

−M∗
w∗k −wk

k+1
.

Because 1 ≤ k ≤ ℓ−1, it is clear that all but the second of these

can be computed from ℬ’s inputs, and that the second cancels

out with the factor д
(α ℓ+1)

1
in d , so that it can indeed compute d

this way. The other components of the key are also efficiently

computable as

c = дr
′

2
· Bk

1

w∗k −wk

ei = hr
′

i · Aℓ+k−i+1
for i = k + 1, . . . , ℓ

= hr
′

k+i · Aℓ−i for i = 0, . . . , ℓ − k − 1 .

From this key (c,d, ek+1
, . . . , eℓ) for w′, ℬ can derive a key for

w and compute a signature as in the real signing algorithm.

Case 2: t = t∗,M , M∗. For a signing query with t = t∗ but
M , M∗, ℬ proceeds in a similar way, but derives the signature

(σ1,σ2) directly. Algorithm ℬ can generate a valid signature

using a similar approach as above, but using the fact thatM ,

M∗ instead of wk , w∗k . Namely, letting w = t∥0ℓ−1−|t |
, ℬ

computes a signature

σ1 = hx ·

(
h0 ·

ℓ−1∏
i=1

hwi
i · h

M
ℓ

)r
=

(
д
γ
1
Aℓ

)α
·

((
д
γ0

1
·

ℓ−1∏
i=1

A
−w∗i
ℓ−i+1

· A−M
∗

1

)
·

ℓ−1∏
i=1

(
д
γi
1
· Aℓ−i+1

)wi

· (д
γℓ
1
· A1)

M

)r
= A

γ
1
· д
(α ℓ+1)

1
·

(
д
γ0+

∑ℓ−1

i=1
γiwi+γℓM

1
· AM−M

∗

1

)r
σ2 = дr

2

by setting

r ← r ′ +
α ℓ

M∗ −M
mod q

for r ′ ←$ Zq , so that ℬ can compute (σ1,σ2) from its inputs

A1, . . . ,Aℓ,B1, . . . ,Bℓ similarly to the case that t , t∗.
Break in. Here, ℬ needs to simulate skt̄ where t

∗ ≺ t̄. This in turn

requires simulating s̃kw for all w ∈ Γ̄t. By the first property of

Γ̄t (described in Section 3.2), all of these w are not prefixes of

t∗ and also not prefixes of w∗, and we can therefore simulate

s̃kw exactly as before.

Forgery. When 𝒜′ outputs a forgery (σ ∗
1
,σ ∗

2
) that satisfies the

verification equation

e(σ ∗
1
,д2) = e(h,y) · e

(
h0 ·

|t∗ |∏
j=1

h
t ∗j
j · h

M∗
ℓ , σ ∗

2

)
,

then there exists an r ∈ Zq such that

σ ∗
1
= hα ·

(
h0 ·

|t∗ |∏
i=1

h
t ∗i
i · h

M∗
ℓ

)r
σ ∗

2
= дr

2
.

From the way that ℬ chose the parameters h,h0, . . . ,hℓ , one
can see that

σ ∗
1
= A

γ
1
· д
(α ℓ+1)

1
· (дr

1
)
γ0+

∑|t∗ |
i=1

γi t ∗i +γℓM
∗

Note that we do not know дr
1
, so we cannot directly extract

д
(α ℓ+1)

1
from σ ∗

1
. Instead, observe that we have

e(σ ∗
1
,C2) = e(A

γ
1
,C2) · e(д

(α ℓ+1)

1
,C2)

· e(C1,σ
∗
2
)γ0+

∑|t∗ |
i=1

γi t ∗i +γℓM
∗

,

from which ℬ can easily compute its output e(д
(α ℓ+1)

1
,C2) =

e(д1,д2)
(γ ·α ℓ+1)

. It does so whenever 𝒜′ is successful, so that

Adv
ℓ-wBDHI

∗
3

G1×G2

(ℬ) ≥ Advsfu-cma

ℱ𝒮 (𝒜′) .

Step 2: fu-cma. Full fu-cma security for ℳ = {0, 1}∗ and with Hq :

ℳ → {0, 1}κ modeled as a random oracle then follows because,

given an fu-cma adversary 𝒜 in the random-oracle model, one

can build a sfu-cma adversary 𝒜′ that guesses the time period t∗

and the index of 𝒜’s random-oracle query for Hq (M
∗), and sets

t̄ ← t∗+1. If𝒜′ correctly guesses t∗, then it can use skt̄ to simulate

𝒜’s signature, key update, and break-in queries after time t̄ until
𝒜’s choice of break-in time

¯t ′, at which point it can hand over skt̄ ′ .
If 𝒜′ moreover correctly guessed the index of Hq (M

∗), and if 𝒜
never made colliding queries Hq (M) = Hq (M

′) for M , M ′, then
𝒜’s forgery is also a valid forgery for 𝒜′. Note that for 𝒜 to be

successful, it must hold that
¯t ′ > t∗, so it must hold that

¯t ′ ≥ t̄ . The
advantage of 𝒜′ is given by

Advsfu-cma

ℱ𝒮 (𝒜′) ≥ 1

T · qH

· Advfu-cma

ℱ𝒮 (𝒜) −
q2

H

2
κ , (3)

where qH is an upper bound on 𝒜’s number of random-oracle

queries. Together with Equation (3), we obtain the inequality of the

theorem statement. □

4 FORWARD-SECURE MULTI-SIGNATURES
To obtain a multi-signature scheme, we observe that the component-

wise product (Σ1, Σ2) = (
∏n

i=1
σi ,1,

∏n
i=1

σi ,2) of a number of signa-

tures (σ1,1,σ1,2), . . . , (σn,1,σn,2) satisfies the verification equation

with respect of the product of public keys Y = y1 · . . . · yn . This
method of combining signatures is vulnerable to a rogue-key attack,

however, where a malicious signer chooses his public key based on

that of an honest signer, so that the malicious signer can compute

valid signatures for their aggregated public key. The scheme below

8

borrows a technique due to Ristenpart and Yilek [39] using proofs

of possession to prevent against these types of attack.

4.1 Definitions
In addition to the algorithms of a forward-secure signature scheme

in Section 3.1, a forward-secure multi-signature scheme ℱℳ𝒮 in

the key verification model has a key genreation that additionally

outputs a proof π for the public key:

Key generation: (pk, π , sk1) ←
$ Kg. The key generation algorithm

generates a public verification key pk, a proof π , and an initial

secret signing key sk1 for the first time period.

and additionally has the following algorithms:

Key verification: b ← KVf(pk, π). The key verification algorithm
returns 1 if the proof pk is valid for pk and returns 0 otherwise.

Key aggregation: apk ←$ KAgg(pk
1
, . . . , pkn). On input a list of

individual public keys (pk
1
, . . . , pkn), the key aggregation re-

turns an aggregate public key apk, or ⊥ to indicate that key

aggregation failed.

Signature aggregation. Σ←$ SAgg((pk
1
,σ1), . . . , (pkn,σn), t,M).

Anyone can aggregate a given list of individual signatures

(σ1, . . . ,σn) by different signerswith public keys (pk1
, . . . , pkn)

on the same messageM and for the same period t into a single

multi-signature Σ.
Aggregate verification. b ← AVf(apk, t,M, Σ). Given an aggre-

gate public key apk, a message M , a time period t , and an

aggregate signature Σ, the verification algorithm returns 1 to

indicate that all signers in apk signed M in period t , or 0 to

indicate that verification failed.

Correctness requires that KVf(pk, π) = 1 with probability one

if (pk, π , sk1) ←
$ Kg and that for all messages M ∈ ℳ, for all

n ∈ Z, and for all time periods t ∈ {0, . . . ,T − 1}, it holds that

AVf(apk, t,M, Σ) = 1 with probability one if (pki , πi , ski ,1) ←
$ Kg,

apk ←$ KAgg(pk
1
, . . . , pkn), ski , j ←

$ Upd(ski , j−1) for i = 1, . . . ,n
and j = 2, . . . , t , σi ←

$ Sign(ski ,t ,M) for i = 1, . . . ,n, and Σ ←$

SAgg((pk
1
,σ1), . . . , (pkn,σn), t,M).

Unforgeability (fu-cma) is defined through a game that is similar

to that described in Section 3.1. The adversary is given the public

key pk and proof π of an honest signer and access to the same key

update, signing, and break-in oracles. However, at the end of the

game, the adversary’s forgery consists of a list of public keys and

proofs (pk∗
1
, π∗

1
, . . . , pk∗n, π

∗
n), a messageM∗, a time period t∗, and

a multi-signature Σ∗. The forgery is considered valid if

• pk ∈ {pk∗
1
, . . . , pk∗n },

• the proofs π∗
1
, . . . , π∗n are valid for public keys pk∗

1
, . . . , pk∗n

according to KVf,
• Σ∗ is valid with respect to the aggregate public key apk∗ of
(pk∗

1
, . . . , pk∗n), messageM∗, and time period t∗,

• t̄ > t∗,
• and𝒜 never made a signing query forM∗ during time period

t∗.

4.2 Construction
Let HG1

: {0, 1}∗ → G∗
1
be a hash function. The multi-signature

scheme reuses the key update and signature algorithms from the

scheme from Section 3.3, but uses different key generation and

verification algorithms, and adds signature and key aggregation.

Key generation. Each signer chooses x ←$ Zq and computesy ←
дx

2
and y′ ← HG1

(PoP,y), where PoP is a fixed string used as

a prefix for domain separation. It sets its public key to pk = y,
the proof to π = y′, and computes its initial secret key as

sk1 ← hx .
Key verification. Given a public key pk = y with proof π = y′,

the key verification algorithm validates the proof of possession

by returning 1 if

e(y′,д2) = e(HG1
(PoP,y),y)

and returning 0 otherwise.

Key aggregation. Given public keys pk
1

= y1, . . . ,

pkn = yn , the key aggregation algorithm computes Y ←∏n
i=1

yi and returns the aggregate public key apk = Y .
Signature aggregation. Given signatures σ1 = (σ1,1,σ1,2), . . . ,

σn = (σn,1,σn,2) ∈ G1 × G2 on the same message M , the

signature aggregation algorithm outputs

Σ = (Σ1, Σ2) =
(n∏
i=1

σi ,1 ,
n∏
i=1

σi ,2
)
.

Aggregate verification. Aggregate signatures are verified with

respect to aggregate public keys in exactly the same way as

individual signatures with respect to individual public keys.

Namely, given an aggregate signature (Σ1, Σ2) ∈ G1 ×G2 on

messageM under aggregate public key apk = Y in time period

t, the verifier accepts if and only if apk , ⊥ and

e(Σ1,д2) = e(h,Y) · e
(
h0 ·

|t |∏
j=1

h
tj
j · h

Hq (M)
ℓ+1

, Σ2

)
.

4.3 Security
Theorem 4.1. For any fu-cma adversary 𝒜 against the above

forward-secure multi-signature scheme for T = 2
ℓ − 1 time periods

in the random-oracle model, there exists an adversary ℬ with essen-
tially the same running time that solves the ℓ-wBDHI

∗
3
problem with

advantage

Adv
ℓ-wBDHI

∗
3

G1×G2

(ℬ) ≥ 1

T · qH

· Advfu-cma

ℱℳ𝒮 (𝒜) −
q2

H

2
κ ,

where qH is the number of random-oracle queries made by 𝒜.

Proof. We prove the theorem by showing that a forger 𝒜 for

the multi-signature scheme yields a forger 𝒜′ for the single-signer
scheme of Section 3.3 such that

Advfu-cma

ℱ𝒮 (𝒜′) ≥ Advfu-cma

ℱ𝒮 (𝒜) .

The theorem then follows from Theorem 3.1.

The key idea following [39] is to program HG1
in such a way

that we can “extract” a valid forgery for the single-signer scheme

starting from that for the multi-signature scheme. In particular,

• given a rogue public key pk∗i = yi with proof π∗i = y
′
i where

yi = д
xi
2
, we can extract the corresponding secret key hxi

from y′i by programming HG1
(PoP,yi) = h

ri
.

9

• given hxi for all yi , y along with a valid forgery for the

multi-signature scheme, we can extract a forgery for the

single-signer scheme.

Step 1: simulating 𝒜’s view. On input the parameters (T ,h,h0, . . . ,

hℓ) and a public key y for the single-signer scheme, the single-

signer forger 𝒜′ chooses r ←$ Z∗q and stores (y,⊥,дr
1
) in a list L. It

computes y′ ← yr and runs 𝒜 on the same common parameters

and target public key pk = y and proof π = y′. Observe that π is

indeed a valid proof for pk since e(y′,д2) = e(HG1
(PoP,y),y).

Algorithm𝒜′ answers all of𝒜’s key update, signing, and break-

in oracle queries, as well as random-oracle queries for Hq , by sim-

ply relaying queries and responses to and from 𝒜′’s own oracles.

Queries to the random oracle for HG1
are answered as follows.

Random oracle HG1
. On input (PoP, z),𝒜′ checks whether there

already exists a tuple (z, ·,v) ∈ L. If so, it returns v . If not, it
chooses r ←$ Z∗q , computes v ← hr , adds a tuple (z, r ,v) to L
and returns v .y

Step 2: extracting a forgery. When 𝒜 outputs its forgery

(pk∗
1
, π∗

1
, . . . , pk∗n, π

∗
n),M

∗, t∗, Σ∗,

algorithm 𝒜′ first verifies the proofs π∗
1
, . . . , π∗n for public keys

pk∗
1
, . . . , pk∗n and computes the aggregate public key apk∗, creating

additional entries in L if necessary. Let pk∗i = yi = д
xi
2

and π∗i = y
′
i .

Looking ahead, if pk∗i passes key verification, then we have y′i =
(hxi)ri and since we know ri , we will be able to “extract” hxi ∈ G1.

If all keys are valid, then it holds that y′i = HG1
(PoP,yi)

xi
for all

i = 1, . . . ,n. Let apk∗ = Y be the aggregate public key. From the

aggregate verification equation

e(Σ∗
1
,д2) = e(h,Y) · e

(
h0 ·

|t∗ |∏
j=1

h
t ∗j
j · h

Hq (M∗)
ℓ

, Σ∗
2

)
and the fact that Y =

∏n
i=1

yi = y · д

∑n
i=1,yi ,y

xi
2

, we have that

e(Σ∗
1
,д2) = e(h,y) · e(h,д2)

∑n
i=1,yi ,y

xi ·

e

(
h0 ·

ℓ∏
j=1

h
t ∗j
j · h

Hq (M∗)
ℓ+1

, Σ∗
2

)
⇔ e(Σ∗

1
· h
−

∑n
i=1,yi ,y

xi ,д2) = e(h,y)·

e

(
h0 ·

|t∗ |∏
j=1

h
t ∗j
j · h

Hq (M∗)
ℓ

, Σ∗
2

)
.

For all yi , y, 𝒜′ looks up the tuple (yi , ri ,vi) in L. We know that

vi = h
ri
, and hence that y′i = h

rixi
. By comparing the last equation

above to the verification equation of the single-signer scheme, and

by observing that y′i = h
rixi

, we know that the pair

σ ∗
1
← Σ∗

1
·

n∏
i=1,yi,y

y′i
−1/ri

σ ∗
2
← Σ∗

2

is a valid forgery for the single-signer scheme, so 𝒜′ can output

M∗, t∗, (σ ∗
1
,σ ∗

2
) as its forgery. □

5 EFFICIENCY ANALYSIS
In section we analyze the efficiency of the Pixel scheme by analyz-

ing the computational work and the size of objects, and present

estimated performance figures. We let T = 2
ℓ − 1 denote the maxi-

mum number of time periods.

Computational Efficiency. The main operations are key genera-

tion, updating the key, signing, aggregating public keys, and veri-

fying signatures.

• Key generation requires 1 exponentiation in each of G1 and

G2.

• Key verification requires 2 pairings.

• Key update for an arbitrary number of time steps requires

ℓ2 exponentiations and 2ℓ2 multiplications in G2 and ℓ ex-

ponentiations in G1; key updates can of course be entirely

precomputed, if necessary. Key updates from t to t + 1 re-

quire ℓ − |t| exponentation in G1 and 1 exponentiation in

G2 (ignoring multiplications) if |t| < ℓ − 1, and no group

operations if |t| = ℓ − 1. On average, this only requires

1/2 · 0 + 1/4 · 2 + 1/8 · 3 + 1/16 · 4 + · · · ≤ 1.5

exponentiations in G1 and

1/2 · 0 + 1/4 · 1 + 1/8 · 1 + 1/16 · 1 + · · · ≤ 0.5

exponentiation in G2. That is, irrespective of the maximum

number of time periods T , the average work for updating

the key does not exceed 1.5 and 0.5 exponentiations in G1

and G2, respectively.

• Signing requires 3 exponentiations and 4ℓ multiplications in

G1 and 1 exponentiation in G2. By precomputing

σ1,1 ← d ·
(
h0 ·

ℓ−1∏
j=1

h
tj
j
)r ′

σ1,2 ← eℓ · h
r ′
ℓ

σ2 ← c · дr
′

2
,

the signature can be computed as σ1 ← σ1,1 · σ
Hq (M)
1,2 once

the messageM is known, bringing the online computation

down to a single exponentiation.

• Aggregating N public keys together costs N − 1 multiplica-

tions in G2. Here, we ignore the cost of verifying proofs of

possession, which should only be performed once per public

key.

• Verification of a signature requires 3 pairings (or one 3-multi-

pairing) and ℓ multiplications and 1 exponentiation in G1,

plus subgroup membership checks for G1 and G2.

Space Efficiency. We are mainly concerned with the size of the

public parameters, public keys, secret keys, and signatures.

• The public parameters consist of ℓ + 2 elements of G1.

• Every public key is a single element of G2.

• The size of skt is ℓ(ℓ − 1)/2 elements in G1 and ℓ elements

in G2.

• A signature consists of one element in G1 and one element

in G2.

10

keygen key sign key agg. key agg. verify |pk| |σ | |skt |
update (N = 1000) (N = 5000)

pk ∈ G2, T = 2
20 − 1 1.03 ms 0.75 ms 1.56 ms 3.04 ms 15.22 ms 4.66 ms 96 B 144 B 11 kB

pk ∈ G2, T = 2
30 − 1 1.03 ms 0.75 ms 1.59 ms 3.04 ms 15.22 ms 4.68 ms 96 B 144 B 23 kB

pk ∈ G1, T = 2
20 − 1 1.03 ms 1.31 ms 2.85 ms 0.83 ms 4.13 ms 4.19 ms 48 B 144 B 19 kB

pk ∈ G1, T = 2
30 − 1 1.03 ms 1.31 ms 2.98 ms 0.83 ms 4.13 ms 4.25 ms 48 B 144 B 43 kB

Figure 5: Estimated performance figures of the Pixel signature scheme algorithms, and the size of public keys, signatures,
and secret keys when using a BLS12-381 curve. N denotes the amount of keys aggregated in key aggregation. Note that the
estimated running time of key update procedure is based on the average cost of updating from time t to t + 1.

Estimated Performance. Figure 5 shows estimated performance

figures
2
and object sizes for the BLS12-381 curve [2]. Note that

G1 and G2 are not equally efficient, G1 has a more efficient group

operation and elements can be represented in half the space. We

can choose whether we let place public keys in G1 or G2 represent

the more efficient group. Setting up the scheme with pk ∈ G2 yields

smaller secret keys and faster signing time, while choosing pk ∈ G1

results in smaller public keys and faster key aggregation.

6 VARIANTS AND EXTENSIONS
Deterministic signatures. In practice, it is helpful to implement

deterministic signing and key updates in order to protect against

attacks arising from bad randomness.We can achieve using the stan-

dard technique [5] of deriving randomness from a random oracle.

More precisely, we assume a random oracleH′ that maps to Zq , and
when signing M at time t , we use r ← H′(rand-sign, ˜skt ,M, t).
When updating the key from time t to t+1, wemay need to compute

s̃kt∥1 and s̃kt∥2 from s̃kt. The required randomness r can be com-

puted with H(rand-update, s̃kt). Alternatively, if we wish to avoid

additional use of a random oracle, we can rely on prior “forward-

secure PRG techniques” [30] as follows: during set-up, we sample

a random seed s for a length-doubling pseudorandom generator

whose outputs areG0(s),G1(s). Whenever we need fresh random-

ness r for signing or key updates, we set r = G1(s) and replace s
with G0(s).

Non-binary trees. One could try to reduce the key size by using

b-ary trees instead of binary trees. A larger value of b reduces the

depth of the tree, but increases the amount of key material that

must be kept at each level of the tree. To support T time periods,

one needs a b-ary tree of depth ℓ = ⌈logb T ⌉. A node key at level d ,
however, can now take up to b − 1 keys of one element in G2 and

(ℓ + d − 2) elements of G1.

The savings effect is quite limited, however, because the disad-

vantage of needing more keys per level quickly starts dominating

the advantage of having less levels. For practical values of T , the
maximum size of the secret key will usually be minimal for b = 3.

Parallel key timelines. In some applications, a signer may want to

maintain several parallel timelines for different usages of a signing

key. For example, in a sharded blockchain, the shards may be run-

ning in parallel at different speeds, without strict synchronization

2
Computed by measuring the speed of the individual group operations (using the

rust implementation of BLS12-381 used by zcash on an Intel i7 CPU) and summing the

measured cost of all operations of each algorithm.

between the shards. If a time frame of the forward-secure signature

scheme corresponds to the block height of a blockchain, for exam-

ple, then the signer needs to maintain a different key schedule for

the different shards.

A trivial approach is to run a separate instance of Pixel per
timeline, and certify each public key with one root signing key.

A more efficient approach for our particular scheme is to replace

the fixed common parameter h with the output of a hash func-

tionHG1
(scope, scope). Meaning, during key generation, the signer

generates skscope,1 ← HG1
(scope, scope)x for all relevant scopes

scope and deletes the master key x . It can then update, sign, and

aggregate signatures for each scope separately in the same way

as before, but substituting HG1
(scope, scope) for h. Verification of

individual signatures and of multi-signatures is also the same as

before, substituting HG1
(scope, scope) for h.

Tighter security. The loss in tightness in Equation (3) ofT ·qH can

be brought down toT ·qS using Coron’s technique [20], where qS is

the number of signing queries made by the adversary𝒜, by hashing

the message into G1 instead of into Zq . Namely, a multi-signature

would be a tuple (Σ1, Σ2, Σ3) satisfying

e(Σ1,д2) = e(h,Y) · e
(
h0 ·

ℓ∏
j=1

h
tj
j , Σ2

)
· e

(
HG1
(msg,M), Σ3

)
.

This scheme has the additional advantage of saving up to ℓ elements

ofG1 in secret key size, but signatures are one element ofG2 longer

than the base scheme. We leave details to the reader.

Avoiding proofs-of-possession. In situations where proofs-of-pos-

session are not desirable, one could alternatively reuse techniques

from [9, 34] to avoid rogue-key attacks. Signers’ public keys are

simply given by pki = yi = д
xi
2
, but the aggregate public key is com-

puted as apk ←
∏n

i=1
pk

Hq ({pk1
, ...,pkn },pki)

i . Individual signatures

(σ1,1,σ1,2), . . . , (σn,1,σn,2) are aggregated as

(Σ1, Σ2) ←
(n∏
i=1

σ
Hq ({pk1

, ...,pkn },pki)
i ,1 ,

n∏
i=1

σ
Hq ({pk1

, ...,pkn },pki)
i ,2

)
,

so that verification can be performed as usual.

Partial aggregation of multi-signatures. Further savings in terms

of signature length can be obtained by partially aggregating multi-

signatures. Multi-signatures (Σi ,1, Σi ,2) under aggregate public

keys apki = Yi on messagesMi for time periods ti for i = 1, . . . ,n,
can be compressed into an aggregate multi-signature (Σ1, Σ1,2, . . . ,

11

Σn,2) where Σ1 ←
∏n

i=1
Σi ,1, which can be verified by checking

that

e(Σ1,д2) = e(h,
n∏
i=1

Yi) ·
n∏
i=1

e

(
h0 ·

ℓ∏
j=1

h
ti , j
j · h

Hq (Mi)

ℓ+1
, Σi ,2

)
.

Care must be taken, however, that either the messages Mi are

all different, or that all aggregate public keys apk
1
, . . . , apkn are

“trusted”, in the sense that the verifier checks that they are com-

posed of individual public keys with valid proofs of possession. One

could enforce the messagesMi to be all different by including the

aggregate public key in the message Mi = apki ∥M
′
i , but this has

the disadvantage that the aggregate public key (and hence, the set

of signers in the aggregate) must be known at the time of signing.

Failure to follow these precautions makes the scheme insecure,

because for a given aggregate public key apk
1
it is easy to come

up with a “rogue” key apk
2
= дx

2
/apk

1
that allows an adversary to

forge an aggregate signature on any message under apk
1
and apk

2
.

REFERENCES
[1] Ali Bagherzandi, Jung Hee Cheon, and Stanislaw Jarecki. 2008. Multisignatures

secure under the discrete logarithm assumption and a generalized forking lemma.

In ACM CCS 2008: 15th Conference on Computer and Communications Security,
Peng Ning, Paul F. Syverson, and Somesh Jha (Eds.). ACM Press, Alexandria,

Virginia, USA, 449–458. https://doi.org/10.1145/1455770.1455827

[2] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. 2003. Constructing

Elliptic Curves with Prescribed Embedding Degrees. In SCN 02: 3rd Interna-
tional Conference on Security in Communication Networks (Lecture Notes in
Computer Science), Stelvio Cimato, Clemente Galdi, and Giuseppe Persiano

(Eds.), Vol. 2576. Springer, Heidelberg, Germany, Amalfi, Italy, 257–267. https:

//doi.org/10.1007/3-540-36413-7_19

[3] Mihir Bellare and Sara K. Miner. 1999. A Forward-Secure Digital Signature

Scheme. In Advances in Cryptology – CRYPTO’99 (Lecture Notes in Computer
Science), Michael J. Wiener (Ed.), Vol. 1666. Springer, Heidelberg, Germany, Santa

Barbara, CA, USA, 431–448. https://doi.org/10.1007/3-540-48405-1_28

[4] Mihir Bellare and Gregory Neven. 2006. Multi-signatures in the plain public-

Key model and a general forking lemma. In ACM CCS 2006: 13th Conference
on Computer and Communications Security, Ari Juels, Rebecca N. Wright, and

Sabrina De Capitani di Vimercati (Eds.). ACM Press, Alexandria, Virginia, USA,

390–399. https://doi.org/10.1145/1180405.1180453

[5] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang.

2012. High-speed high-security signatures. Journal of Cryptographic Engineering
2, 2 (Sept. 2012), 77–89. https://doi.org/10.1007/s13389-012-0027-1

[6] Alexandra Boldyreva. 2003. Threshold Signatures, Multisignatures and Blind Sig-

natures Based on the Gap-Diffie-Hellman-Group Signature Scheme. In PKC 2003:
6th International Workshop on Theory and Practice in Public Key Cryptography
(Lecture Notes in Computer Science), Yvo Desmedt (Ed.), Vol. 2567. Springer, Heidel-

berg, Germany, Miami, FL, USA, 31–46. https://doi.org/10.1007/3-540-36288-6_3

[7] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. 2005. Hierarchical Identity Based

Encryption with Constant Size Ciphertext. In Advances in Cryptology – EURO-
CRYPT 2005 (Lecture Notes in Computer Science), Ronald Cramer (Ed.), Vol. 3494.

Springer, Heidelberg, Germany, Aarhus, Denmark, 440–456. https://doi.org/10.

1007/11426639_26

[8] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. 2005. Hierarchical Identity Based

Encryption with Constant Size Ciphertext. Cryptology ePrint Archive, Report

2005/015. (2005). http://eprint.iacr.org/2005/015.

[9] Dan Boneh, Manu Drijvers, and Gregory Neven. 2018. Compact Multi-signatures

for Smaller Blockchains. In Advances in Cryptology – ASIACRYPT 2018, Part II
(Lecture Notes in Computer Science), Thomas Peyrin and Steven Galbraith (Eds.),

Vol. 11273. Springer, Heidelberg, Germany, Brisbane, Queensland, Australia, 435–

464. https://doi.org/10.1007/978-3-030-03329-3_15

[10] Dan Boneh, Ben Lynn, and Hovav Shacham. 2004. Short Signatures from the

Weil Pairing. Journal of Cryptology 17, 4 (Sept. 2004), 297–319. https://doi.org/10.

1007/s00145-004-0314-9

[11] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A.

Kroll, and EdwardW. Felten. 2015. SoK: Research Perspectives and Challenges for

Bitcoin and Cryptocurrencies. In 2015 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, San Jose, CA, USA, 104–121. https://doi.org/10.

1109/SP.2015.14

[12] Xavier Boyen, Hovav Shacham, Emily Shen, and Brent Waters. 2006. Forward-

secure signatures with untrusted update. In ACM CCS 2006: 13th Conference

on Computer and Communications Security, Ari Juels, Rebecca N. Wright, and

Sabrina De Capitani di Vimercati (Eds.). ACM Press, Alexandria, Virginia, USA,

191–200. https://doi.org/10.1145/1180405.1180430

[13] Eric Brier, Jean-Sébastien Coron, Thomas Icart, David Madore, Hugues Randriam,

and Mehdi Tibouchi. 2010. Efficient Indifferentiable Hashing into Ordinary

Elliptic Curves. In Advances in Cryptology – CRYPTO 2010 (Lecture Notes in
Computer Science), Tal Rabin (Ed.), Vol. 6223. Springer, Heidelberg, Germany,

Santa Barbara, CA, USA, 237–254. https://doi.org/10.1007/978-3-642-14623-7_13

[14] Vitalik Buterin and Virgil Griffith. 2017. Casper the Friendly Finality Gadget.

CoRR abs/1710.09437 (2017). arXiv:1710.09437 http://arxiv.org/abs/1710.09437

[15] Ran Canetti, Shai Halevi, and Jonathan Katz. 2003. A Forward-Secure Public-Key

Encryption Scheme. In Advances in Cryptology – EUROCRYPT 2003 (Lecture Notes
in Computer Science), Eli Biham (Ed.), Vol. 2656. Springer, Heidelberg, Germany,

Warsaw, Poland, 255–271. https://doi.org/10.1007/3-540-39200-9_16

[16] Ran Canetti, Shai Halevi, and Jonathan Katz. 2007. A Forward-Secure Public-Key

Encryption Scheme. Journal of Cryptology 20, 3 (July 2007), 265–294. https:

//doi.org/10.1007/s00145-006-0442-5

[17] Jing Chen, Sergey Gorbunov, Silvio Micali, and Georgios Vlachos. 2018. ALGO-

RAND AGREEMENT: Super Fast and Partition Resilient Byzantine Agreement.

Cryptology ePrint Archive, Report 2018/377. (2018).

[18] Sherman S. M. Chow, Lucas Chi Kwong Hui, Siu-Ming Yiu, and K. P. Chow. 2004.

Secure Hierarchical Identity Based Signature and Its Application. In ICICS 04:
6th International Conference on Information and Communication Security (Lecture
Notes in Computer Science), Javier López, Sihan Qing, and Eiji Okamoto (Eds.),

Vol. 3269. Springer, Heidelberg, Germany, Malaga, Spain, 480–494.

[19] M. Conti, E. Sandeep Kumar, C. Lal, and S. Ruj. 2018. A Survey on Security

and Privacy Issues of Bitcoin. IEEE Communications Surveys Tutorials 20, 4
(Fourthquarter 2018), 3416–3452. https://doi.org/10.1109/COMST.2018.2842460

[20] Jean-Sébastien Coron. 2000. On the Exact Security of Full Domain Hash. In

Advances in Cryptology – CRYPTO 2000 (Lecture Notes in Computer Science), Mihir

Bellare (Ed.), Vol. 1880. Springer, Heidelberg, Germany, Santa Barbara, CA, USA,

229–235. https://doi.org/10.1007/3-540-44598-6_14

[21] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. 2018.

Ouroboros Praos: An Adaptively-Secure, Semi-synchronous Proof-of-Stake

Blockchain. In Advances in Cryptology – EUROCRYPT 2018, Part II (Lecture
Notes in Computer Science), Jesper Buus Nielsen and Vincent Rijmen (Eds.),

Vol. 10821. Springer, Heidelberg, Germany, Tel Aviv, Israel, 66–98. https:

//doi.org/10.1007/978-3-319-78375-8_3

[22] David Derler, Stephan Krenn, Thomas Lorünser, Sebastian Ramacher, Daniel

Slamanig, and Christoph Striecks. 2018. Revisiting Proxy Re-encryption: Forward

Secrecy, Improved Security, and Applications. In PKC 2018: 21st International
Conference on Theory and Practice of Public Key Cryptography, Part I (Lecture
Notes in Computer Science), Michel Abdalla and Ricardo Dahab (Eds.), Vol. 10769.

Springer, Heidelberg, Germany, Rio de Janeiro, Brazil, 219–250. https://doi.org/

10.1007/978-3-319-76578-5_8

[23] Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gre-

gory Neven, and Igors Stepanovs. 2019. On the Security of Two-Round Multi-

Signatures. In 2019 IEEE Symposium on Security and Privacy, SP 2019. IEEE Com-

puter Society.

[24] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-

dovich. 2017. Algorand: Scaling Byzantine Agreements for Cryptocurrencies.

In Proceedings of the 26th Symposium on Operating Systems Principles (SOSP ’17).
ACM, New York, NY, USA, 51–68. https://doi.org/10.1145/3132747.3132757

[25] Felix Günther, Britta Hale, Tibor Jager, and Sebastian Lauer. 2017. 0-RTT Key Ex-

change with Full Forward Secrecy. In Advances in Cryptology – EUROCRYPT 2017,
Part III (Lecture Notes in Computer Science), Jean-Sébastien Coron and Jesper Buus

Nielsen (Eds.), Vol. 10212. Springer, Heidelberg, Germany, Paris, France, 519–548.

https://doi.org/10.1007/978-3-319-56617-7_18

[26] TimoHanke,MahnushMovahedi, andDominicWilliams. 2018. DFINITY Technol-

ogy Overview Series, Consensus System. (2018). https://dfinity.org/pdf-viewer/

library/dfinity-consensus.pdf

[27] K. Itakura and K. Nakamura. 1983. A public-key cryptosystem suitable for digital
multisignatures. Technical Report. NEC Research and Development.

[28] Gene Itkis and Leonid Reyzin. 2001. Forward-Secure Signatures with Optimal

Signing and Verifying. In Advances in Cryptology – CRYPTO 2001 (Lecture Notes
in Computer Science), Joe Kilian (Ed.), Vol. 2139. Springer, Heidelberg, Germany,

Santa Barbara, CA, USA, 332–354. https://doi.org/10.1007/3-540-44647-8_20

[29] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017.

Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol. In Advances
in Cryptology – CRYPTO 2017, Part I (Lecture Notes in Computer Science), Jonathan
Katz and Hovav Shacham (Eds.), Vol. 10401. Springer, Heidelberg, Germany, Santa

Barbara, CA, USA, 357–388. https://doi.org/10.1007/978-3-319-63688-7_12

[30] Hugo Krawczyk. 2000. Simple Forward-Secure Signatures From Any Signature

Scheme. In ACM CCS 2000: 7th Conference on Computer and Communications
Security, Dimitris Gritzalis, Sushil Jajodia, and Pierangela Samarati (Eds.). ACM

Press, Athens, Greece, 108–115. https://doi.org/10.1145/352600.352617

[31] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. 2006.

Sequential Aggregate Signatures and Multisignatures Without Random Oracles.

12

In Advances in Cryptology – EUROCRYPT 2006 (Lecture Notes in Computer Science),
Serge Vaudenay (Ed.), Vol. 4004. Springer, Heidelberg, Germany, St. Petersburg,

Russia, 465–485. https://doi.org/10.1007/11761679_28

[32] Changshe Ma, Jian Weng, Yingjiu Li, and Robert H. Deng. 2010. Efficient discrete

logarithm based multi-signature scheme in the plain public key model. Des. Codes
Cryptography 54, 2 (2010), 121–133.

[33] Tal Malkin, Daniele Micciancio, and Sara K. Miner. 2002. Efficient Generic

Forward-Secure Signatures with an Unbounded Number Of Time Periods. In

Advances in Cryptology – EUROCRYPT 2002 (Lecture Notes in Computer Science),
Lars R. Knudsen (Ed.), Vol. 2332. Springer, Heidelberg, Germany, Amsterdam,

The Netherlands, 400–417. https://doi.org/10.1007/3-540-46035-7_27

[34] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille. 2019.

Simple Schnorr multi-signatures with applications to Bitcoin. Des. Codes Cryp-
tography (2019).

[35] Silvio Micali. 2016. ALGORAND: The Efficient and Democratic Ledger. CoRR
abs/1607.01341 (2016). arXiv:1607.01341 http://arxiv.org/abs/1607.01341

[36] Silvio Micali, Kazuo Ohta, and Leonid Reyzin. 2001. Accountable-Subgroup Mul-

tisignatures: Extended Abstract. In ACM CCS 2001: 8th Conference on Computer

and Communications Security, Michael K. Reiter and Pierangela Samarati (Eds.).

ACM Press, Philadelphia, PA, USA, 245–254. https://doi.org/10.1145/501983.

502017

[37] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system,”

http://bitcoin.org/bitcoin.pdf. (2008).

[38] Kazuo Ohta and Tatsuaki Okamoto. 1993. A Digital Multisignature Scheme

Based on the Fiat-Shamir Scheme. In Advances in Cryptology – ASIACRYPT’91
(Lecture Notes in Computer Science), Hideki Imai, Ronald L. Rivest, and Tsutomu

Matsumoto (Eds.), Vol. 739. Springer, Heidelberg, Germany, Fujiyoshida, Japan,

139–148. https://doi.org/10.1007/3-540-57332-1_11

[39] Thomas Ristenpart and Scott Yilek. 2007. The Power of Proofs-of-Possession:

Securing Multiparty Signatures against Rogue-Key Attacks. In Advances in
Cryptology – EUROCRYPT 2007 (Lecture Notes in Computer Science), Moni Naor

(Ed.), Vol. 4515. Springer, Heidelberg, Germany, Barcelona, Spain, 228–245.

https://doi.org/10.1007/978-3-540-72540-4_13

[40] Riad S. Wahby and Dan Boneh. 2019. Fast and simple constant-time hashing to

the BLS12-381 elliptic curve. Cryptology ePrint Archive, Report 2019/403. (2019).

https://eprint.iacr.org/2019/403.

13

