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Abstract—Current state-of-the-art countermeasures against Fault In-
jection Attacks (FIA) provide good protection against analysis methods
that require the faulty ciphertext to derive the secret information, such
as Differential Fault Analysis (DFA) or collision fault analysis. However,
recent progress in Ineffective Fault Analysis (IFA) and Statistical IFA
(SIFA) constitutes a real threat against cryptographic implementations
and moreover, it cannot be thwarted by standard FIA countermeasures
that focus on detecting the change in the intermediate data.

In this paper, we present a novel method based on error correcting
codes that protects implementations against SIFA. We design a set of
universal error-correcting gates that can be used for implementing block
ciphers. We analyze a hardware implementation of protected GIFT-64
and show that our method provides 100% protection against SIFA.

Index Terms—fault injection attacks, ineffective fault analysis, counter-
measures, error-correcting codes, SIFA

1 INTRODUCTION

Fault injection attacks have become a powerful tool for im-
plementation attacks against cryptography [1]. Many differ-
ent fault analysis methods have been proposed up to date,
so the attacker can choose based on her capabilities and
the target cipher implementation. Recently, several power-
ful proposals utilizing Statistical Ineffective Fault Analysis
(SIFA) have been introduced [2]–[4]. SIFA performs stuck-
at-fault in the intermediate value during the execution of
an algorithm. Based on observing whether there is a change
in the ciphertext, the attacker can gain information of the
attacked intermediate value and eventually get the secret
key. The main strength of (S)IFA lies in the ineffectiveness
of standard fault injection countermeasures to thwart the
attack. Normally, the implementation-level prevention tech-
niques aim at detecting value changes in the computation
to raise an alarm. This can be done by using a redundant
computation circuits, various code-based techniques, of in-
fective countermeasures that “infect” the entire cipher state
after fault to hide the information leakage from the fault.
However, in case of (S)IFA, the attacker only exploits the
knowledge whether the computation was correct or not –
she does not need the output value. And therefore, raising
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an alarm from the countermeasure is enough for her to
determine the value she wants to discover.

As mentioned in [4], to prevent from these attacks,
it is advised to utilize sensitive-enough physical sensors,
e.g. ring oscillator based [5], that detect the physical dis-
turbances of the circuit no matter whether the value has
changed or not. However, since the sensor is not a part of the
cryptographic circuit, there is always a possibility to unplug
it or make it ineffective. For that reason, it is better to have
multiple layers of protection, both on the circuit and the
implementation level.

In this paper, we propose a countermeasure against
(S)IFA that utilizes error-correcting codes. The main idea is
to prevent the attacker from knowing whether the fault oc-
cured or not. We provide a set of universal error-correcting
gates that can be used for implementing linear and non-
linear operations of block ciphers. Our results show 100%
fault coverage against the considered attacker model.

The rest of this paper is organized as follows. Section 2
presents the related work in this field. Section 3 provides
the theoretical background for our method. Application of
the method to ciphers is described in Section 4, followed by
evaluation in Section 5. Discussion is provided in Section 6,
and finally, Section 7 concludes this work.

2 RELATED WORK

2.1 Ineffective Fault Attacks

Ineffective Fault Attacks (IFA) were originally proposed by
Clavier in 2007 [6]. This fault analysis method exploits type
of fault which changes a variable to a particular value –
and in case the variable already holds this value, no change
can be observed. As an example, let us assume we have
a one bit variable x which is secret. This variable is being
processed in a device we have previously profiled and we
can assume with a high probability that we are capable of
changing a certain bit in a data unit to “1” with a well-
aimed fault injection. Now, we process x with our device,
launch the fault injection, and observe the output. In case
we see a difference at the output, it means the original value
of x was “0.” Otherwise, if there is no observable change at
the output, we can assume with a high probability that the
original value of x was “1.”
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2.2 Statistical Fault Attacks
Statistical Fault Attacks (SFA), introduced by Fuhr et al. [7]
exploit the situation when the attacker is able to change an
intermediate value to a biased value by injecting a fault.
Three fault models were presented: 1) stuck-at-0; 2) stuck-
at-0 with probability of 0.5 or logical AND with random
uniform value with probability 0.5; 3) logical AND with ran-
dom uniform value. The authors showed how the method
works on AES, where the recovery of 4 bytes of the secret
key took between 6-80 faulty ciphertexts, depending on the
used model.

2.3 Statistical Ineffective Fault Attacks
Statistical Ineffective Fault Attacks (SIFA) [4] are an intersec-
tion between IFA and SFA.

In [2]–[4] authors experimentally used ineffective faults
to break cryptosystems without the need of the deeper
analysis of the cipher, which is normally necessary for using
other methods, such as Differential Fault Analysis.

2.4 Fault Attack Countermeasures
Fault attack countermeasures mostly focus on preventing
fault models that aim at altering the values during the
execution, e.g. differential fault analysis. They either try
to detect the change or prevent the attacker from getting
information from the faulty output. On the other hand,
in case of (S)IFA, the information whether there was a
change during the computation is sufficient to get some
information on the secret key. Currently, only device-level
countermeasures can be used for preventing (S)IFA, such
as sensors or special packages. However, the cipher imple-
menter has normally no control over these countermeasures
and a specialized device needs to be used to provide them.
For further overview of different countermeasures, we refer
the interested reader to [8].

3 METHODS

3.1 Coding theory background
A binary code, which we denote by C, is a subset of Fn

2 , the
n−dimensional vector space over F2, where n is called the
length of the code C. Each element c ∈ C is called a codeword
of C and each element x ∈ Fn

2 is called a word [9, p.6].
Take two words x,y ∈ Fn

2 , the Hamming distance between
x and y, denoted by dis (x,y), is defined to be the number
of places at which x and y differ [9, p.9]. More precisely, if
x = x1x2 . . . xn and y = y1y2 . . . yn, then

dis (x,y) =
n∑

i=1

dis (xi, yi) ,

where xi and yi are treated as binary words of length 1 and
hence

dis (xi, yi) =

{
1 if xi 6= yi
0 if xi = yi

.

Furthermore, for a word x ∈ Fn
2 , the Hamming weight of

x, HW(x) := dis (x,0) [9, p.46]. For a binary code C, the
(minimum) distance of C, denoted by dis (C), is [9, p.11]

dis (C) = min{dis (c, c′) : c, c′ ∈ C, c 6= c′}.
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Fig. 1. Error correction against IFA when attacking the same bit position
in two different codewords – 11110000 and 00001111. In case of set to
“1” fault: (a) original value changes after fault and later is corrected back,
(b) original value does not change after fault.

Definition 1. [9, p.39] In case C is a subspace of Fn
2 , C is

called a linear code. A linear code with dimension k,
length n and minimum distance d is called an [n, k, d]-
binary code.

Definition 2. [9, p.13] Let v be a positive integer. C is
v−error-correcting if minimum distance decoding with
incomplete decoding rule is applied, v or fewer errors
can be corrected.

Remark 1. C is v−error correcting if and only if dis (C) ≥
2v + 1 [9, p.13].

Considering the (S)IFA, as we are mostly dealing with 1-
and 2-bit faults, the distance for the used codes should be at
least 3 and 5, respectively.

3.2 Our Countermeasure Idea
Normally, it would be of no use for the attacker to affect
high number of bits at the same time, since the probability
of the original variable to have the exact value that is being
injected gets lower with each stuck-at faulty bit. Therefore,
it is safe to assume that practical attacks would aim at
changing 1 or at most 2 bits of the variable.

The main idea of our countermeasure is to make the at-
tacker unsure whether there was a change to the variable or
not. For this purpose, we propose usage of error correcting
codes that were thoroughly evaluated against fault injection
in [10]. The working principle of the (S)IFA protection is
depicted in Figure 1. The error correction ensures that in
case the fault was injected, the variable will regain its orig-
inal value. Therefore, the attacker is not able to distinguish
whether the change due to the fault occured or not.

The crucial parameter of the code in this case is the
distance d, which specifies how many bits we allow the
attacker to target. To allow v bits to be targeted, we need
distance to be at least 2v + 1 to be able to correct the
codeword to the original value [9].

3.3 Implementation Options
In general, there are two ways to implement encoding based
countermeasures: either in a table look-up form where the
address navigation is done by using codewords [10], [11];
or by computing the operations on the codewords directly,
while performing integrity checks after predefined number
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TABLE 1
Truth table for error-correcting AND gate, using a linear code with two

codewords: 0 7→ 000; 1 7→ 111.

& 000 001 010 011 100 101 110 111
000 000 000 000 000 000 000 000 000
001 000 000 000 000 000 000 000 000
010 000 000 000 000 000 000 000 000
011 000 000 000 111 000 111 111 111
100 000 000 000 000 000 000 000 000
101 000 000 000 111 000 111 111 111
110 000 000 000 111 000 111 111 111
111 000 000 000 111 000 111 111 111

of operations [12]. In our work we focus on computational
approach due to the fact that it is faster and has lower
memory consumption.

3.4 Example

Let us consider a simple binary AND operation, taking
two single bit values as inputs and one single bit value
as output. To correct one bit, distance between codewords
needs to be at least 3. We can construct a truth table for
an implementation of error-correcting AND gate (details of
such gate are explained in the next section), stated in Table 1,
where the encoding is as follows: 0 7→ 000 and 1 7→ 111.
The first column represents the input of the first operand
and the first row is the second operand. We can see that
the table entries contain only two values, depending on the
distance between the input word and the two codewords.
That also means even in the case both input values get
faulted, the correction will still work. It is important to
note that this particular example might leak side-channel
information, since in case the Hamming weight (HW) of the
word is ≤ 1, it corrects to 000, and if the HW is ≥ 2, it
corrects to 111.

4 APPLICATION TO CIPHERS

In this section we describe a low-cost hardware imple-
mentation of our countermeasure. We use the lightweight
SPN ciphers Skinny-128-128 [13] and GIFT-64-128 [14] as
examples.

4.1 Single-Bit Faults

First, we consider the [3,1,3]-binary code (3-Repetition Ham-
ming code) considered in the previous section. To reduce the
cost, we use the fact that this code is a linear code. Hence,
XOR/XNOR/Inversion operations can be performed on the
codewords simply by applying the corresponding Boolean
operations in a bitwise manner. This approach reduces the
cost of implementing linear operations of the ciphers. How-
ever, by implementing these operations in that manner, the
faults will propagate linearly through the gates. We assume
that the correction will only be performed in the non-linear
(Sbox) Layer. We study a fault model where each codeword
has at most 1 faulty bit at the input of each round.

We define a set of gates that are used to operate on the
codewords:

RNOT : {z2, z1, z0} = {x2 ⊕ 1, x1 ⊕ 1, x0 ⊕ 1}
RXOR : {z2, z1, z0} = {x2 ⊕ y2, x1 ⊕ y1, x0 ⊕ y0}
CAND : {z2, z1, z0} = {(x2x1 ∨ x1x0 ∨ x0x2)

∧(y2y1 ∨ y1y0 ∨ y0y2), (x2x1 ∨ x1x0 ∨ x0x2)

∧(y2y1 ∨ y1y0 ∨ y0y2), (x2x1 ∨ x1x0 ∨ x0x2)

∧(y2y1 ∨ y1y0 ∨ y0y2)}
COR : {z2, z1, z0} = {(x2x1 ∨ x1x0 ∨ x0x2)

∨(y2y1 ∨ y1y0 ∨ y0y2), (x2x1 ∨ x1x0 ∨ x0x2)

∨(y2y1 ∨ y1y0 ∨ y0y2), (x2x1 ∨ x1x0 ∨ x0x2)

∨(y2y1 ∨ y1y0 ∨ y0y2)}

The circuit diagrams are depicted in Figure 2. As mentioned
earlier, both the NOT and XOR gates have no effect on the
fault value. The AND/OR gates have to be implemented
at least 3 times independently to make sure that if the
adversary injects a fault in one of the instances, it does not
propagate to the other two bits.

Given this set of gates, we study the implementation
of the GIFT cipher’s Sbox, proposed in [14]. We chose the
Software optimized implementation of the Sbox as a refer-
ence as it has lower number of NOT/XNOR/NAND/NOR
gates, making it more suitable for our gate set. This
implementation requires 5X+1N+3A+1R, where X,N,A,R
stand for XOR, NOT, AND and OR gates, respectively.
Overall, one round of GIFT-64 needs 16 Sboxes and 32
XORs for key addition, 112X+16N+48A+16R. Using our
gate set instead, we can implement the GIFT-64 round
using 336X+48N+1728A+624R. In order to estimate the
overall cost compared to the unprotected implementation
of GIFT-64, we estimate X=2.25GE,N=0.7GE,A=R=1.2GE.
We need also to take into consideration that we need to store
the state, which requires 64 Flip-Flops for the unprotected
case and 192 Flip Flops for the protected case. Hence, the
countermeasure requires 6x area overhead for ASIC. For
FPGA, we can reduce such cost to only 3x, since the CAND
and COR gates can take advantage of the 6-to-1 Look Up
Table structures in the modern FPGA, such that each of them
can be implemented using only 3 LUTs.

Similarly, we study the implementation of the members
of the Skinny family of tweakable block ciphers. It uses
two different Sboxes, one is a 4-bit Sbox and the other is
an 8-bit Sbox. The 4-bit Sbox requires 4X+4R+4N, while
the 8 bit Sbox requires 8X+8R+8N. Moreover, Skinny also
uses two different diffusion layers, depending on the block
size. The Round Constants require 6X+1N, while the Key
addition requires either 32X or 64X. Finally, the MixColumn
operation requires either 64X or 128X. Overall, if the block
size is 64 bits, one round requires 166X+65N+64R, while
if the block size is 128 bits, it requires 326X+129N+128R.
For the protected case, we need 498X+195N+2112R and
978X+387N+4224R, respectively. Hence, we estimate the
over head for ASIC to be around 5.6x, slightly lower than
the case of GIFT-64, which is because Skinny has higher
X/(A+R) ratio, i.e. the ration between linear components
and non-linear components is higher, due to the MixColumn
operation, as opposed to the bit permutation in case of GIFT.
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Fig. 2. Adjusted gates to operate on codewords (a,b), and error-
correcting gates (c,d).

4.2 Double-Bit Faults

Our countermeasure can be extended to double-bit faults
by using [5,1,5]-binary code instead. In this case the cost for
the RNOT and RXOR gates is multiplied by 5, while CAND
and COR gates can be implemented using 123A+54R and
120A+57R respectively. Hence, the overall cost of the im-
plementation of GIFT-64 is 560X+80N+7824A+3504R, in
addition to 320 Flip-Flops for the state storage. Our estimate
that the overhead will be around 25× for ASIC. While
the cost can seem to be too expensive, given that SIFA is
one of the strongest attacks on cipher implementations, we
believe the cost can be justified for sensitive applications
that require high security.
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Fig. 3. Two evaluation scenarios: (a) fault is injected in the middle round
and (b) fault is injected in the last round. Round where the fault is
injected is indicated by red color, while the round/block where the fault
is corrected is indicated by green color.

TABLE 2
Results on simulating ineffective fault analysis against the gates
proposed in Section 4. Description of each scenario is given in

Figure 3.

Correct outputs Faulty outputs
Gate # Scenario 1 Scenario 2 Scenario 1 Scenario 2
AND 660 100% 100% 0% 0%
OR 396 100% 100% 0% 0%
XOR 276 100% 100% 0% 0%
CAND 28 100% 100% 0% 0%
COR 4 100% 100% 0% 0%
RXOR 30 100% 100% 0% 0%
RNOT 4 100% 100% 0% 0%

5 EVALUATION

We have analyzed the ineffective fault analysis conditions
of the GIFT Sbox implementation proposed in Section 4.1.
We have constructed a digital logic circuit analysis tool that
loops through all the possible inputs, injects a stuck-at fault
at every single gate in the circuit, and checks the output
for errors. We have utilized a single fault adversarial model
which is the most common model used in the literature.
The assumption on correcting capabilities of our proposal
is that in case there is a fault that propagates through the
Sbox layer, it will either be corrected at the following Sbox
layer (in case of inner rounds) or at the final decoding stage.
Therefore, to simulate this behavior, we have analyzed two
different scenarios:

1) first/middle round fault, followed by another round;
2) last round fault, followed by an error correcting de-

coder.
These two scenarios are depicted in Figure 3.

As it would be computationally impractical to analyze
the full GIFT state, we took advantage the properties of the
permutation layer that divides the state into four 16-bit sub-
states. We analyzed one 16-bit sub-state, which shows the
behavior of the entire state. That means, for each gate we
analyzed 216 inputs for stuck-at-0 and stuck-at-1 fault. We
tried to fault every bit of each input. That means, for exam-
ple in case of AND gates, the total number of experiments
was 660 gates ×216 input values ×2 fault models ×2 inputs
= 173, 015, 040, for each scenario.
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The results are stated in Table 2. As can be seen, the
circuit analysis utilizes the error-correcting properties of the
linear code as described in Section 3. Every ineffective fault
was captured either in the subsequent round in case of
Scenario 1, or in the final decoder in case of Scenario 2.
This shows that the implementation following our proposal
is robust against (S)IFA that utilizes 1-bit faults.

6 DISCUSSION

6.1 Hamming-(7,4) Code
Cheaper codes can be used to get cheaper implementations,
such as the Hamming-(7,4) code, which encodes 4-bit nib-
bles into 7-bit codewords. This code can correct all single
bit faults, as well. In this scenario, the 4-bit Sbox can be
implemented as an equivalent 7-bit look-up table. Since the
overall encoded state is smaller, the cost of the linear parts
of the circuit is lower. However, the attacker can have more
targeted attacks that aim at internal states of the Sbox. In
such case the analysis of how such faults will propagate
to the output of the Sbox is not clear. In other words, the
attacker may be able to inject a fault in an internal gate that
generates codewords with multiple faulty bits.

6.2 Faulting Encoding/Decoding Circuit
As one may have noticed, we did not consider faults into
the encoding/decoding circuits that surround the cipher
implementation. We will explain this in the following.

In case of the encoding circuit, if there is a fault in the
input, it will change the value of the codeword to another
codeword, effectively changing the plaintext input to the ci-
pher. That means, the attacker would get the same situation
as in case of differential cryptanalysis – she would have to
cryptanalyze the entire cipher. If there is a fault in the output
of the encoding circuit, the error-correcting gates in the first
round will correct it the same way as in the middle of the
cipher.

In case of the decoding circuit, the attacker would be
effectively faulting the resulting ciphertext. That would not
give her any additional information on either the plaintext
nor the secret key.

6.3 Software Implementation
To get the same level of protection in software, one would
have to use a table look-up based implementation. Similar
to the implementation proposed in Section 4, to achieve the
same level of protection, it would be necessary to implement
the non-linear operations by error-correcting tables. While
the speed overhead of such implementation is reasonable
– 82.5% for PRESENT-80 implementation from [15], the
memory requirements are high. For example, in case of 8-
bit architectures, one binary look-up table takes 65 kB [15].

6.4 Differential Fault Analysis
A thorough analysis of error-correcting encoding scheme
w.r.t. DFA was given in [10]. The work shows that it is
necessary to match the assumed attacker strength with the
used code. More specifically, the code distance always needs
to be twice as long as the attacker’s capabilities to flip certain
number of bits, otherwise there is a possibility to correct one
codeword into another by flipping enough bits.

7 CONCLUSION

In this paper we have proposed a novel method to protect
cipher implementations against ineffective fault analysis.
Our work is based on error-correcting codes that can be
efficiently implemented in the form of error-correcting hard-
ware gates. Attacker capabilities can be matched by the
choice of proper code, e.g. for 1-bit fault models, at least a 3-
bit code needs to be used, while for 2-bit fault model, at least
a 5-bit code has to be used. We have evaluated a hardware
implementation of protected GIFT-64 and our results show
100% fault coverage.

In the future, it would be interesting to extend the protec-
tion against side-channel attacks by utilizing adequate code,
as was shown in [10].
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