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Abstract Diffie-Hellman groups are a widely used component in cryptographic protocols in which a
shared secret is needed. These protocols are typically proven to be secure under the assumption they
are implemented with prime order Diffie-Hellman groups. However, in practice, many implementations
either choose to use non-prime order groups for reasons of efficiency, or can be manipulated into
operating in non-prime order groups. This leaves a gap between the proofs of protocol security, which
assume prime order groups, and the real world implementations. This is not merely a theoretical
possibility: many attacks exploiting small subgroups or invalid curve points have been found in the
real world.
While many advances have been made in automated protocol analysis, modern tools such as Tamarin
and ProVerif represent DH groups using an abstraction of prime order groups. This means they, like
many cryptographic proofs, may miss practical attacks on real world protocols.
In this work we develop a novel extension of the symbolic model of Diffie-Hellman groups. By more
accurately modelling internal group structure, our approach captures many more differences between
prime order groups and their actual implementations. The additional behaviours that our models
capture are surprisingly diverse, and include not only attacks using small subgroups and invalid curve
points, but also a range of proposed mitigation techniques, such as excluding low order elements,
single coordinate ladders, and checking the elliptic curve equation. Our models thereby capture a
large family of attacks that were previously outside the symbolic model.
We implement our improved models in the Tamarin prover. We find a new attack on the Secure
Scuttlebutt Gossip protocol, independently discover a recent attack on Tendermint’s secure handshake,
and evaluate the effectiveness of the proposed mitigations for recent Bluetooth attacks.

1 Introduction

Since the inception of public-key cryptography, the Diffie-Hellman (DH) construction based on the
perceived hardness of the discrete logarithm problem [23] has been one of the most common building
blocks of secure systems, and underlies many of our secure communications. At its core, a DH construction
relies on the hardness of computing discrete logarithms in a chosen group.

Typically, a computational proof that a protocol is secure will make the assumption that the Diffie-
Hellman group is of prime order. Similarly, modern protocol analysis tools such as ProVerif and Tamarin,
which can automatically construct symbolic proofs or find attacks on protocols, internally use an abstraction
of Diffie-Hellman groups that reflects the properties of a prime order group.

In contrast, most modern real-world implementations that use DH-constructions do not use groups of
prime order. For example, protocols such as TLS, SSH, and IKE have included support for finite field
groups with highly composite order such as DSA groups, or even randomized groups whose properties are
difficult to verify. Recently, elliptic curves have seen widespread adoption. Whilst some elliptic curves are
of prime order; many popular choices, such as Curve25519, are not.

Thus, while many implementations operate in non-prime order groups, protocol analyses often assume
that operations are performed in prime order groups. The result is not just a gap in the analysis: many
attacks have been discovered that exploit the additional structure present in non-prime order groups.
Prominent examples of such attacks are catastrophic key recovery attacks on TLS, SSH and IKE using
finite field groups [56], triple handshake attacks on TLS clients using randomized groups [9], and channel
binding attacks on compound authentication protocols running over IKE and SSH [8].

? An extended abstract of this work appears at the 32nd IEEE Computer Security Foundations Symposium,
CSF 2019. A version history can be found in Appendix F.



Another assumption implicitly made in proofs of security is that Diffie-Hellman group elements can
be parsed unambiguously. That is, a correct protocol implementation will reject inputs which do not
correspond to group elements. This has been problematic, particularly when Diffie-Hellman groups are
instantiated with elliptic curves and the consequent attacks have been disastrous: private key recovery
attacks on TLS [31], confidentiality and authentication attacks on Bluetooth [11], and key compromise of
JSON Web Tokens [22].

These attacks have led to the introduction of various countermeasures, not all of which have been
effective. Furthermore, depending on the protocol scenario and underlying structures, it may even be the
case that no countermeasures are needed. Thus, the existence of these subtle attacks and mitigations
motivates including the details of the implemented groups and associated countermeasures into the security
analysis.

In this work we develop a family of novel symbolic models for DH groups for use in modern protocol
analysis tools, that enables finding such attacks or symbolically proving their absence. We provide the
means for a more fine-grained symbolic analysis that allows the protocol modeller to specify the type
of underlying group as well as any countermeasures, thereby closing a gap in the automated analysis of
real-world protocols. In the process, we find a new attack on a modern peer to peer protocol, independently
discover a recent attack on a deployed consensus transport layer and analyse the proposed fixes to the
recently announced Bluetooth Pairing attacks.

1.1 Contributions

1. We develop a novel family of symbolic models of Diffie-Hellman groups that captures the internal
structure of non-prime order groups used in the real world. This model makes it possible to discover
real world attacks, such as attacks based on small subgroup confinement, small subgroup key leakage
and invalid elliptic curve points. Additionally, our model supports accurate representations of the
various mitigations available to protocol designers, such as the exclusion of low order points, curve
equation checks, and single coordinate ladders. This allows for effective symbolic verification of a
protocol, despite the use of a non-prime order group.

2. Using the Tamarin prover, we develop the first automated method for finding or proving the absence
of small subgroup and invalid curve point attacks on security protocols that use Diffie-Hellman groups.
We evaluate its effectiveness on several case studies and show it is effective at both attack finding and
verification.

3. In the process, we discover a new attack and independently discover a recently found attack on
real-world protocols: (i) We discover a new attack on the Secure Scuttlebutt Gossip protocol, which
violates a core authentication property, resulting in the disclosure of private information, despite it
previously having been verified as secure in a coarser symbolic model. (ii) We independently discover
a recently disclosed attack on the Tendermint’s secure handshake protocol, which allows for the
impersonation of legitimate users. (iii) We explore the recently announced attack on Bluetooth’s
Secure Pairing and analyse the proposed fixes. We find some of the recommended mitigations are less
effective than hoped.

Outline We proceed as follows. We first give background in Section 2 and recap existing Symbolic
Diffie-Hellman models in Section 3. In Section 4, we present our new symbolic models for three classes of
Diffie-Hellman groups used in implementations that each add particular attack vectors. These models
and behaviours are agnostic as to the underlying realisation of the group, whereas the commonly used
Elliptic Curves allow for additional behaviours that can lead to attacks. To capture these, we present in
Section 5 a symbolic model for more accurately capturing Elliptic Curve points. We complete our models
in Section 6 by introducing models for common mitigations. In Section 7 we apply our techniques to
several real-world case-studies, explore our results, and conclude in Section 8.

Our source code and models are available from [21].

2 Background

2.1 Diffie-Hellman Groups

For further background on group theory, including definitions for the various terms we use here, see
Appendix appendix C on page 21. We also discuss the mathematics of finite fields and elliptic curves in
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Appendices D and E. In this section we recap some elementary theorems from group theory we will be
using, as well as defining our notation for Diffie-Hellman groups.

There are two common notations for Diffie-Hellman groups. When referring to finite fields, typically
multiplicative notation is used where we write the group operation as · and describe repeated applications
as exponentiation. However, in the elliptic curve setting we use additive notation where the group operation
is written + and repeated applications are described as scalar multiplication. To avoid ambiguity, we use
multiplicative notation throughout this paper, regardless of the underlying structure.

The following well known theorems will also be of use:

Theorem 1 (Lagrange’s Theorem). Let G be a finite group and H a subgroup of G. The order of H
divides the order of G. It immediately follows that for g ∈ G, |g| divides |G|.

Theorem 2 (Cauchy’s Theorem). Let G be a finite group and p a prime number dividing the order
of G. Then G contains an element of order p (and hence a subgroup of order p)

Theorem 3 (The fundamental theorem of finite abelian groups). Let G be a finite abelian group
of order n. Let the unique factorisation of n into distinct prime powers be given by n = pa1

1 . . . pak

k . Then:
1. G ∼= A1 × . . .×Ak where |Ai| = pi

ai

2. For each A ∈ {A1, . . . , Ak} with |A| = pa

A ∼= Zpb1 × . . .× Zpbt

with b1 ≥ b2 ≥ . . . ≥ bt and b1 + . . .+ bt = a
3. The decomposition given above is unique.

2.2 The Symbolic Model and Tamarin

Unbounded symbolic automated protocol analysis tools such as Tamarin [45], ProVerif [12], accept a
formal description of a protocol and its intended security properties, and try to establish a proof that no
attack exists within the tool’s model, or exhibit a counterexample that violates the security property.

In Tamarin’s framework, the execution of a protocol in an adversarial environment is modelled using
a labelled transition system. The state includes network messages, the adversary’s knowledge, and the
internal protocol state. The protocol and adversary interact by exchanging network messages, which
are controlled by the adversary. Both protocol rules and adversary capabilities are specified as labelled
multiset rewrite rules that define the valid transitions between system states, forming a trace. Security
requirements are specified in a (guarded) fragment of first-order logic with quantification over timepoints.

The transition system state is given by a multiset of facts. Facts are symbols that take any (fixed)
number of terms as their arguments. There is a special set of facts that encodes network messages as well
as the adversary’s knowledge. We generally write Factname(t1, t2, t3) for a fact named Factname with
three terms as its arguments.

A labelled multiset rewriting rule is written:� �
1 rule name:
2 [ l ] --[ a ]-> [ r ]� �

where rule is a keyword, name is an identifier, and l, a, r are multisets of facts representing the
premises, actions, and conclusions respectively. All of these may contain variables. Some rules may have
no associated action, and in that case we omit the action [ a ] in the rule description.

The labelled transition system operates on ground terms, that is, terms without variables. A rule is
applicable to a given ground state when an instantiation of the premises of the rule is contained in said
state. Applying a rule removes the instantiated premises, and adds appropriately instantiated conclusions.
The instantiated action facts represent the labels of the labelled transition, thereby defining the traces. In
particular, an execution is a sequence of states starting from the empty set and using rule instances to
transition from one state to the next. Then, a trace is the sequence of ground action facts appearing at
the rule instances in a protocol execution.

Security properties are defined in a fragment of two-sorted first-order logic, with messages and timepoints,
and quantification is possible over both. The atoms considered are ⊥, term equality s = s’, timepoint
ordering t1 < t2, timepoint equality t1 = t2, or an action Fact at a timepoint t1 written Fact(terms)@t1,
together with the usual logical connectives. This allows expressing a wide range of security properties.

We additionally consider restrictions which limit the explored state space. Technically, restrictions are
formulas just like security properties, and ensure that all valid traces must satisfy the restriction formulas.
They are often used to model conditional rewriting rules (such as inequality checks) or properties involving
global state. More Tamarin details can be found at [45].
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3 Existing Symbolic Diffie-Hellman Models

We now discuss existing symbolic models of Diffie-Hellman groups, including those used by Tamarin and
ProVerif. Models of Diffie-Hellman groups have been the subject of considerable research over the past two
decades. However, for brevity we focus only on the latest models used by these tools. Similarly, we focus
on what is captured by these models, rather than how these models are made tractable behind the scenes.

We first note a shortcoming of all automated symbolic DH models: they only model exponentiation in
the Diffie-Hellman group, and do not capture direct use of the group operation. This is due to technical
limitations imposed by the underlying logical framework which is founded on unification theory. Modelling
both the group operation and exponentiation directly would require solving unification problems in a field,
which is known to be undecidable [44, p. 160]. This means that these tools can model protocols which
make use of exponentiation, but not those which also use the group operation directly. For example the
term (gx)y = gxy can be represented, but gx · gy = gx+y cannot.

Fortunately, relatively few security protocols make direct use of the group operation. This problem was
considered in a recent paper: Liskov and Thayer [37] investigated the connections between computational
models of Diffie-Hellman groups and their symbolic counterparts. Perhaps surprisingly, they were able
to show that derivability in the restricted model without direct access to the group operation, coincides
with derivability in the full model with group operations. This is a deeply encouraging result, as it
suggests existing symbolic tools are not missing attacks by omitting the group operation. Even more
interestingly, the researchers claim a computational soundness result for prime order groups in the restricted
Diffie-Hellman model.

We now discuss in detail the models of Diffie-Hellman groups currently used by Tamarin and ProVerif.

3.1 ProVerif’s Model

ProVerif includes a standard DH model, which has been extended in two different directions. Unfortunately,
neither extension is compatible with the other, so we describe all three here.

Standard Model This model is included in the main ProVerif tool and is the most commonly used [13,
Page 41].� �
1 equations: g/0, exp/2
2 functions: exp(exp(g,x),y) = exp(exp(g,y),x)� �

The first line introduces a constant g and a binary function exp. The second line specifies the
commutativity of exp. By default, ProVerif uses a coarse model of Diffie-Hellman groups, modelling the
bare minimum required to allow protocols to function, and considerably restricts the attacker’s power.

There is no representation of exp’s associativity, inverses, or the identity element. This can lead to
missed attacks. For example, if the adversary learns the term gxyz and x, the adversary cannot deduce
gyz. Similarly, commutativity only applies to the base term. E.g:

gxy
z
= gyx

z 6= gzx
y
= gxz

y

Küsters and Truderung’s Extension In 2009, Küsters and Truderung developed a technique to allow
ProVerif to handle a more granular model of DH groups [33]. They provide a pre-processor that can take
a protocol description with the granular model and transforms it into a syntactic theory where these
equations do not need to be considered, which can directly then be analysed by ProVerif. They consider
the equations:� �
1 equations: (-1)/1, exp/2
2 functions: exp(exp(x,y),z) = exp(exp(x,z),y)
3 exp(exp(x,y),y^{ -1}) = x
4 {(x^{ -1})}^{-1} = x� �
Thus exponentiation is commutative, associative and has inverses, although not the identity element.
Unlike Tamarin’s approach, this approach only works for Horn clauses with ground exponents, which
means that they cannot find certain attacks where the adversary sends products. The transformation
additionally causes an increase in complexity of the model, and to the best of our knowledge, this approach
has not been used in modern ProVerif analysis of protocols that use DH.
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Bhargavan et al’s Extension In 2015, Bhargavan, Delignat-Lavaud, and Pironti presented [8] the
following model, built on top of ProVerif’s standard model. Their intent is to approximate the presence of
a “bad group” where small order elements exist.� �
1 functions: exp/2 gEl/2 gGrp/1 bGrp/0 bEl/1
2 equations: exp(gEl(gGrp(id),x),y) = gEl(gGrp(id),exp(x,y))
3 exp(gEl(bGrp ,x),y) =bEl(bGrp)
4 exp(bEl(gr),y) =bEl(gr)� �
The first equation defines normal exponentiation. The second and third collapse the result of a “bad”
exponentiation (either in a bad group or a bad element in a good group) to a single element. This over
approximates the presence of a small subgroup, in which every operation collapses to a single element. In
their paper, Bhargavan et al use this model for attack finding and automatically discovered unknown key
share attacks on real world protocols. A similar but slightly simpler model was later used by Kobeissi and
Bhargavan to show the necessity of certain validity checks in the Noise specification in [32]. However,
these models are not suitable for verification or more nuanced analysis, as a considerable range of valid
attacker strategies and protocol mitigations cannot be represented.

3.2 Tamarin’s Model

In 2012, Schmidt et al [45] presented the Tamarin prover for the symbolic analysis of security protocols.
Tamarin supports “best in class” DH theories with the following model:� �
1 functions: */2 ^/2 (-1)/1 (1)/0
2 equations:
3 x * (y * z) = (x * y) * z
4 x * y = y * x
5 x * 1 = x
6 x * x^{-1} = 1
7
8 {x^{-1}}^-1 = x
9 (x^y)^z = x ^ (y * z)
10 x^1 = x� �

The first four equations specify the group structure of multiplication in the exponent, whilst the latter
three describe the relationship between exponentiation of group elements and multiplication of exponents.
This accurately models the multiplication in the exponent, including associativity, commutativity, inverses
and identity. However, as previously mentioned, it does not allow for addition in the exponent, or
equivalently the direct application of a group operation.

3.3 Summary

These models offer a well justified representation of a Diffie-Hellman group, if we assume that the protocol
uses a prime order group, correctly rejects the identity element and can unambiguously parse group
elements. In the real world, protocols often work in non-prime order groups, accept the identity element
and must take great care when handling untrusted ‘group elements’. In the following section, we make our
first contribution and investigate how these models can be extended to handle the non-prime order case.

4 New symbolic models for DH Groups

We now develop our first main contribution: more accurate symbolic models of non-prime order groups.
We start out by describing several behaviours of such groups, then introduce a more fine grained element
representation, after which we present three models in detail in sections 4.3 to 4.5.

4.1 Behaviours of non-prime order groups

In the prime order case, by Lagrange’s Theorem (§2.1), every element, other than the identity element,
must have prime order and hence there cannot be any small subgroups. However, this is not necessarily
true in the non-prime order case. A non-identity element may have an order lower than the order of the
group and instead of generating the entire group, the element will generate a subgroup. For example, an
element h with order 2 generates a subgroup of size 2, with h2 = id, h3 = h and so on. Furthermore, every
non-prime order group necessarily contains additional subgroups, due to Cauchy’s Theorem (§2.1). We
call elements which belong to at least one small subgroup, small subgroup elements. These small subgroup
elements allow for a number of additional behaviours which are not found in prime order subgroups.

5



Firstly, confinement, when a small order element is exponentiated, the possible results are limited
to other elements in the subgroup. Assuming the exponent was randomly sampled, this leads to a
non-negligible likelihood of collisions where h1

x = h2
y for hi small order elements and x, y randomly

sampled integers. In contrast, if the hi are drawn from the prime order subgroup, collisions only happen
with negligible probability.

This can seriously impact the security of higher level protocols which rely on the ‘contributivity’ of
Diffie-Hellman operations as we will see in §7.

The second type of behaviour is that of point mangling, where given an element gx in the prime order
subgroup and h an element of low order, we combine them to get h · gx an element in the supergroup.
Although h · gx is a distinct bit string from gx, with non-negligible probability we may have (h · gx)z = gxz.
This can impact protocols implementing replay detection or other countermeasures, as they may expect
public keys to be unique.

Finally, it is possible to exploit small order subgroups to perform key leakage attacks. In 1997, Lim
and Lee [36] introduced this attack, permitting the recovery of secret exponents used in Diffie-Hellman
operations. The crux of the technique is that the attacker submits an element outside the prime order
subgroup to a protocol, which then uses the element in an exponentiation with a secret exponent. The
attacker then observes the resulting behaviour of the protocol. If the attacker can deduce or confirm a
guess of what the result of the exponentiation was, they can learn a limited amount of information about
the secret exponent which was used. The attacker can then repeat this process and eventually combine
the information in each guess using the Chinese Remainder Theorem and recover the secret exponent in
its entirety. This attack has proven practical in many real world situations [38, 39, 56] including recent
catastrophic key recovery attacks which impacted OpenSSL, the Exim mail server, as well as many other
TLS, SSH and IKE implementations. With these behaviours in mind, we now set out to build symbolic
models which can capture these behaviours.

4.2 Element Representation

Our first question is how to represent group elements in a more complex group. We note that because
the number of operations to solve the discrete log problem in a group scales with the size of the largest
prime factor of the group order, all Diffie Hellman groups must have at least one large prime factor.
Using the fundamental theorem of finitely generated abelian groups (§2.1), which states that for any finite
abelian group G of order n with a non-repeated large prime factor p, there is an isomorphism such that
G ∼= H1 ×H2 where H2

∼= Zp and H1 is of order h such that n = hp. This means that any element in G
can be expressed in the form:

h · gy ∼= (h, gy)

where on the right hand side we have (partially) decomposed the group. We will informally refer to H1 as
the cogroup of H2. In the (cryptographically unusual) case that p is a repeated factor, the prime order
subgroup may be contained in Zpk for some k, but this does not otherwise change our discussion.

We sketch the intuition behind this idea, noting that the underlying mathematics is well known: any
finite abelian group has a finite set of generators. Any element can be written as a combination of some
powers of these generators. This isomorphism is just between the ‘natural’ representation of the group, and
the representation of the group in terms of an integer associated to each generator. Instead of performing
the group operation on elements of the group, we may equivalently add the powers of each generator.
Similarly, exponentiation distributes over each element in the tuple in the natural way. This allows us to
describe any element of a finite abelian group in one the following four forms:
– (id, id) is the identity element.
– (id, gx) is a regular element of the prime order subgroup.
– (h, id) is an element in the cogroup.
– (h, gx) is an element in the supergroup.

We will now use this decomposition to provide a general representation of group elements in the symbolic
model. We define the function symbol ele(t, s, n) with arity 3. The first argument t represents the identifier
of the group, which will be useful when we consider protocols using multiple distinct groups later. s
represents the cogroup component, n is the prime order component. We will elaborate on each of these
components in the following three sections.

In the following, we differentiate between three different types of group. Firstly, in §4.3 we consider
prime subgroups and make a modest extension to adapt traditional models to our new representation.
Then in Section 4.4 we consider ‘nearly-prime’ groups where the order of the group n can be written as
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hp with p a large prime and h a small cofactor. Finally, In Section 4.5 we then deal with the general case,
where h may even be much larger than p.

4.3 Modelling Prime Order Groups

We now present a small extension to Tamarin’s default model, which captures the identity element in a
prime order group. Note, this is the identity element for the group operation, rather than multiplication
in the exponent. The ProVerif extension from [8] provides a model suitable for the identity element but
uses less accurate DH equations than Tamarin.

We can get the best of both worlds by by extending Tamarin’s equational theory for Diffie-Hellman
groups defined in §3.2 with an additional constant gid and equation:

gidx = gid

We combine this model with our new representation, and model a prime order group G as elements of
the form:

ele(′G′, gid , X)

Here, ′G′ is a public constant representing the name of the group, s, the cogroup component is fixed as the
identity element. Finally, X will be a ‘traditional’ Diffie-Hellman term using the exp operator discussed
earlier in §3.2.

As we are working in the symbolic model, we must explicitly allow the adversary to extract information
from elements. The first two parameters are public, so we need only allow the adversary to extract the
third term:� �
1 functions: ele/3 extract /1
2 equations: extract_1(ele(t,s,n)) = n� �

Introducing this equation allows for non-contributive behaviour that was previously not captured in
Tamarin under the implicit assumption that protocols rejected the identity element as a valid point.
Later, we will see how to restore the identity element check in situations where a protocol explicitly
requests it. This model is the starting point for our work.

4.4 Modelling “Nearly-Prime” Order Groups

With this representation in mind, we now consider the case of ‘nearly-prime’ groups, before tackling the
more general case in §4.5. We consider a group to have nearly-prime order if it can be written as n = hp
where h is a number such that log2(h)� log2(p). That is, the additional factor h is very small compared
to the order of the prime subgroup. This means the cogroup is of small size, leading to the confinement
and point mangling behaviours from Section 4.1. However, due to its small size, the leakage attack of Lim
and Lee is not of practical impact, leaking only a limited number of bits and we will not consider it for
now.

The question arises of how to model operations in the small order cogroup. Depending on the group in
question this cogroup may contain further small order groups or have other internal structure. To provide
a general model, we will abstract these details away by allowing the adversary to choose how this small
subgroup operates. We justify this approach on two grounds. Firstly, we intend to give the adversary as
much power as is reasonable to ensure our verification results are meaningful. Secondly, protocols are
typically considered secure if they can be implemented with a wide class of groups, consequently, they do
not and indeed cannot rely on the exact equations which hold in a specific small order subgroup. There
also exist various mitigation strategies that we will discuss later in §6.

We model this behaviour in our symbolic model by providing the adversary with a representation of
these small order points and we provide a private channel by which the adversary may ‘program’ the
result of exponentiation with a small order component. This allows the adversary to force collisions or
inequalities according to their requirements, and consequently the adversary will always know the small
order component of a group element term.

Consider the following example rule in Tamarin’s notation:� �
1 rule Operate:
2 [In(X),State(y)]-->[Out(X^y)]� �

We perform the following steps:
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1. Replace Xy with ele(t, r, ny).
2. Replace X with ele(t, s, n).
3. Add the premise: In(r).
4. Add the annotation: Raised(t, s, r, y).

Thus the rule becomes:� �
1 rule Operate:
2 [In(ele(t,s,n)),State(y),In(r)]
3 --[Raised(t,s,r,y)]->
4 [Out(ele(t,r,n^y))]� �

Note that in practice, we perform this transformation automatically. This provides a private channel
by which the adversary, using the message fact In, can determine the outcome of an operation in the
small subgroup. In this case specifying that sy = r.

However, an unrestricted private channel is too powerful. Firstly, the adversary is not required to
operate the channel deterministically, meaning that repeating the same operation may lead to different
results. Secondly, if the small subgroup component is the identity element gid , we know the result of
exponentiating must be the identity element as gidx = gid . We use the Raised label and Tamarin’s
restriction system to enforce these constraints:

Consistency : ∀t, s, r1, r2, y,#i,#j . Raised(t, s, r1, y)@i ∧ Raised(t, s, r2, y)@j =⇒ r1 = r2

Identity : ∀t, r, y,#i . Raised(t, gid , r, y)@i =⇒ r = gid

We now explore the behaviour of this model: When the input is the identity: ele(′G′, gid , gid), the result
is necessarily also the identity. Similarly a prime order element ele(′G′, gid , X) is also well behaved and
will produce ele(′G′, gid , Xy). Small subgroup elements are controlled by the attacker and consequently
ele(′G′, s, gid) will become ele(′G′, z, gid) with z selected by the adversary, allowing for confinement and
collisions. Finally supergroup elements ele(′G′, s,X) are partially controlled by the adversary, as Xy is
determined using Tamarin’s prime order model, but control of the s term allows for point mangling.

4.5 Modelling Composite Groups

We now turn to more general groups, where we do not require any relationship between the prime order
subgroup and the size of the supergroup. Whilst these groups are not typically considered desirable to
work in from a security perspective, they have often been selected for reasons of performance. In addition
to the behaviour found in ‘nearly-prime’ groups, these groups allow for the key leakage attack of Lim and
Lee to be performed.

We build on our earlier model of nearly-prime groups. As we have already allowed the small order
group in that case to grow to arbitrary size and the adversary to determine all operations in the small
order group, the larger cogroup in this case requires no additional extension beyond the modelling of the
information leak induced by the key leakage attack. We first consider the properties of this attack. There
are a few fundamental requirements for this attack to succeed:
1. The same exponent must be reused in multiple calculations.
2. The attacker must be able to submit an element with a low order component.
3. The attacker must be able to confirm or invalidate a guess at the result. This may be an offline

computation or online interaction, but even a single guess which can be confirmed or rejected suffices.
4. The supergroup must have enough small order factors to allow for the recovery of a significant fraction

of the key.
Note that in the ‘Nearly-Prime’ setting, the low cofactor ensures this last condition is not satisfied. Three
of these properties (1,2,4) are easily represented as trace properties as they are predicated on a particular
sequence of events. However, the third condition is not a trace property but a hyper property as it requires
reasoning about alternative possibilities. Whilst hyper properties can be explored in the symbolic model,
support is considerably more limited than for trace properties.

Consequently, we first describe a trace property which captures conditions 1, 2, and 4. If this trace
property holds, we can be sure that no small subgroup key leakage attack is possible on the protocol:

¬∃t1, l1, r1, t2, l2, r2, y,#i,#j.

Raised(t1, l1, r1, y)@i ∧ Raised(t2, l2, r2, y)@j ∧
r1 6= r2 ∧ l1 6= gid ∧ l2 6= gid
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If this property holds, then there is no trace satisfying all of conditions 1,2, and 4. The presence of
two raised labels with the same exponent y ensures condition 1. Likewise, the final two clauses ensure
condition 2 holds. Condition 4 is known in advance by selection of the group, if the protocol uses more
than one group and only a subset of these groups are composite, then this lemma can be specialised,
by further requiring that t1, t2 be equal to the types of the composite group. We discuss this further in
Appendix B.

However, if this trace property does not hold, the possibility of an attack depends on condition 3.
Although a real-or-random indistinguishability test on subgroup elements is appropriate for testing this
condition, and can be specified in the symbolic model, tool support for indistinguishability testing is still
in its infancy. Consequently, although we developed a model suitable for toy examples, it was not tractable
for real world protocols. We leave this as an area for future work. However, we note all protocol mitigations
of key leakage target conditions 1, 2 and 4, as condition 3 is very hard to prevent and consequently any
reported attack is likely to be a practical one.

5 Symbolically Modelling Elliptic Curve points

We now turn from our discussion of internal group structure to the representation of elliptic curve elements
in the symbolic model. Whilst elliptic curves have many advantages over traditional finite field DH groups,
their complex representations require more careful management.

In the finite field setting, group elements are integers in the range 1 to p− 1 for some large prime p.
Although protocols will typically intend to operate within a prime order subgroup inside this range, the
group operation is well defined over the entire range of elements. However, in the elliptic curve setting,
group elements consist of a pair of finite field elements, that satisfy the curve equation. This is discussed in
more detail in Appendix E. For points in the finite field that do not satisfy the curve equation, the group
operation is not well defined and performing operations on these invalid points can lead to catastrophic
outcomes [11, 22, 31].

In the following, we provide symbolic models for the additional behaviour that elliptic curve operations
can exhibit when operating on invalid points. To help modellers in choosing the right symbolic model for
a particular curve, we provide a list of common curves and their properties in Appendix A.

We first consider a special case, when the curve operation is implemented using a single coordinate
ladder, before providing a general model suitable for more traditional implementations. Our models build
on and extend those presented in the previous section.

5.1 Single Coordinate Ladders

Whilst elliptic curve points are traditionally represented by both an x coordinate and a y coordinate,
both coordinates are not necessarily needed for cryptographic purposes. Using the curve equation (see
Appendix E), it is possible to uniquely identify a point using its x coordinate and a single bit. This is
because the curve equation can be solved to give two possible solutions for y (corresponding to the positive
and negative square roots) and the single bit can be used to select the correct solution. Consequently,
using both the x and y coordinate only offers one additional bit of entropy over the x coordinate alone.

Furthermore, there exist special techniques for performing exponentiation (scalar multiplication) on
curve elements that only use the x coordinate. Whilst these techniques do not support more general uses of
elliptic curves, such as digital signature schemes, they have become popular for Diffie-Hellman operations.
These techniques are known as single coordinate ladders and were first introduced by Montgomery in
1987 [40] for a special class of curves. Later Brier and Joye [15] provided a ladder suitable for any elliptic
curve. In addition to requiring less bandwidth, these ladders are also easy to implement in constant time
and highly performant, leading to widespread adoption.

We now consider how these ladders behave with x coordinates which are not on the correct curve. As
is discussed further in Appendix E, every elliptic curve E over a finite field is uniquely associated with
another elliptic curve E′, known as its quadratic twist, or twist for short. For any x coordinate in a finite
field, it so happens that there exists a y value such that (x, y) either lies on the intended curve, or its
twist. That is, every x coordinate can be said to lie on the curve, or its twist (or both). Furthermore, a
single coordinate ladder is ‘well-behaved’ for both a curve and its twist. Thus for any x coordinate, the
ladder will calculate the group operation either on the curve, or its twist.

This has several important consequences. Firstly, modern curves have been designed to be twist secure
[20], where performing a discrete log on the twist is also intractable. This is intended to allow for single
coordinate ladders to be used without having to ensure an x coordinate lies on the correct curve. This
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reduces implementation complexity and improves performance. However, older curves do not necessarily
have this property. For example, calculating discrete logarithms on the twist of the NIST prime order curve
P-224 takes roughly 258 operations, compared to 2111 operations on P-224 itself [5]. Another complication
is that whilst some curves may have prime order and hence no small subgroup elements, their twists may
only be nearly-prime or even composite, further complicating the use of ladders on these curves.

As the properties of the twist depend on the specific curve used, we provide a model for each class of
twist. Firstly, the twist may be represented by a prime order group, a nearly-prime group or a composite
group as described in the previous section. We will also introduce an additional type of group, where
discrete logarithms are easy, to cover curves which do not have twist security.

We will differentiate between elements on the main curve and elements on the twist using the first
parameter of ele(t, s, n). Previously, we left this value unconstrained and uninterpreted. Now, we will
restrict to either being ′C ′, to indicate an element on the curve or ′T ′ to indicate an element on the twist.

We now specialise protocol rules that perform exponentiation into two constrained variants. One rule
variant will handle elements on the curve, and the other will handle elements on the twist. We return to
our earlier example from section 4.4 on page 7 and transform it for the single coordinate case:� �
1 rule Operate_Normal:
2 [In(ele(’C’,s,n)),State(y),In(r)]
3 --[Raised(’C’,s,r,y)]->
4 [Out(ele(’C’,r,n^y))]
5
6 rule Operate_Twist:
7 [In(ele(’T’,s,n)),State(y),In(r)]
8 --[Raised(’T’,s,r,y)]->
9 [Out(ele(’T’,r,n^y))]� �
We can now further restrict each rule, depending on the properties of the curve and its twist. For example,
if one should be of prime order, we will set s to be gid on all rules for that curve. The situation is similar
for testing for subgroup key leakage. If the twist has composite order, but not the curve, we can specialise
the key leakage trace property to require that the first parameter of Raised be equal to ′T ′, ensuring
only twist attacks are captured. This duplication of rules will also come in useful later when we consider
protocol level mitigations in §6. Note that in the special case where the curve and its twist have exactly
the same properties and the protocol applies its mitigations correctly to both curves, we can omit this
duplication of rules.

There is one additional behaviour that may be possible on a curve’s twist: the discrete log problem
may not be difficult. We capture this situation by providing the adversary with an oracle they can query
to take the discrete log of a twist element. We first extend every Twist variant to also produce the token
TRes(ny, y) and provide the rule:� �
1 rule Twist_Discrete_Log:
2 [In(X^y),TRes(X^y,y)]-->[Out(y)]� �
This rule requires the adversary to have learned the resulting DH element directly before it can calculate
its discrete log. In general, learning a non-invertible function of a DH element does not allow an attacker
to calculate its discrete logarithm.

5.2 General Invalid Curve Points

We now consider the more general setting, where points are represented as both a x and a y value. This is
often the case in protocols intended for widespread adoption (such as TLS) where there may be many
interoperating implementations. Unlike in the single coordinate case, the attacker is not restricted to
operating on the curve or its twist, meaning twist security has little relevance in this setting.

In 2000, Biehl, Meyer and Müller [10] were the first to investigate invalid curve point attacks. By
carefully selecting points, the group operation can be forced to operate in a series of different curves,
each with low order points. This allows the small subgroup key leakage attack of Lim and Lee to be
performed (as described in §4.5). In 2003, Antipa et al. [1] extended this work and calculated approximate
running times and the number of interactions for this style of key leakage attack. More recently, Neves
and Tibouchi [41] introduced a new technique for finding useful invalid curve points on Edwards Curves.
Not only does the attack find points of low order, it can also move the computation to curves where the
discrete log is easy.

In summary, there are a number of general and powerful techniques for selecting invalid curve points,
which allow for the behaviours we have discussed earlier: subgroup confinement, subgroup key leakage
and easy discrete logs.
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We now extend our earlier model of Diffie-Hellman elements to represent these special behaviours
in the elliptic curve setting. We will represent the elliptic curve, according to its type, as either prime,
nearly-prime or composite order. Then we provide a new construction capturing invalid points.

We represent elliptic curve points directly as the combination of two elements using Tamarin’s pairing
operator: 〈x, y〉 where x, y = ele(t, s, n). We then distribute exponentiation over them in the natural way.
As in the earlier twist case, we will duplicate and specialise the rules which perform exponentiation.

For the first rule, we will add the constraint that x = y, this represents operation on a valid curve
point where x and y satisfy the curve equation. For a valid point, each coordinate can be recovered from
the other with only one additional bit of information, so it is reasonable to represent them as equivalent
terms. Additionally, we require the first parameter of each element to be ′C ′ to reflect the well formed
nature. In the second case, we will add the constraint that x 6= y. In this case the point is invalid and we
will allow the adversary to substitute in a point of their choice.

We transform the invalid exponentiation rule by:
1. Add a Premise In(〈tx, rx, nx, ty, ry, ny〉), representing the attacker providing a substitute point
2. Write the result as 〈ele(tx, rx, nx

z), ele(ty, ry, ny
z)〉

3. Add the annotation Raised(〈tx, ty〉, 〈sx, sy〉, 〈rx, ry〉, z)
4. Add the conclusion IRes(ele(tx, rx, nx

z), z)
5. Add the conclusion IRes(ele(ty, ry, ny

z), z)
And finally we have the rule for taking discrete logs on invalid elliptic curves:� �

1 rule Invalid_Discrete_Log:
2 [In(X^z),IRes(X^z,z)]-->[Out(z)]� �

This model is highly flexible and describes the behaviour of invalid points. It uses elements of the
models from all previous sections. It also allows the protocol to split up x and y points according to how
these distinct values might be used in practice. Note that in this case, a small subgroup key leakage attack
is always potentially possible using invalid curve points, so the leakage lemma from §4.5 should always be
added. As in the twist case, we can use pattern matching to ensure regular curve elements are not the
subject of false attacks by requiring the lemma to pattern match on the type of the element (〈tx, ty〉).

6 Modelling Mitigations

There are several countermeasures and mitigation strategies which can be employed by protocol designers
to restrict or remove the behaviours we have discussed in this paper. Often, these countermeasures have
been added to implemented protocols in an ad-hoc fashion, leading to uncertainty about their suitability
and effectiveness. As well as discussing these mitigations and their corresponding model, we also consider
the recommendations of various authorities as to which mitigations should be employed and under what
circumstances they suffice. We begin with the more traditional checks:

6.1 Rejecting the Identity Element

Every group contains an identity element, which is a fixed point under exponentiation. In some imple-
mentations this point is not expressible in the chosen coordinate system; others may choose to manually
catch and reject this value before operating on it.

In our model, the identity element is represented by ele(t, gid , gid) in the single coordinate case and
〈ele(t, gid , gid), ele(t, gid , gid)〉 in the general model of elliptic curves. Consequently, it suffices to check
that at least one component is not gid to rule out the identity element.

So we provide the label: NotID(P ), where P = ele(t, gid , gid) and the restriction:

∀t,#i.NotID(ele(t, s, n))@i =⇒ s 6= gid ∨ n 6= gid

In the general model of elliptic curves, we generalise this axiom to handle both the x and y coordinate in
the natural way. This check may be used in a protocol before or after exponentiation.

6.2 Excluding Low Order Points

In nearly-prime groups, there are a small number of elements which have low order. Excluding these
points, by matching against a list, is intended to ensure ‘contributory’ behaviour when exponentiating
points. For some elliptic curves, notably Curve25519 [6], this countermeasure has proven controversial;
leading to a number of discussions between designers and implementers.
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Daniel Bernstein, designer of Curve25519, recommends against excluding low order points, as this only
needs to be done for ‘exotic’ protocols [4]. Similarly, Trevor Perrin, co-designer of Signal, recommends
against the check as ‘safe protocols’ should not require it [42]. On the other hand, some security researchers
advocate [24, 51] for including the check and the IETF has opted to allow it [25]. This has lead to a
similar split in implementation behaviour with LibSodium choosing to reject low order points [35], whilst
the Go standard library currently accepts them [27], despite both advertising the same NaCl API. We
will see the impact of these decisions in a case study in §7.

We represent these checks in our model by providing a label NotLowOrder(P ) where P = ele(t, s, n)
and the restriction:

∀s, n,#i.NotLowOrder(s, n)@i =⇒ n 6= gid

This check is not always practical, for example in composite groups there may be a huge number of low
order points, which would make these exclusion checks impractical. Similarly, this check does not ensure
elements belong to the intended prime order subgroup, they may still have high order and belong to the
larger supergroup. Consequently, this technique will prevent confinement, but not necessarily leakage.

6.3 Checking Element Order

This is a more thorough, but more computationally expensive, version of the previous check.
As discussed in Appendix C, the order of an element x is the smallest natural number k such that

xk = gid . When the order of a group is equal to hp, p is prime and h and p are coprime, then given an
element in the group, checking it belongs to the order p subgroup can be done by ensuring xp = 1. If the
protocol assumes x belongs to the group, rather than checking it is a valid representative, the order check
is not well defined. In prime order groups, it is common for this check to be replaced by checking that the
group element is not the identity element, as this is much more efficient and all other elements have the
same order.

We model this behaviour by ensuring that if an element is within the group, we correctly confine it to
the prime order subgroup and otherwise do not impose a restriction. We provide the label: OrdChk(P )
and the restriction:

∀t, s, n,#i . OrdChk(ele(t, s, n))@i =⇒ s = gid

In the general elliptic curve setting, this becomes:

∀tx, sx, nx, ty, sy, ny,#i .

OrdChk(〈ele(tx, sx, nx), ele(ty, sy, ny)〉)@i =⇒
tx 6= ty ∨ sx 6= sy ∨ nx 6= ny ∨ (sx = gid ∧ sy = gid)

This states that either the point is invalid, or it is an element of the prime order subgroup. Note, the
identity element is allowed, as gidp = gid .

6.4 Low Order Clearing

There are several techniques which allow the protocol or the implementation to “zero out” the low order
component. Let n be the order of the supergroup, with p the order of the prime subgroup and h the
cofactor such that n = ph. Then if p and h are coprime, for any element in g ∈ G we have that gh will
belong to the prime order subgroup. For example, if g is a small order element, gh = gid , which (also)
belongs to the prime order subgroup.

This prevents information leaks, as an adversary can no longer deduce any information from the small
subgroup component. However, this can exacerbate subgroup confinement problems, as all low order
elements are confined to the same output value, the identity element.

This technique is known by a number of names and can be implemented in different ways. For
example, in Curve25519, this is know as private key clamping and any private key is manipulated by the
implementation to ensure it is a multiple of the cofactor [6]. Similarly, protocols can use this mitigation
by raising elements to the power of the group cofactor before using them. This does also change the high
order component of an element and consequently all implementations of a protocol must agree on whether
to use this mitigation.

We model this by providing the label ClearPoint(P ). We substitute P = ele(t, s, n) with P ′ =
ele(t, gid , n

′h′
). ′h′ is a public constant which represents the change to the prime order component and we

assume is already known to the adversary.
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6.5 Checking the Curve Equation

When dealing with elliptic curve points, it is important to ensure they belong to the correct curve before
operating on them, as discussed in §5. Even if using a single coordinate ladder, this is an important step
when the curve is not twist secure.

In the single coordinate case, we provide the label NoTwist(X) and the restriction:

∀t, s, n,#i . NoTwist(ele(t, s, n))@i =⇒ t 6= ′T ′

This rejects any point on the twist. Note that if the curve check is applied immediately prior to using the
point in an exponentiation, it is equivalent (and more performant in Tamarin) to simply delete the rule
variant for the twist. However, this check might be made at a different point in the protocol and hence we
provide this restriction.

In our general model of elliptic curves, we model this check by using the label Eq(x, y) which enforces
the equality (and in our model validity) of the curve point. If this check is performed in the same protocol
rule as the exponentiation, we can simply omit the generation of the invalid point variant as it is trivially
impossible.

6.6 Summary

These mitigations cover the typical types of mitigation available to protocol designers and recommended
by standards bodies. For example, NIST’s guidance [3, §5.6.2.3.3] recommends an elaborate sequence of
checks and defence in depth measures when exponentiating the point Q:
– Ensure Q is not the identity element (§6.1)
– Verify Q satisfies the curve equation. (§6.5)
– Perform a full order check (§6.3)
– Raising by the cofactor during exponentiation (§6.4)
– Rejecting the result if it is the identity element (§6.1)
Contrastingly, Curve25519 implementations will always raise elements by the cofactor, and may

optionally reject low order points, but do not perform any other checks. This is in part because the single
coordinate ladder and twist security allows for some checks to be omitted and in part because small
subgroup confinement is not considered problematic by the designers. One additional mitigation we have
not discussed here are the Decaf [29] and Ristretto [55] proposals which build an efficient abstraction of a
prime order group using either Curve25519 or Curve448. These proposals are exciting as they allow for
Curve25519 to be treated as a prime order group, removing the need for other mitigations, but have not
yet seen widespread usage.

7 Case Studies

Over the proceeding sections we have built a family of symbolic models which capture the behaviour of
different types of DH groups. We provide an appendix (A) describing how to select a particular model for
a given group or curve, as well as advice on how to proceed if the group or curve is unknown. We now
evaluate our models on three real world case studies. Our source code and models are available [21].

7.1 Scuttlebutt

Secure Scuttlebutt is a peer-to-peer gossip protocol for the distributed web [50]. Users run their own Secure
Scuttlebutt endpoint locally and connect to their contact’s endpoints to exchange messages and synchronise
state. There are several interoperating clients including Javascript, Go, Rust, and C implementations [48].

Here we focus on a specific component of Secure Scuttlebutt: the so-called secret-handshake, which is
used to authenticate and encrypt connections between peers. This handshake is of critical importance to
the higher level protocol, as application data is typically otherwise unencrypted. The Secret Handshake
was described in an early whitepaper [52] and wire specification [46]. The design draws on lessons from the
older Station-to-Station protocol and the more recent Noise Protocol framework and aims to ensure not
only basic security requirements but also perfect forward secrecy, resistance to unknown key share attacks,
and key compromise impersonation. It also aims for a less typical authorisation property: the secret
handshake is intended to keep the responder’s public key secret and only allow connections from initiators
who already know the correct public key. This mechanism forms the basis of Scuttlebutt’s invitation
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Initiator
C, i, gr

Responder
C, r

gx, hmacC(g
x)

gy, hmacH(C,gxy)(g
y)

K1 := H(C, gxy, gxr)

sencK1(

M︷ ︸︸ ︷
gi, signi(C, g

r,H(gxy)))

K2 := H(C, gxy, gxr, gyi)

sencK2
(signr(C|M |H(gxy)))

Key := K2

Figure 1: Secure Scuttlebutt’s ‘Secret Handshake’

system, where peers can ‘friend’ each other by exchanging their public keys. The handshake was originally
modelled in Tamarin in February 2018, using the traditional model of Diffie-Hellman groups [49].

The secret handshake is depicted in Figure 1. i, r are the private signing keys of the initiator and
responder, and gi, gr are the corresponding public keys. There are two distinct phases. Firstly, each party
exchanges an ephemeral Curve25519 public key and proves knowledge of C, which is a constant used to
identify the Scuttlebutt Network. The initiator then derives a key K1 using the ephemeral values and
the responder’s public key and uses it to transmit both their own public key and an Ed25519 signature
‘proving’ they intend to talk to the responder. The responder can decrypt this message, learn the initiator’s
public key gi and then prove control of their own public key gr. The resulting key is then used to encrypt
and authenticate further messages used in the higher level gossip protocols. An important authentication
property is that only an initiator who already knows the responder’s public key, should be able to complete
a handshake. We modelled this protocol in Tamarin, using our ‘nearly-prime single coordinate elliptic
curve model with nearly-prime twist’ model of Curve25519.

Tamarin automatically found a novel, previously unreported attack on this protocol which violates this
authentication property. That is, an adversary with no knowledge of the responder’s public key is able to
complete a handshake as an initiator and knows the final key. This attack makes use of the small subgroup
properties we have developed in this paper, and proceeds as follows. The attacker, as an initiator, selects
their public key and ephemeral key to both be points of low order on Curve25519. The resulting shared
key is constant and hence the adversary is able to derive the first ciphertext. However, the adversary
must now produce a signature on the responder’s public key, without knowing the responder’s public
key. Perhaps counter intuitively, this is possible and in fact, the method of producing such a signature
is described in the original Ed25519 design paper [7, Page 7]. This additional signature property has
recently been added to Tamarin [30].

As this attack makes use of two unusual properties of Curve25519 keys, one might assume that this attack
is only theoretical. However, we successfully implemented the attack against the Go implementation of the
‘Secret Handshake’ [47], confirming the accuracy of our analysis. The source code of our implementation
is also contained in our supplementary materials [21]. Using this attack, an adversary could compromise
the privacy of every Secure Scuttlebutt user, by methodically scanning the Internet for clients running
Secure Scuttlebutt and then connecting to them using our attack. These clients would then gossip their
private state to the attacker.

Consequently, we have disclosed our findings to the Secure Scuttlebutt team and have recommended
two different mitigations. Firstly, Secure Scuttlebutt clients could be configured to reject low order points.
This ensures the attacker cannot derive the symmetric key without knowing the responder’s public key
and does not require a protocol change, as honest clients will never send such malformed public keys.
Our alternative suggestion is to include the initiator’s and responder’s public key when deriving K1 and
K2. Whilst this second suggestion requires a new version of the protocol and risks incompatibility with
older clients, it ensures implementations will not accidentally (and silently) forget the low order point
check. These two suggestions mirror the recommendations of protocol and primitive designers in §6.2 - it
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is possible to fix contributivity problems at either the primitive or the protocol level. We also provide
models of our two suggested fixes, which Tamarin automatically proves correct.

The Scuttlebutt team responded promptly and acknowledged the security issue. Interestingly, it
transpired that even though all Scuttebutt implementations use the same NaCl API to handle their
Curve25519 operations, not all Scuttlebutt implementations were vulnerable to our attack.

Through a joint investigation with the Scuttlebutt team, we discovered that libraries offering NaCl
support have unknowingly diverged and handle low order points differently. LibSodium [34], one of the
most popular libraries, rejects low order points before they are operated on. However, HACL [57] - a
formally verified library advertising itself as a “drop in” replacement for LibSodium - omits this check,
as does the NaCl implementation in Go’s standard library [27] and Cloudflare’s CIRCL library [18].
Consequently, a protocol relying on contributivity, implemented using the NaCl API, may or may not be
vulnerable depending on the underlying library.

Our work has lead to several changes. The Scuttlebutt team opted for our first proposed fix, as
backwards compatibility is an important real world concern, and they have updated the vulnerable
Scuttlebutt clients to ensure low order points are rejected. We also raised the omitted check with the
maintainers of Go’s NaCl API , Cloudflare’s CIRCL and the HACL library, and they agreed to add this
check in future releases.

7.2 Bluetooth Handshakes

The Bluetooth standard [28] has a long and convoluted history of overlapping standards, design flaws and
vulnerable implementations. One of its core security goals is to establish a secure channel between two
devices, without relying on complex configuration or prior exchange of secret information.

We focus on two handshakes defined in the Bluetooth specification: Secure Simple Pairing (SSP),
introduced in 2007 and Low Energy Secure Connections (LESC), introduced in 2014. Whilst there are
considerable differences in how these two handshakes behave at a low level, accounting for changes in
Bluetooth packet formats and advances in hardware manufacturing, these two protocols are equivalent
from a design perspective. Unlike earlier Bluetooth handshakes, these two protocols were widely considered
to be secure and underwent multiple formal analyses using ProVerif [2, 16, 17].

Two devices perform a handshake by exchanging Diffie-Hellman public keys on the NIST P-224 Elliptic
Curve, along with some metadata. Next, each device displays a short numeric code which is intended
to be a short confirmation code of the earlier exchange. The user checks that both codes match and
then the two devices each prove knowledge of the shared secret key. We depict this in Figure 2. The
importance of public key validation was documented in the standard and implementers of the protocol
were recommended to either:
– use an ephemeral Diffie-Hellman key, or
– verify the points are on the correct curve.

Perhaps unsurprisingly, implementers almost universally opted for the first mitigation, as it requires very
little additional code. However, as was discovered in 2018 by Biham and Neumann [11], the first mitigation
is not sufficient to secure the handshake. The issue impacted all major Bluetooth vendors, including
Qualcomm, Broadcom, Intel and Google.

Biham and Neumann observed that the Bluetooth standard requires both the x and y coordinate of
the Diffie-Hellman key be transmitted, however only the x coordinate is included in the short numeric
code that the user checks. This allows an attacker to silently change the y coordinate, leading to an
invalid curve attack. Biham and Neumann perform this attack, setting the y coordinate to 0 which in
turn ensures the point (x, 0) will have order 2. This means each device will compute one of two possible
keys, either (x, 0) or O, the point at infinity, which are both known to the attacker.

Using our improved symbolic model for elliptic curve elements, Tamarin automatically finds this
attack. We model P-224 as a prime order elliptic curve with general coordinates. We systematically
investigate the proposed mitigations and claims by Biham and Neumann, as well as proposing one of our
own. We also explore our model of subgroup key leakage and evaluate how different mitigations allow or
prevent this type of attack. Our full results are documented in Table 1.

Our results show, as expected, that if the implementation used static keys rather than ephemeral keys,
a key leakage recovery attack could have been performed. Additionally, we propose an alternative protocol
level mitigation of authenticating both the x and y coordinates and show this also mitigates the attack.

Surprisingly, Tamarin finds a new attack that contradicts one of the claims of Biham and Neumann.
They state in their disclosure that as long as at least one device is patched against their attack, the
resulting handshake is secure. Our analysis shows this is not true: it is possible for an attacker to forge
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Figure 2: Bluetooth’s Simple Secure Pairing Handshake

the packets such that whilst the patched device will believe the handshake failed due to a network error,
the unpatched device will accept the handshake and believe pairing has succeeded.

In more detail, consider a patched initiator and an unpatched responder. When the initiator sends
their Diffie-Hellman key (x, y), the adversary in the middle modifies it such that the unpatched responder
receives (x, 0). The responder then sends their Diffie Hellman key to the patched initiator as expected.
They then exchange confirmation messages, but since these messages are only based on the x-coordinates
of both points, they will match and the user will accept. The initiator and responder now compute different
keys, but crucially, the adversary knows the key that the responder computes. This enables the adversary
to impersonate as the initiator towards the unpatched responder, and exfiltrate resources (data, sensors)
or insert data.

Thus, unpatched responders are still vulnerable to attacks when accepting a session with a patched
initiator.

7.3 Tendermint

Tendermint [54] is a ‘Blockchain API’ which can be used to implement byzantine fault tolerance for
arbitrary state machines. One of its features is a secure peer-to-peer layer which authenticates and
encrypts connections between clients in a private network. They use a custom handshake [53] which they
describe as being based on the Station-to-Station protocol. The protocol, depicted in Figure 3, performs
an ephemeral Diffie-Hellman handshake over Curve25519 and derives a key and a challenge value from the
shared secret. Each party then signs the challenge value and transmits it to the other. Verifying these
signatures over the challenge value is intended to prove both parties are using the same secure channel.

Initiator
K, i, gr

Responder
K, r

gx

gy

sencgxy (gi, signi(H(g
xy)))

sencgxy (gr, signr(H(g
xy)))

Key := gxy

Figure 3: Tendermint’s Handshake
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Protocol Variant Secure? Leakage? T (min)

Bluetooth
P-224

Original •◦ X 5
Using static “ephemerals” •◦ •◦ 6
With curve order check X X <1
With static “ephemerals” and curve order check X X <1
Authenticating both coordinates X X <1
Patching one device •◦ X 5

Scuttlebutt
Curve25519

Original •◦ X 131
With exclusion of low order points X X 88
Including identities in the KDF X X <1

Tendermint
Curve25519

Original •◦ X <1
With exclusion of low order points X X <1
Including identities in the transcript X X <1

Table 1: Verification results when applying our various Tamarin models to each of our case studies. Each case
study terminated automatically without any user input or choice of heuristic.
Secure means the protocol achieves its stated security objectives
Leakage means the protocol is susceptible to a key recovery attack
X indicates that Tamarin successfully verified the property
•◦ indicates that Tamarin found an attack
P-224 is modelled using a prime order elliptic curve with general coordinates; Curve25519 is modelled using
a nearly-prime order elliptic curve with a single coordinate ladder, a nearly-prime order twist and low order
components cleared after exponentiation.

We model this protocol in Tamarin with our enhanced DH models and evaluate its security properties.
Specifically, we focus on the secrecy of the derived keys and the authenticity of completed handshakes. If
an honest party concludes a handshake with another party whose key is not compromised, the resulting
key should be secret from the adversary.

Tamarin automatically discovers an attack using small subgroups, which allows an attacker to steal
the identity of any party willing to complete a handshake with them. That is, if the attacker completes a
handshake with A, the attacker can now connect to B using A’s identity. This violates both the secrecy
and the authenticity properties mentioned earlier. The attack is relatively simple, if an attacker sends a
small order point as their ephemeral public key, the resulting challenge is constant3, regardless of the other
party’s contribution. When the handshake completes, the attacker obtains a signature on this constant
challenge from the honest participant, which can then be substituted as their own signature in future
sessions.

This attack was independently discovered by another security researcher and disclosed to the Tendermint
team [43]. The Tendermint team proposed two possible mitigations, the first and easiest being to reject
low order points and the second to include the identities of each party in the challenge derivation. We
model both mitigations and verify they prevent the attack.

8 Conclusions

In this work, we have identified and addressed several shortcomings of the traditional symbolic models
for Diffie-Hellman groups. We have introduced models to capture rich group structure such as small
subgroups and key leakage attacks, and explored the additional attacks and capabilities of an attacker who
exploits invalid elliptic curve points. We have provided a family of symbolic models which are suitable for
both verification and attack finding and implemented them in Tamarin.

Through a series of case studies, we have not only evaluated the effectiveness of our models, but also
found new, real world, attacks on deployed protocols and refined existing results for previously analysed
protocols. In order to prove one of our attacks was not merely theoretical, we implemented our attack
and verified Scuttlebutt’s Go client was vulnerable. Furthermore, our work has already had real world
impact with mitigations being deployed in Scuttlebutt at the application level, as well as planned changes
to the NaCl API’s offered in HACL and Go’s standard library.

3 Curve25519 always raises by the cofactor as discussed in §6.4
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As is typical for automated analysis performed in the symbolic model, our verification results are not
proven to be computationally sound. That is, a successful verification does not necessarily imply the
existence of a reduction from an attack on the protocol, to some underlying hard problem. However, we
view our work as the first step towards realising a computationally sound model of real world Diffie-Hellman
groups. We have shown our model to be tractable and effective at capturing these new behaviours and
look forward to investigating computational soundness results in future work.

With symbolic models becoming increasingly granular, automatically generating models from reference
implementations looks increasingly attractive. It would be interesting to see whether recent work on
automatically generating implementations can be integrated with our granular model of Diffie-Hellman
groups.
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A Choosing a Symbolic Model

In this section, we clarify how a particular model should be selected and employed. Our extensions exist
along two axes:
– Internal Group Structure
• Prime Order Groups (§4.3)
• Nearly-Prime Order Groups (§4.4)
• Composite Groups (§4.5)

– Group Elements
• Finite Field Elements (no additional behaviour)
• Elliptic Curve Elements
∗ Single Coordinate Ladders (§5.1)
∗ General Coordinates (§5.2)

These models do not stand in isolation, each subsequent model extends the previous model to allow for
more behaviour in a particular setting. Furthermore, we allow a wide range of mitigations to be employed
by the protocol, which are described in §6. Our models also support the use of multiple groups with
distinct properties, we discuss this in §B. We now explore how to select the appropriate symbolic model
for a particular real world group.

Firstly, in the finite field setting, the only relevant parameter is the group order. If it is a safe prime,
e.g. p = 2q+ 1 with q and p prime, then the group order is 2q and there is only a single subgroup of order
2. Consequently, the nearly-prime model is appropriate. If a DSA or Schnorr group is used, the order
will have many small factors and the composite model should be used. If unsure, selecting the composite
model is the most general and hence appropriate. Note there are no finite field groups with prime order,
as p is prime, p− 1 is necessarily even and hence there is always at least the subgroup of order 2.

In the elliptic curve section, the picture is more complicated. The curve itself may have prime or
nearly-prime order 4. Then it depends on the coordinate system in use. In the case of a single coordinate
ladder, the twist will necessarily be either prime, nearly-prime or composite. Additionally the twist may
or may not be twist secure. Alternatively in the general coordinate system, the parameters of the twist do
not matter. If the exact elliptic curve is unknown, the most general model is a nearly-prime curve with
general coordinates. We provide a table of common elliptic curves and their twist’s parameters in Table 2.
Note that Curve25519 is more tightly specified than other curves, it always applies private key clamping
to eliminate low order components and is always implemented using a single coordinate ladder.

4 Composite order curves are possible but not used in practice
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Curve Order Twist Twist
Order Secure

NIST P-224 Prime Composite ×
NIST P-256 Prime Nearly-Prime X
NIST P-384 Prime Prime X
Curve25519 Nearly-Prime Nearly-Prime X
Ed448 Nearly-Prime Nearly-Prime X
secp256k1 Prime Nearly-Prime X
BN(2,254) Prime Composite ×
brainpoolP256t1 Prime Composite ×
ANSSI FRP256v1 Prime Composite ×

Table 2: Common Elliptic Curves and their properties [5, 26]

B Modelling Multiple Groups

We now briefly explain how to model combinations of different groups with different orders in one protocol.
When a protocol uses multiple groups, it may behave differently when it receives an element of a particular
group. For example, it may apply particular mitigation strategies or run certain sub protocols.

Elements of two different groups are distinguished in our framework by the first parameter. For
example, ele(′G1′, s1, n1) represents an element of G1. A protocol can restrict a particular operation by
pattern matching on this first parameter. Similarly, this allows us to capture the properties of different
groups. Branching in Tamarin is typically represented by having multiple rules, pattern matching or
applying conditions on each rule to represent the specific conditions for that branch.

Firstly, prime order group elements should always pattern match the second parameter to gid , ensuring
no small subgroup behaviour can apply. Secondly, when considering a composite group and a non-composite
group, the trace based key leakage property can be restricted to require t1, t2 to match a particular group
identity.

Elliptic curve groups can be managed in the same fashion, by following the transformations for
individual rules given in each section, it is possible to model protocols where some entities use differing
coordinate systems.

C Background on Diffie-Hellman Groups

We introduce the mathematical background of Diffie-Hellman groups and the concepts we use in this
paper. We begin with some concepts from elementary group theory, an reader without previous exposure
may find [14] useful.

Definition 1. Let G be a non-empty, finite, set. Let · denote a binary operation on G, let _−1 be a unary
operation and 1 ∈ G. We say (G, ·,_−1, 1) is a finite abelian group if it has the following properties:

1) Closure ∀a, b ∈ G . a · b ∈ G
2) Commutativity ∀a, b ∈ G . a · b = b · a
3) Associativity ∀a, b, c ∈ G . (a · b) · c = a · (b · c)
4) Identity ∃1 ∈ G . ∀a ∈ G . a · 1 = a
5) Invertibility ∀a ∈ G . ∃b ∈ G . a · b = 1, a−1 = b

For brevity, we will typically omit additional parameters and simply refer to a G as a group when the
context clear.

Definition 2. We define exponentiation to on a group element a by an integer x to be the result of
repeated applications of the group operation. That is:

ax =

|x| times︷ ︸︸ ︷
a · a · . . . · a

If x is negative, we replace a with a−1.
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The quintessential feature of a Diffie-Hellman group is that performing the inverse of exponentiation is
computationally intractable, i.e. given gx, it is hard to recover x. This is known as the discrete logarithm
problem.

Definition 3. Let (G, ·,_−1, 1) be a group. Let H be a subset of G. If (H, ·,_−1, 1) forms a group, we
say that H is a subgroup of G and respectively G is a supergroup of H.

Definition 4. Let G be a group and S be a subset of G. We say S generates G if any element in G
can be expressed as a (finite) combination of elements S under application of ·,−−1. Elements in S are
called generators of G. If G can be generated by a single element, we say G is cyclic. For an element g
of G, let n be the smallest natural number such that gn = 1 where 1 is the identity element of G, we say
the order of g is n and write |g| = n. Similarly, we say the order of G is the number of elements in the
set. Note that an element of order k generates a subgroup of order k.

Definition 5. Let (H, ·) and (G,+) be two groups, a group isomorphism from G to H is a bijective
function f : G→ H such that for all u, v ∈ G we have that f(u+ v) = f(u) ∗ f(v). We write G ∼= H.

An isomorphism is a structure preserving map between groups, notably it preserves the algebraic
properties of each group, however it does not necessarily preserve the computational properties; an
isomorphism need not be effectively computable.

Note that if |G| is prime, then an element is necessarily either a generator or the identity element and
hence G is cyclic. Furthermore, if |G| = n is cyclic then (G, ·,_−1, 1) is isomorphic to Z/nZ the integers
modulo n.

Definition 6. Let (G,+) and (H, ·) be a group, their direct product G×H is defined as:
1. The set of elements is the Cartesian product of the underlying sets. Elements are ordered pairs (g, h).
2. The binary operation on G×H is defined component wise: (g1, h1) · (g2, h2) = (g1 + g2, h1 · h2)

D Background on Finite Fields

Finite Fields were the original family of groups which were used for Diffie Hellman schemes [23]. Let p
be a prime number, then the multiplicative group of the finite field (Z/pZ)∗ consists of the set of the
non-zero elements, i.e. the integers (technically, equivalence classes of integers mod p) between 1 and p− 1
and the group operation is multiplication mod p. This group has order p− 1 and is hence even. From the
Fundamental Theorem of Finite Abelian Groups (FTFAG), we know that the factors of p− 1 are crucial
in understanding the internal structure of the group. There have been two common choices. The first and
most popular is that of picking p such that it is a safe prime, with p = 2q+ 1 and q a prime number. This
means p− 1 = 2q and hence necessarily there are only two subgroups: one of order 2 and one of order q.
The second choice is to use a DSA group where p = rq + 1 for some large r, often much larger than q.
Here the group structure is much more complex with many small subgroups.

Group elements have a very simple representation as integers in the set 1, . . . , p− 1 and the group
operation is defined over this entire range. However, typically a protocol intends to operate in the prime
order subgroup and it is only possible to tell if a group element is also a member of this prime order
subgroup with careful checks.

E Background on Elliptic Curves

Using Elliptic Curves for Diffie-Hellman groups began to grow in popularity over the past 10 years and
have recently become the most popular family of Diffie-Hellman groups. Although they are significantly
more complex to implement than finite field groups, they offer much improved performance, as well as
much smaller key sizes. Elliptic curves are defined by a curve equation and a finite field of particular size.
Group elements are given by the following definition:

Definition 7. [19, p. 13.1] Let K be a field and let a1, a2, a3, a4, a6 ∈ K be elements such that the
discriminant of the polynomial given in the equation below is not zero. Then the set of points E(K) on
the elliptic curve E = (a1, a2, a3, a4, a6) are those which satisfy the equation:{

(x, y) ∈ K2 : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

}
∪ {O}
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For this work, we do not need the full details of the group operation, or how these parameter values
are selected in this paper. It is possible to choose the order of an elliptic curve group with much more
control than in the finite field case. Typically, the group order is chosen to be prime or nearly-prime.

Pairs of elements of K2, written (x, y) which satisfy the above equation are considered to be points
on E(K), along with the distinguished identity element. Elliptic curve addition formulae are used to
implement the group operation and typically operate on both the x and y coordinate. However, single
coordinate ladders also exist [15, 40], which given an x coordinate and integer n can calculate xn without
needing the y component.

Every elliptic curve E over a field K has an associated quadratic twist E′, which is another elliptic
curve such that E and E′ are isomorphic over the algebraic closure of K [19, §13.1.5]. We do not have the
space to cover the full definition, proof of existence and uniqueness and other properties of the twist, see
[19] for further details. However, we do need an important property, when K is a finite field [19, p. 13.17]:

∀x ∈ K . ∃y ∈ K . (x, y) ∈ E(K) ∨ (x, y) ∈ E′(K)

That is, for any x value, there is some y value such that (x, y) is on the curve or its twist. Of course, there
are many more more pairs (x′, y′) which are not on either the curve or its twist.

F Version history

v.1.1, May 2019 Minor updates.
v.1.2, August 2019 Minor updates and integrated several appendices into main body to improve

readability.
v.1.3, January 2020 Expanded on Bluetooth attack in the case of one patched and one unpatched

device.
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