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Abstract. In this work we present a new interactive Zero-Knowledge Argument of knowledge for
general arithmetic circuits. Our protocol is based on the “MPC-in-the-head”-paradigm of Ishai et al.
(STOC 2009) and uses MPC with preprocessing such as recently proposed by Katz, Kolesnikov and
Wang (ACM CCS 2018). Our argument system uses only symmetric-key primitives and utilizes a version
of the so-called SPDZ-protocol which has efficiency benefits for arithmetic circuits compared to other
approaches.
Based on specific properties of our protocol we then show how it can be used to construct an efficient
Zero-Knowledge Argument of Knowledge for instances of the Short Integer Solution (SIS) problem. We
present different protocols that are tailored to specific uses of SIS and show how our solution compares
in terms of argument size to existing work. We moreover implemented our Zero-Knowledge argument
for SIS and show that using our protocols it is possible to run a complete interactive proof, even
for general SIS instances which result in a circuit with > 106 gates, in less than 0.5 seconds. To the
best of our knowledge, our construction outperforms all known approaches for the SIS problem with
post-quantum security either in terms of computation or communication complexity.

1 Introduction

Zero-Knowledge Arguments of Knowledge (ZKAoK) are interactive protocols that allow a com-
putationally bounded prover to convince a verifier that she knows a witness for a certain state-
ment, without revealing any further information about the witness. Since their introduction in the
80ies [GMR89] these protocols have been important building blocks for applications in cryptog-
raphy. While solutions for very specific languages have been plentiful, many applications require
the use of arbitrary (algebraic) circuits in order to prove complex relationships. For example, prov-
ing that two homomorphic commitments contain the same committed message is generally an
easy task, while proving knowledge of a preimage of a SHA-256 hash requires more generic solu-
tions. Recent years saw a variety of different techniques which aim at providing such ZKAoK (see
[PHGR16,GMO16,AHIV17,BSBHR18,WTS+18,BSCR+18] to just name a few), varying in terms of
argument size, prover/verification time, interaction and assumptions. While many of these systems
perform very well with large witnesses and circuit sizes, none of them are a one-size-fits-all solution.

As an example, consider the so-called Short Integer Solution (SIS) problem. Here, a verifier
has a matrix A and a vector t while the prover wants to prove knowledge of a secret s such that
t = As mod q and ||s||∞ ≤ β. The SIS problem and related problems are crucial building blocks for
post-quantum lattice-based cryptography and constructing efficient ZKAoK with a small communi-
cation complexity has long been a problem: the soundness error of current special-purpose protocols
is constant, meaning that the arguments have to be repeated many times to actually be convincing to
a verifier. A particular, non-standard approach has been suggested by Bendlin & Damg̊ard [BD10],
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who were the first to examine arguments of knowledge for SIS using generic proof systems. They
observed that for certain argument schemes, the above SIS function has both a very low multiplica-
tion depth and low total number of multiplications, if the secret s is a binary vector. However, many
general ZKAoK systems only provide asymptotic efficiency, meaning that they require the circuit to
be very big before their strengths play out [AHIV17,BBC+18]. Moreover, many of these approaches
achieve sub-linear communication complexity at the cost of high prover’s running time [PHGR16].
Other approaches are insecure to post-quantum attacks [WTS+18,MBKM19,BCC+16,PHGR16]
or rely on knowledge assumptions that are poorly understood. Finally, none of existing general
solutions takes advantage of the unique structure of the SIS problem.

1.1 ‘MPC-in-the-Head’ and Preprocessing

The “MPC-in-the-head” paradigm is a general technique which is used in our construction. Before
outlining our contributions, we first describe what this paradigm is.

MPC or Secure Multiparty Computation describes a type of interactive protocol which allows
to securely compute functions on secret data. No information is leaked beyond the output of the
function with correctness even in the presence of dishonest participants.

MPC-in-the-head was introduced by Ishai et al. [IKOS07] as a technique to construct generic
zero-knowledge proofs from MPC protocols. Here, the statement to be proven is rewritten into a
circuit C, which outputs y if and only if its input w is a correct witness for the statement to be
proven. The prover simulates all parties of an MPC protocol as well as their interaction in his head.
These parties obtain a secret-sharing of the witness w as their input, run a protocol to evaluate
C and send the outputs to the verifier. Moreover, the prover commits to the inputs as well as
randomness and exchanged messages of each party separately, and opens a verifier-chosen subset of
these commitments to the verifier. The verifier then checks if these parties were simulated correctly
by the prover and that the messages and the outputs are consistent. On a very high level, this is a
proof of the statement if the MPC scheme is robust against active attacks, and it is zero-knowledge
due to the privacy of it.

Preprocessing is a widely used optimization of practical MPC schemes. Here, each party begins
the actual protocol with shares of correlated randomness, which is itself independent of the inputs
of the protocol. This correlated randomness is then used to speed up the actual computation, and
due to its independence it can be computed ahead of time. To the best of our knowledge, the only
MPC-in-the-head scheme to use preprocessing was introduced recently in [KKW18].

1.2 Our Contributions

In this work, we construct a new practically efficient ZKAoK for arithmetic circuits, together with
a multitude of extensions to make it applicable to SIS. Our scheme is based on the “MPC-in-the-
head” approach and uses only symmetric-key primitives. It has an argument size that only depends
on non-linear gates of the circuit C and low prover running time. We implemented our construction
and report on its practicality. In more details:

‘MPC-in-the-Head’ with Preprocessing. We first generalize the idea of [KKW18] to work over
arithmetic circuits using a variant of the SPDZ MPC protocol [DPSZ12,LN17] and provide a formal
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proof of security to their “cut-and-choose” preprocessing heuristic. Then, we present a new con-
struction where we replace the “cut-and-choose” mechanism with a “sacrificing”-based approach.
While both approaches have similar cost per MPC instance, our “sacrificing”-based approach yields
a smaller cheating probability, which means that the number of MPC instances simulated in the
proof can be significantly smaller, thus reducing the overall communication footprint. Our scheme
is highly flexible in its choice of parameters. In particular, by changing the number of parties in
the underlying MPC protocol, one can alternate between achieving low communication and low
running time. Our construction only requires efficient standard symmetric primitives, and thus is
plausibly post-quantum secure. The presentation of the two constructions is in Section 3.

Application to SIS. The MPC scheme which we use in our construction allows to perform
additions and multiplications with public values “for free”, meaning those do not have an impact
on the size of the argument. In the SIS problem the verification of the input of the prover consists
of computing a product with a public matrix A and a proof that the secret s contains bounded
values, so the first part comes essentially for free. We initially tweak the approach of [BD10] and
only allow s to consist of bits, which allows for a very fast argument of size using one square gate
per element of s. Then, we show how to handle more general distributions of s and introduce some
specific optimizations to reduce communication and computation. This is described in Section 5.

Experimental Results. We implemented our zero-knowledge protocol for the Binary SIS problem
(i.e., where the secret s is a vector of bits) and ran extensive experiments with various sets of
parameters – both for the SIS problem and for the simulated MPC protocol. For a 61-bit field
and a matrix A of size 1024 × 4096 (which suffices for many applications such as encryption or
commitments), we are able to run our argument in 1.2 seconds for 40-bits of statistical security when
working with a single thread. When utilizing 32 threads, this reduces to only 250 ms. This shows
that general lattice-based ZK arguments (which do not rely on structured lattices) are practical
and can be used in real-world applications. To the best of our knowledge, we are also the first to
implement ZK arguments for general SIS. The results and all the details can be found in Section 6.

Sampling circuits on the fly. A major source of optimizations to our application is the fact
that our “MPC-in-the-head” protocol essentially allows the prover and the verifier to negotiate the
circuit C during the protocol, under certain circumstances. This fact is used by us to construct
circuits “on the fly” with fewer non-linear gates, which helps to reduce the argument size. Thus,
as an additional contribution of this work, we provide formal definitions for an argument system
where the circuit is sampled jointly by the prover and the verifier during the execution and show
how to incorporate this into our protocols. This is described in Section 4.

1.3 Related Work

The past few years saw a tremendous progress in the efficiency of zero-knowledge arguments of
knowledge for arithmetic circuits. ZK-SNARKs (Succinct Non-Interactive Arguments of Knowl-
edge) such as Pinocchio [PHGR16] and libsnark [BSCTV14] offer a very low argument size and
verification time, at the expense of keys in the size of Megabytes and a large prover runtime due to
the use of pairings. This also means that they are inherently not post-quantum secure. From weaker
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assumptions, Bootle et al. [BCC+16] recently constructed a highly efficient argument system, a vari-
ant of which can also be adapted to the post-quantum setting [BBC+18]. Albeit asymptotically
more efficient, our construction outperforms [BBC+18] for small circuits. In addition to [BCC+16],
Wahby et al. [WTS+18] present a practically efficient ZK-Snark from the Discrete Log assump-
tion. MPC-in-the-head [IKOS07] was first shown to be practical by the work of Giacomelli et al.
[GMO16]. Later works such as the Ligero argument system [AHIV17] improved upon that work and
provided an argument with proof size that is sub-linear in the size of the circuit C. Recently, Ben-
Sasson et al. presented a new Zero-Knowledge Interactive Oracle Proof called Stark [BSBHR18]
which improves asymptotically upon IKOS-style proof systems, as well as a practically efficient
protocol called Aurora [BSCR+18] with proof size that is only poly-logarithmic in C. These con-
structions are asymptotically better than ours in terms of proof size. However, the computational
work of the prover is orders of magnitudes higher than in our construction due to the extensive use
of polynomial interpolation. In addition, they do not have the property that linear gates have no
effect on the complexity, which makes our protocol fit to applications such as SIS.

Zero-Knowledge Arguments for SIS. While the approach of [BD10] can more be seen as a theoret-
ical result, there are three main lines of work for SIS arguments of knowledge. The identification
scheme of Stern [Ste96] was modified into a argument of knowledge by Kagawa et al. [KTX08]
for their commitment scheme, which was then generalized to be a proper argument of knowledge
by Ling et al. [LNSW13]. This argument system has constant soundness error and its efficiency
quickly degrades with the bound β on the witness. The argument is extremely versatile and allows
constructions such as e.g. ring signatures [LLNW17].

A second line of work more directly follows standard Schnorr-style proofs and uses rejection
sampling to be zero-knowledge [Lyu09,Lyu12]. Like Stern-style arguments it has constant soundness
error, but it supports also non-binary secrets with negligible communication overhead. On the other
hand, the soundness guarantee only holds with some “slack”, meaning that while an honest prover
starts with a secret ||s||∞ ≤ β, the protocol only guarantees that ||s||∞ ≤ τ · β where τ depends,
among other things, on the dimensions of A.

A third was recently introduced by del Pino et al. [dPLS19]. They use a variant of the Bulletproof
scheme to adapt range proofs for the structured lattice setting. As they argue in the paper, the
computational efficiency of their scheme hinges on using Ring-SIS or Ring-LWE primitives, while
the soundness also relies on the Discrete Log assumption.

We provide a detailed comparison of these works with our construction in Section 7, including
comparison of proof size, whenever possible, for the SIS application.

2 Preliminaries

Unless stated otherwise, operations in this work are carried out over the field F = Fq for an
odd prime q. The elements are being represented by the interval [−(q − 1)/2, (q − 1)/2]. We use
λ as the computational and κ as the statistical security parameters, and generally assume that
q ≈ poly(λ, κ). We use bold lower-case letters such as s to denote a vector and bold upper-case
letters like A for matrices. We let s[i] denote the ith component of the vector s. Furthermore, we
use [n] as an abbreviation for the set {1, . . . , n}.
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2.1 Programming Model

Our notation for the circuits that we use in this paper will be similar to [BHR12].
The circuit C = (nin, nout, nC , L,R, F ) is defined over a field F, and each wire w will hold a value

from this field or ⊥ initially. C has nin input wires as well as nout output wires and nC ≥ nin+nout
wires in total. We define I = {1, . . . , nin},W = {1, . . . , nC} and O = {nC − nout + 1, . . . , nC}. The
circuit will have ngates = nC − nin gates in total and we define the set G = {nin + 1, . . . , nC}.

We define functions L : G → W \ O, R : G → (W \ O) ∪ {⊥} such that L(x) < x as well as
L(x) < R(x) < x if R(x) 6= ⊥ (i.e., the function L(x) returns the index of the left input wire of the
gate whereas the function R(x) returns the index of the right input wire if exists). The function
F : G × F× (F ∪ {⊥})→ F determines the function which is computed by each gate.

The algorithm eval(C, x) with x ∈ Fnin then runs the circuit as follows

1. For i ∈ [nin] set wi ← x[i].
2. For each g ∈ G:

(a) l← L(g), r ← R(g)
(b) wg ← F (g, l, r)

3. Output y = wnC−nout+1 . . . wnC

We further restrict F to compute certain functions only: (i) Add: On input x1, x2 output x1 + x2,
(ii) Mult: On input x1, x2 output x1×x2, (iii) CAdd: On input x and for the hard-wired a output
x+ a, (iv) CMult: On input x and for the hard-wired a output x× a; and (v) Square: On input
x output x2. We say that C(x) = y if eval(C, x) returns the value y ∈ Fnout .

We denote by nmul and nsq the number of multiplication and square gates in the circuit respec-
tively.

2.2 Zero-Knowledge Proof of Knowledge

Let TM be an abbreviation for Turing Machines. An iTM is defined to be an interactive TM, i.e. a
Turing Machine with a special communication tape and a PPT iTM is a probabilistic polynomial-
time TM. Let LR ⊆ {0, 1}∗ be an NP language and R be its related NP-relation for circuits over
F. Thus (x = (C, y), w) ∈ R iff (C, y) ∈ LR and eval(C,w) = y. We write Rx = {w | (x,w) ∈ R}
for the set of witnesses for a fixed x.

Honest Verifier Proof of Knowledge (HVPoK). Assume (P,V) is a pair of PPT iTMs and
let ξ : {0, 1}∗ → [0, 1] be a function. We say that (P,V) is a proof of knowledge with knowledge
error ξ if the following properties hold:

Completeness: If P and V follow the protocol on input x and private input w to P where
(x,w) ∈ R, then V always outputs 1.

Knowledge Soundness: There exists a probabilistic algorithm E called the knowledge extractor,
such that for every interactive prover P̂ and every x ∈ LR, the algorithm E satisfies the following
condition: let δ(x) the probability that V accepts on input x after interacting with P̂. If δ(x) > ξ(x),
then upon input x ∈ L and oracle access to P̂, the algorithm E outputs a string w such that
(x,w) ∈ LR in expected number of steps bounded by O( 1

δ(x)−ξ(x)).

We say that (P,V) is an honest verifier zero-knowledge proof of knowledge, if in addition to the
two above properties, the following property is also satisfied.
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Zero-Knowledge with Respect to an Honest Verifier: Let viewPV (x) be a random variable
describing the content of the random challenge of V and the messages V receives from P dur-
ing the joint computation on common input x. Then, there exists a PPT simulator S, such that
{S(x)}x∈L ≈c {viewPV (x)}x∈L

This definition is sufficient, since public-coin protocols like the protocols we consider in this
work, which satisfies the zero-knowledge with respect to the honest verifier, can be easily trans-
formed to protocols which are zero-knowledge in general by having the verifier commits to his chal-
lenges at the beginning of the execution. Moreover, it is possible also to obtain a non-interactive
zero-knowledge proof of knowledge (NIZKPoK) via the Fiat-Shamir transformation [FS86]. If the
soundness of a proof only holds against a computationally bounded prover, then one generally talks
about computationally sound proofs which are known or Arguments of Knowledge (AoK).

2.3 Commitments and Collision-Resistant Hash Functions (CRHF)

We use Commitments and Collision-Resistant Hash Functions (CRHF) as buildings blocks in our
constructions and thus introduce them now shortly. A commitment scheme allows one party to
commit to a message m by sending a commitment value which satisfies the following two properties:
(i) Hiding: the commitment reveals nothing about m.; and (ii) Binding: it is (computationally)
infeasible for the committing party to open a committed message to different messages m and m′.

A Collision-Resistant Hash Functions (CRHF) is a function H for which it is “hard” to find two
inputs x and x′ such that H(x) = H(x′). Usually, hash functions can shrink a long message into a
short digest one. This means that for almost all messages a collision must exist. The requirement
is therefore that such a collision will be very hard to find for any PPT adversary.

2.4 The Short Integer Solution Problem

We will now formalize the SIS problem, which was already informally introduced in the introduction.
Let q be a prime such that Fq is the base field of the argument system. At the same time, q will
also be the modulus of the SIS instance which is defined over Zq. Though Fq ' Zq in our setting,
we keep the distinction that we use Fq when we talk about circuits, while we use Zq when we
talk about SIS. To define the Short Integer Solution problem, let n,m ∈ N such that n � m. We
naturally embed Zq into Z by considering and identifying each mod q-number with an element
from the interval [− q−1

2 , q−1
2 ] ⊂ Z. This allows us to consider the `p-norm of vectors s ∈ Zmq and

we let ||s||∞ be the ∞-norm of the embedding of s into the module Zm. We define Smβ ⊂ Zmq to be
the subset of m-element vectors with `∞-norm ≤ β.

Definition 1 (Short Integer Solution (SIS)). Let m,n, q be defined as above and β ∈ N. Given
A ∈ Zn×mq and t ∈ Znq , the (inhomogeneous) SIS-problem is to find s ∈ Zmq such that t = As mod q
and s ∈ Smβ .

We can collect all possible sets of (A, s, t) that fulfill above definition in an NP-relation

Rm,n,q,βSIS = {(x,w) = ((A, t), s) | s ∈ Smβ ∧A ∈ Fn×mq ∧ t = As}

In practice, one often encounters proofs that do not show exactly that s ∈ Smβ even though the
prover has such a value as witness. Instead, they guarantee that the bound might be a bit bigger,
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by a factor at most τ which is mostly referred to as slack. We have that Rm,n,q,βSIS ⊆ Rm,n,q,τ ·βSIS if

τ ≥ 1, so any honest prover will still make the verifier accept if it proves for Rm,n,q,τ ·βSIS instead.

For simplicity, we will also consider a special type of SIS where the vector s of the witness has
to be binary.

Definition 2 (Binary-SIS). Let m,n, q be defined as above. Given A ∈ Zn×mq and t ∈ Znq , the
(inhomogeneous) Binary SIS-problem is to find s ∈ {0, 1}m such that t = As mod q.

This Binary-SIS problem is not uncommon and the versions of the schemes of [BD10,LNSW13] are
actually defined for it. We specifically define its relation as

Rm,n,qB−SIS = {(x,w) = ((A, t), s) | s ∈ {0, 1}m ∧A ∈ Fn×mq ∧ t = As}

3 Honest Verifier Arguments of Knowledge for Arithmetic Circuits

In this section, we introduce our honest verifier argument of knowledge (HVZKAoK) protocol
for proving the satisfiability of arithmetic circuits. We begin by describing the underlying MPC
protocol to securely compute an arithmetic circuits. Then, we present two HVZKAoK protocols
based on the MPC protocol - one that relies on the “cut–and–choose” technique and one that relies
on “sacrificing”. While the first is a direct extension of a recent work of Katz et al. [KKW18], the
second one is new to the best of our knowledge.

3.1 The MPC protocol

Our MPC protocol is a simplified version of the SPDZ protocol [DPSZ12]. Let N denote the number
of parties and let P1, . . . , PN denote the parties participating in the protocol.

Secret sharing scheme. Let [[x]] denote the a sharing of x. We use a simple additive secret sharing,
i.e., a sharing of x consists of random x1, . . . , xN ∈ Zq such that x = x1 + · · · + xN mod q, where
Pi holds xi. We define the following operations on the secret sharing scheme.

– open([[x]]): In this procedure, the parties reveal the secret x by having each party send its share.
Upon receiving xj from each Pj , party Pi computes x =

∑N
j=1 xj mod q.

– [[x]] + [[y]]: Given two shares xi and yi of x and y, each party Pi defines xi + yi as its share of
the result.

– [[x]] + σ: Given a sharing [[x]] and a public constant σ, party P1 define x1 + σ as its share of the
result, whereas the other parties’ shares remain the same.

– σ · [[x]]: Given a sharing [[x]] and a public constant σ, each party Pi define σ · xi as its share of
the product.

Multiplication operation. We say that the triple ([[a]], [[b]], [[c]]) is a random multiplication triple if a
and b are random and c = a · b. To multiply two shared values [[x]] and [[y]] using a preprocessed
random triple ([[a]], [[b]], [[c]]), the parties work as follows:

1. The parties locally compute [[α]] = [[x]]− [[a]] and [[β]] = [[y]]− [[b]].

2. The parties run open([[α]]) and open([[β]]) to obtain α and β.

3. Each party locally computes [[z]] = [[c]]− α · [[b]]− β · [[a]] + α · β.
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The above is the well-known Beaver Circuit Randomization [Bea91] which holds since

[[z]] = [[c]]− α · [[b]]− β · [[a]] + α · β
= [[ab]]− (x− a) · [[b]]− (y − b) · [[a]] + (x− a) · (y − b)
= [[ab− xb− ab− ya− ba+ xy + ay + xb+ ab]]

= [[xy]]

Square operation. We say that the pair ([[b]], [[d]]) is a random square if b is random and d = b2. To
compute the square [[x2]] given [[x]] using a preprocessed ([[b]], [[d]]), the parties work as follows:

1. The parties locally compute [[α]] = [[x]]− [[b]].
2. The parties run open([[α]]) to obtain α.
3. Each party locally computes [[z]] = α · ([[x]] + [[b]]) + [[d]].

Note that the above holds since

[[z]] = α · ([[x]] + [[b]]) + [[d]] = (x− b) · ([[x]] + [[b]]) + [[b2]] = [[x2 − b2 + b2]] = [[x2]].

The protocol. The above building blocks can easily be combined to securely run eval(·) on a
circuit C: after the inputs are secret-shared using [[·]], the parties apply G as defined in Section
2.1 consecutively to the shares. That is, addition gates and multiplication/addition by-a-public-
constant gates are computed locally, whereas multiplication and square gates are computed using
the above sub-protocols.

Security. For our purpose of using a MPC protocol to establish a zero-knowledge argument, the
used protocol only needs to be secure in the presence of a semi-honest adversary. Furthermore, it
suffices for the protocol to be secure in the client-server model, i.e., when the parties who run the
protocol (the servers) do not hold input and do not see the final output, but rather receive shares of
the inputs from the clients, perform the distributed computation and then send the output shares
back to the clients.

Formally, let Ftr and Fsq be ideal functionalities that provide the parties with random multi-

plication triples and squares. We define view
Ftr,Fsq
I,π (C) to be the view of a subset of parties I during

the execution of a protocol π on an arithmetic circuit C, in the (Ftr,Fsq)-hybrid model and in the
client-server model described above. This consists of the input shares, the correlated randomness
they receive from the ideal functionalities and the messages they obtain from the other parties while
computing multiplication and square gates. We prove the security of the protocol in Theorem 1.

Theorem 1. Let C be an arithmetic circuit over the field F and let π be the protocol described above.
Then, for every subset of parties I ⊂ {P1, . . . , PN} with |I| ≤ N − 1, there exists a probabilistic

polynomial-time algorithm S such that {S(I, C)}≡{view
Ftr,Fsq
I,π (C)}

Proof. Intuitively, this follows from the fact that the corrupted parties see only shares of the values
on the wires of the circuit that could open to any value or random public values. Formally, the
simulator S begins by choosing t random shares for each input wire and adding them to the view
of the corrupted parties in I. Then, it goes over the circuit in topological order; for addition gates
and multiplication-by-a-constant, it does the local operation on the corrupted parties’ shares as
defined by the protocol. For multiplication gates, S chooses t shares of a,b and c and adds them to
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the corrupted parties’ view. Then, it chooses random α and β, compute the honest parties’ shares
of them accordingly (knowing the corrupted parties’ shares) and adds them to the view. Then, it
computes the corrupted parties’ shares of z as defined by the protocol. Similarly, for square gates,
it chooses t random shares for b and d and adds them to the view of the corrupted parties. Then, it
chooses a random α, computes the honest parties’ shares accordingly, adds them to the view and
computes the corrupted parties’ shares of the output.

The only difference between the simulated view and the real execution is the way α and β are
chosen. However, in both cases the these values are uniformly distributed. Thus, the view generated
by the simulator is identically distributed to the view in the real execution as required. ut

3.2 HVZKAoK Protocol using Cut–and–Choose

We are now ready to present our first HVZKAoK protocol Πc&c. It is based on the MPC protocol
presented in the previous section and relying on the cut–and–choose technique to generate correct
random multiplication triples and squares. The formal description appears in Fig. 1.a and Fig. 1.b.

The idea behind the protocol is that the prover P proves its knowledge of w such that C(w) = y
by simulating a secure N -party computation of the circuit over an additive sharing of w, using the
MPC protocol described above. Since P knows the input and thus the values on each wire of the
circuit, it can simulate the execution “in his head”. Since our MPC protocol uses random triples
and squares supplied by the ideal functionalities Ftr and Fsq, the prover P needs to play their role
as well. Clearly, P may try to cheat in the simulated computation, aiming to cause the verifier V
to accept false statements. This is prevented by having V challenging P in two ways. First, after
P has committed to M sets of random triples and squares, V chooses randomly τ of them, which
are revealed and opened to him. The remaining M − τ sets of the pre-processed data are used to
support M−τ circuit computations - each with different randomness. The prover P performs these
computations and commits to the views of the parties, to be then challenged for the second time by
V. The verifier chooses a random subset of N −1 parties in each execution, whose views are opened
and tested for consistency. If theses two tests passed successfully and the output of the circuit is y,
then V outputs acc. Observe that V cannot learn any information about the witness w during
the protocol: the opened pre-processing executions reveal only random data which is thrown away
afterwards, and the N − 1 views that are opened do not reveal anything since the MPC protocol is
resilient to N − 1 semi-honest parties.

In more details, in Round 1, P commits to M pre-processing executions. A major source of
saving here is using pseudo-randomness instead of pure randomness. Specifically, P chooses a seed
sde for each execution e, from which he derives the seeds sde,i for each party Pi. These seeds are used
to generate all the random shares held by Pi throughout the computation. Now, if execution e is
selected to be tested by V in Round 2, then P can send just sde to V, thereby saving communication.
For the M − τ preprocessings which are used in the on-line execution in Round 3, P cannot send
the master seed but rather will have to send N − 1 seeds of the N − 1 parties chosen to be opened
by V in Round 4. Thereby the data of one of the parties is kept secret (in Section 3.4 we will see
that it is possible to reduce the data sent here from N seeds to logN seeds). Observe, however,
that not all the data held by the parties is random. In particular, when generating a multiplication
triple [[ae,k]], [[be,k]], [[ce,k]] (e is the execution index and k is the index of the gate for which this
triple is consumed), one can use the seeds of the parties to generate the sharing of ae,k and be,k,
but once these are fixed, ce,k = ae,k · be,k is also fixed. Thus, when generating the sharing of ce,k,
it is necessary to “fix” the initial sharing derived from the random seeds. Therefore, the prover
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also commits to the offset ∆e,k for each execution e and multiplication gate gk, which is added to
the initial random sharing [[ce,k]]. The same applies to the generation of random squares. Similarly,
when the sharings of the inputs are generated in Round 3, P can use the seeds of the parties to
derive their shares, and then fix the initial sharing by adding the offset (denoted this time by φe,k)
to obtain a correct sharing of the given input. Thus, the prover P must commit to the offset on
each input wire as well. To further reduce communication, we hash all the commitments together
and send only the hash value to V.

Cheating error (soundness). We compute the probability that V outputs acc when C(w) 6= y. Let
c be the number of pre-processing emulations where P cheats (i.e., by generating incorrect squares
or multiplication triples). Since τ emulations out of M are opened and tested by the verifier, we

have that this step is passed without the cheating being detected with probability
(M−cτ )
(Mτ )

. After this

step, M − τ circuit computations are being simulated by the verifier. In order to make the output
of the protocol be y, P must cheat (i.e., deviate from the specification of the MPC protocol) in
M − τ − c emulations. Since N − 1 views are being opened in each such emulation, P clearly will
not sabotage the view of more than one party. Thus, the probability that this is not detected is

1
NM−τ−c . The overall success cheating probability is therefore

ξc&c(M,N, τ) = max
0≤c≤M−τ

{ (
M−c
τ

)(
M
τ

)
·NM−τ−c

}

Formal proof. As mentioned before, the above protocol has appeared already in [KKW18] (for
Boolean circuits, but extending it to Arithmetic circuits is straightforward). However, there it
was described as an optimization to their baseline protocol and so was not formally proved. We
therefore provide now a proof that the protocol Πc&c is an honest verifier zero-knowledge argument
of knowledge.

Theorem 2. Let H be a collision-resistant hash function and let com be a secure commitment
scheme. Then, the protocol Πc&c is an HVZKAoK with knowledge error (soundness) ξc&c(M,N, τ).

Proof. We prove the that each of the three properties defined in Section 2.2 are satisfied by our
protocol.

Completeness. This follows trivially from the correctness of the MPC protocol.
Honest Verifier Zero Knowledge. This property follows from the security of the MPC

protocol as defined in Theorem 1 and by the hiding property of the commitment scheme. Specifically,
let Sπ be the simulator that exists for the MPC protocol described in the proof of Theorem 3.1. We
construct a honest-verifier zero-knowledge simulator S for our protocol, which works as follows:

1. S chooses random E ⊂ [M ] such that |E| = τ . Then, for each e ∈ Ē = [M ] \ E, it chooses a
random ie ∈ [N ].

2. For each e ∈ E, S prepares the pre-processing data as an honest prover would do in Round 1,
with one exception: it computes Πe as a commitment to a 0-string.

3. For each e ∈ Ē, S chooses sde,i for each i ∈ Ie = [N ] \ {ie}. Then, for the pre-processing in
Round 1, it generates statee by choosing random ∆e,k for each multiplication/square gate. In
addition, it chooses random φe,k for each input wire k and compute Πe accordingly. Proceeding
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The “Cut–and–Choose” Based HVZK Argument Πc&c (Part 1)

Let H be a collision-resistant hash function and com be a commitment scheme

Inputs: Both the prover P and the verifier V hold y ∈ Fnout , a description of an arithmetic circuit C over a
finite field F and parameters M,N, τ ; the prover P also hold a witness w ∈ Fnin such that C(w) = y.

Round 1:
1. For each e ∈ [M ]:
(a) P initializes an empty string statee.
(b) P chooses a master seed sde and use it to generate sde,1, . . . , sde,N .
(c) For each multiplication gate gk ∈ G:

i. P defines three random sharings [[ae,k]], [[be,k]] and [[ce,k]] by using sde,i for each i ∈ [N ] to generate
ae,k,i, be,k,i and ce,k,i.

ii. P computes ae,k =
∑N
i=1 ae,k,i and be,k =

∑N
i=1 be,k,i and ce,k = ae,k · be,k.

Then, it sets ∆e,k = ce,k −
∑N
i=1 ce,k,i and statee ← statee||∆e,k.

iii. P sets the random triple for this gate to be ([[ae,k]], [[be,k]], [[ce,k]] +∆e,k)
(d) For each square gate gk ∈ G:

i. P defines two random sharings [[be,k]] and [[de,k]] by using sde,i for each i ∈ [N ] to generate be,k,i and
de,k,i.

ii. P computes be,k =
∑N
i=1 be,k,i.

Then, it computes ∆e,k = (be,k)2 −
∑N
i=1 de,k,i and statee ← statee||∆e,k.

iii. P sets the random square to this gate to be ([[be,k]], [[de,k]] +∆e,k).
(e) P chooses a linear random sharing of the inputs:

i. For each i ∈ [N ], P uses sde,i to generate we,1,i, . . . , we,nin,i.
ii. For each k ∈ I, P sets φe,k = wk −

∑N
i=1 we,k,i.

(f) P chooses a random string ge ∈ {0, 1}λ and then it computes Ωe = com(φe,1|| · · · ||φe,nin , ge).
(g) For each i ∈ [N ], P uses sde,i to generate re,i ∈ {0, 1}λ and then it computes Γe,i = com(sde,i, re,i).
(h) P uses sde to generate a random string se ∈ {0, 1}λ and computes Γe = com(statee, se).
(i) Finally, P computes he = H(Γe||Γe,1|| · · · ||Γe,N ).

2. P computes hΓ = H(h1|| · · · ||hM ), hΩ = H(Ω1|| · · · ||ΩM ) and sends them to V.

Round 2: V chooses a random challenge E ⊂ [M ] such that |E| = τ and sends it to P.

Round 3:
1. Let Ē = [M ] \ E. First, P chooses sdĒ .
2. For each e ∈ Ē:
(a) P initializes an empty string viewe. Then, it goes over the circuit in topological order and simulates each

gate’s computation using the MPC protocol described in Section 3.1, while consuming the random triples
and squares it prepared in Round 1.
i. For each multiplication gate gk, P sets: viewe ← viewe||αe,k,1|| · · · ||αe,k,N ||βe,k,1|| · · · ||βe,k,N .

ii. For each square gate gk, P sets: viewe ← viewe||αe,k,1|| · · · ||αe,k,N .
(b) Let oe,1,i, . . . , oe,nout,i be the shares on the output wires held by party Pi at the end of the computation.

Then, for each output wire k ∈ O, P sets: viewe ← viewe||oe,k,1|| · · · ||oe,k,N .
(c) P uses sdĒ to generate ge ∈ {0, 1}λ and computes Πe = com(viewe, ge).

3. P computes hπ = H(Πe1 || · · · ||Πe|Ē|).
4. P sends to V: {sde}e∈E , {Ωe}e∈E and hπ.

Fig. 1.a: HVZK argument using “Cut–and–Choose”

to Round 3, S generates viewe by following the instructions of Sπ with I = Ie and using sde,i
to generate the required randomness. For the commitments Γe,̄ie , S uses the 0-string as the
committed message.

4. For each e ∈ Ē, for each k ∈ O, S set oe,k,ie = yk −
∑

i∈Ie oe,i.
5. S computes all the hash values as an honest prover would do.
6. S outputs a transcript of the protocol.
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The “Cut–and–Choose” Based HVZK Argument Πc&c (Part 2)

Round 4: For each e ∈ Ē: V chooses a random īe ∈ [N ] and sends it to P.

Round 5: For each e ∈ Ē:
Let Ie = [N ] \ {̄ie}. Then, P sends the following to V: (1) sdĒ , {sde,i}i∈Ie (2) Γe,̄ie (3) αe,k,̄ie , βe,k,̄ie and ∆e,k

for each multiplication or square gate gk (4) ge and {φe,k}nin
k=1 and (5) oe,1,̄ie , . . . , oe,nout ,̄ie .

Output: V output acc iff all the following checks succeeds:
1. For each e ∈ E, V uses sde to compute he as a honest prover would do.

For each e ∈ Ē, V uses {sde,i}i∈Ie to compute Γe,i as a honest prover would do. Then, using Γe,̄ie received
from P, the verifier V computes he.
Then, V checks that hΓ = H(h1|| · · · ||hM ).

2. For each e ∈ Ē, V computes Ωe using {φe,k}nin
k=1 and ge. Then, using {Ωe}e∈E received from P, the verifier

V checks that hΩ = H(Ω1|| · · · ||ΩM ).
3. For each e ∈ Ē, V computes viewe as an honest prover would do by going over the circuit in topological

order and using {sde,i}i∈Ie , the shares αe,k,̄ie , βe,k,̄ie and ∆e,k received from P for each multiplication and
square gate, and {oe,k,̄ie}

nout
k=1. Then, it computes Πe as a honest prover would do.

Finally, V checks that hπ = H(Πe1 || · · · ||Πe|Ē|).
4. For each e ∈ Ē, for each k ∈ O, V checks that

∑N
i=1 oe,k,i = yk

Fig. 1.b: HVZK Argument using “Cut–and–Choose”, continued

From the indistinguishably of the transcript generated by Sπ and the hiding property of the com-
mitment scheme, it follows by an hybrid argument that the view generated by S is computationally
indistinguishable from the view in a real execution.

Knowldege Soundness. We proceed to prove the soundness property of the protocol. For
simplicity we assume that the commitment scheme is perfectly binding and that there are no
collisions for the hash function.

We first argue that if the cheating probability δ(x) is higher than ξc&c(M,N, τ), then there
exists at least one MPC instance (out of M) where the prover has committed to a valid witness w.
Recall that we consider deterministic provers and so the first prover’s message where he commits to
the input w is fixed. Now, let G be a 0/1-matrix where each column corresponds to a possible first
challenge of V (i.e., τ pre-processings to be opened) and each row corresponds to a possible second
challenge chosen by V (i.e., M−τ parties indices for which the view should not to be opened). Thus,

δ(x) is the fraction of ‘1’ entries in G. Let ξc&c(M,N, τ) =
(M−c∗τ )

(Mτ )
·NM−τ−c∗ (i.e., c∗ is the value

for which the expression for ξ written above is maximized). We can write ξc&c also as
(M−c∗τ )·Nc∗

(Mτ )·NM−τ .

Observe that the number of entries in G is
(
M
τ

)
·NM−τ . From our assumption that δ(x) >

(M−c∗τ )·Nc∗

(Mτ )·NM−τ

it thus follows that the number of ‘1’ entries in G is higher than
(
M−c∗
τ

)
·N c∗. Next, assume that in

the interaction with the prover P∗, it corrupts c of the pre-processings. Clearly, if any of these are
opened, then the transcript won’t be accepted by V. Thus, there can be ‘1’ entries only in

(
M−c
τ

)
columns in G. For each of these columns, there exists N c possible challenges for the MPC instances
where the pre-processing is incorrect. Since there are more than

(
M−c∗
τ

)
·N c∗ ≥

(
M−c
τ

)
·N c entries

with ’1’ in G, then there must exist two accepting transcripts with the same first challenge E and
with different second challenge {ie}e∈Ē and {i′e}e∈Ē , where ie 6= i′e for an MPC instance e with
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correct pre-processing. This means that all the views of the parties in e are also correct. Thus, the
witness used in this instance must be a valid witness.

Next, given that a valid witness w is used in execution e, observe that it is possible to extract
this witness using two accepting transcripts (E, {ie}e∈Ē), (E′, {i′e}e∈Ē′) such that the challenge for
e is different. Specifically, it is required that one of the following will hold: e ∈ E ∪ E′ \ E ∩ E′
or i′e 6= ie. This suffices since in the first case it is possible to extract the seeds of all parties from
one transcript (where the pre-processing of e is opened) and the adjustment sent by the P from
the second transcript (where e’s pre-processing is not opened), there by obtaining the input shares
of all parties. In the second case, where i′e 6= ie, one of the transcripts reveals N − 1 input shares
whereas the other reveals the remaining share, thereby again allowing us to compute the witness
by adding all shares.

Let δ(x) = ξc&c(M,N, τ) + ε for some ε > 0. We now describe an extractor E to obtain such
two transcripts:

1. Probe the matrix G until the first ‘1’ entry was found. Denote by c = (c1, . . . , cM ) be the
challenge for this entry, where for each e ∈ [M ], ce is the challenge for the ith execution.

2. For each execution e run an extractor Ee, who probe G at random until an entry ’1’ is found
for which the challenge c′ is such that c′e 6= ce.

3. For each c′ outputted by Ee, extract the witness w used in execution e using c and c′ (as
explained in the text above), and check that C(w) = y. If yes, output w and halt.

First, observe that the expected running time of the first step is 1
δ <

1
ε . For the second step, we

prove the following Lemma:

Lemma 1. Let J = {je1 , je2 , . . .} ⊆ [M ] be the set of indices which correspond to executions with
valid witnesses and let |J | denote its size. Then there exists an e ∈ J such that Pr [acc|c′e 6= ce] ≥
ε/M , where acc is the event where the verifier accepts.

Proof. We denote by Jeq the event ∀e ∈ J : c′e = ce and by Jeq its negation ∃e ∈ J : c′e 6= ce.
Assume in contradiction that for all e ∈ J it holds that Pr [acc|c′e 6= ce] < ε/M .

It follows that

δ(x) = Pr [acc ∧ Jeq] + Pr
[
acc ∧ Jeq

]
= Pr [acc ∧ Jeq] + Pr

[
acc | Jeq

]
· Pr

[
Jeq
]

≤ Pr [acc ∧ Jeq] + Pr
[
acc | Jeq

]
= Pr [acc ∧ Jeq] + Pr

[
acc

∣∣∣∣ c′ej1 6= cej1 ∨ c
′
ej2
6= cej2 ∨ · · ·

]
≤ Pr [acc ∧ Jeq] +

∑
ej∈J

Pr

[
acc

∣∣∣∣ c′ej 6= cej

]
< Pr [acc ∧ Jeq] +

∑
ej∈J

ε/M

≤ Pr [acc ∧ Jeq] +M · ε/M
= Pr [acc ∧ Jeq] + ε (1)

where the second inequality is obtained by using Union Bound, the third inequality follows from
our assumption on Pr [acc|c′e 6= ce] for all e ∈ J and the last inequality holds since |J | ≤M .
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We now proceed to bound Pr [acc ∧ Jeq], which is the probability of acceptance with all chal-
lenges for the executions with the valid witness remaining unchanged. In the following, we say that
ce = 0 if the challenge for e is to open the pre-processing and ce 6= 0 otherwise. Now, without loss of
generality, assume that for e ∈ {ej1 , . . . , ejk}, it holds that ce = 0, whereas for e ∈ {ejk+1

, . . . , ej|J|}
it holds that ce 6= 0 (i.e., exactly k of the executions with valid witness were chosen to be opened).
It follows that

Pr
[
cej1 = · · · = cejk = 0 ∧ cejk+1

6= 0 ∧ · · · ∧ cej|J| 6= 0
]

=

(M−|J |
τ−k

)(
M
τ

)
as well as

Pr

[
Jeq

∣∣∣∣ cej1 = · · · = cejk = 0 ∧ cejk+1
6= 0 ∧ · · · ∧ cej|J| 6= 0

]
=

(M−|J |
τ−k

)(
M
τ

) · 1

N |J |−k
(2)

(recall that for executions ejk+1
, . . . , ej|J| a second challenge is chosen with probability 1/N).

Next, observe that once the challenges of the executions with correct witness are fixed and
remain unchanged, we can compute the probability of obtaining a second acc using our formula of
ξc&c. That is, conditioned on the event that k MPC preprocessings are opened and |J | − k are not
opened, it holds that

Pr

[
acc

∣∣∣∣ (Jeq | cej1 = · · · = cejk = 0 ∧ cejk+1
6= 0 ∧ · · · ∧ cej|J| 6= 0

)]
≤
(M−|J |−c̄

τ−k
)(M−|J |

τ−k
) · 1

NM−|J |−τ+k−c̄ (3)

(note that here c̄ is the number of corrupted pre-processings only within the executions with bad
witness. This means that c̄ ≤ c). This holds since if the probability was higher, then a valid witness
must have been used in some of the executions. However, in (3), the distribution is only over
executions with an invalid witness.

Combining (2) and (3) together, we conclude that

Pr
[
acc ∧ Jeq

∣∣ cej1 = · · · = cejk = 0 ∧ cejk+1
6= 0 ∧ · · · ∧ cej|J| 6= 0

]
≤
(M−|J |−c̄

τ−k
)(M−|J |

τ−k
) · 1

NM−|J |−τ+k−c̄ ·
(M−|J |
τ−k

)(
M
τ

) · 1

N |J |−k

=

(M−|J |−c̄
τ−k

)(
M
τ

) · 1

NM−τ−c̄ <

(
M−c∗
τ

)(
M
τ

) · 1

NM−τ−c∗

where the last inequality holds since c̄ ≤ c (c is the number of overall corrupted pre-processings,
where c̄ is the derived by looking only on bad processings of the executions), k+ (c− c̄) ≤ |J | (c− c̄
is the number of corrupted pre-processings for executions with good witness while k is the number
of such executions that are opened and so their pre-procssing must be correct) and so k+c ≤ |J |+ c̄
which means that(

M − |J | − c̄
τ − k

)
N c̄ ≤

(
M − k − c
τ − k

)
N c ≤

(
M − c
τ

)
N c ≤

(
M − c∗

τ

)
N c∗.
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Here, the second inequality follows because
(
x−1
y−1

)
<
(
x
y

)
and the last step is due to the definition

of c∗.
Finally, we show that Pr [acc ∧ Jeq] ≤ (M−c∗τ )

(Mτ )
· 1
NM−τ−c∗ . This easily holds since

Pr [acc ∧ Jeq] = (4)

=
∑
Q⊆J

(
Pr [acc ∧ Jeq | ∀e ∈ Q : ce = 0 ∧ ∀e ∈ J \Q : ce 6= 0] ·

Pr [∀e ∈ Q : ce = 0 ∧ ∀e ∈ J \Q : ce 6= 0]

)
≤
(
M−c∗
τ

)(
M
τ

) · 1

NM−τ−c∗

∑
Q⊆J

Pr [∀e ∈ Q : ce = 0 ∧ ∀e ∈ J \Q : ce 6= 0]

=

(
M−c∗
τ

)(
M
τ

) · 1

NM−τ−c∗ .

Here the last equality holds since 1 =
∑

Q⊆J Pr [∀e ∈ Q : ce = 0 ∧ ∀e ∈ J \Q : ce 6= 0] which follows
from the fact that the events whose probability we compute are all disjunct, but together they cover
all possible challenges occurring for the elements in J .

Going back to (1), we have that δ < ε +
(M−c∗τ )

(Mτ )
· 1
NM−c∗−τ in contradiction to the assumption

that δ = ξ(M,N, τ) + ε. Thus, there must exists an execution e with a valid witness, for which
Pr [acc | c′e 6= ce] ≥ ε/M . ut

Recall that our extractor tries to extract the witness from all executions until it succeeds to
extract a correct witness from some execution. From Lemma 1, there exists an execution e with a
valid witness for which the probability of probing an accepting transcript that allows us to extract
is higher than ε

M . Thus, the expected number of steps until the witness is extracted is bounded
by M

ε . Note that M depends only on the statistical security parameter but its size in independent
of the common input x held by the prover and the verifier (which is the circuit in our ZKPOK
system). Thus, we conclude that if the success cheating probability is higher than ξc&c(M,N, τ),

then a valid witness can be extracted in O( |x|ε ) expected number of steps (recall that the extractor
checks the validity of witnesses by running C(w). Thus, the running time also depends on the
common input x which is allowed by the definition). This concludes the proof. ut

3.3 HVZKAoK Protocol Using Imperfect Preprocessing and Sacrificing

In this section, we present our second HVZKAoK protocol Πsac. In this protocol, instead of en-
suring that the preprocessings are correct, we rely on a method where one “sacrifices” random
multiplication triples and squares in order to verify the correctness of multiplication and square
operations.

The idea of this protocol is that P does not simulate the execution of a protocol to compute
multiplication and square gates, but rather simulates an execution of a protocol to verify that the
shares on the output wires of these gates are correctly defined. This means that now P will first
define and commit to sharings of the values on each wire of the circuit and then will simulate
an execution of a verification protocol for multiplication and square gates (recall that for other
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gates the computation is local and thus no verification is required). We begin by describing the
verification methods used in our protocol.

Verification of a multiplication triple using another. This procedure is reminiscent to the recent
work of [LN17]. Given a random triple ([[a]], [[b]], [[c]]), it is possible to verify the correctness of a
triple ([[x]], [[y]], [[z]]), i.e., that z = x · y, without revealing any information on either of the triples,
in the following way:

1. The parties generate a random ε ∈ F.

2. The parties locally compute [[α]] = ε[[x]] + [[a]] and [[β]] = [[y]] + [[b]].

3. The parties run open([[α]]) and open([[β]]) to obtain α and β.

4. The parties locally compute [[v]] = ε[[z]]− [[c]] + α · [[b]] + β · [[a]]− α · β.

5. The parties run open([[v]]) to obtain v and accept iff v = 0.

Observe that if both triples are correct multiplication triples (i.e., z = xy and c = ab) then the
parties will always accept since

v = ε · z − c+ α · b+ β · a− α · β
= ε · xy − ab+ (ε · x+ a)b+ (y + b)a− (ε · x+ a)(y + b)

= ε · xy − ab+ ε · xb+ ab+ ya+ ba− ε · xy − ay − ε · xb− ab
= 0

In contrast, if one (or both) of the triples are incorrect, then the parties will accept with
probability of at most 1/|F| as shown in Lemma 2.

Lemma 2. If ([[a]], [[b]], [[c]]) or ([[x]], [[y]], [[z]]) is an incorrect multiplication triple then the parties
output acc in the sub-protocol above with probability 1

|F| .

Proof. Let ∆z = z−x · y and ∆c = c−a · b. If the parties output acc then it means that v = 0, i.e.,

v = ε · z − c+ α · b+ β · a− α · β
= ε · (xy +∆z)− (ab+∆c) + (ε · x+ a)b+ (y + b)a− (ε · x+ a)(y + b)

= ε∆z −∆c = 0.

Next, consider the following cases:

– Case 1: ∆z = 0, ∆c 6= 0. In this case, v = −∆c 6= 0. Thus, the parties will not output acc in
contradiction to the assumption.

– Case 2: ∆z 6= 0, ∆c 6= 0. In this case, v = 0 iff ε = ∆c · (∆z)
−1. Since ε is uniformly distributed

over F, this happens with probability 1/|F|.
– Case 3: ∆z 6= 0, ∆c = 0. In this case, v = 0 iff ε = 0 which, yet again, happens with probability

1/|F|.

Going over all cases, we conclude that the lemma follows. ut
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Verification of a square pair using another. Similarly, one can use a random square ([[b]], [[d]]) to
verify the correctness of a given square ([[x]], [[z]]) by working as follows:

1. The parties generate a random ε ∈ F.
2. The parties locally compute [[α]] = [[x]]− ε[[b]].
3. The parties run open([[α]]) to obtain α.
4. Each party locally computes [[v]] = [[z]]− α · ([[x]] + ε[[b]])− ε2[[d]].
5. The parties run open([[v]]) to obtain v and accept iff v = 0

As before, if the squares are correct, i.e., z = x2 and d = b2, then the parties will accept, since

v = z − α · (x+ ε · b)− ε2 · d = x2 − (x− ε · b) · (x+ ε · b)− ε2 · b2

= x2 − x2 + ε2b2 − ε2b2 = 0

In contrast, if one of the random squares (or both) is incorrect, then the parties will accept with
probability 2

|F| . This is proved in Lemma 3.

Lemma 3. If ([[x]], [[z]]) or ([[b]], [[d]]) is an incorrect square, then the parties output acc in the sub-
protocol above with probability 2

|F| .

Proof. Let ∆d = d− b2 and ∆z = z − x2 and assume that the parties output acc. This means that

v = z − α · (x+ ε · b)− ε2 · d = x2 +∆z − (x− ε · b) · (x+ ε · b)− ε2 · (b2 +∆d)

= ∆z − ε2 ·∆d = 0.

We consider the following three cases:

– Case 1: ∆z = 0, ∆d 6= 0. In this case, v = 0 iff ε2 = 0 mod |F|, which holds iff ε = 0. Since ε
is chosen randomly from F, this holds with probability 1

|F| <
2
|F| .

– Case 2: ∆z 6= 0, ∆d 6= 0. In this case, v = 0 iff ε2 = ∆z · (∆d)
−1. Now, if ε = 0, then

v = ∆z and the parties will reject. Otherwise, since there are |F|−1
2 squares in F, then the

parties will accept with probability 2
|F|−1 . Thus, overall the parties accept with probability

1
|F| · 0 + (1− 1

|F|) ·
2
|F|−1 = 2

|F| .
– Case 3: ∆z 6= 0, ∆d = 0. In this case, v = ∆z 6= 0 and thus the parties will not output acc.

Going over all possible cases, we conclude that the lemma follows. ut

The protocol. Our second PoK protocol is formally described in Fig. 2.a and Fig. 2.b. In this
protocol, the prover P first commits in Round 1 to sharings of the values on each wire of the circuit
and to sharings of random multiplication triples and squares for M independent executions. As
in the previous protocol, we save communication by deriving all the random shares from a single
seed. Then, in Round 2, the verifier V challenges P by choosing the randomness required for the
verification procedure, i.e., an ε value for each multiplication and square gate. Upon receiving the
challenge from V, the prover P simulates M executions of the verification protocol in Round 3
and commits to the view of the parties in each execution. Then, in Round 4, V picks his second
challenge by choosing, for each execution, N − 1 parties whose view will be opened and tested. In
Round 5, P sends to V the seeds from which the randomness of the N − 1 parties was derived and
all the messages sent to these parties from the remaining party Pīe . As in the previous protocol,
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for values that are fixed, i.e., inputs, multiplications and squares, the prover sends also an offset
(which was committed in the first round) to “fix“ the sharing to the correct value. As before, we
further reduce the communication cost by hashing the commitments together and sending only the
hash value. Finally, V accepts if and only if all commitments are correct, the view of each party
was computed correctly, the verification procedures conclude with the parties holding a sharing of 0
and the output of the circuit is y.

Cheating probability (soundness). We compute the probability that V outputs acc when C(w) 6= y.
Observe that each of the M executions is independent from the other executions. When considering
a single execution, P can cheat in either computing the view of one of the parties or cheat in defining
the shares on the output wire of a multiplication/square gate. In the former case, it will succeed with
probability 1

N whereas in the latter case it will succeed with probability 1
|F| or 2

|F| (note that if there
are gates of both types in the circuit, it will be more beneficial for P to cheat in square gates since
2
|F| >

1
|F|). Furthermore, the best strategy for the prover is to first cheat in multiplication/square

gates and then if it didn’t receive the desired challenge that will cause the verification process to
end successfully, it can manipulate one of the parties’ view. Thus, if there are square gates in the
circuit, then the overall cheating probability is

ξsac(M,N) =

(
2

|F|
+

(
1− 2

|F|

)
· 1

N

)M
=

(
2N + |F| − 2

|F| ·N

)M
.

Similarly, if there are multiplication gates in the circuit (and no square gates), then the cheating
probability is

ξsac(M,N) =

(
1

|F|
+

(
1− 1

|F|

)
· 1

N

)M
=

(
N + |F| − 1

|F| ·N

)M
.

Formal proof. We are now ready to prove formally that the protocol Πsac is an honest verifier
zero-knowledge argument of knowledge.

Theorem 3. Let H be a collision-resistant hash function and let com be a secure commitment
scheme. Then the protocol Πsac is a HVZKAoK with knowledge error (soundness) ξsac(M,N).

Proof. We prove that each of the three properties defined in Section 2.2 are satisfied by our protocol.

Completeness. This follows trivially from the correctness of the MPC protocol.

Honest Verifier Zero Knowledge. We construct a simulator S for our protocol which
works as follows:

1. For e = 1, . . . ,M , S chooses random challenges εe,k for each multiplication and square gate gk
in C and random īe ∈ [N ].

2. S simulates the first step of the protocol: for each e ∈ [M ] and i ∈ [N ] \ īe, it defines the shares
of the random multiplication triples and squares and the shares on each wire of the circuit
as an honest prover would do. For generating statee, S chooses ransom ∆e,k for each random
triple/square gate and random ϕe,k for each multiplication/square gate and random φe,k for
each input wire k. Then, it computes statee,i and Γe,i as an honest verifier. For Γe,̄ir , it uses the
0-string as the committed message. Finally, S computes hΓ as an honest prover.

3. S simulates Round 3:

(a) First, it initializes an empty string viewe for all e ∈ [M ].
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The “Sacrificing” Based HVZK Argument Πsac (Part 1)

Let H be a collision-resistant hash function and com be a commitment scheme

Inputs: Both the prover P and the verifier V hold y ∈ Fnout , a description of an arithmetic circuit C over a
finite field F and parameters M,N ; the prover P also hold a witness w ∈ Fnin such that C(w) = y.

Round 1:
1. For each e ∈ [M ]:
(a) P initializes an empty string statee.
(b) For each i ∈ [N ], P initializes an empty string statee,i.
(c) P chooses a master seed sde and seeds sde,1, . . . , sde,N .

Then, for each i ∈ [N ], it sets statee,i ← sde,i.
(d) P prepares the pre-processing data:

– For each multiplication gate gk ∈ G:
i. For each i ∈ [N ], P uses sde,i to generate ae,k,i, be,k,i, ce,k,i. This shares define the random sharings

[[ae,k]], [[be,k]] and [[ce,k]], where ae,k =
∑N
i=1 ae,k,i, be,k =

∑N
i=1 be,k,i and ce,k =

∑N
i=1 ce,k,i.

ii. P sets ∆e,k = ae,k · be,k − ce,k and statee ← statee||∆e,k.
iii. P defines the random triple for this gate to be ([[ae,k]], [[be,k]], [[ce,k]] +∆e,k).

– For each square gate gk ∈ G:
i. For each i ∈ [N ], P uses sde,i to generate be,k,i and de,k,i. This shares define the random sharings

[[be,k]] and [[de,k]], where be,k =
∑N
i=1 be,k,i and de,k =

∑N
i=1 de,k,i.

ii. P sets ∆e,k = (be,k)2 − de,k and statee ← statee||∆e,k.
iii. P defines the random square for this gate to be ([[be,k]], [[de,k]] +∆e,k).

(e) P chooses a linear random sharing of the inputs:
i. For each i ∈ [N ], P uses sde,i to generate we,1,i, . . . , we,nin,i.

This shares define the random sharings [[we,1]], . . . , [[we,nin ]], where we,k =
∑N
i=1 we,k,i.

ii. For each input wire k ∈ I, P sets φe,k = wk −
∑N−1
i=1 we,k,i and statee ← statee||φe,k.

The sharing on this wire is defined to be [[we,k]] + φe,k.
(f) P simulates the computation of the circuit C going gate-by-gate in topological order. In particular:

– For each addition or multiplication-by-a-constant gates, P computes the parties’ output shares via the
local operation described in Section 3.1.

– For each multiplication gate gk ∈ G with sharing [[xk]] and [[yk]] on its input wires:
i. For each i ∈ [N ], P uses sde,i to generate ze,k,i.

These shares define the random sharing [[ze,k]] where ze,k =
∑N
i=1 ze,k,i.

ii. P sets: ϕe,k = xk · yk −
∑N
i=1 ze,k,i and statee ← statee||ϕe,k.

The sharing on the output wire is defined to be [[ze,k]] + ϕe,k.
– For each square gate gk ∈ G with sharing [[xk]] on its input wire:

i. For each i ∈ [N ], P uses sde,i to generate ze,k,i.
These shares define the random sharing [[ze,k]] where ze,k =

∑N
i=1 ze,k,i.

ii. P sets: ϕe,k = (xk)2 −
∑N
i=1 ze,k,i and statee ← statee||ϕe,k.

The sharing on the output wire is defined to be [[ze,k]] + ϕe,k.
(g) P uses sde to generate re ∈ {0, 1}λ and computes Γe = com(statee, re).
(h) For each i ∈ [N ], P uses sde,i to generate re,i ∈ {0, 1}λ and then it computes Γe,i = com(statee,i, re,i).
(i) Finally, P computes he = H(Γe||Γe,1|| · · · ||Γe,N ).

2. P computes hΓ = H(h1|| · · · ||hM ) and sends it to V.

Round 2: V chooses sdι. Then, for each e ∈ [M ] it uses sdι to generate random coefficients εe,k for each
multiplication and square gate gk in C. Finally, V sends sdι to P.

Fig. 2.a: HVZK Argument using “Sacrificing”

(b) For each e ∈ [M ], it chooses random αe,k,i and βe,k,i for each multiplication and square
gate gk and i ∈ [N ] and adds them to viewe (note that here it chooses shares for all parties
including party īe).
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The “Sacrificing” Based HVZK Argument Πsac (Part 2)

Round 3:
1. P chooses a random seed sdE .
2. P uses sdι to generate random coefficients εe,k as the verifier would do.
3. For each e ∈ [M ]:
(a) P initializes an empty string viewe.
(b) For each multiplication gate gk (in topological order), P simulates the verification procedure described in

the text using εe,k. In addition, it sets: viewe ← viewe||αe,k,1|| · · · ||αe,k,N ||βe,k,1|| · · · ||βe,k,N .
(c) For each square gate gk (in topological order), P simulates the verification procedure described in the text

using εe,k. In addition, it sets: viewe ← viewe||αe,k,1|| · · · ||αe,k,N .
(d) Let ve,k,i be the sharing held by party Pi at the end of the verification procedure of gate gk.

Then, for each i ∈ [N ], P sets: viewe ← viewe||ve,k,1|| · · · ||ve,k,N .
(e) Let oe,1,i, . . . , oe,nout,i be the shares on the output wires of C held by party Pi.

Then, for output wire k ∈ O, P sets: viewe ← viewe||oe,k,1|| · · · ||oe,k,N .
4. P uses sdE to generate ge ∈ {0, 1}λ and computes Πe = com(viewe, ge).
5. P computes hπ = H(Π1|| · · · ||ΠM ) and sends it to V.

Round 4: For each e ∈ [M ]: V chooses a random īe ∈ [N ] and sends it to P.

Round 5: For each e ∈ [M ]:
Let Ie = [N ] \ {̄ie}. Then, P sends the following to V: sdE , sde, {sde,i}i∈Ie , Γe,̄ie , {φe,k}nin

k=1 , the tuple(
∆e,k, ϕe,k, αe,k,̄ie , βe,k,̄ie , ve,k,̄ie

)
for each multiplication or square gate gk, and oe,1,̄ie , . . . , oe,nout ,̄ie .

Output: V output acc iff all the following checks succeeds:
1. For each e ∈ [M ], V uses {sde,i}i∈Ie and the tuple received for each multiplication and square gate to

compute the shares of the parties in Ie on each wire and their shares of each random triple and square.
Then, it uses sde to compute Γe and uses {sde,i}i∈Ie to compute {Γe,i}i∈Ie as an honest prover would do.
Then, using Γe,̄ie received from P, the verifier V computes he.
Then, V checks that hΓ = H(h1|| · · · ||hM ).

2. For each e ∈ [M ], V computes viewe by going gate-by-gate in topological order and simulating the verification
procedure using the tuple received from P for each multiplication and square gate, and using {oe,k,̄ie}

nout
k=1.

Then, it computes Πe as a honest prover would do.
Finally, V checks that hπ = H(Π1|| · · · ||ΠM ).

3. For each e ∈ [M ] and multiplication/square gate gk, V checks that
∑N
i=1 ve,k,i = 0

4. For each e ∈ [M ], for each k ∈ O, V checks that
∑N
i=1 oe,k,i = yk

Fig. 2.b: HVZK Argument using “Sacrificing”, continued

(c) For each e ∈ [M ], multiplication/square gate gk and i ∈ [N ] \ {̄ie}, S computes ve,k,i as an
honest prover. Then, it sets ve,k,̄ie such that

∑n
i=1 ve,k,i = 0 and adds ve,k,i for all i ∈ [N ] to

viewe.

(d) For each e ∈ [M ], i ∈ [N ] \ {̄ie} and k ∈ [nout], S computes oe,k,i as an honest prover. Then,
it sets oe,k,̄ie such that

∑n
i=1 oe,k,i = yk and adds oe,i for all i ∈ [N ] to viewe.

(e) S computes {Πe}e∈[M ] and hπ as an honest prover would do.

4. S outputs the transcript of the protocol.

The only difference between the simulation and a real execution is the way the commitments to
the shares of party īe are computed and the way ∆e,k, φe,k, ϕe,k, αe,k,i and βe,k,i are chosen (in the
simulation they are chosen uniformly whereas in the real execution they computed deterministically
as the slack between random sharings and actual values that are on the wires). However, from the
hiding property of the commitment the former does not change and since ∆e,k, φe,k, ϕe,k, αe,k,i and
βe,k,i are all uniformly distributed over F in both executions, the latter does not change as well
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(since all of them are defined by a random sharing which is kept secret from the verifier). Therefore,
we conclude that the transcript generated by S is indistinguishable from a real execution.

Knowledge Soundness. As in the proof of Theorem 2, we assume for simplicity that the
commitment scheme is perfectly binding and that there are no collisions for the hash function. In
addition, we consider the case where there are only multiplication gates in the circuit. The proof
for the case when there are also square gates is similar with the appropriate changes. Recall that we
denote by nmul the number of multiplication gates in the circuit. Clearly, a cheating prover might
not need to cheat in every multiplication gate in order to make the output correct, as this depends
on the structure of the circuit. Thus, throughout the proof, we assume that the prover cheats in k
multiplications and that this suffices to totally manipulate the output.

As the challenges of the different MPC instances are independent, we proceed by analyzing a
single instance first (i.e. let M = 1, ξsac(1, N) = ξsac(N)) and then argue how this generalized to
arbitrary choices of M . We begin by showing that if the cheating probability δ(x) is higher than
ξsac(N), then the prover must have committed to the correct witness w.

Lemma 4. Let M = 1. If δ(x) > ξsac(N), then the prover P∗ must have committed to the correct
witness w in Round 1.

Proof. To see this, let G be a 0/1 matrix, where each column corresponds to a possible first
challenge of the verifier, each row corresponds to a possible second challenge and the bit in each
cell indicates whether the verifier outputs acc or not. It follows that there are |F|nmul columns

and N rows in G. Thus, if δ(x) > N+|F|−1
N ·|F| , then the number of ’1’ entries in G is larger than

(N + F − 1) · |F|nmul−1. Now, assume for the sake of contradiction that the prover has cheated in
k > 0 multiplication triples. By Lemma 2 there is one challenge for each of these gates for which
the verifier won’t detect cheating. With loss of generality we say that the challenges ε1, . . . , εk are
for the corrupted gates and challenges εk+1, . . . , εnmul are for the remaining gates, and denote the
k challenges, for which the verification procedure ends successfully, by ε̄1, . . . , ε̄k. Thus, there are
|F|nmul−k columns that can be filled with ’1’ entries (in each such column the challenges ε1, . . . , εk
are fixed to ε̄1, . . . , ε̄k and so it is required to choose a challenge only for the remaining nmul − k
multiplication gates). For the remaining columns, we claim that there must exist at least one
column with more than a single ’1’ entry. This holds since otherwise the number of ’1’ entries in G
is bounded by |F|nmul−k ·N+(|F|nmul−|F|nmul−k)·1 = (N+|F|k−1)·|F|nmul−k (for |F|nmul−k columns
all N entries are filled with ’1’ and for the other columns there is a single ’1’ entry). However, this
is in contradiction to our assumption that there are more than (N + |F|− 1) · |F|nmul−1 entries with
’1’ in G, since

(N + |F| − 1) · |F|nmul−1 ≥ (N + |F|k − 1) · |F|nmul−k (5)

(to see that this inequality holds, observe that it is equivalent to (N+ |F|−1) · |F|k−1 ≥ N+ |F|k−1
which is equivalent to N ·|F|k−1+|F|k−|F|k−1 ≥ N+|F|k−1 which can be written as (N−1)·|F|k−1 ≥
N − 1 which holds for any k > 0). We conclude that there must be a column with challenges
ε′1, . . . , ε

′
nmul

such that ∃i ∈ [k] : ε′i 6= ε̄i, that has at least two ’1’ entries. That is, for the first
challenge which corresponds to that column, the prover can answer successfully at least two different
second challenges. Let c1 and c2 the challenges corresponding to such two accepting transcripts,
i.e., both have the same first challenge ε′1, . . . , ε

′
nmul

and different second challenge i1 and i2. Note
that it is possible to compute a witness from c1 and c2, since two different second challenges reveals
the inputs of all the parties. Let w∗ be the witness computed from c1 and c2. We argue that this
is a valid witness, i.e., that C(w) = y. This holds since when the verifier accepts, C(w) 6= y only
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if one of two events occur: (a) one of the parties’ views is inconsistent but it is not chosen to be
opened by V or (b) there are multiplication gates that were not correctly computed but V chooses
the one single challenge that makes the verification procedure end successfully for each of these
gates. However, the first event does not happen, since c1 and c2 differs in the second challenge,
and thus all parties’ views are covered and verified in the two executions. The second event does
not happen as well for c1 and c2 since for both of them the first challenge has the property that
∃i ∈ [k] : ε′i 6= ε̄i (recall that ε̄i is the only challenge for the corrupted gate i that makes the
verification procedure succeed). This contradicts our assumption on the number of multiplication
triples which are incorrect. We conclude that w must be a valid witness and thus the claim follows.

ut

In the protocol however we will have M > 1 MPC instances. We therefore define the set

S =

{
τ =

(
ε
(1)
1 , . . . , ε

(M)
nmul ,

i1, . . . , iM

)
∈ Fnmul·M × [N ]M

τ is challenge vector
of accepting transcript

}

where τ |j = (ε
(j)
1 , . . . , ε

(j)
nmul , ij) denotes the challenges of MPC instance j of the challenge vector τ

and τ |Pj = ij denotes the choice of party which is not opened in the j-th MPC protocol. Furthermore,
define S1, . . . , SM where

Sj =

{(
ε
(j)
1 , . . . , ε(j)nmul , ij

)
∈ Fnmul × [N ]

∣∣∣∣ ∃τ ∈ S ∧ τ |j =
(
ε
(j)
1 , . . . , ε(j)nmul , ij

)}
.

We start out with the fact that δ(x) > ξsac(M,N) and so |S| = δ(x) · (|F|nmul ·N)M > ξsac(M,N) ·
(|F|nmul · N)M , which follows from the definition of S. Now, assume that ∀j ∈ [M ] : |Sj | ≤
ξ(N) · (|F|nmul · N). Since S = {τ | ∀j ∈ [M ] : τ |j ∈ Sj} it must hold that |S| ≤ |S1| · · · |SM |
because every τ must be a combination of different τ |j . But that implies

|S| ≤ ξsac(N)M · (|F|nmul ·N)M = ξsac(M,N) · (|F|nmul ·N)M

in contradiction to our assumption on the upper-bound of each |Sj |. Therefore, there must exist
a j ∈ [M ] such that |Sj | > ξsac(N) · (|F|nmul · N). From Lemma 4 it thus follows that this MPC
instance must have the correct witness committed:

Corollary 1. If δ(x) > ξsac(M,N), then the prover P∗ must have committed to the correct witness
w in Round 1 in at least one of the MPC instances.

Observe that once a correct witness is committed to in the first round in one of the MPC
instances, then two accepting transcripts where the second challenge is different for such an instance
are sufficient to extract it. We therefore can define an extractor E (similar to the one in the proof
of the previous protocol) which works as follows:

1. Choose random vectors τ ∈ Fnmul·M × [N ]M until τ ∈ S was found.
2. For each j ∈ [M ] run the following in parallel:

(a) Choose random vectors τ ′ ∈ Fnmul·M × [N ]M such that τ ′|Pj 6= τ |Pj until τ ′ ∈ S was found.
(b) Extract wj from MPC instance j using τ |j , τ ′|j . If C(w) = y then output w and stop,

otherwise continue.

We now prove that the expected running time of our extractor satisfies the security definition.
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Lemma 5. Let δ(x) = ξsac(M,N)+ε. Then, the expected running time of extractor E is O(M |x|/ε).

Proof. The proof is very similar to the one of the previous protocol. We will find the first τ ∈ S
in time O(|x|/ε) by definition. Thus, let us argue that the overall expected runtime until we find a
correct witness w is M |x|/ε as in the previous proof.

By Corollary 1 there must be at least one MPC instance with a correct witness committed. Let
k ≥ 1 be the overall number of these correct committed witnesses, and without loss of generality
they are in MPC instances 1, . . . , k. As argued above, we can extract if we find τ ′ such that

τ ′|Pj 6= τ |Pj for j ∈ [k]. For the sake of contradiction, assume that Pr
[
acc

∣∣ τ ′|Pj 6= τ |Pj
]
< ε/M for

all j ∈ [k]. We can rewrite the success probability as

δ(x) = Pr [acc] = Pr
[
acc ∧ τ ′|P1 = τ |P1 ∧ · · · ∧ τ ′|Pk = τ |Pk

]
+

Pr
[
acc ∧

(
τ ′|P1 6= τ |P1 ∨ · · · ∨ τ ′|Pk 6= τ |Pk

)]
≤Pr

[
acc ∧ τ ′|P1 = τ |P1 ∧ · · · ∧ τ ′|Pk = τ |Pk

]
+

k∑
j=1

Pr
[
acc ∧ τ ′|Pj 6= τ |Pj

]
<Pr

[
acc ∧ τ ′|P1 = τ |P1 ∧ · · · ∧ τ ′|Pk = τ |Pk

]
+M · (ε/M) (6)

= Pr
[
acc | τ ′|P1 = τ |P1 ∧ · · · ∧ τ ′|Pk = τ |Pk

]
· Pr

[
τ ′|P1 = τ |P1 ∧ · · · ∧ τ ′|Pk = τ |Pk

]
+ ε

≤
(

(N + |F| − 1)

|F| ·N

)M−k
· 1

Nk
+ ε (7)

≤(N + |F| − 1)M

|F|M ·NM
+ ε (8)

=ξsac(N,M) + ε = δ(x).

Here Eq. (6) uses the assumed upper-bound on all Pr[acc | τ ′|Pj 6= τ |Pj ] while Eq. (7) follows
from the assumption that the M − k instances have an incorrect witness and so by Lemma 4, the
acceptance probability in each of them is bounded by ξsac(N) and since the probability that the
second challenge in the other k instances remains the same is 1

Nk . Finally, Eq. (8) follows since
(N+|F|−1)M−k

(|F|·N)M−k·Nk = (N+|F|−1)M−k

|F|M−k·NM and so (N+|F|−1)M−k

|F|M−k·NM < (N+|F|−1)M

|F|M ·NM since |F|k < (N + |F| − 1)k, which

holds because N > 1 and k > 0.

The resulting contradiction implies that there exists an instance j with valid witness such that

Pr
[
acc | τ ′|Pj 6= τ |Pj

]
≥ ε/M which means that E will find the correct witness in expected runtime

that is bounded by O(M |x|/ε) as required (recall that |x| in our protocol is the size of the circuit C).
ut

We have proved that if the cheating probability is higher then ξsac(M,N) by ε, then the prover
must have committed to the correct witness and this can be extracted from him with expected
running time that is bounded by O(M |x|/ε). Note that M is independent from the common input
and depends only on the statistical security parameter, and thus given a security parameter M can
be viewed as a constant. This concludes the proof. ut
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3.4 Additional Optimizations

Reducing the number of seeds sent by the prover. In both of our protocols, the prover is
required to send N − 1 seeds for each execution e that was not chosen to be opened. Each of these
seeds is used to generate the randomness of one party throughout the execution. As in [KKW18],
we can reduce the number of seeds that are sent from N − 1 to logN by using a binary tree.
Specifically, let sde be the root of a binary tree of height logN where the seed in each internal node
is used to generate the seeds of it’s two descendants. The value of the ith leaf is labeled as sde,i and
used to generate the randomness of party Pi.

Now, when the verifier chooses a random īe ∈ [N ] as its challenge, instead of sending him sde,i
for each i ∈ [N ] \ {̄ie}, it suffices to send just logN seeds. Specifically, P can iterate over the tree
beginning with the root, and for each node j, where sde,̄ie is not in the induced sub-tree rooted at
j, send the seed of j to the verifier. Once a seed has been chosen to be sent, P does not proceed to
traverse in the sub-tree rooted in j but will descend into the other direction. Overall, in the first
protocol, the communication induced by sending the seeds in M − τ emulations is then reduced
from (M − τ) · (N − 1) seeds to (M − τ) logN , whereas in the second protocol it is reduced from
M · (N − 1) seeds to M logN , which can be significant when the number of parties is large.

Batch verification in Πsac. In Πsac each multiplication triple is being verified separately. In order
to save communication it is possible to batch-verify all triples by taking a linear combination of all
[[v]]s and open only the result. Specifically, given a batch of triples ([[x1]], [[y1]], [[z1]]), . . . , ([[xm]], [[ym]], [[zm]])
to verify using a batch of random triples ([[a1]], [[b1]], [[c1]]), . . . , ([[am]], [[bm]], [[cm]]) (the same applies
to squares), the parties first compute [[vk]] = εk · [[zk]] − [[ck]] + αk · [[bk]] + β·[[ak]] − αk · βk for each
k ∈ [m] (as in Lemma 2). Then, they jointly generate public random coefficients γ1, . . . , γm ∈ F
and locally compute [[v]] =

∑m
i=1 γk · [[vk]]. Finally, the parties open [[v]] and check equality to 0. If

vk = 0 for all k ∈ [m] then obviously v = 0 as well. In contrast, if there exists k ∈ [m] such that
vk 6= 0, then v = 0 with probability 1/|F|. This is summed up in the following two propositions.

Proposition 1. Let ([[x1]], [[y1]], [[z1]]), . . . , ([[xm]], [[ym]], [[zm]]) and ([[a1]], [[b1]], [[c1]]), . . . , ([[am]], [[bm]], [[cm]])
be two lists of m triples. If there exists k̂ ∈ [m] such that ([[xk̂]], [[yk̂]], [[zk̂]]) or ([[ak̂]], [[bk̂]], [[ck̂]]) is
incorrect, then the parties output acc in the batch verification protocol with probability at most 2

|F| .

Proof. If the parties output acc, this means that v =
∑m

k=1 γk · vk = 0. From Lemma 2 it follows
that vk̂ = 0 with probability 1

|F| and so vk̂ 6= 0 with probability 1− 1
|F| . In the latter case, v = 0 iff

γk̂ = (−
∑m

k=1
k 6=k̂

γk · vk) · (vk̂)
−1 which happens with probability 1/|F| since γk̂ is chosen uniformly

from F. Thus, we have that the overall probability that the parties output acc is bounded by
1
|F| + (1− 1

|F|)
1
|F| <

2
|F| as required. ut

Proposition 2. Let ([[x1]], [[z1]]), . . . , ([[xm]], [[zm]]) and ([[b1]], [[d1]]), . . . , ([[bm]], [[dm]]) be two lists of m
squares. If there exists k̂ ∈ [m] such that ([[xk̂]], [[zk̂]]) or ([[bk̂]], [[dk̂]]) is incorrect, then the parties
output acc in the batch verification protocol with probability of at most 3

|F| .

Proof. From Lemma 3 it follows that vk̂ = 0 with probability 2
|F| . Thus, the statement follows from

exactly by the same argument as in the proof of Proposition 1. ut

Plugging in the batch verification procedure, Πsac is changed so that the random coefficients
for the linear combination are chosen by the verifier and handed to the prover as and additional
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challenge. Specifically, in Round 2, the verifier picks a random coefficient γe,k for each instance e
and each multiplication/square gate, and hands it to the prover in addition to the random elements
εe,k that are used inside the verification procedure. Then, in Round 3 the prover simulates the
verification procedure for each multiplication/square gate and then simulates each party i locally
taking the linear combination ve,i =

∑
k γe,k · ve,k,i, where ve,k,i is its share of ve,k. Finally, P sets

viewe ← viewe||ve,1|| · · · ||ve,N . This significantly reduces the communication of the protocol, since
once the verifier chooses the one party īe whose view is not opened in execution e, the prover does
not need to send the share of party īe for each vk,e, but rather only its share of ve, since only one
single value is opened and checked for the entire circuit. On the other hand, observe that using this
optimization also affects the soundness of the protocol, as the probability of not being caught in the
verification procedure is now increased to 2

|F| for cheating in multiplication gates and 3
|F| for square

gates (observe that once again manipulating the output of square gates would be more beneficial
for the prover). Thus, if there are square gates in the circuit, the updated cheating probability is
bounded by

ξsac(M,N) =

(
3

|F|
+

(
1− 3

|F|

)
· 1

N

)
=

(
3N + |F| − 3

|F| ·N

)
whereas if there are multiplication gates in the circuit (and no square gates), the updated cheating
probability is bounded by

ξsac(M,N) =

(
2

|F|
+

(
1− 2

|F|

)
· 1

N

)
=

(
2N + |F| − 2

|F| ·N

)
.

Batching the output correctness check. Similarly to this previous optimization, we can reduce
communication by verifying the correctness of the circuit’s output in a batched manner, i.e., take a
random linear combination of all outputs before sending it to V. Recall that in both Πc&c, Πsac, V
checks for each output wire k ∈ [nout] in each execution e, that the shares {oe,k,i}Ni=1 add up to the

output yk that should be on that wire. This is the same as checking that
∑N

i=1 oe,k,i−yk = 0. Thus,

we can take a random linear combination
∑

k∈[nout]
γe,k · (

∑N
i=1 oe,k,i − yk) with values γe,k chosen

by V and check that the result equals 0. This reduces communication, because now the prover is
required to send the verifier only one single output share of party īe instead of a share per each
output wire (recall that for the other parties their entire view is revealed and thus the share on the
output wires can be computed by the verifier).

In order to plug this idea into Πc&c while maintaining security, we need to add another round
where, after the view during the circuit computation is committed, the verifier chooses randomly
the random coefficients γe,k for each execution e and output wire k and hands them to the prover
who then computes for each party i the random linear combination of its shares. Specifically, for
each party i with shares {oe,k,i}k∈[nout], it computes oe,i =

∑
k∈[nout]

γe,k ·oe,k,i, and then commits to
oe,1|| · · · ||oe,N and sends the commitment to the verifier. Only then, the verifier chooses the party
īe, whose view is kept secret and hands it to the prover. Then, in the final round, the prover sends
all the data specified in the protocol’s description with the exception being that instead of sending
{oe,k,̄ie}k∈[nout] for each execution e, it suffices to send oe,̄ie only. The verifier then computes oe,i for

each i ∈ [N ]\ {̄ie}, and using oe,̄ie checks that
∑N

i=1 oe,i−
∑

k∈[nout]
γe,k ·yk = 0 for each execution e.

For Πsac no additional rounds are required. After the prover P has committed in the first round
to the shares of the parties on all the wires of the circuit, V can send the random coefficients along
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with the challenges it sends for the verification procedure. The prover P then computes the linear
combination of the output shares and commits to the obtained shares as explained above.

As in the previous optimization, we need to update the soundness of the two protocols, since
taking a random linear combination can result with having 0, even though the sharing on the output
wires were not correct (this happens with probability 1

|F| as in the previous optimization). In Πc&c

we denote by c1 the number of pre-processings corrupted by the prover and by c2 the number of
emulations where the prover cheats in computing the view of one of the parties. In the remaining
executions, the prover do not cheat (but only uses an invalid witness), hoping that the output
verification will succeed due to the random linear combination. Then, we have that the cheating
probability is

ξc&c(M,N, τ) = max
0≤c1≤M−τ

0≤c2≤M−τ−c1

{ (
M−c1
τ

)(
M
τ

)
·N c2 · |F|M−τ−c1−c2

}
.

We remark that in all our instantiations, it always hold that |F| > N and thus the best strategy
for a cheating prover is to set c2 = M − τ − c1, which means that the cheating probability remains
the same as before.

For Πsac, we argue that the cheating probability ξsac remains the same. This holds since the
current optimization is independent of the verification of multiplications/squares process, meaning
that both generate different outputs which the verifier checks in the last round. In particular, when
the prover cheats in one of the multiplications/squares, it can get away with it only by receiving
the “correct” challenge for the verification process or by changing one view, exactly as before.
Thus, for each instance, the prover can either manipulate the output of multiplication/square gates
or act honestly with an invalid witness and hope that taking the random linear combination of
the incorrect outputs will equal to the random linear combination of the publicly known outputs.

Therefore, the cheating probability for each instance is bounded by max
{

2N+|F|−2
|F|·N , 1

|F|

}
(in the

case where the circuit consists of multiplication gates and no square gates; the analysis is similar
for the opposite case). However, observe that 2N+|F|−2

|F|·N > 1
|F| (since N + |F| − 2 > 0), and thus the

soundness remains the same as before.

To sum-up the discussion, this optimization does not increase the soundness error of our pro-
tocols. However, the number of rounds is increased in the first protocol.

3.5 Communication and Computation Cost Analysis

In this section, we estimate the cost of our two protocols. The analysis includes all three optimiza-
tions described in the previous section. We denote by |hash|, |sd| and |com| the length of the hash
values, seeds and commitments.

Computation cost. By inspecting both Πsac and Πc&c one sees that for each multiplication gate
O(M ·N) multiplications in F must be computed. In practice, their runtime dominates over those of
the additions over F which can be optimized by carrying out multiple F-additions over the integers
before applying a modular reduction. For large enough F we have that ξsac(M,N) ≈ (1/N)M , and so
for statistical security parameter κ we have M · logN = κ which means that we will approximately
have to perform O(κ · (N/ logN) · |C|) multiplications both at proving and verification time, but
only over the field over which C is actually defined.
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Communication cost for Πc&c. The communication cost of messages sent from P to V in each
round is: (1) Round 1: 2|hash|; (2) Round 3: τ · |sd| + (M − τ) · |com| + |hash|; (3) Round 5: |sd| +
(M − τ) · (logN · |sd|+ |com|+ 3 log2(|F|) · nmul + 2 log2(|F|) · nsq + log2(|F|) · nin + log2(|F|)).

Summing the above, we obtain that the overall communication cost incurred by messages sent
by P is

|hash| ·3+ |sd| · (τ +1+logN(M−τ))+ |com| ·2(M−τ)+log2(|F|) · (M−τ)(3nmul+2nsq+nin +1).

Communication cost for Πsac. The communication cost of messages sent from P to V in each
round is: (1) Round 1: |hash|; (2) Round 3: |hash|; (3) Round 5: |sd|+M · (|sd|+ logN · |sd|+ |com|+
4 log2(|F|) · nmul + 3 log2(|F|) · nsq + log2(|F|) + log2(|F|) · nin + log2(|F|).

We obtain that the overall cost of communication sent from P’s side is

|hash| · 2 + |sd| · (2 +M logN) + |com| ·M + log2(|F|) ·M(4nmul + 3nsq + nin + 2)

Asymptotically, by setting |hash| = |sd| = |com| = O(λ), log2(|F|) = O(log(λ)) and M,N as
above we get that the communication cost of P is O(log(λ) · κ · (|C|/ log(N))).

One might be tempted to draw conclusions from the above expressions regarding which of the
protocols is more communication-efficient. However, recall that the soundness error of the protocols
is not the same. This means that different values will be chosen for the parameters M and N in
each of the protocols, thereby affecting the proof size in different ways. In fact, as we will see in
Section 6, the soundness error of Πsac allows having smaller parameters for M,N (e.g., for the same
N in both protocols, a smaller M can be taken for Πsac), thus reducing the overall communication
cost.

4 Sampling Circuits on the Fly

At the end of the previous section we introduced an optimization where the verifier V checks
the circuit’s output correctness by looking only at a linear combination of the outputs instead
of checking each output separately. In particular, this is done by having V choosing the random
coefficients which will be used to compute the linear combination after the prover P commits to
the view of the parties during the circuit’s computation. This process can also be viewed as an
interaction where the parties determine the final circuit’s structure during the execution, as here
the challenge chosen by V adds a layer on top of the initial circuit which consists of ‘multiplication-
by-a-constant’ and addition gates.

This idea, which we call “sampling the circuit on the fly” will be also used in some of the
optimizations suggested for the application presented in Section 5. Thus, we take a pause in this
section to formally establish this idea, so that security of all optimizations of this kind can be
derived easily without the need to re-prove security each time.

Although in the above optimization of linear combination the verifier chooses solely the circuit
that will be evaluated, we consider a more general definition where both the prover and the verifier
sample the circuit together from a set of possible circuits. The sampling process must begin only
after the prover have committed and fixed the witness that will be used. This means that from
this point on any form of cheating is possible only during the simulation of the MPC protocol to
compute the sampled circuit, as the witness cannot be tailored to the circuit which will later be
used. We remark that although the circuit will be jointly sampled by both parties, we restrict the
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sampling done by V to be independent of the messages of P and to not require him to keep a secret
state. This makes it possible to still apply the Fiat-Shamir transform in order to make the protocol
non-interactive. The prover P, in contrast, will be allowed to make his choice depending on the
witness that it committed or on other messages. At the same time, the choice of P should not allow
him to break the soundness of the protocol or the zero-knowledge property.

The section is organized as follows. We first provide a formal definition for the notion of circuit
sampling. Then, we show how to incorporate it into our argument system and argue that the
obtained system remains a zero-knowledge argument of knowledge. Finally, we show how the output
linear combination optimization described above is indeed an instantiation of the general notion.

4.1 Definition of Circuit Sampling

First, we define the notion of circuit sampling for an NP relation.

Definition 3 (R-circuit Sampler). Let R be an NP relation and SP , SV be two non-empty sets
that can be described with a string of polynomial length (in the security parameter λ). For (x,w) ∈ R
we say that Sample = (ExtWitness,Response,SampCircuit) is an R-circuit sampler if

ExtWitness is a PPT algorithm which on input (x,w) ∈ R outputs an extended witness w.

Response is a PPT algorithm which on input (x,w,w, τV) outputs a configuration τP .

SampCircuit is a deterministic algorithm which on input (x, τV , τP) outputs a circuit C as well as
a description of a set Y .

We next define a security game which follows the way we embed these algorithms into our
argument system. Consider the following game, which we denote by GameR,P ((x,w), SP , SV , λ),
executed with a prover P:

1. P outputs w.

2. Choose a random τV ← SV and hand it to P.

3. P outputs τP ∈ SP .

4. Use the R-circuit sampling algorithm to compute (C, Y )← SampCircuit(x, τP , τV).

5. Output 1 iff C(w) ∈ Y .

To understand the game, observe that Step 1 emulates the commitment to the witness, made
by P in the first step of our argument systems, in Step 2 a challenge is chosen which is followed
by the configuration chosen by P in Step 3. Once all the input for the SampCircuit algorithm is
gathered, (C, Y ) are being determined, and P wins if computing the circuit C on w yields a valid
output. Note that in the above definition there is no validation ensuring that the message τP that
is sent in the game is valid. This can be done by SampCircuit outputting Y = ∅ for an invalid choice
of τP .

We have three requirements from the circuit sampler. First, an obvious requirement is that if
the prover uses the correct w and chooses τP honestly, then the output of the game should be 1
(except for a negligible probability).

Definition 4 (Correct R-circuit Sampler). Let Sample be an R-circuit sampler. We say that
Sample is correct, if when P on input (x,w) computes w ← ExtWitness(x,w) and τP ← Response(x,w,w, τV),
it holds that GameR,P ((x,w), SP , SV , λ) = 1 with probability negligibly close to 1.
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The second property required from the circuit sampler is soundness. Similarly to the standard
definition of this notion, we require that if the prover wins in the above game with probability
larger than α, then it will be possible to extract the correct witness.

Definition 5 (α-sound R-circuit Sampler). Let Sample be an R-circuit sampler. We say that
Sample is α-sound if given Pr[GameR,P ((x,w), SP , SV , λ) = 1] > α (where the distribution is over
τV ∈ SV), there exists a deterministic PPT extractor E(w) which outputs w′ such that (x,w′) ∈ R
with probability 1.

While the definition looks similar to that of knowledge soundness used for proofs of knowledge,
there are crucial differences: the extraction is from w, and it is done in polynomial time and with
probability 1. This is because extraction of a candidate witness w′ from w is an “easy” task (as we
will see in all our circuit sampling uses) and so the only question is whether w′ is a valid witness
or not. The definition thus says that if P wins with probability higher than α, then it must have
used the correct witness w to compute w

Finally, we also need to ensure that the additional interaction does not leak any information
about w. This is formalized in the standard way of requiring the existence of a simulator who
can output an indistinguishable transcript without knowing w. Clearly, the message τP should not
reveal any information about w to an outsider. However, we additionally need simulatability of
C(w): the sampled circuit may enforce the relation R in different ways than a static circuit would
do (thus the set Y ) and this could potentially leak information. We will see an occurrence of this
phenomenon in one of the optimizations which we present later, where we use rejection sampling
inside the circuit.

Definition 6 (Simulatable R-circuit Sampler). Let (x,w) ∈ R and Sample be an R-circuit
sampler. Then, there exists a PPT algorithm S such that

{(τP , C(w))← P(x,w, τV)} ≈s {(τP , C(w))← S(x, τV)}

where P assume to act honestly as in Definition 4.

4.2 Circuit Sampling and the Zero-Knowledge Argument.

We now include the above approach into the protocol Πsac due to the simplicity of the analysis and
leave an adaptation of the first protocol as future work.

The modified protocol Πsamp
sac works as follows, where we only highlight the additional steps:

Round 1: For each e ∈ [M ] (i.e. each MPC instance) P computes we ← ExtWitness(x,w). Then,
it chooses the randomness used for the execution e (i.e., the seeds used to derive all randomness).
Finally, P commits to the extended witness and the randomness and send it to V
Round 2: For each e ∈ [M ] V samples τV,e as in Step 2 of the above game. It then sends
τV,1, . . . , τV,M to P.

Round 3: For each e ∈ [M ] P locally computes τP,e ← Response(x,w,we, τV,e) as well as
(Ce, Ye) ← SampCircuit(x, τP,e, τV,e). It uses Ce in for MPC protocol instance e and sends the
remaining first round messages together with τP,e to V.

Round 4: V runs round 2 as in the regular protocol.

Round 5: P runs round 3 as in the regular protocol.
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Round 6: V runs round 4 as in the regular protocol.

Round 7: P runs round 5 as in the regular protocol.

Output: Upon receiving the last message, V recomputes (Ce, Ye) ← SampCircuit(x, τP,e, τV,e) for
each e ∈ [M ], verifies the MPC transcripts for the individual Ce and then tests that each output
lies in Ye.

We next prove that protocol Πsamp
sac is an honest verifier zero-knowledge argument of knowledge.

Lemma 6. Let R be an NP-relation and Sample be a correct, α-sound and simulatable R-circuit
sampler. Then Πsamp

sac is an honest verifier zero-knowledge argument of knowledge that is statistically
complete for the relation R with knowledge error (soundness) (α+ (1− α) · ξsac(N))M .

Recall that ξsac(N) = |F|+N−1
|F|·N and so the soundness error of modified protocol, according to the

lemma, is
(
α+ (1− α) · |F|+N−1

|F|·N

)M
.

To prove the lemma, the main change here compared to the proof from Section 3 is that here the
circuits are not identical throughout all instances. Fortunately, it turns out that this assumption
can be relaxed without hurting the runtime of the extractor. Completeness and the zero-knowledge
property, on the other hand, follow directly from the previous security argument.

Proof. We prove the three properties required by the definition in Section 2.

Completeness.Πsamp
sac is complete, as Sample is a correct R-circuit sampler. We allowed Sample

some slack to occasionally abort, but this will only happen with negligibly small probability.

Honest Verifier Zero-Knowledge. We can construct a simulator S ′ for the new protocol
as follows: first, S ′ samples all messages of V as in the protocol, together with all the τV,e which
it chooses honestly. Next, S ′ samples (τP,e, Ce(we)) using S from Definition 6 and additionally
generates Ce ← SampCircuit(x, τV,e, τP,e) for each e ∈ [M ]. Then, run the simulator of the original
argument of knowledge-scheme, where we hard-wire the outputs Ce(w) from S into the individual
MPC instances.

The Zero-Knowledge property now follows by a hybrid argument: we let H0 be the distribution
of transcripts of the protocol. In the first hybrid H1, we use the simulator of the overall argument
of knowledge of Section 3 but compute (τP,e, Ce(we))← Response(x,w,we, τV,e) as in the protocol.
By the proofs from the preceding section H0 ≈s H1. Next, we define a sequence of hybrids Hi2
for i = 0, . . . ,M . In hybrid Hi2 we do the same as in H1, but replace (τP,e, Ce(we)) in the first i
instances by the output of S from Definition 6.

By definition, we then have H1 = H0
2. For each i ∈ [M ] we have Hi−1

2 ≈s Hi2 by the definition
of S as we only change one value. Finally, observe that S ′ outputs the same distribution as HM2
and thus the zero-knowledge property follows.

Knowledge Soundness. Since our proof here is only an adaptation of the proof of Theorem 3,
we only highlight the changes that must be inserted to it.

The proof of Theorem 3 consists of three steps: (i) Show that for M = 1 any δ(x) > ξsac(N)
implies that a correct witness must have been committed. (ii) Show that this generalizes to M > 1
executions, so that δ(x) > ξsac(M,N) means that at least one of the M instances has a correct
witness committed. (iii) Show that by sending different challenges, it is possible to extract the
witness from at least one of the MPC instances with a correct witness.
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The first step, where M = 1 follows from the proof of Lemma 4 and the soundness of the sampler.
Specifically, assume that the success probability δ(x) of the prover is higher than α+(1−α)·ξsac(N)
and assume that it didn’t commit to the correct witness w (and so the extended witness w is also
incorrect). Let K be the set of circuits that might be returned by SampCircuit for a fixed x and w.
Then we have

Pr[acc] = Pr[acc | C(w) ∈ Y ] · Pr[C(w) ∈ Y ] + Pr[acc | C(w) 6∈ Y ] · Pr[C(w) 6∈ Y ]

= α+ (1− α) · ξsac(N)

where the distribution is over K and over the challenges of the verifier. This contradicts the as-
sumption that δ(x) = Pr[acc] > α+ (1− α) · ξsac(N) and thus the prover must have committed to
the correct witness.

Next, the above can be easily generalized to any M > 1. That is, if we have M > 1 executions,
then δ(x) > (α+(1−α)·ξsac(N))M implies that there is at least one execution where the prover have
committed to a correct witness. This follows from the same argument as in the proof of Theorem 3
which led to Corollary 1, with the only difference being that here the space of possible changes is
larger and includes |K|.

Going into the third step of the proof, we can define the extractor E in the same way as in the
proof of Theorem 3. Informally speaking, E first probe challenges at random till a first accepting
transcript is found. Then, E runs M processes in parallel where process j runs until a second
accepting transcript has been found where the second challenge in execution j is different from
the challenge in the first accepting transcript. Holding two accepting transcripts where the second
challenge is different is sufficient for extracting the committed witness (as E has now the input
shares of all parties), and so if the correct witness was found by one of the processes, then E halts
(recall that once a correct extended witness w is found then by the soundness of the sampler, w is
computed in polynomial time).

Assume that δ(x) = Pr[acc] = (α+ (1− α) · ξsac(N))M + ε for some ε > 0. Then, the first step
requires 1/δ(x) < 1/ε expected number of steps. For the second step, we show that there exists an
execution j ∈ [M ] with the correct witness for which each attempt in the second step of E succeeds
with probability > ε/M , implying that the correct witness will be found in the second step within
expected M/ε number of steps.

Assume without loss of generality that the first k executions are the executions with the correct
witness and assume in contradiction that the probability of finding the desired second accepting
transcript in each of them is ≤ ε/M . Then, using exactly the same argument as in Lemma 5 (see
Eq. 6 and 7) we have

δ(x) = Pr [acc] ≤ (α+ (1− α) · ξsac(N))M−k · 1

Nk
+ ε.

To complete the proof, we therefore need to show that

(α+ (1− α) · ξsac(N))M−k · 1

Nk
< (α+ (1− α) · ξsac(N))M .

This is equivalent to showing that

1 < (α+ (1− α) · ξsac(N))k ·Nk
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which holds if

1 < (α+ (1− α) · ξsac(N)) ·N = α ·N + (1− α) · ξsac(N) ·N.

Recall that ξsac(N) = N+|F|−1
N ·|F| , and so we need to show that

1 < α ·N + (1− α) · N + |F| − 1

|F|
.

Observe that 1 < N+|F|−1
|F| < N (where the latter follows since |F| > 1 and N > 1). Thus, it follows

that

1 <
N + |F| − 1

|F|
= α · N + |F| − 1

|F|
+ (1− α) · N + |F| − 1

|F|
< α ·N + (1− α) · N + |F| − 1

|F|

which is exactly what we wanted to show.
We conclude that δ(x) = Pr [acc] < (α+ (1− α) · ξsac(N))M + ε in contradiction to our as-

sumption. This means that our extractor can find the correct witness within expected number of
O(M |x|/ε) steps, exactly as in the proof of Theorem 3. This concludes the proof. ut

4.3 Batched Output Correctness Check as a Circuit Sampler

We now revisit the batching of the output verification from Section 3.4 and consider it in the context
of circuit sampling. Recall that in this optimization, the verifier chooses random coefficients that
are used to compute the linear combination of the outputs, so that only one value is eventually
opened and checked instead of checking the correctness for each output wire of the original circuit.

Let C = (nin, nout, nC , L,R, F ) be a circuit over F.

ExtWitness: On input (x = (C,y),w)) ∈ R set w := w.

SampCircuit: On input τV = (γ) ∈ Fnout output the circuit C′ which performs the following:
1. Compute y′ = C(w) where y′ ∈ Fnout.
2. Compute y1 =

∑nout

i=1 γ[i] · (y′[i]− y[i]).
3. Output y1.

Furthermore output the set Y = {(0)}.
Response: Output 1.

Fig. 3: Batching the Output Check as a Circuit Sampler

We first define the three algorithms of the circuit sampler for this optimization: ExtWitness
receives ((C,y),w) as an input and returns the extended witness w, which in this case is just w.
Response receives as an input the tuple ((C,y),w,w, τV), but note that in this optimization, the
verifier’s challenge τV fully defines the circuit and thus the output of Response is just 1. Finally,
SampCircuit receives ((C,y), τV , τP) as its input and returns the circuit C ′ and the set Y defined in
the following way. The circuit C ′ consists of the original circuit C and the following layers which are
added on top of it: (i) subtraction gates for subtracting each value on an output wire y′[k] by the
expected public value y[k]; (ii) ’multiplication-by-a-constant’ gates for each result of the previous
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layer, where the constants are defined by τV ; and (iii) addition gates for summing the results of the
previous layer. The set Y consists of one value only - 0. We summarize the construction in Fig. 3.

The three algorithms defined above satisfies the properties of the Circuit Sampler. Correctness
is straightforward. Soundness of the sampler is 1

|F| , since if w is incorrect, then C(w) ∈ Y with

probability 1
|F| due to the fact that the random coefficients are uniformly chosen (see Lemma 2).

Finally, Simulation of the sampler is also trivial as here both τP and Y are deterministic and known
in advance.

A remark about the soundness of the method. The reader might have observed that there is a
disagreement between Section 3.4 and Section 4.2 regarding the soundness of the argument system
when using the batched output correctness check. Specifically, in Section 3.4 we argued that the
soundness of Πsac remains ξsac(N,M) as when the optimization is not used (more precisely, the

soundness is
(

max
{
ξsac(N), 1

|F|

})M
which equals to ξsac(N,M) = (ξsac(N))M since ξsac(N) > 1

|F|),

whereas Lemma 6 from Section 4.2 implies that the soundness is
(

1
|F| + (1− 1

|F|)ξsac(N)
)M

.

To understand the difference, note that the way the optimization is incorporated into the proto-
cols in each of the sections is not the same. In this section, we incorporate the optimization through
the general framework of circuit sampling. This means that the MPC protocol is being simulated
by the prover only after the circuit was sampled and so when computing multiplication/square
gates, the cheating prover knows whether C(w) = y. Thus, it knows whether cheating in the com-
putation of these gates is required or not. Therefore, in each of the M executions, with probability
1
|F| cheating is successful in the circuit sampling step, and with probability 1 − 1

|F| the prover will

have to manipulate the MPC protocol simulation which succeeds with probability ξsac(N). How-
ever, looking into the optimization (and not just plugging it into the general framework of circuit
sampling), observe that it only adds layers on top of the initial circuit and that it does not add
any multiplication nor square gate to the circuit. Thus, we can ask the prover to simulate the
computation of all multiplication and square gate already in the first step before the additional
layers were sampled. In this case, the prover needs to decide in each of the M executions whether
to manipulate the MPC computation or not in the first step. Thus, a cheating prover who wishes to
maximize its success probability will choose to cheat in the MPC simulation only if the probability
to succeed is higher than the probability that a random linear combination of incorrect outputs
will yield 0. This is exactly the way the optimized protocol is described in Section 3.4 and hence
the “different” soundness error. We remark that in the other circuit sampling optimizations we will
see in the next section, the circuit that is sampled contains also square gates, and thus the prover
can delay its decision whether to cheat in the MPC simulation to after the circuit is known, which
means that the obtained soundness is indeed as indicated by Lemma 6.

5 Proving Knowledge of SIS Instances

The protocols from Section 3 are asymptotically less communication-efficient than previous argu-
ment systems such as [AHIV17,BBC+18]. However, they have advantages when the circuit size is not
too big and when there are many linear gates in the circuit, because the communication is dominated
by the number of non-linear operations in the circuit C and has very small circuit-independent cost.
In this section, we exploit this fact to implement communication-efficient arguments of knowledge
for different versions of the so-called Short-Integer Solution (SIS) problem.
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The section is organized as follows. We begin by presenting an interactive argument for binary
secrets which does not allow any slack. The approach can be simply generalized to secrets from a
larger interval, but only at the expense of increasing the communication. Then, we introduce some
optimizations that allow us to reduce the communication for the suggested arguments and then
further squeeze down their size by introducing a slack factor.

Throughout the section, for each argument system we present, we will mention what is the
resulted size of the proof, based on the analysis of Πsamp

sac , which is the same as that of Πsac from
Section 3.5.

5.1 The Baseline Proof for SIS

We start by presenting a argument for the Binary SIS problem presented in Section 2.4. The reason
behind that is because general range proofs are hard using a circuit over Fq whereas they are very
simple for binary values. Moreover, the protocol we design for this problem will serve as a starting
point for constructions supporting secrets from larger intervals.

Let us first recap the definition of the relation that we aim to prove, which was given in Section
2.4 as

Rm,n,qB−SIS = {(x,w) = ((A, t), s) | s ∈ {0, 1}m ∧A ∈ Fn×mq ∧ t = As}
There are two main tasks that the protocol has to achieve, which is to show that the secret s

is a binary vector and the correctness of the product t = As. The matrix multiplication uses a
publicly known matrix, and since linear operations are free in our used MPC scheme computing it
can be done without increasing the proof size. What remains to show is that the witness consists
of bits. As already mentioned in the introduction, this test is easy to perform because s[i] ∈ {0, 1}
implies that s[i]2− s[i] = 0. We can therefore let the circuit C compute the square of each element
of s and then perform a linear test.

The obtained circuit is described in Fig. 4. For ease of notation we let ai,j ∈ Fq be the element
in the ith row and the jth column of A. The circuit can be evaluated using one of the protocols
from Section 3, with V testing that the circuit’s output ŷ equals (t[1], . . . , t[n], 0, · · · , 0). This
yields a highly efficient protocol, as there are only m non-linear gates in the circuit that require
communication, and all of them are square gates.

Witness: w = (s[1], . . . , s[m]) ∈ Fmq
Computation:
1. ∀i ∈ [m] compute ri ← s[i]2

2. ∀j ∈ [n] compute yj ←
∑
i∈[m] aj,is[i]

3. ∀i ∈ [m] compute yi+n ← ri − s[i]
Output: ŷ ← (y1, . . . , ym+n)

Fig. 4: An Arithmetic circuit representation of Rm,n,qB−SIS; The circuit contains m square gates, has m
inputs and m+ n outputs.

Using the cost analysis from Section 3.5 (for the scarifying-based protocol), We conclude that
the total number of bits communicated by P is

|hash| · 2 + |sd| · (2 +M logN) + |com| ·M + log q ·M(4m+ 2)
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Generalizing the Distribution of the input s. It is immediate to extend the construction
from Fig. 4 to other input distributions. We first generalize it to secrets s such that ||s||∞ ≤ 1.
Again, we want to mainly use squaring instead of multiplication gates. Since s[i] ∈ {−1, 0, 1} ⇐⇒
s[i]3 − s[i] = 0 we could implement this test using one squaring and one multiplication gate.
To further optimize this, observe that the polynomial X4 − X2 has the same roots as X3 − X
(albeit with different multiplicity) but can be computed using two squaring gates instead (since
X4 −X2 = (X2)2 −X2). Thus, in this setting, P’s total communication is

|hash| · 2 + |sd| · (2 +M logN) + |com| ·M + log q ·M(7m+ 2)

More generally, if we want to prove that 0 ≤ s[i] < 2r for some fixed r ∈ N, the most direct way
is to again prove that s[i] is the root of the polynomial f(X) = Π2r−1

j=0 (X − j). This will increase the
argument size by a factor of 2r compared with the Binary SIS argument, but for the aforementioned
interval one can reduce this to O(r): a number s[i] is in the interval [0, 2r − 1] if and only if there
exists si,1, . . . , si,r such that s[i] =

∑r−1
j=0 si,j+12j and si,j ∈ {0, 1}. This means that the interval

check can be done by providing the bit decomposition si,1, . . . , si,r of each s[i], testing if these si,j
are indeed bits (using one square gate per test) and then reconstructing s[i] on the fly. The circuit
construction is summarized in Fig. 5.

Witness: w = (s1,1, . . . , s1,r, . . . , sm,1, . . . , sm,r) ∈ Fm·rq .

Computation:
1. ∀i ∈ [m], j ∈ [r] compute ri,j ← s2

i,j

2. ∀i ∈ [m] compute s[i]←
∑r−1
j=0 si,j+12j

3. ∀j ∈ [n] compute yj ←
∑
i∈[m] aj,is[i]

4. ∀i ∈ [m], j ∈ [r] compute yi,j ← ri,j − si,j
Output: ŷ ← (y1, . . . , yn, y1,1, · · · , ym,r)

Fig. 5: An Arithmetic circuit representation of Rm,n,qSIS where each s[i] is in the interval [0, 2r); The
circuit contains m · r square gates, has m · r inputs and n+m · r outputs.

The witness w is valid if ŷ equals (t[1], . . . , t[n], 0, · · · , 0). While the witness is now expanded
by a factor r, we in total only have to compute m · r square gates. All other operations are linear
and do not influence the argument size, which in total is

|hash| · 2 + |sd| · (2 +M logN) + |com| ·M + log q ·M(4m · r + 2)

Proving Knowledge of general SIS instances. Finally, we aim at constructing an argument of
knowledge for SIS as defined in Definition 1, for which we need s[i] ∈ [−β, β] or alternatively, that

((A,y), s) ∈ Rm,n,q,βSIS . Instead of proving this exact bound, we show that ((A,y), s) ∈ Rm,n,q,2βSIS

using the circuit representation from Fig. 5. Therefore, consider the following algorithm:

1. P,V set t̂ = t+ Aβ and P additionally sets ŝ = s+ β.

2. Choose the smallest r ∈ N such that β ≤ 2r − 1.

3. P,V run one of our two protocols on the circuit from Fig. 5 using the interval [0, 2r+1 − 1] and
with the common output being (t̂[1], . . . , t̂[n], 0, . . . , 0) .
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Then, the above algorithm is a zero-knowledge argument of knowledge for the SIS relation with
slack 2 as long as 2β < q−1

2 . To see this, we only have to look at correctness and soundness as the
zero-knowledge property follows trivially. For correctness, the chosen r will always lead to ŝ being
in the right interval since 2β ≤ 2(2r − 1) < 2r+1 − 1. And due to the bound on β and q, adding
and subtracting β will not cause a wrap-around modq. For soundness, it is immediate that every
extracted ŝ′ with t̂ = Aŝ′ can be turned into a witness s′ for t by setting s′ = ŝ′ − β. In this case,
it holds for each coefficient s′[i] that

s′[i] ∈ [−β, 2r+1 − 1− β]

∈ [−β, 2r+1 − 2r]

∈ [−β, 2r]

Note that in the worst case, β is a power of 2 which means that we must set r such that 2r − 1 =
2β − 1. But then s′[i] ∈ [−β, 2β] and the claimed slack follows.

Thus, we will have to expand the witness to contain (blog2(β)c + 2) · m elements and we
furthermore have to evaluate as many square gates. P sends

|hash| · 2 + |sd| · (2 +M logN) + |com| ·M + log q ·M(4m · (blog2(β)c+ 2) + 2)

5.2 Reducing Verification Time

Our two protocols from Section 3 are almost symmetric in the amount of computation that P,V
have to perform. Increasing the number of parties N in either protocol leads to a reduced number
of instances M for which one has to simulate the inner MPC protocol. At the same time, this
increases the number of transcripts of parties which V has to check, namely M · (N −1) in total. As
we do not assume any restrictions on A of the SIS-instance (such as using Ring- or Module-SIS),
the multiplication with A on the side of V turns out to be a bottleneck, since it has to multiply the
matrix with N−1 input shares (corresponding to the N−1 parties for whom the view is tested). We
now describe how to counteract this problem by batching the linear tests together across multiple
parties and MPC instances.

Recall that in the protocol (as presented in Section 3) the verifier V recomputes the circuit
from the inputs to the outputs in every MPC instance. Therefore, to verify the linear relation
as in the protocol, V recomputes the output share oe,j,i for each execution e ∈ [M ], output wire
j ∈ [nout], and party i ∈ Ie from the input shares we,1,i, . . . , we,nin,i of each party by computing
oe,j,i =

∑
k∈[nin]

aj,kwe,k,i. These output wire shares oe,j,i are then compared to the committed
output shares in the commitment Πe which V obtained from P as part of the argument.

One observation is that this computation of oe,j,i is linear in all the values that depend on the
simulated party i as well as on the MPC instance. Thus instead of verifying each oe,j,i individually,
we can check this with lower computational overhead by testing a linear combination across all
parties and MPC instances instead. For this, we use the following standard argument:

Proposition 3. Let A ∈ Fφ×τ and consider the following game with adversary A:

1. A outputs w1, . . . ,wρ ∈ Fτ as well as o1, . . . ,oρ ∈ Fφ.
2. Random λ1, . . . , λρ ∈ F are chosen.

3. If ∃j ∈ [ρ] : oj 6= Awj and
∑

j∈[ρ] λj · oj = A
(∑

j∈[ρ] λj ·wj

)
then the output of the game is

1 and and 0 otherwise.
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Then, the probability that the game’s output is 1 is at most 1/|F|.

Proof. Assume that A wins (i.e., the output of the game is 1). Thus, there exists j̄ ∈ [ρ] such that
oj = Awj +∆j , and ∆j is non-zero. It follows that∑

j∈[ρ]

λj · oj =
∑

j∈[ρ]
λj · (Awj +∆j) =

∑
j∈[ρ]

λj ·Awj +
∑

j∈[ρ]
λj ·∆j

= A(
∑

j∈[ρ]
λj ·wj) +

∑
j∈[ρ]\{j̄}

λj ·∆j + λj̄∆j̄ .

Now, since A wins, this means that
∑

j∈[ρ]\{j̄} λj ·∆j+λj̄∆j̄ = 0. As all the λj are chosen uniformly
at random and ∆j̄ 6= 0, this happens only with probability 1/|F|. ut

Using the above Proposition, we can reduce verification time as follows. The verifier V will
now first sample uniformly random values λ1, . . . , λM(N−1) locally. Next, instead of computing the
M(N − 1) matrix products with A (N − 1 in each MPC instance e), it will compute a weighted
sum of the M(N − 1) vectors first and then compute a single matrix product with A. While this
approach has soundness error 1/|F|, V can simply repeat it with different choices of λ to reduce the
error probability.

The drawback of this approach is that it comes at the cost of increasing the proof size. In
particular, according to the description of our protocols in Section 3, P only needs to send the
output shares of one party (the shares oe,j,̄ie of party Pīe whose view is not opened and so cannot
be locally computed by the verifier), whereas the above optimization requires P to send the output
shares of all parties to V. Thus, this optimization to the computation time increases the argument
size by | log q| ·M · (N − 1) · n bits.

5.3 Reducing Communication by Amortizing Bit Tests

We now discuss an optimization which aims at reducing the argument size for the Binary SIS
problem by reducing the number of non-linear gates in the circuit. Recall that in Fig. 4, we defined
a circuit for this problem that has m square gate. Each of the gates was used to verify that one of
m inputs is a bit. We now show how the number of square gates can be reduced to 1, at the cost of
adding elements to the witness. This reduces the overall communication since adding an element
to the witness increases the size of the argument per MPC instance by one field element, whereas
evaluating a square gate requires sending at least two field elements (secret-shared random square,
messages during evaluation of the gate etc.). The optimization uses circuit sampling as defined in
Section 4, where only V has a challenge and so only V is actually sampling the circuit.

Assume that we want to check if m input sharings s[1], . . . , s[m] indeed are bits, and furthermore
let |F| � 2m. We can implicitly define the polynomial D(X) ∈ F[X] of degree at most m− 1 such
that ∀i ∈ [m] : D(i) = s[i]. Furthermore, we know that there exists a polynomial B(X) =
D(X) · D(X) of degree at most 2m − 2 such that ∀i ∈ F : D(i)2 = B(i). We thus can say that
∀i ∈ [m] : s[i] ∈ {0, 1} if and only if ∀i ∈ [m] : B(i) = D(i).

This allows us to construct a new circuit-sampling procedure. Instead of testing all s[i] separately
for being bits, we let the prover P secret-share the predetermined B(X) as part of the witness.
Here, by our above observation that ∀i ∈ [m] : B(i) = D(i) it is only necessary to share the points
B(m + 1), . . . , B(2m − 1) (in addition to sharing all s[i]). Then, using the fact that Lagrange-
interpolation requires only linear operations (so it is entirely local in the underlying MPC scheme)
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we let V send a challenge x ∈ F that is the point at which we will evaluate D,B and test that
B(x) − D(x)2 = 0. By the Schwartz-Zippel-Lemma, we then must have identity of D(X)2 and
B(X) except with probability 2m−2

|F| .

In Fig. 6 we summarize the above intuition. Given h points T = {(xi, yi)}i∈[h] we define the

Lagrange coefficients `Tj (x) =
∏

1≤i≤h
i 6=j

x−xi
xj−xi for polynomial evaluation. In addition to Lagrange inter-

polation we also use the random linear combination of the outputs optimization described in the
previous section.

Let D(x) be a (m− 1)–degree polynomial such that ∀i ∈ [m] : D(i) = s[i] and B(x) = (D(x))2 be a (2m− 2)–
degree polynomial. Let SD = {(i,D(i))}i∈[m] and SB = SD ∪ {(i, B(i))}i∈[2m−1]\[m] be the evaluation points of
the polynomials D,B. We set SV = Fn+1.

ExtWitness: On input
(x = (A, t[1], . . . , t[n]), w = (s[1], . . . , s[m])) ∈ Rm,n,qB−SIS

set w = (s[1], . . . , s[m], b1, . . . , bm−1) ∈ F2m−1
q where bi = B(i+m) = D(i+m)2.

SampCircuit: On input τV = (γ, x) ∈ Fn × F output the circuit C which performs the following:
1. ∀j ∈ [n] compute yj ←

∑
i∈[m] aj,is[i]

2. Set y1 ←
∑
j∈[n] γ[j] · (yj − t[j])

3. z1 ←
∑m
j=1 `

SD
j (x) · s[j]

4. z2 ←
∑m
j=1 `

SB
j (x) · s[j] +

∑m−1
j=1 `SB

j+m(x) · bj
5. z3 ← z2

1

6. y2 ← z3 − z2

7. Output of C is (y1, y2)
Furthermore output the set Y = {(0, 0)}.
Response: Output 1.

Fig. 6: Sampling of a circuit for Rm,n,qB−SIS. This circuit contains 1 squaring gate, has 2m − 1 inputs
and 2 outputs.

We now prove that the algorithm defined in Fig. 6 is a circuit sampler as defined in Section 4.1.

Theorem 4. The algorithms in Fig. 6 yield a perfectly correct, 2m−2
|F| -sound and perfectly simulat-

able circuit sampler for the relation Rm,n,qB−SIS.

Proof. Correctness and the simulation property follow directly from the definition of the above
algorithms. What remains to show is the 2m−2

|F| -soundness.

Fix a string w and assume that soundness is higher than 2m−2
|F| . As Pr[y1 = 0] > 2m−2

|F| > 1
|F|

for all m > 1, this implies that w[1], . . . ,w[m] map to t under multiplication with A by the same
argument as in Section 4.3. Consider the implicit polynomials D(X), B(X) which were defined
through w and assume that D(X)2 6= B(X). Then by the Schwartz-Zippel Lemma the polynomial
F (X) = D(X)2 − B(X) can have at most 2m − 2 roots. But since Pr[y2 = 0] > 2m−2

|F| its number

of roots is bigger and so F (X) must be the zero-polynomial. Due to the way D(X), B(X) are
constructed (i.e., B(x) = D(x) for all i ∈ [m]), it thus follows that w[1], . . . ,w[m] are bits, which
concludes the proof. ut
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Applying this optimization and using Πsamp
sac , we obtain that the total communication is

|hash| · 2 + |sd| · (2 +M logN) + |com| ·M + log q ·M(2m+ 4)

which is approximately log q ·M(3m) bits smaller than the baseline approach.

5.4 Trading Argument Size for Slack

All of the arguments for SIS-instances that we have seen so far have in common that the gap
between the norm of correct witnesses and the norm that the argument guarantees is small: if we
start with ((A,y), s) ∈ Rm,n,q,βSIS (i.e., ||s||∞ ≤ β) then the soundness guarantee is that a witness

s′ with ((A,y), s′) ∈ Rm,n,q,τβSIS could be extracted (i.e., ||s||∞ ≤ τβ) where τ is a small constant.
However, the argument size depends on M ·m · log2(q) · log2(β) as we have to perform non-linear
computations for the bit-decomposition of each input s[i]. The goal of this subsection is to give an
approximate argument of size for the s[i] without having to resort to bit-decomposition for each
s[i]. This would allow for a smaller number of square- or multiplication-gates as well as a more
compact witness. On the other hand, the arguments will have a larger slack τ which will now also
depend on the number of inputs m.

To achieve a more compact argument, we will ask the prover to show that random linear
combinations of elements from s are small. For this we use a Lemma from [BL17] who showed
that random linear combinations mod q of elements from s are with certain probability not much
smaller than ||s||∞. Formally, they proved the following:

Lemma 7. For all s ∈ Fkq it holds that

Pr
c←{0,1}k

[
|〈c, s〉| < 1

2
· ||s||∞

]
≤ 1

2
and Pr

C←{0,1}`×k

[
||C · s||∞ <

1

2
· ||s||∞

]
≤ 2−`.

Proof. See [BL17, Lemma 2.3 & Corollary 2.4]. ut

The above Lemma only talks about the chance of detecting a vector of high norm by seeing one
large element in the result of the product with a random binary matrix. We will now extend it to
the case where we always see that lots such large elements in the product C · s.

Lemma 8. Let κ, r ∈ N+, s ∈ Fkq , β = ||s||∞ and define

Sβκ = {h ∈ Fr·κq | ∃T ⊆ [r · κ] ∧ |T | > κ ∧ ∀i ∈ T : |h[i]| ≥ 1

2
· β}

Then

Pr
C←{0,1}(r·κ)×k

[
C · s 6∈ Sβκ

]
≤ exp

(
−κ(r − 2)2

2r

)
.

Proof. Set r = C · s and define Xi ∈ {0, 1} to be 0 iff |r[i]| ≥ β/2 and 1 otherwise. From Lemma 7
it follows that

PrC←{0,1}(r·κ)×k [Xi = 1] ≤ 1/2

for all i ∈ [r · κ]. Consider the mean X = 1
r·κ
∑r·κ

i=1Xi. Then clearly E[X] = E[Xi] = Pr[Xi = 1] ≤
1/2 and thus −E[X] ≥ −1/2.
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Using the one-sided Hoeffding inequality we obtain

PrC∈{0,1}(r·κ)×k

[
X − E[X] ≥ r − 1

r
− 1

2

]
≤ exp

(
−2(r · κ) ·

(
r − 2

2r

)2
)

Since −E[X] ≥ −1/2, we have that

PrC∈{0,1}(r·κ)×k

[
X ≥ r − 1

r

]
≤ exp

(
−κ · (r − 2)2

2r

)

Observe that for the event X ≥ 1−1/r to happen, there must be ≤ κ variables for which Xi = 0
(since in that case X = 1

r·k
∑r·k

i=1Xi ≥ r·k−k
r·k = 1− 1

r ). Thus,

PrC∈{0,1}(r·κ)×k

[
X ≥ r − 1

r

]
= PrC←{0,1}(r·κ)×k

[
C · s 6∈ Sβκ

]
and the claim follows. ut

From the above Lemma we can easily derive the following:

Corollary 2. For the same conditions as in Lemma 8, we have that if r ≥ 5 then

Pr
C←{0,1}(r·κ)×k

[
C · s 6∈ Sβκ

]
≤ 2−κ

The above statements can directly be implemented in our argument system by the means of
circuit sampling. Unfortunately, this results in a new problem, which is that we cannot output the
product of s with a random binary matrix to V without necessarily leaking information about s.

We resolve this problem using circuit sampling on the side of the prover and give two different
solutions. The first idea is that P can compute u = Cs and output u + ”small” where ”small” is
a value of small norm. To achieve good soundness guarantees we let ”small” only be polynomially
bigger than ||u||∞ and use Rejection Sampling to hide the information from the product. Alterna-
tively, we can allow P to prove knowledge of the bit decomposition of each value of u = Cs. We
now describe both ideas in more detail and then formally express them in the context of circuit
sampling, which allows to directly combine them with Πsamp

sac .

1st Approach: Rejection Sampling. In this solution, we let the prover P add additional random
elements x1, x2, . . . to the witness, which are supposed to be small. The verifier V will then, as part
of his challenge in the circuit sampling, ask P to open a subset of x1, x2, . . . to show that most
of the remaining ones are indeed of small size. P will then open sums of each u[i] with some xj ,
subject to the constraint that this does not leak information about s. V later tests that each such
u[i] + xj is of bounded norm.

As part of rejection sampling a prover aborts whenever the argument would leak information.
But our goal is that the argument is complete with overwhelming probability. To achieve this, we
use an idea which is inspired by the “imperfect proof” of [BDLN16]. There, the authors gave a
protocol that showed how to prove knowledge of `− κ out of ` SIS instances using cut-and-choose
and rejection sampling. Their approach aborts only with negligible probability and turns out to be
compatible with our application. This, on a high level, works as follows:
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1. P will sample x1, . . . , x16κ uniformly at random from [−π ·m ·β, π ·m ·β] ⊂ F and commit them
as part of w.

2. V with probability 1/2 puts each xi into a set E. Then, he samples a random bit matrix
C ∈ {0, 1}5κ×m and sends E,C as its challenges to the prover.

3. P now sets up a circuit C as follows:
(a) C will output {xe}e∈E . Then V can check that xe ∈ [−π ·m · β, π ·m · β].
(b) Compute u = Cs in the circuit. P will go through u[1], . . . ,u[5 · κ], take the first unused

e ∈ E and test if u[i] + xe ∈ [−(π − 1) · m · β, (π − 1) · m · β]. If so, then it makes C
output vi = u[i] + xe, otherwise it removes e from E and repeats this procedure with the
next-largest e′ ∈ E. V later checks that indeed vi ∈ [−(π − 1) ·m · β, (π − 1) ·m · β].

We present the full sampler in Fig. 7.

Set some auxiliary value π = 100. We will have SV = {(γ, E,C) ∈ Fnq × {0, 1}16κ × {0, 1}5κ×m}.

ExtWitness: On input
(x = (t[1], . . . , t[n]), w = (s[1], . . . , s[m])) ∈ Rm,n,q,βSIS

sample x1, . . . , x16κ uniformly at random from [−π ·m · β, π ·m · β] ⊂ F. Then set

w = (s[1], . . . , s[m], x1, . . . , x16κ) ∈ Fm+16κ
q .

Response: On input x, v,w, τV do the following:
1. Set T ← ∅ and let E be as in τV .
2. Let u← Cs. For all i ∈ [5κ]:

(a) Set vi ← u[i] + xe for the smallest e ∈ E.
(b) Set E ← E \ {e}.
(c) Set T ← T ∪ {(i, e)} if vi ∈ [−(π − 1) ·m · β, (π − 1) ·m · β], otherwise begin again for the next element

in E.
3. Output τP = T .

SampCircuit: On input x, τP = T, τV = (γ, E,C) where k = |E| output the circuit C which performs the
following:
1. Compute y ← As.
2. Set y ←

∑
j∈[n] γ[j] · (y[j]− t[j]).

3. Write E = {e1, . . . , e`}. Then for i ∈ [`] set vi ← xe.
4. Compute u← Cs.
5. For i ∈ [5κ] set vi+` ← u[i] + xti where (i, ti) ∈ T .
6. Output of C is (y, v1, . . . , v`+5κ).

We implicitly set

Y ←
{

(0, v1, . . . , vk+5κ) ∈ F`+5κ+1
q

∀i ∈ [`] : vi ∈ [−π ·m · β, π ·m · β] ∧
∀j ∈ [5κ] : v`+j ∈ [−(π − 1) ·m · β, (π − 1) ·m · β]

}
.

Fig. 7: Sampling of a circuit for Rm,n,q,4πm·βSIS .

Theorem 5. The algorithms in Fig. 7 yield a statistically correct, α-sound and perfectly simulatable
circuit sampler for the relation Rm,n,q,4πm·βSIS where α = max{1/|F|, 2−κ}.

Proof. We prove that the sampler satisfies the definitions in Section 4.1.
Correctness. We show that if the prover follows the sampler instructions, then C(w) ∈ Y

except for a negligible probability in κ. Clearly, this event that C(w) /∈ Y occurs only when 16κ
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samples of xe are not sufficient. Thus, we need to show that this indeed happens only with negligible
probability. To prove this, we first compute the probability that xe is “thrown away” and not used in
the sum with u[i]. As we assume that the prover acts honestly, we know that xe ∈ [−π ·m·β, π ·mβ],
i.e., xe is sampled from a set of size 2π·m·β+1. In addition −β ≤ s[i] ≤ β and so −mβ ≤ u[i] ≤ mβ.
Denote by badx the event that xe is not used. Thus, given u[i], we can write

Pr[badx] = Pr [u[i] + xe < −π ·m · β +m · β] + Pr [u[i] + xe > π ·m · β −m · β]

= Pr [xe < −π ·m · β +m · β − u[i]] + Pr [xe > π ·m · β −m · β − u[i]]

=
π ·m · β +m · β − u[i]− (−π ·m · β)

2π ·m · β + 1
+
π ·m · β − (π ·m · β −m · β − u[i])

2π ·m · β + 1

=
2m · β

2π ·m · β + 1
<

2m · β
2π ·m · β

=
1

π
.

Note that this probability is independent of the value u[i]. Therefore, given that each xe is being
sent in the clear to V with probability 1/2, we obtain that each xe is not used in the sum with u[i]
with probability p < 1/2 + 1/2 · 1/π.

We now compute the probability that there aren’t enough samples of xe to construct the cir-
cuit. Let Xe ∈ {0, 1} be a random variable such that Xe = 0 with probability p and Xe = 1
with probability 1 − p. Furthermore, define X = 1

16κ

∑16κ
e=1Xe. Since there are 16κ samples of Xe

to begin with and 5κ are required to complete the circuit construction successfully, we need to

determine Pr
[∑16κ

e=1Xe < 5κ
]

= Pr
[
X < 5

16

]
. Observe that furthermore E

[
X
]

= p < 1/2 + 1/2π

and therefore Pr
[
X < 5

16

]
≤ Pr

[
X − E[X] < 5

16 −
1
2 −

1
2π

]
= Pr

[
E[X]−X > 3

16 + 1
2π

]
.

Using the Hoeffding bound we obtain

Pr

[
16κ∑
e=1

Xe < 5κ

]
≤ exp

(
−2 · 16κ ·

(
3π + 8

16π

)2
)

≤ exp (−κ)

where the last inequality holds for any π ≥ 1.
Simulatability. Recall that the definition of in Section 4.1, we need to show that a simulator

who receives x,w and τV as its input can output τP and C(w) that are indistinguishable from an
output of a real execution. As we have seen, the aforementioned “throwing away” probability is
actually independent of the value u[i] as long as u[i] ∈ [−m · β,m · β]. One can therefore simulate
τP by flipping a biased coin. To simulate C(w), each value v1, . . . , v`+5κ is simply chosen from its
respective interval. This is obviously a perfect simulation for v1, . . . , v` whereas v`+1, . . . , v`+5κ is
uniformly random in its interval by the choice of xi in Response.

α-Soundness. Let w be fixed and assume that the prover succeeds with probability > α =
max{1/|F|, 2−κ}. As in previous arguments, this particularly implies that the committed w contains
a correct preimage of t under multiplication with A and it remains to show that this preimage is
of correct size.

By the fact that each xe is chosen to be in the set E with probability 1/2, it follows that all
but κ of the unopened xe must be within the interval [−π · β ·m,π · β ·m], as otherwise the success
probability of the prover must be lower than 1

2κ .
Let’s consider the vector u which the prover computes. By Corollary 2 we know that if P uses

s such that ||s||∞ ≥ (4π − 2)m · β + 2 then u ∈ S
(4π−2)mβ+2
κ (i.e., there exist > κ values u[j]
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for which |u[j]| ≥ (2π − 1)m · β + 1), except with probability 2−κ. Thus for the output of the
circuit to be in Y each u[j] with |u[j]| ≥ (2π − 1)mβ + 1 > (2π − 1)mβ must be paired with a
value xe with |xe| > πmβ so that |vj | = |u[j] + xe| ≤ (π − 1)mβ. As there are at most κ many
such “bad” xi, the prover can make at most κ bad sums and at least one generated vj will be
outside of the interval and thus be noticed, except with probability 2−κ. Therefore, if the success
probability of the prover is higher than 2−κ, then w must contain a preimage of t of bound at most
4πmβ ≥ (4π − 2) ·m · β + 2. ut

A drawback of this approach is the rather big slack of 4π ·m. This slack is caused by two reasons.
First, there is an inherent increase of m due to the use of Lemma 7. In addition, using Rejection
Sampling means that we lose another factor π = 100. One could decrease the constant by using a
discrete Gaussian distribution for the xi as in [Lyu12], but we opted for presenting the above idea
due to its simplicity. On the positive side, there are no non-linear gates in the sampled circuit and
P will only have to add 16 · κ more values to the witness, independently of β. The sampled circuit
will output `+ 5κ+ 1 elements of F, which in expectancy is around 13κ+ 1 (since each of the 16κ
random samples is opened with probability 1/2).

Summing up, the communication of the actual argument (neglecting the length of τP) when
using Πsamp

sac is

|hash| · 2 + |sd| · (2 +M logN) + |com| ·M + log2 q ·M(m+ 29κ+ 1)

2nd Approach: The Power of Random Bits. The circuit sampler from Fig. 7 has the disadvan-
tage of having a comparably high slack of 4πm. On the other hand, it does not use any non-linear
gates. We will now show how to decrease the slack to be essentially m by reintroducing one square
gate.

To reduce the slack, we will again rely on Lemma 7. But instead of performing rejection sampling
on the output, we perform a range proof for each element of the matrix product u = Cs. The
problem that arises is that C is only chosen at runtime, while the committed witness must be
independent of the actual values in C. At the same time, we must construct the argument in such
a way that the circuit C will not reveal any information about the product except for bounds on
each value.

We resolve this problem as follows: if the witness has ||s||∞ ≤ β, then since C ∈ {0, 1}κ×m it
must hold that ||Cs||∞ ≤ m·β. Thus, letting r be the smallest integer such that m·β < 2r, it suffices
for the prover to show that u[i] ∈ [0, 2r − 1] (we can also shift the interval as done in Section 5.1).
To show the inclusion P can add random bits xi1, . . . , x

i
r to the witness. Then, once the challenge

is received from V and u is known to P, it can compute the bit decomposition u[i] =
∑r

j=1 2jhij
for each i ∈ [κ] and tell V for each j ∈ [r] if it should use xij or 1− xij to represent hij . As all xji are
chosen randomly, this yields a simulatable circuit. The only issue that remains is for P to prove
that each xji is indeed a bit. For this task, we use the method presented in Section 5.3, which uses
polynomial evaluation and requires a single non-linear gate. We provide the full circuit sampler in
Fig. 8.

Theorem 6. Assume that (q − 1)/2 > 4mβ. The algorithms in Fig. 8 yield a perfectly cor-

rect, α-sound and perfectly simulatable circuit sampler for the relation Rm,n,q,2m·β+4
SIS where α =

max{2(r+1)κ−1
|F| , 2−κ} and r is the smallest integer such that m · β ≤ 2r − 1.
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We will have SV = {(γ, x̂,C) ∈ Fnq × Fq × {0, 1}κ×m}.
Let `Tj (x) =

∏
1≤i≤h
i 6=j

x−xi
xj−xi

be Lagrange coefficients, where T = {(xi, yi)}i∈h is the set of points used for polynomial

evaluation.

ExtWitness: On input (x = (t[1], . . . , t[n]), w = (s[1], . . . , s[m])) ∈ Rm,n,q,βSIS do the following:
1. For i ∈ [κ] sample the random bits xi1, . . . , x

i
r+1.

2. Compute the unique polynomial D(X) of degree (r + 1)κ − 1 where D((i − 1)(r + 1) + j) = xij for i ∈
[κ], j ∈ [r + 1]. Furthermore, compute the polynomial B(X) = (D(X))2 and set SD = {(i,D(i))}i∈[(r+1)κ]

and SB = SD ∪ {(i, B(i))}i∈[2(r+1)κ−1]\[(r+1)κ] as the evaluation points of the polynomials D,B.
3. Set

w = (s[1], . . . , s[m], x1
1, . . . , x

1
r+1, . . . , x

κ
1 , . . . , x

κ
r+1, z1, . . . , z(r+1)κ−1) ∈ Fm+(r+1)κ

q

where zi = B(i+ (r + 1)κ) = (D(i+ (r + 1)κ))2.

Response: On input x, v,w, τV do the following:
1. Set u← Cs. Then for all i ∈ [κ] do the following:

(a) Set vi ← u[i] +m · β.
(b) Find hi0, . . . , h

i
r ∈ {0, 1} such that vi =

∑r
j=0 h

i
j2
j .

(c) For each j ∈ {0, . . . , r} set

bij ←

{
0 if hij = xij

1 otherwise

2. Output τP = ({bi0, . . . , bir}i∈[κ]).

SampCircuit: On input x, τP = ({bi0, . . . , bir}i∈[κ]), τV = (γ, x̂,C) the circuit C performs the following:
1. Compute y ← As.
2. Set y1 ←

∑
j∈[n] γ[j] · (y[j]− t[j]).

3. Set u← Cs.
4. z1 ←

∑κ
i=1

∑r+1
j=1 `

SD
(i−1)(r+1)+j(x̂) · xij

5. z2 ←
∑κ
i=1

∑r+1
j=1 `

SB
(i−1)(r+1)+j(x̂) · xij +

∑(r+1)κ−1
j=1 `SB

j+(r+1)κ(x̂) · zj
6. z3 ← z2

1

7. y2 ← z3 − z2

8. For each i ∈ [κ], j ∈ {0, . . . , r} set

hij ←

{
xij+1 if bij = 0

1− xij−1 otherwise

9. For i ∈ [κ] set yi+2 ← u[i] +m · β −
(∑r

j=0 h
i
j2
j
)

.

10. Output (y1, . . . , yκ+2).
We output the set

Y =
{

(0, · · · , 0) ∈ Fκ+2
q

}
.

Fig. 8: Sampling of a circuit for Rm,n,q,3m·βSIS .

Proof. Correctness: Most of the correctness follows simply by linearity as in the other construc-
tions, so we will focus on the bit-decomposition part.

The multiplication of s with C trivially yields a bound ||u||∞ ≤ m · ||s||∞ = m · β. By shifting
each u[i] with the constant m · β we will have that u[i] +m · β ∈ [0, 2r+1 − 1]. This can always be
represented with r + 1 bits as in the protocol.

α-Soundness: The prover has three ways it can get away with using an invalid witness. The
first is to use a input vector s which is not a preimage of t under multiplication with A. But as
in previous constructions this will only succeed with probability 1/|F| (due to the random linear
combination of outputs). A second option to cheat is to use xij that are not bits. Following the
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same idea as in the proof of Theorem 4, this prover can succeed here with probability of at most
2(r+1)κ−1
|F| . The third way is to use an input vector with norm that is not in allowed range. We will

show now that the success probability in this case is at most 2−κ. Observe that 2(r+1)κ−1
|F| > 1

|F| and
so the overall soundness error is as defined in the Theorem.

Thus, for the rest of the proof we assume that the committed values xij are bits. Assume that
s as committed in the witness w is such that ||s||∞ ≥ 2mβ + 4. Then by Lemma 7 we have
that Pr[||u||∞ < m · β + 2] ≤ 2−κ. If ||u||∞ ≥ m · β + 2 then there exists an index i such that
either u[i] ∈ [−(q − 1)/2,−m · β − 2] or u[i] ∈ [m · β + 2, (q − 1)/2]. In the first case we have
vi = u[i] +m · β which results in vi ∈ [−(q − 1)/2 +m · β,−2]. But no such vi can be represented
as vi =

∑r
j=0 h

i
j2
j using bits hij only. If on the other hand u[i] ∈ [m · β + 2, (q − 1)/2] then

vi ∈ [2m · β + 2, (q − 1)/2] ∪ [−(q − 1)/2,−(q − 1)/2 + mβ − 1]. But the largest number which
the sum

∑r
j=0 h

i
j2
j can express with hij ∈ {0, 1} is 2r+1 − 1 = 2mβ + 1 and the values from

[−(q − 1)/2,−(q − 1)/2 + mβ − 1] are not expressible by the bound on q. As the prover succeeds
with probability strictly larger than 2−κ to represent all vi as bits, it must hold by Lemma 7 that
||s||∞ < 2mβ + 4 and the claim follows.

Simulatable: The set Y is fixed for all instances. τP consists of bits bij which are essentially

the XOR of the bit decomposition of the secret u[i] +mβ with uniformly random bits xij and thus
perfectly simulatable. ut

The circuit we obtain has m + κ(r + 1) inputs, one square gate and κ + 2 outputs. Then the
total communication of this argument when using Πsamp

sac is

|hash| · 2 + |sd| · (2 +M logN) + |com| ·M + log2 q ·M(m+ κ(r + 2) + 5).

6 Evaluation and Experimental Results

We ran extensive experiments to measure the performance of our two protocols for the Binary-SIS
problem. As setup we used Amazon C5.9xlarge instances using two servers with Intel Platinum
8000 series processors (Skylake-SP) which have clock speed up to 3.4 GHZ, 36 virtual cores per
server (utilized based on the experiment setup) and 72 Gb RAM. The network bandwidth between
the nodes is 10Gpbs. For our implementation we used only the baseline construction for the Binary-
SIS problem presented in Section 5.1. Nevertheless, this includes the three general optimizations
described in Section 3.4. Hash functions as well as commitments were implemented using SHA-256.
Generation of pseudo-randomness from a seed was done using AES in counter-mode where the seed
is the AES key. Thus, |hash| = |com| = 256 bits and |sd| = 128 bits.

Binary-SIS Problem parameters. We used five sets of parameters for our experiments:

1. log2 |F| = 15, n = 256 and m = 1024.
2. log2 |F| = 15, n = 256 and m = 4096.
3. log2 |F| = 31, n = 512 and m = 2048.
4. log2 |F| = 59, n = 1024 and m = 4096.
5. log2 |F| = 61, n = 1024 and m = 4096.

The first parameter set reflects SIS-based constructions that do not need any additional function-
ality. For example, they can be used to instantiate [KTX08] with a binary secret. The second
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Cut-and-Choose Sacrificing

N
ξ ≤ 2−40 ξ ≤ 2−80 ξ ≤ 2−40 ξ ≤ 2−80

M τ Argument size M τ Argument Size M Argument Size M Argument Size

2 75 34 31 + 0.123 · ρm 145 63 61.1+0.246·ρm 40 26.2+0.16·ρm 80 51.8+0.32·ρm
4 55 32 22.4+0.069·ρm 105 57 44.8+0.144·ρm 20 16+0.08·ρm 40 31.3+0.16·ρm
8 55 38 20.7+0.051·ρm 95 57 42+0.114·ρm 14 13.2+0.056·ρm 27 24.8+0.108·ρm
16 45 26 23.4+0.057·ρm 95 63 41.5+0.096·ρm 10 10.9+0.04·ρm 20 21.2+0.08·ρm
32 45 28 23.8+0.051·ρm 85 47 50.4+0.114·ρm 8 9.9+0.032·ρm 16 19.1+0.064·ρm
64 45 28 26+0.051·ρm 85 49 53+0.108·ρm 7 9.6+0.028·ρm 14 18.6+0.056·ρm

Table 1: Summary of Parameters used in the experiments for each protocol and the argument size
in Kbits for each set of parameters as a function of the SIS problem parameters ρ = log2 |F| and
m.

parameter set is then used to study the impact of using a much larger message in the commitment
scheme, which also shows how the matrix size impacts the runtimes.

The third set would be a typical example for SIS-based constructions such as somewhat ho-
momorphic commitments and allows to prove that a committed message is small. An example
for an application would be the commitment scheme of [BDL+18]. The last two sets are used for
applications such as somewhat homomorphic encryption schemes like [BGV14].

Protocol parameters. We ran experiments for 40 and 80 bits of statistical security κ. For the
parameter N , which is the number of parties in the underlying MPC protocol, we used 6 different
values: 2,4,8,16,32 and 64. Then, given the desired level of security and the number of parties, we
searched for the set of parameters in each of the two protocols, that minimizes the overall cost.

In Πc&c, there are two parameters to define: M (number of pre-processing executions) and τ
(number of pre-processing executions to open). To obtain these, we wrote a script that finds the
minimal M and τ such that ξ(M,N, τ) ≤ 2−40 or 2−80. In Πsac, we observe that for our choices

of |F| and N , it holds that 3N+|F|−3
N ·|F| ≈ 1

N and so it suffices to choose the minimal M such that

ξ(M,N) ≈ 1
NM ≤ 2−40 or 2−80.

We summarize the parameters used in our experiments in Table 1. In addition, for each set of
parameters we give the size of the argument in Kbits as a formula of the SIS problem parameters
ρ = log2 |F| and m. Observe that as the number of parties N grows, the number of MPC instances
in Πsac becomes much smaller than the number required in Πc&c, which is translated to smaller
proof size.

Running times. In Table 2 and Table 3 we present the running times (in Msec.) of the two
protocols for 40 and 80 bits of security respectively. For each SIS problem set of parameters, we
report only the best running times achieved together with the MPC protocol parameters which lead
to the result. As the number of non-linear gates in this circuit is small, it is not surprising that both
schemes achieve similar results. Observe that small numbers of parties in the MPC protocol lead to
faster running times, in contrast to proof size which is getting smaller when the number of parties
is increased. When compared with the data presented in Table 1 which shows that the sacrificing
protocol has lower argument size and that argument size usually becomes smaller as the number of
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ρ n m
Cut-and-Choose Sacrificing

N M τ time N M time

15 256 1024 2 75 34 73.2 4 20 59.4

15 256 4096 2 75 34 295.8 4 20 252.6

31 512 2048 2 75 34 252.3 4 20 217.5

59 1024 4096 2 75 34 1010.4 2 40 1075.1

61 1024 4096 2 75 34 1204.6 2 40 1228.8

Table 2: Best running times in MSec for different sets of SIS problem parameters with 40-bit
security.

ρ n m
Cut-and-Choose Sacrificing

N M τ time N M time

15 1024 256 2 145 63 146 4 40 118.6

15 256 4096 2 145 63 589.2 4 40 507.7

31 512 2048 2 145 63 505.4 4 40 436.8

59 1024 4096 2 145 63 2000.4 2 80 2138.8

61 1024 4096 2 145 63 2396.8 2 80 2432.3

Table 3: Best running times in MSec for different sets of SIS problem parameters with 80-bit
security.

parties grows (which is to be expected), this indicates that, in the current state, computation time
is the bottleneck of the protocol.

It is worth noting that a major source of improvement we discovered was to postpone the
modular reduction in the matrix multiplication to the end. That is, when the prover/verifier mul-
tiply a row in the matrix A with a vector of shares of s (which is eventually what the computed
circuit does), it is highly beneficial to do the reduction modulo q only at the end of the matrix
multiplication. This simple optimization alone yields an improvement of approximately 33% in our
results.

Using Multi-threads. The above results were obtained using a single thread. As computation
time is the bottleneck, we examined what happens when working with multiple threads which seems
to be a straightforward optimization. In Fig. 9 we present the improvement in the running time
when utilizing more threads. This experiment was run for the most “toughest” instance of the SIS
problem, with ρ = log |F| = 61, n = 1024 and m = 4096 and with the MPC protocol parameters
who yielded the best running time in Table 2 and Table 3. As can be seen, using many threads
speeds-up the performance by more than 80%. As a consequence, we obtain a lattice ZKAoK that
runs in less than 0.5 seconds even for the of SIS instance with the largest parameters.This is orders
of magnitude faster than any previous implementation for arithmetic circuits of the same size.

Faster Matrix Products & Structured Lattices. In this work we solely focus on unstructured
matrices A for SIS. By micro-benchmarking the results, we observe that as the size of the matrix A
grows, the time spent on computing the matrix multiplication becomes dominant. In particular, for
the large instances, matrix multiplication takes > 85% of the overall local computation time. As we
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Fig. 9: Running time in Msec. as a function of the number of threads used, for the instance with
the parameters: ρ = 61, n = 1024, m = 4096 and N = 2

use only textbook matrix multiplication, this leaves plenty of room for improvement. Furthermore,
on the verifier side it is possible to batch the matrix multiplications together as only verification is
needed. Another direction would be to use structured matrices i.e. structured lattices, which opens
the door for FFT-like algorithms.

7 Comparison to Previous Works

We now describe how our protocol compares in terms of proof size with other state-of-the-art
arguments of knowledge. For this comparison, we consider only our second “sacrificing”-based
protocol. We stress that comparing only the proof size does not provide a complete picture, since
communication is not necessarily the bottleneck (as can be observed from the experimental results
in the previous section). As we focus on practicality, the comparison focuses on two instances of the
SIS problem: the Binary-SIS problem and a more general instance where ||s||∞ ≤ 15 (i.e., β = 15
and so the secrets are of 5-bit size). For each instance, we consider three set of parameters: 40-bit
and 80-bit soundness security for log2(|F|) ≈ 32 and A ∈ F512×2048 as well as 128-bit soundness
for log2(|F|) ≈ 61 and A ∈ F1024×4096. As in the previous subsection, for seed-size we use 128
bits, whereas length of commitments and outputs of hash function-calls will be 256 bits. Whenever
necessary, we will use the same values for comparable parameters in other protocols. Since our focus
here is on communication only, we use N = 16 simulated parties in the underlying MPC protocol,
and so we set M = 11, 21 and 33 to achieve 40, 80 and 128 bit of soundness security.
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Protocol log2(|F|) = 32, Binary log2(|F|) = 32, β = 15 log2(|F|) = 61, Binary log2(|F|) = 61, β = 15

Stern [Ste96] 971 KB 7285 KB 3703 KB 27775 KB
Ligero [AHIV17] 1158 KB 1174 KB 2821 KB 2860 KB
Ours, baseline 357KB 2138 KB 1359KB 8148 KB

Ours, amortized 179 KB 1069 KB 680 KB 4075 KB

Table 4: Proof sizes for Binary-SIS and secrets of 5-bit size, small constant slack, 40-bit soundness.

Protocol log2(|F|) = 32, Binary log2(|F|) = 32, β = 15 log2(|F|) = 61, Binary log2(|F|) = 61, β = 15

Stern [Ste96] 1457 KB 10928 KB 5555 KB 41663 KB
Ligero [AHIV17] 2218 KB 2245 KB 6009 KB 6085 KB
Ours, baseline 682 KB 4082 KB 2595KB 15557 KB

Ours, amortized 342 KB 2042 KB 1299 KB 7780 KB

Table 5: Proof sizes for Binary-SIS and secrets of 5-bit size, small constant slack, 80-bit soundness.

Protocol log2(|F|) = 61, Binary log2(|F|) = 61, β = 15

Stern [Ste96] 11851 KB 88882 KB
Ligero [AHIV17] 10173 KB 10309 KB
Ours, baseline 4077 KB 24461 KB

Ours, amortized 2041 KB 12225 KB

Table 6: Proof sizes for Binary-SIS and secrets of 5-bit size, small constant slack, 128-bit soundness.

Protocols with Small Constant Slack. We subsume all protocols that achieve constant slack
here. These are either based on Stern-type arguments [LNSW13], direct applications of MPC-in-
the-head [AHIV17] or IOP-based constructions [BSCR+18]. Though STARKs [BSBHR18] fall into
the third category, we do not consider those here as they are rather tailored to computations with
looping components.

While [LNSW13] is a specific technique tailored to problems such as SIS, [AHIV17,BSCR+18]
require an arithmetic circuit (similar to us) for the verification of the statement. Recall that in our
system, all linear gates of these circuits are for free whereas in [AHIV17,BSCR+18] they necessarily
contribute to the size of the proof. The circuits for the two different problems follow directly from
Section 5.1: for the Binary-SIS proof we have m · (n+ 2) arithmetic gates with m inputs and m+n
outputs, whereas the proof for the general SIS problem has m · (n + 2r) arithmetic gates, m · r
inputs and n+m · r outputs (recall that r is the smallest integer such that β ≤ 2r − 1).

In Table 4 we present the proof size for 40 bits of soundness, whereas Table 5 and Table 6
deal with 80 bits and 128 bits, respectively. For our protocol, we present the proof size when using
the baseline protocol (Section 5.1) and when using the ‘amortizing bit tests’ optimization from
Section 5.3.

Observe that the tables do not include proof sizes for the recent Aurora protocol [BSCR+18],
as the authors there did not provide any general expression for the proof size, but rather only
experimental results for the binary field F2192 . However, even for this large field, their proof size is
around 250KB for a circuit with the same size as ours. Though [BSCR+18]’s current implementation
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Protocol Slack log2(|F|) = 32 40 bits log2(|F|) = 32 80 bits log2(|F|) = 61 128 bits

Sigma-protocol [Lyu12] 288m 184KB 368KB 1241KB
Ours, Approach 1 (κ = 8) 400m 100KB 191KB 1079KB
Ours, Approach 2 (κ = 8) < 3m 96KB 183KB 1057KB

Ours, Exact 1 179KB 342KB 2041KB

Table 7: Proof sizes for Binary-SIS non-constant slack.

Protocol Slack log2(|F|) = 32 40 bits log2(|F|) = 32 80 bits log2(|F|) = 61 128 bits

Sigma-protocol [Lyu12] 288m 223KB 447KB 1494KB
Ours, Approach 1 (κ = 8) 400m 100KB 191KB 1079KB
Ours, Approach 2 (κ = 8) < 3m 97KB 184KB 1061KB

Ours, Exact 1 1069KB 2042KB 12225KB

Table 8: Proof sizes for SIS with β = 15 and non-constant slack.

is only for binary fields and they require to use field extensions (whereas we can work over the prime
field itself), it is fair to assume that the proof size for smaller fields will be smaller than the one
obtained by our protocols. Nevertheless, the prover running time according to their experiments
is approximately 200sec, and so is expected to be at least one order of magnitude bigger than
the prover’s running time in our protocols (the same applies to [AHIV17] whose prover’s running
time is even higher than of [BSCR+18]). Thus, in applications where only the proof size matters,
their protocol might be preferable, whereas in applications where the overall running time of the
interactive protocol is more important, our argument system will outperform theirs.

Protocols with Non-constant Slack. Here, we compare with argument system from the signa-
ture scheme of [Lyu12].

We present the comparison in Tables 7 and 8. The scheme of Lyubashevsky consists of 3 steps
in each round i: (i) P sends a value ai = Axi where xi is sampled according to a discrete Gaussian
distribution; (ii) V sends a challenge bit ei; and (iii) P finishes by either sending zi = xi + ei · s
or aborting. For the sake of comparison we consider as message complexity only the messages that
are sent in the last of the three rounds, as the first message can be compressed into a commitment
and then the opening be obtained from the third message. A further optimization, which we do not
consider, is that the third message itself must only be sent whenever ei = 1. Whenever ei = 0, it
would instead be feasible to just send a PRG seed which was used to generate the vector xi. But
this vector is sampled according to a discrete Gaussian distribution and re-running such a sampler
would be rather time-consuming. The vector xi could alternatively be sampled from a bounded
uniform distribution as in our case, but that would increase the slack proportionally. We could
arguably also further decrease the size of our new arguments by increasing the number of parties
N , which would also lead to higher computational cost on our side.

We compare the proof size of [Lyu12] with our baseline protocol and with the two solutions
described in Section 5.4. We see that in particular the 2nd protocol of Section 5.4 improves upon
[Lyu12] for all three considered cases. This is particularly true in the cases where the gap between β
and |F| is small, as our proof size increases as |F| grows whereas the size of [Lyu12] stays the same.

50



At the same time, increasing β seems not to substantially change the communication complexity
of either of our two proofs, whereas it has a direct impact on [Lyu12].

Protocols not based on post-quantum assumptions. Recently, del Pino et al. [dPLS19]
showed how to obtain a ZK argument for our problem setting. While they have a drastically smaller
proof size (in the order of 1.5KB), we think that comparing our work to theirs would not be fair.
First, the soundness of their construction relies on the Discrete-Log assumption and is therefore not
post-quantum secure. Moreover, their computational efficiency relies on using structured lattices,
which we do not need.

For the same reason, we excluded Hyrax [WTS+18] and Sonic [MBKM19] from the comparison.
As [dPLS19] these constructions rely on the Discrete Logarithm-assumption for their security.
Older ZK-SNARKs such as [PHGR16,BSCTV14] would offer low argument size and verification
time but in addition to large keys and a high prover runtime also rely on very strong assumptions.
Similarly,the work of [BCC+16] is also in the DLog setting. Its lattice-based variant [BBC+18] is so
far not implemented, may have large hidden constants and itself uses ZKAoKs for SIS as building
blocks.

Conclusions. We conclude that in terms of achieving both small proof size and low prover’s
running time, our scheme is the most efficient compared to other proof systems which rely on
similar assumptions. We remark again that if the goal is only to minimize communication, it is
possible to further increase the number of parties in the underlying MPC scheme and reduce the
proof size even more.
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