
Protecting against Statistical Ineffective Fault
Attacks

Joan Daemen1, Christoph Dobraunig1, Maria Eichlseder2, Hannes Gross3,
Florian Mendel4, and Robert Primas2 ?

1 Radboud University, Netherlands ({joan,cdobraunig}@cs.ru.nl)
2 Graz University of Technology, Austria (first.last@iaik.tugraz.at)
3 SGS Digital Trust Services GmbH, Austria (hannes.gross@sgs.com)
4 Infineon Technologies AG, Germany (florian.mendel@infineon.com)

Abstract. At ASIACRYPT 2018 it was shown that Statistical Inef-
fective Fault Attacks (SIFA) pose a threat for many practical imple-
mentations of symmetric cryptography. In particular, countermeasures
against both power analysis and fault attacks typically do not prevent
straightforward SIFA attacks that require very limited knowledge about
the concrete attacked implementation. Consequently, the exploration of
countermeasures against SIFA that do not rely on protocols or physical
protection mechanisms is of particular interest. In this paper, we explore
different countermeasure strategies against SIFA. First, we thoroughly
analyze the conditions for an attack to be successful. We then show that
by building the implementation from invertible building blocks rather
than binary gates we can create circuits where a single fault in the compu-
tation does not cancel out. This property, when combined with a typical
redundancy-based countermeasure, then results in a single-fault SIFA-
secure implementation. This approach can be implemented efficiently
and we show how it can be applied to 3-bit, 4-bit, and 5-bit S-boxes. Ad-
ditionally, we also present an alternative countermeasure strategy based
on fine-grained detection. Although this approach may lead to a higher
implementation cost, it can be used to protect arbitrary circuits and can
be generalized to cover multi-fault SIFA.

Keywords: Fault countermeasures · Implementation security · Fault
attack · Masking · SFA · SIFA

1 Introduction

Fault attacks [10, 13] and passive side-channel attacks, like power [37] or EM
analysis [40], are very powerful attacks against implementations of cryptographic
algorithms. Therefore, devices like smart cards that are potentially physically
accessible by an attacker typically implement corresponding countermeasures.

The common approach to counteract such attacks on an algorithmic level
is to use a combination of masking (against power analysis) and some kind of

? The list of authors is in alphabetical order (https://www.ams.org/profession/
leaders/culture/CultureStatement04.pdf)

https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf


redundancy (against fault attacks). Masking is a secret-sharing technique that
splits intermediate values of cryptographic computations into d+1 random shares
such that the observation of up to d shares does not reveal any information about
their corresponding native value [3,4,16,30–32,35,41]. Redundant computation,
on the other hand, is used to detect malicious or environmental influences that
could lead to exploitable erroneous cryptographic computations, and to either
prevent its release or to prevent that it is exploitable by an attacker (infection) [2,
48]. Examples of recent works that propose combinations of such countermeasure
techniques include ParTI [43], Private Circuits II [15,34], and M&M [23]. A quite
different approach was chosen with CAPA, an actively secure MPC protocol that
was adapted to cryptographic computations to provide strong protection from
implementation attacks but at a cost that makes its usage of limited interest for
practical applications [42].

Up until recently, implementations combining masking with fault counter-
measures were typically assumed to offer protection against both power analysis
and fault attacks. However, it was shown in [24] that Statistical Ineffective Fault
Attacks (SIFA) [25], a combination of the principles of Ineffective Fault Attacks
(IFA) [14] and Statistical Fault Analysis (SFA) [28], are applicable in typical com-
bined countermeasure scenarios. SIFA circumvents typical redundancy/infection
countermeasures since it only relies on ineffective faults, i.e., faulted computa-
tions where the attacker only observes the output if it was calculated correctly.
The application to masked implementations, which was originally believed to
require multiple faults in one computation, was recently demonstrated in [24].

Our contribution. While the previous work on SIFA already discussed some
countermeasures that increase the robustness of implementations against the at-
tack, they either result in significant implementation overheads, higher protocol
complexity, or rely on the existence of physical protection mechanisms. There-
fore, efficient algorithmic countermeasures against SIFA are of great interest and
were left to future work so far.

The contribution of this paper is two-fold: First, we thoroughly analyze the
general root causes that lead to successful SIFA attacks. For this purpose, we
introduce a generic computation model and define a threat scenario. We then
discuss why ineffective faults can be used to recover secrets from masked crypto-
graphic implementations, even if dedicated fault countermeasures are in place.

Second, we present two different approaches that can be used to mitigate
these attacks. We start by looking at the Toffoli-gate, the simplest invertible
non-linear function. We then show that when the Toffoli-gate is used as the only
non-linear building block in the masked implementation of a cipher, single-fault
SIFA attacks can always be detected by redundancy.

Following up, we show that 3-bit, 4-bit, and 5-bit S-boxes can be built (and
thus protected) using Toffoli-gates as their only non-linear component. We also
give a more general criterion for SIFA-protected circuits and present a more
generic countermeasure based on fine-grained detection. This countermeasure

2



can be used to protect arbitrary circuits and can be generalized to cover multi-
fault SIFA, albeit at a higher implementation cost.

To introduce the two different approaches we use a simple and generic com-
putation model close to single core software implementations. We discuss how
the model can be carried over from our computational model to actual software
implementations or realized in hardware.

2 On the Effect of Faults on Masked Computations

This section serves as a preliminary section, where we define the computational
model that we use and the faults that we consider on it. Then we discuss the
principle of masking and show why masking does not necessarily prevent statis-
tical ineffective fault attacks (SIFA).

2.1 Computational and Fault Model

We use a simplified generic computation model close to single core software
implementations. Our model is based on Boolean functions c← f(a, b) with two
input variables a and b and writing to an output variable c. We refer to the
computation of such a single function as operation or instruction. Furthermore,
we assume that the operations are sequentially executed, e.g., f1 is computed
before f2:

c← f1(a, b)

d← f2(c, d)

We refer to a given sequence of operations as circuit, computation, or by referring
to their purpose, e.g., masked And. In addition, we also specify the input and
outputs variables of the circuit, e.g., we describe an And followed by an Xor
operation as:

Input: {a, b, c}
t← a� b

c← c� t

Output: {c}

(1)

Unless stated otherwise, we assume an attacker that can induce a single
fault per execution of a given circuit. A single fault is defined as a change of
the content of a variable to a value chosen by the attacker, or a change of the
Boolean function f to any Boolean function of the attacker’s choice in a single
operation. The attacker can choose the location of the fault. Furthermore, it is
possible for the attacker to make the choice of the value of a variable dependent
on the value it had before the fault, which allows faults like bitflips. However, an
attacker cannot copy values, e.g., move the value of a variable b to a, except by
manipulating the Boolean functions. Furthermore, an attacker is neither allowed

3



to change which variables are involved in a single operation, nor manipulate the
order in which operations are executed. How this model maps to real-world
implementations is explained in Section 3.3 and Section 3.4.

For the following discussion, we use a graph representation in addition to the
algorithmic description. For example, Figure 1a lists the algorithmic description
and Figure 1b illustrates a graph-based representation for an And followed by
an Xor in Equation 1.

Input: {a, b, c}
t← a � b

c← c � t

Output: {c}

(a) Algorithmic representation

a b ct

c

(b) Graph representation

Fig. 1: Representation of And followed by an Xor shown in Equation 1.

2.2 SIFA against Unmasked Implementations

Consider a cipher implementation that executes the cipher n times and only
releases the output if all executions of the cipher match to counteract fault
attacks. Assume an attacker who targets one out of the n redundant encryptions
is capable of repeatedly inducing one fault in one of its intermediate operations,
and observes the ciphertext unless it is suppressed by the countermeasure. The
timing or location of the fault should be chosen such that the affected state bits
can be computed from the ciphertext if a hypothesis is made on a small number
of round key bits. This is typically the case in the penultimate round of a cipher.

Over the course of multiple such faulted encryptions, the attacker will even-
tually observe correct ciphertexts where the induced fault in the corresponding
computation was ineffective. In these cases, the specific values used in the faulted
operation rendered the induced fault ineffective, which lead to an overall cor-
rect computation. This filtered set of correct ciphertexts will, when partially
decrypted using the correct partial key guess, typically show this non-uniform
(biased) distribution of intermediate values in the state bits.

We can use this fact for key recovery as follows: For each key guess, we mea-
sure the distance of the distribution of the affected state bits to the uniform
distribution, e.g., by using the χ2-statistic (CHI) or the closely related Squared
Euclidean Imbalance (SEI). For a sufficient number of evaluated correct cipher-
texts, the key guess corresponding to the highest CHI or SEI statistic is most
likely correct.

4



For more concrete examples, we refer to previous literature that explains
attack scenarios for block ciphers like AES [25] or authenticated encryption
schemes like Keyak and Ketje [27].

2.3 The Principle of Masking

In this section, we discuss the basic idea behind masking as a countermeasure
against power analysis attacks. We focus on Boolean masking schemes. The
resistance against power analysis gained through masking is achieved by making
the individual variables in computations independent from the security-critical
data that is processed. For this purpose, variables s are split into a number of so-
called shares denoted by s0, s1, . . . , sd. To avoid ambiguity, we will denote these
variables by the term native, so s is a native variable and s0, s1, . . . , sd are its
shares. Ideally, d shares would be sampled from a uniformly random distribution
and we compute the last share as sd = s ⊕

⊕d−1
i=0 si. This implies that in the

case of a d+ 1-share masking scheme, an attacker learning d shares of a variable
s would still not have any information on s.

A shared implementation of a cipher operates on the shares and ideally pre-
serves this property: learning d shares does not give information on native vari-
ables. Hence, an attacker who can observe any d variables in a shared circuit or
any d of its operations (or all shares used in the d operations) should not get any
information about the native values. For linear functions, this can be ensured
easily, since these can be computed without mixing the shares. For example, the
computation c← a� b using 2 shares is simply performed as:

Input: {a0, a1, b0, b1}
c0 ← a0 � b0

c1 ← a1 � b1

Output: {c0, c1}

Since many symmetric primitives allow for compact representations over F2,
it is sufficient to find masked implementations for the addition and multiplication
over F2 (Boolean Xor and And) in order to provide masked implementations
of such a symmetric primitive. Since masking Xor is easy in Boolean mask-
ing schemes, the focus of many papers dealing with masking is to find efficient
masked implementations for Boolean And [3,4,16,30–32,35,41]. If we just focus
on the sharing of an And, c← a� b, using 2 shares, such a sharing requires the
addition of a resharing variable r. This is needed to ensure that the values of
c0 and c1 are each independent of the native value of c. The resharing variable
r may be derived from a dedidated random number generator or from another
unrelated calculation, e.g., as shown in Changing of the Guards [19]. A possible

5



implementation of masked And is then:

Input: {a0, a1, b0, b1,r}
t0 ← a0 � b1

t0 ← t0 � r

t1 ← a0 � b0

c0 ← t0 � t1

t2 ← a1 � b0

t2 ← t2 � r

t3 ← a1 � b1

c1 ← t2 � t3

Output: {c0, c1}

(2)

2.4 SIFA on Masked Additions and Multiplications

SIFA works on (masked) implementations that use fault countermeasures, typ-
ically some kind of redundancy, by exploiting faults that are ineffective. SIFA
relies on the property that the condition if a fault is ineffective can depend on
the native values of certain intermediate variables of a cryptographic implemen-
tation. This dependency is then exploited by inducing a fault over the course
of multiple computations and just observing the computations where the fault
does not show an effect on the output. Typically, the knowledge that some inter-
mediate values are not distributed as expected can be exploited in key recovery
attacks. We will show with an example that shared implementations may also
be vulnerable to SIFA.

Let us again consider a Boolean sharing of s using d+ 1 shares as introduced
in Section 2.3. If an attacker now only faults up to d variables, each containing
one share, the condition if this fault is ineffective is completely independent of
the value of s and hence, the ineffectiveness of the fault does not reveal any
information about s.

Similar as for side-channel resistance, our goal is to build circuits that pre-
serve this property. Thus, we want to build circuits where an attacker can fault
d shares or d operations and still, the condition whether a fault is ineffective or
not does not depend on native values.

In the case of linear functions, this is again given by the fact that all com-
putations can be carried out independently per share. However, for non-linear
functions, we have the following effect. Consider for instance a single masked
And-gate with 2 shares (cf. Figure 2). We can show that the condition whether
a single fault is ineffective or not can depend on a native value. The reason is
that any input share is an input variable to two of the And-gates which are fed
by both shares of the other variable. Thus, by faulting a0, for instance, the fault
will be always ineffective and does not propagate if either b0 and b1 are both
0 or both are 1. Hence, the condition if the fault is ineffective depends on the
native value of b, namely, it is always ineffective if b = 0.

6



c ~

a0

b0

b1

a1

0 1

R

c0

c1

(a) Masked And without fault induc-
tions.

c ~
b0

b1

a1

0 1

R

c0

c1

a0

Bitflip

(b) Masked And with a bitflip in a0 if
only correct computations of c are ob-
served.

Fig. 2: If only correct computations are observed by the attacker, a bitflip in a0
is only ineffective if b0 = b1, in other words, b (and thus also c) are always zero.

Assume that we have a masking scheme using two shares which is secured
against power analysis attacks observing one share or one operation. One can
then achieve resistance against single-fault SIFA by building an appropriate de-
sign so that throughout the entire computation, at most one operation or vari-
able is affected by a single fault without detection. This allows that the condition
whether a fault is ineffective or not depends only on an incomplete set of shares
of any native variable. In the next section, we present one way to achieve this.

3 Using Building Blocks Protected Against SIFA

In this section, we investigate how we can implement ciphers so that they are
protected against single-fault SIFA. We do this by moving away from seeing
a circuit as sequence of additions and multiplications and thus using masked
Xors and Ands as building blocks. Instead, we take a look at the principles
introduced by reversible computing [5, 38, 47], with the Toffoli gate [47] and re-
lated constructions as essential building blocks. We show that the masked Toffoli
gate has the beneficial property that the condition whether a fault is ineffective
never depends on native values. We then show that a significant fraction of 3-, 4-
and 5-bit S-boxes can be built from the Toffoli gate and related constructions.
Finally, we discuss how a protected circuit in our computation model can be
mapped to an actual hardware or software implementation.

3.1 The Toffoli Gate

The Toffoli gate [47] is a non-linear 3-bit permutation. We denote it by pT (a, b, c)
and illustrate it in Figure 3.

In the implementation of the Toffoli gate in Figure 3, the condition whether
or not a fault is ineffective might depend on the native value. This is easy to
see as, e.g., setting any of the inputs a, b, or c to zero only leads to a correct
computation if the faulted input was zero prior to fault induction. Alternatively,

7



Input: {a, b, c}
t← b � c

a← a � t

Output: {a, b, c}

(a) Algorithmic representation

a b ct

a b c

A0 b0t0
c1t0

X0
a0x0

(b) Graph representation

Fig. 3: Toffoli gate (pT ).

a bitflip in one of the inputs of the And-gate is only ineffective if the other input
was zero. Hence, to protect the Toffoli gate against SIFA using single faults, we
have to use at least an implementation using 2 shares as done in Figure 4, to
which we refer as pT (a0, a1, b0, b1, c0, c1).

Input: {a0, a1, b0, b1, c0, c1}

t0 ← b0 � c1
a0 ← a0 � t0

t0 ← b0 � c0
a0 ← a0 � t0

t0 ← b1 � c1
a1 ← a1 � t0

t0 ← b1 � c0
a1 ← a1 � t0

Output: {a0, a1, b0, b1, c0, c1}

(a) Algorithmic representation

a0 a1 b0 b1 c0 c1t0

a0 a1 b0 b1 c0 c1

A0 b0t0
c1t0

X0
a0x0

A1 b0a1
c0a1

X2
a1x2

A2 b1a2
c1a2

X4
a2x4

A3 b1a3
c0a3

X5
a3x5

(b) Graph representation

Fig. 4: Masked Toffoli gate (pT ) using 2 shares.

As can be seen in Figure 4b, in the shared Toffoli gate only the shares a0
and a1 get updated in-place, by just using results involving b0, b1, c0, and c1.
Furthermore, values written to the temporary register t0 are just used once
in the circuit. Hence, from Figure 4b, we can see that single faults that can
influence more than one And computation must directly change either b0, b1,
c0, or c1. Since those values are present as output, such a single fault is visible
at the output and is also visible in the corresponding native values of b and c.
Furthermore, also single faults that impact more than one Xor have to show
an effect on either a0 or a1. Such a single fault then will be visible at the native
value of a at the output, since all operations on a0 and a1 are performed in-place
and they do not influence each other.

8



In short, in the shared Toffoli gate of Figure 4, the ineffectiveness of any
single fault depends only on a single share.

To turn this argument around, single fault inductions where the effect of
the fault depends on all shares of a value change always at least the value of
one share. Furthermore, then at least one native value is also changed. Hence,
all relevant single faults can be detected by using a redundant computation of
the shared Toffoli gate and only checking the native values of a, b, and c at
the output of the gate. The shared Toffoli gate, together with the related non-
linear permutation pχ (Figure 5), will serve as a building block to protect ciphers
against single-fault SIFA in the next section. For the sake of completeness, we
note that the same properties can be achieved in a similar form for a three-share
threshold implementation as shown in Appendix A.

3.2 From Protected Components to Protected Ciphers

In this section, we discuss how to protect ciphers by using protected building
blocks. We focus our considerations on constructions that are built from the
repeated application of bijective linear and bijective non-linear layers. Typically,
those non-linear layers are built from the parallel application of smaller bijective
non-linear functions called S-boxes.

The Propagation of a Fault. Let us assume we have such a construction,
where each used bijective building block has the following characteristics of the
shared Toffoli gate as discussed in Section 3.1. In particular, we require that an
ineffective fault in such a building block never depends on any native variables.
Similarly, we require effects of faults that do depend on native variables always
show in at least one native value at the output of the building block. Then, due
to the bijective nature of the construction, such an effect is also visible at the
output of the entire layered construction. Let us now consider a redundancy-
based countermeasure that only compares native values at the output of the
entire primitive combined with the way of masking we present in this section.
This countermeasure does not only provide protection against single fault attacks
that exploit the effect of a fault, but now additionally provides protection against
single-fault SIFA.

As discussed in Section 2.4, a shared linear function can be realized by ap-
plying that function to the shares separately. Hence, the behavior of a single
fault on a shared linear layer never depends on native values. Furthermore, since
they are bijections, a change in their inputs will always lead to a change in their
outputs. Thus, we can focus on how to build bijective S-boxes if we want to pro-
tect an entire cipher against SIFA attacks. One option to do this is to construct
S-boxes by the iterative application of the masked Toffoli gate of Section 3.1 and
related permutations.

3-bit S-boxes. Recently, 3-bit S-boxes have become more prominent with their
usage in PRINTcipher [36], LowMC [1], or Xoodoo [20]. As a representative

9



of these S-boxes, we focus on the protection of the 3-bit χ-layer [18, 20]. This
mapping χ operates on circular arrays of bits and it complements for all bits that
have the pattern 01 the bits at their right. χ is bijective if and only if the length
of the circular array is odd. The χ mapping in the round function of ciphers
typically operates on a large set of short odd-length sub-arrays of the state in
parallel. We also refer to n-bit χ as χn.

To build χ3, we use a reversible gate similar to the Toffoli gate of Section 3.1,
but using AndN instead of And (one input of the And is inverted), to which
we refer as pχ(a, b, c):

Input: {a, b, c}
t← b� c

a← a� t

Output: {a, b, c}

The shared version pχ(a0, a1, b0, b1, c0, c1) of this gate has the same properties
as discussed for the Toffoli gate in Section 3.1. The resulting shared circuit of
pχ is shown in Figure 5.

Input: {a0, a1, b0, b1, c0, c1}

t0 ← b0 � c1
a0 ← a0 � t0

t0 ← b0 � c0
a0 ← a0 � t0

t0 ← b1 � c1
a1 ← a1 � t0

t0 ← b1 � c0
a1 ← a1 � t0

Output: {a0, a1, b0, b1, c0, c1}

(a) Algorithmic representation

a0 a1 b0 b1 c0 c1t0

a0 a1 b0 b1 c0 c1

A0 b0t0
c1t0

X0
a0x0

A1 b0a1
c0a1

X2
a1x2

A2 b1a2
c1a2

X4
a2x4

A3 b1a3
c0a3

X5
a3x5

(b) Graph representation

Fig. 5: Masked pχ using 2 shares.

Daemen et al. [20] pointed out that it is possible to compute χ3 in-place in
its registers. In the unshared case (and equivalently for the shared case), it is
possible to compute χ3 the following way:

Input: {a, b, c}
pχ(a, b, c)

pχ(b, c, a)

pχ(c, a, b)

Output: {a, b, c}

10



4-bit S-boxes. The construction and design of 4-bit S-boxes has been inten-
sively studied in literature. De Cannière [22] sorts all 4-bit bijective S-boxes in
302 equivalence classes, where 1 class contains all affine functions, 6 classes con-
tain quadratic functions, and 295 classes represent the cubic functions [11]. As
shown by Bilgin et al. [11], 144 cubic classes can be constructed by iterating the
S-boxes of the quadratic classes separated by affine layers up to 3 times. Many
prominent S-boxes, e.g., the S-boxes used in Noekeon [21] and Present [12],
but also several of the 16 S-boxes observed to be “optimal” by Leander and
Poschmann [39] are covered. We focus on the 6 classes of quadratic functions.
The variables a, b, c, and d indicate the input and output bits of the S-box,
where a is the most significant bit. The operations needed to compute the 6
quadratic classes are summarized in Table 1.

Table 1: The 6 classes of quadratic 4-bit S-boxes [11] using reversible building
blocks pT and pχ.

Q4
4 0123456789ABDCFE Q4

12 0123456789CDEFAB Q4
293 0123457689CDEFBA

Input: {a, b, c, d}
pT (d, a, b)

Output: {a, b, c, d}

Input: {a, b, c, d}
pT (b, a, c)

pT (c, a, b)

Output: {a, b, c, d}

Input: {a, b, c, d}
pT (d, b, c)

pT (b, a, c)

pT (c, a, b)

Output: {a, b, c, d}

Q4
294 0123456789BAEFDC Q4

299 012345678ACEB9FD Q4
300 0123458967CDEFAB

Input: {a, b, c, d}
pT (c, a, b)

pT (d, a, b)

pT (d, a, c)

Output: {a, b, c, d}

Input: {a, b, c, d}
pT (b, a, c)

pT (c, a, b)

pT (b, a, c)

pT (c, a, d)

pT (d, a, c)

Output: {a, b, c, d}

Input: {a, b, c, d}
b← b � a

c← c � a

pT (a, b, c)

pT (b, a, c)

pχ(c, b, a)

Output: {a, b, c, d}

With the help of Table 1, Figure 4, and Figure 5, it is possible to create
masked implementations for 144 out of the 295 cubic classes of affine equiva-
lent S-boxes [11], where the condition whether a single fault is ineffective never
depends on a native value. For S-boxes which are not in these classes, we refer
to results regarding the implementation of 4-bit permutations using reversible
components. For instance, Golubitsky and Maslov [29] give optimal implementa-
tions (with respect to a certain set of reversible gates) for all 4-bit permutations
using at most 15 reversible gates. However, please note that the set of reversible
gates used may differ from the building blocks pT and pχ used in this section.

11



5-bit S-boxes. As pointed out by Shende et. al [45], every permutation (S-
box) with an odd number of inputs can be implemented using reversible gates
by using at most one additional variable. However, in this work we only discuss
the 5-bit S-box χ5, which has several prominent uses. For instance, it is used in
the family of Keccak-f and Keccak-p permutations that are used, amongst
others, in Ketje [8], Keyak [9], Kravatte [6], or most prominently in SHA-
3 (Keccak [7]), but χ5 is also the core of Ascon’s S-box [26]. We provide
a masked implementation of χ5 based on the following way of implementing
χ5 [26], where a, b, c, d, and e are the input bits and r is a temporary variable:

Input: {a, b, c, d, e}
r ← a� e

pχ(a, b, c)

pχ(c, d, e)

pχ(e, a, b)

pχ(b, c, d)

d← d� r

Output: {a, b, c, d, e}

To provide an implementation of χ5 that withstands single-fault SIFA, we
again rely on pχ(a0, a1, b0, b1, c0, c1) as a building block. We introduce additional
input variables r0 and r1, which have to be initialized with random values, so
that r0 � r1 = 0. This allows us to argue the security of the following scheme:

Input: {a0, a1, b0, b1, c0, c1, d0, d1, e0, e1, r0, r1}
pχ(r0, r1, e0, e1, a0, a1)

pχ(a0, a1, b0, b1, c0, c1)

pχ(c0, c1, d0, d1, e0, e1)

pχ(e0, e1, a0, a1, b0, b1)

pχ(b0, b1, c0, c1, d0, d1)

d0 ← d0 � r0

d1 ← d1 � r1

Output: {a0, a1, b0, b1, c0, c1, d0, d1, e0, e1}

(3)

We end up with a construction which is the repeated application of permu-
tation pχ on 12 bits of the state a0 to r1. Due to this iterative construction,
a single fault that has an effect on any native output variable of one pχ will
have an effect on the native output variables of the whole circuit. However, we
truncate r0 and r1 at the output at the end of our circuit. Hence, we have to
show that this truncation never leads to an effect of a fault disappearing.

As can be seen in Equation 3, d0 and d1 are only written in the operations
d0 ← d0 � r0 and d1 ← d1 � r1. Furthermore, the calculation of r0 and r1 is
independent of d0 or d1. As a consequence, a single fault that happens before

12



the execution of d0 ← d0 � r0 and d1 ← d1 � r1 can never have an effect on
the shares of d and r at the same time. Hence, the operations d0 ← d0 � r0 and
d1 ← d1 � r1 never cancel the effect of a single fault, and effects of faults on the
native value of r carry over to d.

In a similar spirit as Sugawara for AES [46], it is possible to use one share
r0 of the output of one S-box layer as input to the next layer of S-boxes. Hence,
it is possible to implement ciphers which use the sharing shown in Equation 4
without the need for additional randomness, except the one needed for the initial
sharing and for the first S-box layer. We have verified exhaustively that indeed,
Equation 4 is a permutation on the bits a0, a1, b0, b1, c0, c1, d0, d1, e0, e1, and r0:

Input: {a0, a1, b0, b1, c0, c1, d0, d1, e0, e1, r0}
r1 ← r0

pχ(r0, r1, e0, e1, a0, a1)

pχ(a0, a1, b0, b1, c0, c1)

pχ(c0, c1, d0, d1, e0, e1)

pχ(e0, e1, a0, a1, b0, b1)

pχ(b0, b1, c0, c1, d0, d1)

d0 ← d0 � r0

d1 ← d1 � r1

Output: {a0, a1, b0, b1, c0, c1, d0, d1, e0, e1, r0}

(4)

3.3 From an Abstract Model to Software Implementations

In Section 2.1, we have introduced a rather simplified computational model and
explicitly restricted which faults we want to consider. Here, we want to discuss
what has to be considered in real software implementations and which faults
that occur in software implementations are covered by our model.

Coverage of Faults. As mentioned in Section 2.1, we consider faults that
manipulate either variables directly, or change the used functions. This covers
faults in software that directly manipulate values of variables stored in registers
of a CPU [44], change a variable in memory before it is loaded, or even target
the load of a variable from memory [17]. Furthermore, it also covers cases where
a fault, like a clock glitch, changes the outcome of a computation. However,
what is notably only partially covered is the case of an instruction skip, meaning
that an operation is not performed and the register values are kept untouched.
This is only covered if an operation in the form of a ← a � b is used, so that
a fault could replace the � with a function that just uses a and neglects b. If
we focus on the main building blocks pT and pχ used in this section, the only
operations that do not follow this behavior are the And computations to the
external register t0. Potential negative effects of the clock glitch can be mitigated
by always initializing t0 to 0 or a random value before use, so that a clock glitch
just corresponds to a fault of a single output share.

13



What is not covered by our considerations are faults that change the execu-
tion flow of a program to a greater extent than skipping the single instructions,
like manipulating the program counter. Furthermore, we do not consider the use
of loops and conditional statements apart from their usage in detecting faults.
What is also not considered are faults that change the operands used in opera-
tions. All these faults have in common that they may totally change the program
that is executed to a point where the key is just put out in plain. Such faults
have to be prevented by other means.

So far, our considerations have only explicitly covered single faults in single S-
boxes that happen just once per execution of a cipher. However, modern ciphers
in software implementations are usually implemented in a bit-sliced manner,
meaning that usually, in a system using x-bit registers, a single computation,
and thus, a single fault like a clock glitch leads to a single fault in up to x S-
boxes. In ciphers that consist of layers applying many small bijective S-boxes
in parallel to the state followed by bijective affine transformations of this state,
putting a single fault in each of the parallel S-boxes in a single layer causes no
issues with respect to our propagation-based countermeasures, since it is still
ensured that single faults in all S-boxes cannot cancel each other.

Further Considerations Regarding Software. As discussed previously, our
simple model gracefully extends to modern bitsliced implementations. However,
one notable case that is not considered in our computational model are Load
and Store instructions from memory to registers. In the simplest case, there are
enough registers to store all necessary variables so that during a cryptographic
computation, no Loads and Stores are needed. However, if this is not the case
and a variable has to be reloaded, this might cause problems. For instance, let us
consider the circuit shown in Figure 5b. Here, b0 is just read and never written.
So if we do not consider fault protection, it can be assumed that the register b0
can just be overwritten, since the value can be reloaded from memory anyways.
If we consider our fault protection mechanisms, this means that a faulted value
in register b0 might vanish, which in turn would allow SIFA again. To prevent
this in general, we have to assume that values are changed and write them back
to memory if their use is later required.

Furthermore, we have also abstracted the proper initialization of the tempo-
rary registers ti before usage. The problem with uninitialized ti is that shares
can be combined, which leads to exploitable leakage, or, in the case of a clock
glitch, to an unmasked use of a variable. Typically, the problem with uninitial-
ized ti can be easily solved by always writing a random value to them before
the result of a computation is stored.

3.4 From an Abstract Model to Hardware Implementations

We note that most of our contributions regarding the protection against SIFA are
also valid in hardware, but the efficient protection in hardware may require some
additional considerations. One main difference between hardware and software

14



a 0

a 1

b 0

b 1

c 0

c 1

a 0

a 1

b 0

b 1

c 0

c 1

FF

FF

FF

FF

FF

FF

Fig. 6: Masked and single-fault SIFA-protected Toffoli gate in hardware.

implementations is that for hardware implementations one needs to take the
effects of glitches into account. Glitches are the result of the behavior of the
physical layout, and are thus purely parasitic, but unfortunately unavoidable.
Since signals do not propagate evenly through the circuit (due to parasitic effects
like differences in the capacitance of wires, different wire lengths, manufacturing
imperfections, et cetera.) the output of gates could change (glitch) several times
before reaching a stable logic state.

The behavior of the circuit cannot entirely be controlled by just using com-
binatorial logic gates but often require usage of so-called registers to gain more
control over the signal timing. Registers stabilize a signal before entering the
next logic gates through a separation in different clock cycles. The cost for the
gained control over the signals is thus not only the increased gate count, but also
the evaluation of the circuit requires more clock cycles and thus, the latency in-
creases. Luckily when masking is used for the protection against side-channel
analysis anyway, registers are already required at several places to ensure re-
sistance to glitches. For example, TI implementations use registers after each
uniformly shared function and the DOM scheme uses a register stage in each
shared nonlinear gate to hinder security-critical glitches from propagating into
the next shared function which could violate the security requirements.

Figure 6 shows a correctly masked Toffoli gate in hardware which already
includes the required registers (FF) for a glitch resistant first-order side-channel
protection. Furthermore, this variant also resists single-fault SIFA attacks be-
cause a secured sequence in which the multiplication terms are evaluated and
added is provided. The overhead for the protection against SIFA over the masked
variant is in this case negligible. The upper two registers are required to hinder
the propagation of glitches that could violate the side-channel resistance of the
implementation, and the lower four registers are usually placed for pipelining
purposes. The lower four registers are the relevant ones for protection against
SIFA. Again, no input variable must be used twice in non-linear operations in-
side the same clock cycle with different shares of the same masked variable. This
would be the case when switching the order of the multiplication of b1 and c1
with b1 and c0, for instance, because a single fault of the input c0 would affect
both multiplications with the two shares of b.

15



4 Protecting Arbitrary Circuits

The costs of building circuits just relying on invertible gates like the Toffoli
gate compared to other ways of constructing masked implementations varies
depending on the S-box used. Depending on the target metric, e.g., when aiming
for masked implementations with a very low latency, other approaches may be
more suitable than the one introduced in Section 3. In this section, we explore
how a general masked circuit can be protected against SIFA. We propose a
criterion for SIFA-resistance of computation graphs and discuss how to satisfy it
by either adding fault-detection checks of intermediate results or restructuring
the graph.

We first refine the computation and fault model in Section 4.1 in order to
introduce the general criterion for single-fault SIFA-resistance in Section 4.2.
In Section 4.3, we show how to satisfy this criterion by extending a general
masked implementation with local error detection checks. Then, in Section 4.4,
we identify necessary steps and conditions such that global checks are sufficient.
Finally, we discuss how to extend this approach to higher-order attacks, where
the adversary applies multiple faults in each execution, in Section 4.5.

4.1 Extensions to the Computational and Fault Model

We first extend the computation and fault model of Section 2 and Section 3 with
a few definitions.

Computation graph. We describe the computation as a directed acyclic graph
(DAG) and refer to its nodes as gates g ∈ G and its edges as wires w ∈ W. A gate
g with n input wires in(g) = {x1, . . . , xn} and one output wire out(g) = {y}
represents a Boolean function g : Fn2 → F2, (x1, . . . , xn) 7→ y. In the simplest
case, these are single Boolean gates, such as addition y = x1 ⊕ x2 and multipli-
cation y = x1 � x2 over F2, but they may also correspond to small circuits with
several inputs. Additionally, there are some special nodes: Input and output reg-
isters, such as the shares of the input values, re-sharing inputs, and the shares
of the output values, as well as branching nodes. We use a branching node with
one input wire w and two output wires (w′, w′′) = >(w) whenever a variable w
is used as input to multiple operations. We refer to w,w′, w′′ as one variable,
but three different wires. We distinguish linear gates, whose Boolean function is
affine linear over F2 (e.g., Xor �, Not �), and nonlinear gates (e.g., And �).

We remark again that this is a simplified model and not necessarily equivalent
to how one would implement the logic in hardware. We refer to Section 3.3 and
Section 3.4 for a discussion of how this model maps to software and hardware
implementations.

Fault model. We still consider a powerful attacker that may replace any gate
y = g(x1, . . . , xn) (or wire w) by an arbitrary faulted gate y∗ = g∗(x1, . . . , xn)
(or faulted wire w∗ = w∗(w)). However, the attacker is only allowed to inject a
single fault during an execution of the cryptographic primitive. We denote the

16



g

x1 · · ·xn

y

y=g(x1, . . . , xn)

x

y

y=Not(x)

x1 x2

y

y=Xor(x1, x2)

x1 x2

y

y=And(x1, x2)

x′ x′′

x

(x′, x′′)=>(x)

Fig. 7: Gates and branching nodes in the computation graph.

difference between the values of a wire w in the correct execution and w∗ in the
faulted execution by δw = w⊕w∗, similar to differential cryptanalysis. The fault
δw may propagate to other gates, and we call a gate g′ active (or activated) in a
faulted execution if δv = 1 for any input wire v ∈ in(g′). Any such fault g∗ can
be interpreted as a data-dependent bitflip fault on the output wire y:

y∗ = g∗(x1, . . . , xn) = g(x1, . . . , xn)⊕ δg(x1, . . . , xn) .

For this reason, we focus on wire bitflips (i.e., the case δg(x1, . . . , xn) = 1) in
the following discussion.

For our countermeasure, we require that the computation is masked and
implemented redundantly for fault detection.

Masking. We assume that the computation implements first-order masking using
d+ 1 ≥ 2 shares. In particular, an attacker who learns the value of one wire or
of all input wires to one nonlinear gate must not learn any information on the
native variables. The nonlinear gates may thus be, for example, the And-gates
in a general masked implementation, or the entire component functions of a
threshold implementation.

Redundancy and fault detection. To detect faults, we for instance duplicate the
implementation and feed the same inputs to both instances. The detection is
defined by an error detector ∆ that only returns the result of the computation
if no errors are detected in a selected set of variables V∆, i.e., if

∆ :=
∨
v∈V∆

δv =
∨
v∈V∆

(v ⊕ v∗) = 0 .

The SIFA attacker collects plaintext-ciphertext samples with ∆ = 0, as they
receive no output if ∆ = 1, and uses this condition to derive information about
the value of wires near the faulted gate g∗ or wire w∗.

Example. As an example throughout this section, Figure 8 lists the operations
of a masked implementation of the 3-bit S-box χ3 together with its computation
graph similar to [33]. When combined with the error detector ∆ that checks the
output variables of the circuit, this implementation is susceptible to single-fault
SIFA with several possible fault locations. One of these is illustrated in Figure 8:
If a bitflip is induced in a0 as indicated (�), then the condition ∆ = 0 implies
b0 ⊕ b1 = b = 0. We want to protect this implementation against single-fault
SIFA by modifying either the detector or the structure of the DAG.

17



Input: {a0, a1, b0, b1, c0, c1}

t0 ← b0 �c1 ; t2 ← a1 �b1
t1 ← b0 �c0 ; t3 ← a1 �b0
t0 ← t0 �a0 ; t2 ← t2 �c1
r0 ← t0 �t1 ; t1 ← t2 �t3

t0 ← c0 �a1 ; t2 ← b1 �c1
t1 ← c0 �a0 ; t3 ← b1 �c0
t0 ← t0 �b0 ; t2 ← t2 �a1

s0 ← t0 �t1 ; r1 ← t2 �t3

�a0

t0 ← a0 �b1 ; t2 ← c1 �a1

t1 ← a0 �b0 ; t3 ← c1 �a0

t0 ← t0 �c0 ; t2 ← t2 �b1
t0 ← t0 �t1 ; s1 ← t2 �t3

Output: {r0, r1, s0, s1, t0, t1}

(a) Operations

a0 a1 b0 b1 c0 c1t0t1 t2 t3

r0 r1 s0 s1 t0 t1

A0 N0t0 c1t0 A1a1t0 b1t0A2 N0t1 c0t0 A3a1t1 b0t1X0 a0t0
X1c1t1

X2X0t0A2t0 X3X1t0 A3t0

A4 N1t0a1t2 A5b1t1 c1t2A6 N1t1a0t1 A7b1t2 c0t2X4 b0t2
X5a1t3

X6X4t0A6t0
X7 X5t0 A7t0

A8 N2t0 b1t3 A9c1t3
a1t4Aa N2t1

b0t3 Abc1t4a0t3X8
c0t3 X9

b1t4 XaX8t0Aat0
Xb X9t0 Abt0

�

(b) Computation graph

Fig. 8: Bitflip in masked χ3 using 2 shares (resharing at the output omitted).

4.2 A General Criterion for Resistance against Single-Fault SIFA

Consider a masked implementation with a detection-based countermeasure de-
fined by an error detector ∆ that only returns the result of the computation if
∆ = 0, as defined in the previous section. We call the implementation single-
fault SIFA-resistant if each possible single-bit fault is either detected by ∆ or
activates at most one nonlinear gate.

To see why this criterion is sufficient, consider a fault g∗ and its corresponding
bitflip fault on the wire y. The attacker collects plaintext-ciphertext samples
with ∆ = 0, as they receive no output if ∆ = 1. The samples satisfy one of the
following two conditions:

– δy = 0, i.e., no bitflip happened because δg(x1, . . . , xn) = 0. The attacker
learns at most these values x1, . . . , xn. Since the implementation is masked,
this information is independent of the native input and output values and
thus does not allow the attacker to derive any information on the processed
data or keys.

– δy = 1, but the bitflip did not propagate to ∆. The criterion implies that
there is at most one nonlinear gate g′ with some changed input v∗ = v⊕ δv.
The attacker may exploit this differential information to learn the inputs of
g′, which are however independent of the native inputs, and will not learn
anything from the other, trivial differentials (of nonlinear gates with zero
input difference or of linear gates).

18



4.3 Protection against SIFA using Fine-Grained Detection

We now explore how a masked implementation can be extended with a suitable
detector ∆ in order to achieve a single-fault SIFA-resistant implementation.

A straightforward, albeit not very efficient approach to satisfy the single-fault
SIFA-resistance criterion follows directly from its definition: We can add local
checks for inputs of nonlinear gates. Assume for instance that we duplicate the
implementation and feed the same inputs to both instances. For each nonlinear
gate g ∈ Gn and each of its input wires w ∈ in(g), we add a check to update
the detector ∆′ = ∆ ∨ (w ⊕ w∗), which adds 2 gates (6, �), 2 branches (>(w),
>(w∗)), and 6 new wires (∆′, δw, (w′, w′′) = >(w), (w∗′, w∗′′) = >(w∗)) to the
DAG. We alternatively represent this as a single checking node Ë in the DAG
of a single instance of the implementation. Then, a fault may activate a single
nonlinear gate g ∈ Gn without detection by ∆ (if it is induced on w∗′ after the
check and before the gate g), but it cannot activate two gates, since there are no
paths without a check either from any branching to two nonlinear gates or from
one nonlinear gate to another. Any single-bit fault in one of the two redundant
computations or in the additional circuitry for the detector ∆ are either detected
or do not leak information to the attacker.

It is not necessary to check the inputs to all nonlinear gates separately. We are
only interested in wires whose faults can activate multiple nonlinear gates. For
example, in the masked implementation of an S-box or nonlinear operation, we
can expect that most inputs to nonlinear gates in the DAG are directly branched
from the shares of the S-box inputs, i.e., the gate input checks would check the
same variable many times. Instead, we want to check only once.

In the DAG, this corresponds to a binary subtree rooted in an input variable
whose inner nodes are branchings and whose leaves are other gates. We refer
to edges ending in leaves as twigs and to the other, inner edges as stems. The
basic approach checks each twig ending in a nonlinear gate and thus precludes
a fault that activates this twig in addition to another parent or sibling edge in
the DAG. Instead, it is sufficient to check only those twigs whose sibling edge
is also a twig (rather than a stem), and to check only one of the two twigs. In
other words, we check a variable that serves as input to multiple gates only once,
right before its last use. We call this last check the sink of (this part of) the tree,
and it will be activated if more than one twig in (this part of) the tree is active.
Additionally, we also consider the output variables as sinks, since they will either
be checked in the next nonlinear layer, or propagate faults deterministically to
the cipher output. As a result, every wire w in the DAG is a safe wire that has
a sink s such that there is exactly one directed path w → s and it contains at
most one nonlinear gate. This implies the single-fault SIFA-resistance criterion
of Section 4.2.

In the χ3 example, by checking only such variables and only after they are
used for the last time, we can reduce the number of checks to 6, i.e., once for
each input variable. The result is illustrated in Figure 9.

19



Input: {a0, a1, b0, b1, c0, c1}
t0 ← b0 �c1 ; t2 ← a1 �b1
t1 ← b0 �c0 ; t3 ← a1 �b0
t0 ← t0 �a0 ; t2 ← t2 �c1
r0 ← t0 �t1 ; t1 ← t2 �t3

t0 ← c0 �a1 ; t2 ← b1 �c1
t1 ← c0 �a0 ; t3 ← b1 �c0
t0 ← t0 �b0 ; t2 ← t2 �a1

s0 ← t0 �t1 ; r1 ← t2 �t3

t0 ← a0 �b1 ; t2 ← c1 �a1

t1 ← a0 �b0 ; t3 ← c1 �a0

t0 ← t0 �c0 ; t2 ← t2 �b1
t0 ← t0 �t1 ; s1 ← t2 �t3

rs ← rr � rt
r0 ← r0 �rr ; s0 ← s0 �rs
t0 ← t0 �rt ; r1 ← r1 �rr
s1 ← s1 �rs ; t1 ← t1 �rt

Output: {r0, r1, s0, s1, t0, t1}

(a) Operations

a0 a1 b0 b1 c0 c1t0t1 t2 t3 rr rs rt

r0 r1 s0 s1 t0 t1

Ë Ë Ë Ë Ë Ë

(b) Computation graph

Fig. 9: Single-fault SIFA-resistant χ3 using 2 shares, with local checks.

Input: {a0, a1, b0, b1, c0, c1}
rs ← rr � rt
t0 ← b0 �c1 ; t2 ← a1 �b1
t1 ← b0 �c0 ; t3 ← a1 �b0
r0 ← t0 �rr ; t1 ← t2 �rt
r0 ← r0 �t1 ; t1 ← t1 �t3

t0 ← c0 �a1 ; t2 ← b1 �c1
t1 ← c0 �a0 ; t3 ← b1 �c0
s0 ← t0 �rs ; r1 ← t2 �rr
s0 ← s0 �t1 ; r1 ← r1 �t3

t0 ← a0 �b1 ; t2 ← c1 �a1

t1 ← a0 �b0 ; t3 ← c1 �a0

t0 ← t0 �rt ; s1 ← t2 �rs
t0 ← t0 �t1 ; s1 ← s1 �t3

r0 ← r0 �a0 ; t1 ← t1 �c1
s0 ← s0 �b0 ; r1 ← r1 �a1

t0 ← t0 �c0 ; s1 ← s1 �b1

Output: {r0, r1, s0, s1, t0, t1}

(a) Operations

a0 a1 b0 b1 c0 c1t0t1 t2 t3 rr rs rt

r0 r1 s0 s1 t0 t1

RsRrt2 Rtt2

A0 b0t4 c1t0 A1a1t0 b1t0A2 b0t0 c0t0 A3a1t1 b0t1R0 Rrt0
R1

Rtt0X2

A0t0

A2t0 X3

A1t0

A3t0A4 c0t5a1t2 A5b1t1 c1t2A6 c0t1a0t1 A7b1t2 c0t2R4 Rst0
R5

Rrt1X6

A4t0

A6t0
X7

A5t0

A7t0A8 a0t5 b1t3 A9c1t3a1t4Aa a0t2 b0t3 Abc1t4a0t3
R8

Rtt1R9
Rst1Xa

A8t0

Aat0
Xb

A9t0

Abt0X0
a0t0 X1

c1t1X4
b0t2X5

a1t3 X8
c0t3X9

b1t4

(b) Computation graph

Fig. 10: Single-fault SIFA-resistant χ3 using 2 shares, with global checks.

20



4.4 Ensuring Fault Propagation

In this section, we discuss under which conditions the fine-grained, local detection
of Section 4.3 can be replaced by global checks, similar to Section 3. We will again
use the concept of sink nodes as in Section 4.3, in the sense of nodes whose
activation will be detected by ∆. However, instead of implementing actual local
checks in the sink nodes, these sinks are virtual nodes whose effect on ∆ follows
from properties of the cipher or masking approach.

First consider a uniform direct sharing of an invertible S-box. Since the shar-
ing is uniform, the masked circuit is also invertible. As a consequence, for fixed
resharing inputs, if any of the intermediate masked S-box output bits are acti-
vated by a fault, this will activate at least one bit in the masked cipher output.
Thus, if the detection variables V∆ include all masked cipher output variables,
then the S-box output variables can serve as sinks – what remains to be done is
to ensure that each wire is a safe wire with respect to these sinks, and ideally,
to get rid of the requirement to perform redundant computations for the same
values of the shares. We first address the latter question.

Consider a masked implementation of an S-box which is not necessarily uni-
form. Instead of the individual masked S-box output bits, we can use the un-
masked S-box output as sinks and add corresponding virtual nodes that compute
these as sums of the masked S-box outputs to the circuit. Any fault in this un-
masked S-box output would activate at least one bit in the unmasked cipher
output, so the detection variables V∆ can be reduced to the unmasked values
and evaluated for arbitrary resharing inputs.

Now, we still need to ensure that any wire w in the S-box circuit is a safe
wire with respect to one of these sinks s, i.e., that there is exactly one directed
path w → s and it contains at most one nonlinear gate. This may be violated
due to branching and due to composition of nonlinear gates within an S-box.
If the circuit contains such a composition of nonlinear gates, it needs to be
decomposed into smaller, bijective S-boxes with nonlinear depth 1 first. For
branches, we consider the branching subtree as in Section 4.3. We need to ensure
that whenever two twigs in this tree activate, a sink s activates. In particular,
this implies that for every branch node b, there must be a sink s such that there
is a unique path b → s, and this path contains only linear nodes (including
branches). This may require restructuring the tree such that at least one of the
last two uses of a variable (the tree root) is in a linear gate, taking care that the
modifications do not invalidate the security of the masked implementation.

The approach is easy to apply to the χ3 example. We performed the following
modifications to the circuit from Figure 8 so that each wire is now a safe wire:
1. Delay a0 ⊕ r0 and c1 ⊕ t1 until the very end.
2. Delay a1 ⊕ r1, b0 ⊕ s0, b1 ⊕ s1, and c0 ⊕ t0 until the very end (optional).
3. Move the resharing position to preserve security of the masking.

The resulting circuit in Figure 10 shows similarities with the Toffoli-based im-
plementation of χ3 in Section 3.2, but there are still significant differences; most
notably, the necessity for resharing variables rr,rt and the lower circuit depth
of the solution in Figure 10.

21



4.5 Towards Protection against Multiple Faults

So far, we focused only on single-fault SIFA attackers and corresponding coun-
termeasures. Both the attack approach and the countermeasure with local checks
can be generalized to a multi-fault attacker who faults up to d gates or wires.

Consider a circuit protected by dth-order masking with d+ 1 or more shares,
i.e., an attacker who learns up to d shares of any variable still does not gain
any information on its native value. Let the circuit be implemented with at least
d + 1 redundant computations and an error detector ∆ of at least d bits. For
simplicity, assume that each of the attacker’s d faults is a bitflip fault. We call
the implementation d-fault SIFA-resistant if each possible d-bit fault is either
detected by ∆ or activates at most d nonlinear gates in total.

This criterion can, for instance, be satisfied by checking all inputs to nonlinear
gates with the following construction. We use d + 1 redundant computations
and an n∆-bit error detector ∆ = (∆1, . . . ,∆n∆

), where n∆ = d for odd d and
n∆ = d+1 for even d. For each relevant input wire, we branch d times to update d
different error detector bits ∆i with the differences to all d other computations.
In other words, we compute all

(
d+1
2

)
differences in this bit between any two

redundant computations and ensure that for each computation, each of the d
comparisons activates a different detector ∆i. Distributing the

(
d+1
2

)
differences

to the various ∆i corresponds to an edge coloring problem with n∆ colors in the
complete graph with d + 1 vertices, which is easy to solve. Then, activating k
gates in one computation without detection by ∆ requires at least min(k, d+ 1)
faults: each gate can either be activated without triggering ∆ by placing a fault
between the checking branches and the nonlinear gate; or it can be activated
while triggering d error detector bits ∆i, each of which requires either a fault
in the corresponding computation or faulting ∆i directly to eliminate. Thus, in
summary, at least d+1 faults would be required in order to activate d+1 or more
nonlinear gates and thus learn d+1 shares of any variable to deduce information
on its native value.

Clearly, this approach is only efficient in practice for very small protection
order d without further optimizations. Since the size of each masked implemen-
tation grows quadratically in d, and the checking cost per nonlinear gate in
this implementation also grows quadratically in d, the construction is only of
theoretic interest for larger d.

5 Conclusion

In this paper, we proposed two different approaches to counteract SIFA on an
algorithmic level. First, we showed that by using reversible gates for the non-
linear operations in the implementation of the masked cipher, we can construct
circuits where a single fault in the computation of the cipher will always propa-
gate to its output. It can then be detected via redundant computations that are
typically implemented to cope with other fault attacks like DFA. This approach
can be implemented efficiently and its applicability was shown for 3-bit, 4-bit,
and 5-bit S-boxes.

22



Additionally, we presented an alternative countermeasure strategy based on
fine-grained detection. It can be used to protect arbitrary masked circuits, and
extended to cope with multi-fault SIFA, albeit at a higher implementation cost.

Acknowledgments. Part of this work has been supported by the Austrian Science
Fund (FWF): J 4277-N38 and by the Austrian Research Promotion Agency
(FFG) via the project ESPRESSO, which is funded by the province of Styria
and the Business Promotion Agencies of Styria and Carinthia. Joan Daemen is
supported by the European Research Council under the ERC advanced grant
agreement under grant ERC-2017-ADG Nr. 788980 ESCADA.

References

1. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ci-
phers for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryp-
tology – EUROCRYPT 2015. LNCS, vol. 9056, pp. 430–454. Springer (2015).
https://doi.org/10.1007/978-3-662-46800-5 17

2. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s
apprentice guide to fault attacks. Proceedings of the IEEE 94(2), 370–382 (2006).
https://doi.org/10.1109/JPROC.2005.862424

3. Barthe, G., Dupressoir, F., Faust, S., Grégoire, B., Standaert, F.X., Strub, P.Y.:
Parallel implementations of masking schemes and the bounded moment leakage
model. In: Coron, J.S., Nielsen, J.B. (eds.) Advances in Cryptology – EURO-
CRYPT 2017. LNCS, vol. 10210, pp. 535–566 (2017). https://doi.org/10.1007/978-
3-319-56620-7 19

4. Beläıd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A., Vergnaud, D.:
Private multiplication over finite fields. In: Katz, J., Shacham, H. (eds.) Advances
in Cryptology – CRYPTO 2017. LNCS, vol. 10403, pp. 397–426. Springer (2017).
https://doi.org/10.1007/978-3-319-63697-9 14

5. Bennett, C.H.: Logical reversibility of computation. IBM Journal of Research and
Development 17(6), 525–532 (1973). https://doi.org/10.1147/rd.176.0525

6. Bertoni, G., Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.:
Farfalle: parallel permutation-based cryptography. IACR Transactions on Symmet-
ric Cryptology 2017(4), 1–38 (2017). https://doi.org/10.13154/tosc.v2017.i4.1-38

7. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak SHA-3 sub-
mission (Version 3.0). http://keccak.noekeon.org/Keccak-submission-3.pdf

(2011)
8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: Ketje v2.

Submission to the CAESAR competition (2016), https://keccak.team/files/

Ketjev2-doc2.0.pdf

9. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: Keyak v2.
Submission to the CAESAR competition (2016), https://keccak.team/files/

Keyakv2-doc2.2.pdf

10. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski Jr., B.S. (ed.) Advances in Cryptology – CRYPTO ’97. LNCS, vol. 1294,
pp. 513–525. Springer (1997). https://doi.org/10.1007/BFb0052259

11. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Tokareva, N.N., Vitkup, V.: Threshold
implementations of small S-boxes. Cryptography and Communications 7(1), 3–33
(2015). https://doi.org/10.1007/s12095-014-0104-7

23

https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1109/JPROC.2005.862424
https://doi.org/10.1007/978-3-319-56620-7_19
https://doi.org/10.1007/978-3-319-56620-7_19
https://doi.org/10.1007/978-3-319-63697-9_14
https://doi.org/10.1147/rd.176.0525
https://doi.org/10.13154/tosc.v2017.i4.1-38
http://keccak.noekeon.org/Keccak-submission-3.pdf
https://keccak.team/files/Ketjev2-doc2.0.pdf
https://keccak.team/files/Ketjev2-doc2.0.pdf
https://keccak.team/files/Keyakv2-doc2.2.pdf
https://keccak.team/files/Keyakv2-doc2.2.pdf
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/s12095-014-0104-7


12. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block ci-
pher. In: Paillier, P., Verbauwhede, I. (eds.) Cryptographic Hardware and Em-
bedded Systems – CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer (2007).
https://doi.org/10.1007/978-3-540-74735-2 31

13. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults (extended abstract). In: Fumy, W. (ed.) Advances in
Cryptology – EUROCRYPT ’97. LNCS, vol. 1233, pp. 37–51. Springer (1997).
https://doi.org/10.1007/3-540-69053-0 4

14. Clavier, C.: Secret external encodings do not prevent transient fault analysis. In:
Paillier, P., Verbauwhede, I. (eds.) Cryptographic Hardware and Embedded Sys-
tems – CHES 2007. LNCS, vol. 4727, pp. 181–194. Springer (2007)

15. Cnudde, T.D., Nikova, S.: More efficient private circuits II through threshold imple-
mentations. In: Fault Diagnosis and Tolerance in Cryptography – FDTC 2016. pp.
114–124. IEEE Computer Society (2016). https://doi.org/10.1109/FDTC.2016.15

16. Cnudde, T.D., Reparaz, O., Bilgin, B., Nikova, S., Nikov, V., Rijmen, V.: Mask-
ing AES with d+1 shares in hardware. In: Gierlichs, B., Poschmann, A.Y. (eds.)
Cryptographic Hardware and Embedded Systems – CHES 2016. LNCS, vol. 9813,
pp. 194–212. Springer (2016). https://doi.org/10.1007/978-3-662-53140-2 10

17. Colombier, B., Menu, A., Dutertre, J.M., Moëllic, P.A., Rigaud, J.B., Danger, J.L.:
Laser-induced single-bit faults in flash memory: Instructions corruption on a 32-
bit microcontroller. IACR Cryptology ePrint Archive, Report 2018/1042 (2018),
https://eprint.iacr.org/2018/1042

18. Daemen, J.: Cipher and hash function design, strategies based on linear and differ-
ential cryptanalysis. Ph.D. thesis, KU Leuven (1995), http://jda.noekeon.org/

19. Daemen, J.: Changing of the guards: A simple and efficient method for achieving
uniformity in threshold sharing. In: Fischer, W., Homma, N. (eds.) Cryptographic
Hardware and Embedded Systems – CHES 2017. LNCS, vol. 10529, pp. 137–153.
Springer (2017). https://doi.org/10.1007/978-3-319-66787-4 7

20. Daemen, J., Hoffert, S., Van Assche, G., Van Keer, R.: The design of Xoodoo
and Xoofff. IACR Transactions on Symmetric Cryptology 2018(4), 1–38 (2018).
https://doi.org/10.13154/tosc.v2018.i4.1-38

21. Daemen, J., Peeters, M., Van Assche, G., Rijmen, V.: Nessie proposal: the block
cipher Noekeon. Nessie submission (2000), http://gro.noekeon.org/

22. De Cannière, C.: Analysis and design of symmetric encryption algorithms. Ph.D.
thesis, KU Leuven (2007)

23. De Meyer, L., Arribas, V., Nikova, S., Nikov, V., Rijmen, V.: M&M:
Masks and macs against physical attacks. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems 2019(1), 25–50 (2019).
https://doi.org/10.13154/tches.v2019.i1.25-50

24. Dobraunig, C., Eichlseder, M., Groß, H., Mangard, S., Mendel, F., Primas, R.:
Statistical ineffective fault attacks on masked AES with fault countermeasures. In:
Peyrin, T., Galbraith, S.D. (eds.) Advances in Cryptology – ASIACRYPT 2018.
LNCS, vol. 11273, pp. 315–342. Springer (2018). https://doi.org/10.1007/978-3-
030-03329-3 11

25. Dobraunig, C., Eichlseder, M., Korak, T., Mangard, S., Mendel, F., Primas, R.:
SIFA: Exploiting ineffective fault inductions on symmetric cryptography. IACR
Transactions on Cryptographic Hardware and Embedded Systems 2018(3), 547–
572 (2018). https://doi.org/10.13154/tches.v2018.i3.547-572

24

https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1109/FDTC.2016.15
https://doi.org/10.1007/978-3-662-53140-2_10
https://eprint.iacr.org/2018/1042
http://jda.noekeon.org/
https://doi.org/10.1007/978-3-319-66787-4_7
https://doi.org/10.13154/tosc.v2018.i4.1-38
http://gro.noekeon.org/
https://doi.org/10.13154/tches.v2019.i1.25-50
https://doi.org/10.1007/978-3-030-03329-3_11
https://doi.org/10.1007/978-3-030-03329-3_11
https://doi.org/10.13154/tches.v2018.i3.547-572


26. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2. Submission
to the CAESAR Competition (2016), https://ascon.iaik.tugraz.at/files/

asconv12.pdf

27. Dobraunig, C., Mangard, S., Mendel, F., Primas, R.: Fault attacks on nonce-based
authenticated encryption: Application to Keyak and Ketje. Cryptology ePrint
Archive, Report 2018/852 (2018), https://eprint.iacr.org/2018/852

28. Fuhr, T., Jaulmes, É., Lomné, V., Thillard, A.: Fault attacks on AES with faulty
ciphertexts only. In: Fischer, W., Schmidt, J.M. (eds.) Fault Diagnosis and Toler-
ance in Cryptography – FDTC 2013. pp. 108–118. IEEE Computer Society (2013)

29. Golubitsky, O., Maslov, D.: A study of optimal 4-bit reversible Toffoli circuits
and their synthesis. IEEE Transactions on Computers 61(9), 1341–1353 (2012).
https://doi.org/10.1109/TC.2011.144

30. Groß, H., Iusupov, R., Bloem, R.: Generic low-latency masking in hardware. IACR
Transactions on Cryptographic Hardware and Embedded Systems 2018(2), 1–21
(2018). https://doi.org/10.13154/tches.v2018.i2.1-21

31. Groß, H., Mangard, S.: Reconciling d+1 masking in hardware and software.
In: Fischer, W., Homma, N. (eds.) Cryptographic Hardware and Embed-
ded Systems – CHES 2017. LNCS, vol. 10529, pp. 115–136. Springer (2017).
https://doi.org/10.1007/978-3-319-66787-4 6

32. Groß, H., Mangard, S., Korak, T.: Domain-oriented masking: Compact masked
hardware implementations with arbitrary protection order. IACR Cryptology
ePrint Archive, Report 2016/486 (2016), https://eprint.iacr.org/2016/486

33. Groß, H., Schaffenrath, D., Mangard, S.: Higher-order side-channel protected im-
plementations of KECCAK. In: DSD. pp. 205–212. IEEE Computer Society (2017)

34. Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.A.: Private circuits II: Keep-
ing secrets in tamperable circuits. In: Vaudenay, S. (ed.) Advances in Cryp-
tology – EUROCRYPT 2006. LNCS, vol. 4004, pp. 308–327. Springer (2006).
https://doi.org/10.1007/11761679 19

35. Ishai, Y., Sahai, A., Wagner, D.A.: Private circuits: Securing hardware against
probing attacks. In: Boneh, D. (ed.) Advances in Cryptology – CRYPTO 2003.
LNCS, vol. 2729, pp. 463–481. Springer (2003). https://doi.org/10.1007/978-3-540-
45146-4 27

36. Knudsen, L.R., Leander, G., Poschmann, A., Robshaw, M.J.B.: PRINTcipher: A
block cipher for IC-printing. In: Mangard, S., Standaert, F.X. (eds.) Cryptographic
Hardware and Embedded Systems – CHES. LNCS, vol. 6225, pp. 16–32. Springer
(2010). https://doi.org/10.1007/978-3-642-15031-9 2

37. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J. (ed.)
Advances in Cryptology – CRYPTO ’99. LNCS, vol. 1666, pp. 388–397. Springer
(1999). https://doi.org/10.1007/3-540-48405-1 25

38. Landauer, R.: Irreversibility and heat generation in the computing pro-
cess. IBM Journal of Research and Development 5(3), 183–191 (1961).
https://doi.org/10.1147/rd.53.0183

39. Leander, G., Poschmann, A.: On the classification of 4 bit S-boxes. In: Carlet, C.,
Sunar, B. (eds.) Arithmetic of Finite Fields – WAIFI 2007. LNCS, vol. 4547, pp.
159–176. Springer (2007). https://doi.org/10.1007/978-3-540-73074-3 13

40. Quisquater, J.J., Samyde, D.: Electromagnetic analysis (EMA): Measures and
counter-measures for smart cards. In: Attali, I., Jensen, T.P. (eds.) Smart Card
Programming and Security – E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer
(2001). https://doi.org/10.1007/3-540-45418-7 17

25

https://ascon.iaik.tugraz.at/files/asconv12.pdf
https://ascon.iaik.tugraz.at/files/asconv12.pdf
https://eprint.iacr.org/2018/852
https://doi.org/10.1109/TC.2011.144
https://doi.org/10.13154/tches.v2018.i2.1-21
https://doi.org/10.1007/978-3-319-66787-4_6
https://eprint.iacr.org/2016/486
https://doi.org/10.1007/11761679_19
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-642-15031-9_2
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1007/978-3-540-73074-3_13
https://doi.org/10.1007/3-540-45418-7_17


41. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consoli-
dating masking schemes. In: Gennaro, R., Robshaw, M. (eds.) Advances in
Cryptology – CRYPTO 2015. LNCS, vol. 9215, pp. 764–783. Springer (2015).
https://doi.org/10.1007/978-3-662-47989-6 37

42. Reparaz, O., De Meyer, L., Bilgin, B., Arribas, V., Nikova, S., Nikov, V., Smart,
N.P.: CAPA: The spirit of beaver against physical attacks. In: Shacham, H.,
Boldyreva, A. (eds.) Advances in Cryptology – CRYPTO 2018. LNCS, vol. 10991,
pp. 121–151. Springer (2018). https://doi.org/10.1007/978-3-319-96884-1 5

43. Schneider, T., Moradi, A., Güneysu, T.: ParTI – towards combined hardware
countermeasures against side-channel and fault-injection attacks. In: Robshaw, M.,
Katz, J. (eds.) Advances in Cryptology – CRYPTO 2016. LNCS, vol. 9815, pp.
302–332. Springer (2016). https://doi.org/10.1007/978-3-662-53008-5 11

44. Selmke, B., Zinnecker, K., Koppermann, P., Miller, K., Heyszl, J., Sigl, G.: Locked
out by latch-up? an empirical study on laser fault injection into Arm Cortex-M
processors. In: Fault Diagnosis and Tolerance in Cryptography – FDTC 2018. pp.
7–14. IEEE Computer Society (2018). https://doi.org/10.1109/FDTC.2018.00010

45. Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible logic
circuits. IEEE Transactions on CAD of Integrated Circuits and Systems 22(6),
710–722 (2003). https://doi.org/10.1109/TCAD.2003.811448

46. Sugawara, T.: 3-share threshold implementation of AES S-box without fresh ran-
domness. IACR Transactions on Cryptographic Hardware and Embedded Systems
2019(1), 123–145 (2019). https://doi.org/10.13154/tches.v2019.i1.123-145

47. Toffoli, T.: Reversible computing. In: de Bakker, J.W., van Leeuwen, J. (eds.) Au-
tomata, Languages and Programming, 1980. LNCS, vol. 85, pp. 632–644. Springer
(1980). https://doi.org/10.1007/3-540-10003-2 104

48. Tupsamudre, H., Bisht, S., Mukhopadhyay, D.: Destroying fault invariant with
randomization – A countermeasure for AES against differential fault attacks. In:
Batina, L., Robshaw, M. (eds.) Cryptographic Hardware and Embedded Systems
– CHES 2014. LNCS, vol. 8731, pp. 93–111. Springer (2014)

A Threshold Implementations of pT and pχ

Figure 11 shows the algorithmic representation of a securely masked (using three
shares) and single-fault SIFA-protected Toffoli gate pT fulfilling the three require-
ments for threshold implementations (TI). Namely the gate fulfills: 1) correct-
ness, since the gate correctly implements the equations a = a� b� c which can
be checked be adding all output shares of a (the equations b = b and c = c are
trivial), 2) uniformity, which follows from the fact that for each output share
a single share of a appears in additive form, and 3) non-completeness, because
for each calculation of one output share, one share index never appears (e.g.,
the calculation of the output share a0 does not use any shares with the index 1
like b1 or c1). The implementation of pχ follows analogously by replacing either
one of the nine And gates with a Nand gate. A secure hardware variant of the
Toffoli gate is shown in Figure 12. Again, the registers ensure that a single fault
cannot influence all shares of variables that are fed into nonlinear And gates
without detecting it at the output.

26

https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-3-319-96884-1_5
https://doi.org/10.1007/978-3-662-53008-5_11
https://doi.org/10.1109/FDTC.2018.00010
https://doi.org/10.1109/TCAD.2003.811448
https://doi.org/10.13154/tches.v2019.i1.123-145
https://doi.org/10.1007/3-540-10003-2_104


Input: {a0, a1, a2, b0, b1, b2, c0, c1, c2}
t0 ← b0 � c0

a0 ← a0 � t0

t0 ← b0 � c2

a0 ← a0 � t0

t0 ← b2 � c0

a0 ← a0 � t0

t0 ← b1 � c1

a1 ← a1 � t0

t0 ← b1 � c0

a1 ← a1 � t0

t0 ← b0 � c1

a1 ← a1 � t0

t0 ← b2 � c2

a2 ← a2 � t0

t0 ← b2 � c1

a2 ← a2 � t0

t0 ← b1 � c2

a2 ← a2 � t0

Output: {a0, a1, a2, b0, b1, b2, c0, c1, c2}

Fig. 11: Algorithmic representation of masked Toffoli gate (pT ) using 3 shares.

a 0

a 1

b 0

b 1

c 0

c 1

a 0

a 1

b 0

b 1

c 0

c 1

a 2

b 2

c 2

a 2

b 2

c 2

FF

FF

FF

FF

FF

FF

FF

FF

FF

Fig. 12: 3-share TI and single-fault SIFA-protected Toffoli gate in hardware.

27


	Protecting against Statistical Ineffective Fault Attacks

