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Abstract. It has been 70 years since the publication of the seminal
outstanding work of Claude Elwood Shannon, in which he first gave a
mathematical definition of the cryptosystem and introduced the concept
of perfect ciphers. He also examined the conditions in which such a ci-
phers exist. Shannon’s results in one form or another are presented in
almost all books on cryptography. One of his result deals with so-called
endomorphic ciphers in which the cardinalities of the message space M
and the ciphertexts C are the same. The Vernam cipher (one-time pad)
is the most famous representative of such ciphers. Moreover, it’s the only
one known to be perfect.
Surprisingly, we have found a mistake in the Shannon’s result. Namely,
Shannon stated that an endomorphic cipher, in which the keyspace K
has the same cardinality as message space, is perfect if and only if two
conditions are satisfied. The first suggests that for any pair plaintext–
ciphertext there exists only one key that translates this plaintext into
this ciphertext. The second argues that the key distribution must be
uniform. We show, that these two conditions are not really enough. We
prove in three different ways that the plaintexts must also be equally
probable. Moreover, we study the general endomorphic cipher and get
the same result. It follows, that in practice perfect endomorphic ciphers
do not exist.
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1 Introduction

In 1949 Claude Elwood Shannon introduced his outstanding work ”Communi-
cation Theory of Secrecy Systems” [1]. He laid the foundation of modern math-
ematical cryptography. We do not discuss all of Shannon’s results as they are
well known. For example, one can refer to famous book ”Cryptography: Theory
and Practice” by Douglas Stinson [2]. Let us focus on only one result of Shannon
related to the perfect endomorphic ciphers.

Shannon stated (see page 681 of his original work [1]): ”Perfect systems in
which the number of cryptograms, the number of messages, and the number
of keys are all equal are characterized by the properties that (1) each M is
connected to each E by exactly one line, (2) all keys are equally likely. Thus the
matrix representation of the system is a ”Latin square”. In this statement M is
the message and E is corresponding ciphertext. The phrase ”is connected with



exactly one lines” means that there exists only one key which encrypts M to E.
We show that this two conditions are not enough. Really, the plaintexts must
also be equally probable. We prove this fact in three different ways. Therefore,
there is no doubt about the truth of our contribution.

We note that some inconsistency in this Shannon’s result had previously
discovered by Babash and Shankin [3]. They introduced two separate notions
of ”perfectness by the ciphertext” and ”perfectness by the key” and showed that
they are not equivalent. The ”perfect by the ciphertext” cipher is the same as
Shannon’s perfect cipher. The ”perfect by the key” cipher satisfies following
condition:

PE(K) = P (K), where K is the key (see notations below).

It means, that it is impossible to attack the key by ciphertexts. On the one
hand, Shannon aims to describe all ciphers which can not be decrypted without
knowing the key. On the other hand, if we can obtain a valid key, than we can
decrypt ciphertext. So a really perfect cryptosystem need to be not only ”perfect
by the ciphertext” but also ”perfect by the key”. Note, that the Shannon’s model
is fully defined by the message distribution and the key distribution. And we
don’t have any contradiction with the main Shannon’s theorem 6 which now is
the definition of perfect cipher. From this reasoning we conclude that Shannon
was wrong in his statement about perfect endomorphic ciphers.

2 Preliminaries

Recall the Shannon’s cipher model and the adversary model. We try to keep all
Shannon’s notations. Namely, let M ∈ M be a message, E ∈ C be a ciphertext
and K ∈ K be a key.

Definition 1. A cryptosystem C is a five-tuple 〈K,M, C, E ,D〉, where the fol-
lowing conditions are satisfied:

1. K, the keyspace, is a finite set of possible keys;

2. M is a finite set of possible plaintexts (messages);

3. C is a finite set of possible ciphertexts;

4. For each K ∈ K, there is an encryption rule Enc(K,M) ∈ E and a corre-
sponding decryption rule Dec(K,E) ∈ D. Each Enc(K,M) : K ×M → C
and Dec(K,E) : K×C →M are functions such that Dec(K,Enc(K,M)) =
= M for every plaintext element M ∈M.

The cryptosystem is called endomorphic if |M| = |C|. We use following no-
tations:
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P (M) — a priory probability of message M ;
P (K) — a priory probability of key K;
PM (E) — conditional probability of ciphertext E if message M is chosen

i.e. the sum of the probabilities of all keys which produce
ciphertext E from message M ;

PK(E) — conditional probability of ciphertext E if key K is chosen
i.e. the sum of the probabilities of all messages which produce
ciphertext E with the key K;

P (E) — probability of obtaining ciphertext E from any cause;
PE(M) — a posteriori probability of message M

if ciphertext E is intercepted;
PE(K) — a posteriori probability of key K

if ciphertext E is intercepted;
Shannon considered the case of ciphertext–only attack : the adversary pos-

sesses a string of ciphertext. But at the same time, the adversary has unbounded
computational resources. It is assumed in the model, that the message M and
the key K are independent random variables with some distributions P (M) and
P (K) correspondingly. Moreover, P (M) > 0 for all M ∈ M and P (K) > 0 for
all K ∈ K. So the ciphertext E is also random variable with distribution P (E):

P (E) =
∑

M∈M
PM (E) · P (M), where (1)

PM (E) =
∑

K∈K:Enc(K,M)=E

P (K). (2)

The cryptosystem is called perfect by Shannon (see his theorem 6) if PM (E) =
= P (E). This definition is equivalent to PE(M) = P (M) as the message M and
the key K are independent. Now we reformulate the Shannon’s statement that
we analyze in this paper.

Theorem 1. Let |M| = |C| = |K|.
The cryptosystem C = 〈K,M, C, E ,D〉 is perfect if and only if it satisfies two
conditions:

1. For each M and E there is only one solution to the equation
Enc(K,M) = E under the key K.

2. The distribution of the key is uniform, i.e. P (K) = 1
|K| .

3 The Main Result

We state that the following theorem is true.

Theorem 2. Let |M| = |C| = |K|.
The cryptosystem C = 〈K,M, C, E ,D〉 is perfect if and only if it satisfies three
conditions:
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1. For each M and E there is only one solution to the equation
Enc(K,M) = E under the key K.

2. The distribution of the key is uniform, i.e. P (K) = 1
|K| .

3. The distribution of the plaintext is uniform, i.e. P (M) = 1
|M| .

Proof. We prove this theorem in three different ways. We need to prove only the
last statement. So we can assume that the first two are true.

The first method — by the direct calculations. Let E = Enc(K ′,M).
The following sequence of equations is true:

P (M) = PE(M) =
∑
Ki∈K

P (Dec(Ki, E) = M)P (K = Ki) = P (K = K ′) =
1

|M|
.

The first equations is true by the definition of perfect cipher. The second is
true by the total probability low. The third equation is true by the following
observation:

∃!Ki ∈ K : Dec(Ki, E) = M ⇒ P (Dec(Ki, E) = M) =

{
1, if Ki = K ′;

0, otherwise.

The second method — by the theory of functions under random
variables. Note, that the ciphertext E is the random variable which is calcu-
lated by the function Enc with two independent random arguments M and K.
Moreover, from the first statement of the theorem follows, that this function
is bijection under its arguments. So the random variable E has the uniform
distribution.

On the other hand, M = Dec(K,E), and the decryption function is also a
bijection under its arguments. As the cipher is perfect, we conclude that the ran-
dom variables K and E are independent. So the plaintext M of the endomorphic
perfect cipher also has the uniform distribution.

The third method — by contradiction. Assume, that the plaintext M
has non-uniform distribution. It is known that the condition PE(K) = P (K)
for any K and E is equivalent to the condition PK(E) = P (E) for any K and
E. Note, that E has the uniform distribution (see above). Obviously, PK(E) =
= P (M) for the plaintext M encrypted with the key K into E. The assertion
follows directly from our assumption.

Example 1. Let’s consider an example. Let M = C = K = Z3 and P (M = 0) =
= 3/4, P (M = 1) = P (M = 2) = 1/8. Choose the message Mess = 00102000.
Suppose, the sender has chosen a sequence of keys 01122100 and encrypted the
message Mess by simple one-time pad to the ciphertext 01221100. Let’s see
what the adversary can get if she acts according to the maximum likelihood
estimation method.

It is easy to see, that

PEj (Ki) =
PKi

(Ej) · P (Ki)

P (Ej)
=

P (Mij : Mij = Dec(Ki, Ej)) · 1/3

1/3
= P (Mij),
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And therefore,

PE(K) =

{
3/4, if K = E;

1/8, otherwise.
, for each K ∈ K, E ∈ C.

Thus, the adversary simply decrypts the ciphertext 01221100 to 00000000.
We see, that exactly 3/4 of the entire message Mess is decrypted correctly.

Further, we study all other endomorphic ciphers. Namely, the condition n =
= |M| = |C| < |K| is satisfied. Obviously, it is sufficient to consider the case,
when the keyspace doesn’t contain the pairs (K1,K2) of equivalent keys, such
that Enc(K1,M) = Enc(K2,M) for all M ∈ M. Otherwise, we divide the
keyspace into equivalent key classes and talk about each class as a separate key.
We get the following result.

Theorem 3. Let |M| = |C| < |K| and there are no equivalent keys, i.e. @K1,
K2 ∈ K : Enc(K1,M) = Enc(K2,M) for all M ∈ M. The cryptosystem
C = 〈K,M, C, E ,D〉 is perfect if and only if it satisfies conditions:

1. For each key K ∈ K the functions Enc(K,M) and Dec(K,E) are substitu-
tions from the symmetric group Sn. Moreover, Dec(K,E) = Enc−1(K,M).

2. Both the distribution of plaintext and ciphertext are uniform, i.e.
P (M) = P (E) = 1/n.

3. The distribution of keys is the solution of the linear system of equations:∑
K∈K:Enc(K,M)=E P (K) = 1/n for all M ∈M, E ∈ C. (3)

Proof. The first statement of the theorem is obvious and follows from the defi-
nition 1. Indeed, for any fixed key K ∈ K the map Enc(K,M) is injective. But
we have n = |M| = |C| and so it is a bijection.

Suppose, that the cipher C is perfect. Let’s fix some message M ∈ M and
ciphertext E ∈ C. By definition (see formula (2)), we have the following equa-
tions:

P (M) = PE(M) =
∑

K∈K:Dec(K,E)=M

P (K), (4)

P (E) = PM (E) =
∑

K∈K:Enc(K,M)=E

P (K). (5)

But we know, that Enc(K,M) is substitution, and if Enc(K,M) = E, then
Dec(K,E) = M and vise versa. So, both sums in the equations (4)-(5) contain
the same summands. And therefore, P (M) = P (E) for all M ∈M, E ∈ C. This
proves the second statement.

The third statement also follows from the definition of perfect cipher. Indeed,
the system (3) can be obtained simply by substitution P (E) = 1/n into the
equation (5).

Conversely, suppose the three hypothesized conditions are satisfied. Then the
cryptosystem C is easily seen to provide perfect secrecy. The proof is completed.

5



Remark 1. One can calculate a posteriori probability PE(K) using Bayes’ theo-
rem:

PE(K) =
PK(E) · P (K)

P (E)
=

P (M) · P (K)

P (E)
= P (K).

Thus, we see, that the perfect cipher also satisfies the ”perfectness by the key”
condition.

Remark 2. We do not know if there is a solution to the system (3) under given
mappings Enc(K,M) and Dec(K,E). So it is an open question. But in the fol-
lowing statement we consider the common case, when the keys are equiprobable.

Corollary 1. Under the conditions of theorem 3, if the distribution of keys is
uniform, then the endomorphic cryptosystem C is perfect if and only if it satis-
fies:

1. For each key K ∈ K the functions Enc(K,M) and Dec(K,E) are substitu-
tions from the symmetric group Sn. Moreover, Dec(K,E) = Enc−1(K,M).

2. Both the distribution of plaintext and ciphertext are uniform.
3. |K| = m·n, and for each pair M ∈M and E ∈ C there are exactly m distinct

keys which encrypts M to E and decrypts E to M .

Proof. The first two statements are already proved in theorem 3. As the distri-
bution of keys is uniform, from the equation (5) and system (3) we have:

P (M) = P (E) = m · P (K), for some constant value m > 1.

Therefore, |K| = m · n. Further, each row of the system (3) corresponds to the
conditional probability PM (E). Thus, for each pair M and E there are exactly
m keys which encrypts M to E. It is follows from the first statement, that
these are the keys which decrypts E to M . Note, that in system (3), all rows
that correspond to fixed value E do not intersect. Each column of this system
contains exactly n units.

In the opposite direction, the proof is obvious. The proof is completed.

Note, that the system (3) contains exactly n2 equations. But the number
of keys can be any value from n up to n!. When l = |K| > n2, the sys-
tem (3) always has a solution. But we don’t aware that there is such a solu-
tion (P (K1), P (K2), . . . , P (Kl) that satisfies the probability distribution rule
0 ≤ P (Ki) ≤ 1 for all i = 1, l. At the same time, the normalization condition is

always met. Indeed, if we sum up all rows, we get the equation
∑l

i=1 P (Ki) = 1.
Finally, we give some nontrivial examples.

Example 2. First, we show, that there is perfect endomorphic cipher with the
non-uniform distribution of keys. We associate each key K ∈ K with substitution
Enc(K, ·). LetM = C = {1, 2, 3, 4}, the plaintexts are all equiprobable, and the
cipher C be determined by the following substitutions from S4:
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K1 →
(

1 2 3 4
2 3 4 1

)
, K2 →

(
1 2 3 4
3 2 1 4

)
, K3 →

(
1 2 3 4
4 2 3 1

)
, K4 →

(
1 2 3 4
3 1 4 2

)
,

K5 →
(

1 2 3 4
1 4 2 3

)
, K6 →

(
1 2 3 4
2 4 1 3

)
, K7 →

(
1 2 3 4
4 1 3 2

)
, K8 →

(
1 2 3 4
1 3 2 4

)
.

Let’s make a linear system of equations for this example according to (4).

P (M = 1|E = 1) = P (K5) + P (K8) = 1/4;
P (M = 1|E = 2) = P (K1) + P (K6) = 1/4;
P (M = 1|E = 3) = P (K2) + P (K4) = 1/4;
P (M = 1|E = 4) = P (K3) + P (K7) = 1/4;
P (M = 2|E = 1) = P (K4) + P (K7) = 1/4;
P (M = 2|E = 2) = P (K2) + P (K3) = 1/4;
P (M = 2|E = 3) = P (K1) + P (K8) = 1/4;
P (M = 2|E = 4) = P (K5) + P (K6) = 1/4;
P (M = 3|E = 1) = P (K2) + P (K6) = 1/4;
P (M = 3|E = 2) = P (K5) + P (K8) = 1/4;
P (M = 3|E = 3) = P (K3) + P (K7) = 1/4;
P (M = 3|E = 4) = P (K1) + P (K4) = 1/4;
P (M = 4|E = 1) = P (K1) + P (K3) = 1/4;
P (M = 4|E = 2) = P (K4) + P (K7) = 1/4;
P (M = 4|E = 3) = P (K5) + P (K6) = 1/4;
P (M = 4|E = 4) = P (K2) + P (K8) = 1/4;

The rank of this system is 7, and the solution has the form (P (K1), P (K1),
1/4−P (K1), 1/4−P (K1), P (K1), 1/4−P (K1), P (K1), 1/4−P (K1). As we see,
for any 0 < P (K1) < 1/4, P (K1) 6= 1/8, there is the non-uniform distribution
of keys, that corresponds to the given perfect cipher C.

Example 3. In this example, we consider more sophisticated case. Namely, we
choose the key K1 in such a way, that P (K1) = 1/4. All other keys are dis-
tributed non-uniformly. To do it, we select substitutions in a special way. For

the key K1 we select the substitution

(
1 2 3 4
2 3 4 1

)
. And for other keys we select

all substitutions that don’t map 1 to 2, 2 to 3, 3 to 4 and 4 to 1. Then we get
the following keys.

K1 →
(

1 2 3 4
2 3 4 1

)
, K2 →

(
1 2 3 4
1 2 3 4

)
, K3 →

(
1 2 3 4
1 4 2 3

)
, K4 →

(
1 2 3 4
1 4 3 2

)
,

K5 →
(

1 2 3 4
3 1 2 4

)
, K6 →

(
1 2 3 4
3 2 1 4

)
, K7 →

(
1 2 3 4
3 4 1 2

)
, K8 →

(
1 2 3 4
4 1 2 3

)
,

K9 →
(

1 2 3 4
4 1 3 2

)
, K10 →

(
1 2 3 4
4 2 1 4

)
.
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As in the previous example, we obtain a system of equations:

P (M = 1|E = 1) = P (K2) + P (K3) + P (K4) = 1/4;
P (M = 1|E = 2) = P (K1) = 1/4;
P (M = 1|E = 3) = P (K5) + P (K6) + P (K7) = 1/4;
P (M = 1|E = 4) = P (K8) + P (K9) + P (K10) = 1/4;
P (M = 2|E = 1) = P (K5) + P (K8) + P (K9) = 1/4;
P (M = 2|E = 2) = P (K2) + P (K6) + P (K10) = 1/4;
P (M = 2|E = 3) = P (K1) = 1/4;
P (M = 2|E = 4) = P (K3) + P (K4) + P (K7) = 1/4;
P (M = 3|E = 1) = P (K6) + P (K7) + P (K10) = 1/4;
P (M = 3|E = 2) = P (K3) + P (K5) + P (K8) = 1/4;
P (M = 3|E = 3) = P (K2) + P (K4) + P (K9) = 1/4;
P (M = 3|E = 4) = P (K1) = 1/4;
P (M = 4|E = 1) = P (K1) = 1/4;
P (M = 4|E = 2) = P (K4) + P (K7) + P (K9) = 1/4;
P (M = 4|E = 3) = P (K3) + P (K8) + P (K10) = 1/4;
P (M = 4|E = 4) = P (K2) + P (K5) + P (K6) = 1/4;

The rank of this system is 7, and the solution has the form:

(1/4, 1/4− P (K6)− P (K10) , P (K9), P (K10)+P (K6)−P (K9), P (K10), P (K6),
1/4−P (K6)−P (K10), 1/4−P (K10)−P (K9), P (K9), P (K10)). For instance, let
P (K6) = P (K9) = 1/16, P (K10) = 1/8. Then we get the following distribution:

(1/4, 1/16, 1/16, 1/8, 1/8, 1/16, 1/16, 1/16, 1/16, 1/8).

4 Conclusions

We show that one of the Shannon’s result has a mistake and correct it. Fur-
ther, we study the general perfect endomorphic cryptosystem. Unfortunately,
we show, that the perfect endomorphic cryptosystem exists only if the plaintext
has uniform distribution. Therefore, in practice there is no endomorphic perfect
ciphers as the plaintexts are always has non-uniform distribution. In particular,
the famous one-time pad is not a perfect cipher. It is only asymptotically perfect
when the length of the text tends to infinity.

Moreover, this result will have a negative impact on all stream ciphers, as
their goal is to bring the encryption closer to a one-time pad. But the iterative
block ciphers are still suitable and really can be proven secure against more pow-
erful adversary. Indeed, we can assume, that the d-round block cipher encrypts
the plaintext that is obtained after the d− 1 rounds. And since we believe, that
after d− 1 rounds the plaintext has the uniform distribution, we can talk about
perfectness of d-round block cypher.

Finally, we want to emphasize that we still have an unresolved problem re-
lated to the solution of the system (3). It is the interesting question when this
system has a solutions and how to describe them all.
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