
Iterated Truncated Differential for Internal
Keyed Permutation of FlexAEAD
Mostafizar Rahman1, Dhiman Saha2, Goutam Paul1

1Cryptology and Security Research Unit (CSRU), R. C. Bose Centre for Cryptology and Security,
Indian Statistical Institute, Kolkata 700108, India

mrahman454@gmail.com,goutam.paul@isical.ac.in
2Department of Electrical Engineering & Computer Science,

Indian Institute of Technology, Bhilai 492015, India
dhiman@iitbhilai.ac.in

Abstract. In this draft, the internal keyed permutation of FlexAEAD has been
analysed. In our analysis, we have first reported an iterated truncated differential for
one round which holds with a probability of 2−7 and can penetrate same number of
rounds as claimed by the designers with much less complexity which can be easily
converted to a key-recovery attack. We have also reported a Super-Sbox construction
in the internal permutation, which has been exploited using the Yoyo game to devise
a 6-round deterministic distinguisher and a 7-round key recovery attack for 128-bit
internal permutation. Similar attacks can be mounted for 64-bit and 256-bit internal
permutation.
Keywords: FlexAEAD , Distinguisher, Iterated Differential, Yoyo, NIST lightweight
cryptography project

1 State Representation
We refer to internal keyed permutation (PFK) of FlexAEAD [EMdN19] as the Flex-x,
where x is the block size of the permutation in bits. Fig 1 shows the byte representation
in Flex-128 state. Each state is divided into two equal halves- the bytes in the left half
being numbered from B0 to B7, and the ones on the right half from B8 to B15. Each byte
is divided into two parts representing the two nibbles with the upper half (upper nibble)
being the most significant one. The other nibble is called as lower nibble. After the block
shuffle operation, the 16 nibbles from B0 to B7 constitute the upper nibbles of each bytes
whereas the nibbles from B8 to B15 constitute the lower ones. The bytes at position Bi

and B(i+8) are referred to as a “pair of symmetric bytes". Application of BlockShuffle
operation on p in r-th round is denoted by BSr(p).

Figure 1: Byte Representation of Flex-128 Block Cipher

mrahman454@gmail.com, goutam.paul@isical.ac.in
dhiman@iitbhilai.ac.in


2 Iterated Truncated Differential for Internal Keyed Permutation of FlexAEAD

2 Super-Sbox
Refer to fig 2 for the Super-Sbox construction in Flex-128 block cipher. Consider the
bytes {B0, B2, · · ·B14} at X1. Due to round function, only the symmetric bytes affect
each other. So, in Y1 every symmetric bytes depends on every symmetric bytes at X1.
Due to BS2, B2i, B2i+8 (0 ≤ i ≤ 3) from Y1 constitutes the B4i, B4i+1 (0 ≥ i ≤ 3)
at X2. Due to application of BS3, {B2i, B2i+1, B2i+8, B2i+9}, (0 ≤ i ≤ 1) at Y2 affects
{B8i, B8i+1, B8i+2, B8i+3}, (0 ≤ i ≤ 1) at X3. This constitutes a Super-Sbox which spans
over 2.5 rounds (omitting the initial Byte Shuffle). There are two Super-Sboxes in the
Flex-128 state.
In similar way, Flex-64 and Flex-256 has Super-Sboxes which span over 1.5 and 3.5
rounds respectively.

Figure 2: Super-Sbox of Flex-128 Block Cipher

3 Iterated Differential
3.1 Property of AES DDT Table
From AES DDT table it has been observed that the number of randomly chosen input
difference maps to an output difference, such that output difference bytes are confined
to the upper nibble is 4096. Therefore, with probability 2−4 a random input difference
transits to upper nibble in the output difference. With same probability random input
difference transits to lower nibble.

3.2 One Round Probabilistic Iterated Truncated Differential
Refer to Fig. 3 for the iterated differential. In X1, keeping the difference in B0 ensures
that in Y1 difference are in B0 and B8. With probability 2−7 both differences are confined



3

in either upper nibble or lower nibble in those bytes. Therefore, after BlockShuffle only
one byte is active.

Figure 3: Iterated Truncated Differential with One-round probability of 2−7. Note that
the key-addition is not shown, since it has no effect on the trail.

3.3 Application to Variants of FlexAEAD Permutation
The one round iterated truncated differential can be applied to all the versions of internal
keyed permutation. The iterated differential occurs with probability 2−7. Also, the last
round can be made free as no byte to nibble transition is needed for the last round. So,
for r number of rounds, 2−7×(r−1) probability need to be paid. Table 1 compares the
differential probabilities claim of the designers with our claim using the iterated differential.
PD denotes the designers claim whereas QD denotes our claim. We have experimentally
verified the attacks upto 5 rounds.

3.4 Key Recovery Using Iterated Truncated Differential
At the end of each round, difference in a pair of symmetric bytes after Sbox transits to
same nibble with probability 2−7. This has been used as a filtering technique to eliminate
wrong key bytes. Let, the first subkey, K0 for Flex-128 is being recovered. Using iterated
truncated differential for r rounds a right pair can be identified with probability 2−7∗(r−1).
Suppose, in the right pair the initial difference is in Bi and B(i+8). So, we guess key byte
K0[i] and K0[i+ 8]. There are 216 possible guesses and these are used to verify whether at
the end of first round byte to nibble transition occur. Out of 216, 29 key-byte candidates



4 Iterated Truncated Differential for Internal Keyed Permutation of FlexAEAD

Table 1: Comparison of Differential Probabilities

BlockSize Rounds (r-1) Active Sboxes P†D Q∗D
64 14 28 2−168 2−91

128 17 34 2−204 2−112

256 20 40 2−240 2−133

† Probability of the classical differential trail claimed by the designers
∗ Probability of the iterated truncated differential trail

remain. The same filtering technique is used for second and third round to filter out more
wrong key bytes. After using 3 rounds of filtering, it is expected only one candidate should
remain for the byte pair

(
216× (2−7)3 = 2−5 < 1

)
. For the remaining symmetric key bytes,

the procedure is repeated for 7 more times. At the end, it is expected that only one key
candidate should pass the test. The other subkeys can be recovered in same way (After
recovering the first subkey, the value of plaintexts are exactly known till second subkey
whitening). Same key recovery attacks are applicable for Flex-64 and Flex-256.

4 Yoyo Game
A deterministic distinguisher for two generic Substitution-Permutation (SP) rounds have
been reported by Rønjom et al [RBH17]. This has been used to devise a 6-round Flex-128
distinguisher and a 7-round Flex-128 key recovery attack. To apply their results, first
Zero Difference Pattern and Swapping of Words needs to be defined here originally
defined in [RBH17].

Let, F : Fn
q → Fn

q be a permutation with q = 2k and

F (x) = S ◦ L ◦ S ◦ L ◦ S(x)
Here, S is the concatenation of several smaller SBoxes operating on elements from Fq

in parallel and L is the linear layer over Fn
q . A state is defined as the vector of words

α = (α0, α1, · · · , αn−1) ∈ Fn
q .

Definition 1. Zero Difference Pattern.[RBH17] Let, α ∈ Fn
q for q = 2k. The Zero

Difference Pattern for α is

ν(α) = (z0, z1, ..., zn−1),

where ν(α) takes values in Fn
2 and zi = 1 if αi = 0 or zi = 0 otherwise.

Definition 2. Swapping of Words.[RBH17] Let, α, β ∈ Fn
q be two states and v ∈ Fn

2
be a vector, then ρv(α, β) is a new state in Fn

q created from α, β by swapping components
among them. The ith component of ρv(α, β) is defined as

ρv(α, β)i =
{
αi, if vi = 1;
βi, if vi = 0.

(1)

The following theorem describes the deterministic distinguisher for 2 generic SP-rounds.

Theorem 1. [RBH17] Let, p0, p1 ∈ Fn
q , c0 = G2(p0) and c1 = G2(p1). For any vector

v ∈ Fn
2 , c

′0 = ρv(c0, c1) and c′1 = ρv(c1, c0). Then

ν(G−1
2 (c′0)⊕G−1

2 (c′1)) = ν(p′0 ⊕ p′1) = ν(p0 ⊕ p1).



5

5 Attacks on Flex-128
The results of [RBH17] have been used to devise a 6-round deterministic distinguisher.
Then the 6-round deterministic distinguisher is extended using classical differential to
perform key recovery attack on 7-round Flex-128. Similar kinds of attacks are applicable
for Flex-64 and Flex-256 for different number of rounds.

5.1 Deterministic Distinguisher for 6-round Flex-128
In devising this distinguisher, theorem 1 have been used directly. For this purpose, the
S ◦ L ◦ S layers need to be identified in this construction. The S here corresponds to
Super-Sbox described in 2 whereas the L corresponds to the BlockShuffle layer. A pair
of plaintexs is chosen such that only one of the Super-Sbox is active at X1. Yoyo game is
played using these two plaintexts to obtain new pair of texts. The same Super-Sbox should
be active in the new pair of texts and the other should be inactive. For a uniform random
discrete distribution, this occurs with probability 1

264 .

Attack Procedure

1. Choose two 128-bit plaintexts p1, p2 such that, wt(ν(p1⊕p2)) = 1. Inverse BlockShuffle
is applied to p1, p2 and then they are queried to encryption oracle to obtain c1, c2.

2. As there is two Super-Sboxes, so only one swapping is possible. One of the Super-Sbox
is swapped between c1 and c2 to form c

′

1, c
′

2, which are queried to encryption oracle
and p′

1, p
′

2 is obtained.

3. Check whether wt(ν(BS(p′

1)⊕BS(p′

2))) = 1 or not. If it is 1, then distinguish it as
Flex-128; otherwise it is a random permutation.

Complexity Evaluation The attack needs 2 encryption queries and 2 decryption
queries; its time complexity is 2 BlockShuffle , 2 inverse BlockShuffle operation and
2 Flex-128 state XOR, and the memory complexity is negligible.

5.2 Key Recovery for 7-round Flex-128
For attacking 7-round Flex-128, yoyo distinguishing attack on 6-round Flex-128 is
composed with the one round trail of iterated truncated differential 3.2. The attack is
shown in fig 4. With probabilty 2−7 only one Super-Sbox is active at X2. By virtue of
yoyo game, only one Super-Sbox should be active in W2. Due to inverse block shuffle, the
differences should be confined to the upper nibbles only in Z1; the lower nibbles should be
free. With probability 2−8, two symmetric bytes becomes free at Z1. There are 8 choices
for symmetric byte positions which increases the probability to 2−5. Therefore, at the cost
of 2−12, two symmetric bytes become free for the 7-round Flex-128.

Attack Procedure

1. Choose 26 plaintexts such that they differ only in B0 and B8. Apply inverse
BlockShuffle on them and query them to encryption oracle to obtain corresponding
ciphertexts. Consider all ciphertext pairs, swap bytes between them according to
the Super-Sbox output and query them to the decryption oracle to obtain new pairs
of plaintexts. Check whether the pair has a pair of free symmetric bytes. At least
one such pair is expected.

2. Repeat step 1 two more times to obtain two right pairs. Let, c1, c2 and c3, c4 be such
pairs and their corresponding plaintexts are p1, p2, p3, p4. After byte swapping c1, c2



6 Iterated Truncated Differential for Internal Keyed Permutation of FlexAEAD

Figure 4: 7-round Yoyo Distinguisher for Flex-128

and c3, c4 becomes c′

1, c
′

2 and c′

3, c
′

4. BlockShuffle is applied on the decrypted value
of these modified ciphertexts to obtain p′

1, p
′

2, p
′

3, p
′

4.

3. Guess key bytes 0 and 8 for K0, run one round encryption for p′

1, p
′

2 and observe
whether same nibble in B0 and B8 remains free or not for the pair. Using the nibble
transition, out of 216 candidates, 27 are filtered out. Then p

′

3, p
′

4 is used for the
remaining 29 candidates and the number of key candidates for B0 and B8 is reduced
to 22.

4. For the remaining 7 symmetric pairs of bytes step 3 is repeated 7 more times. At,
the end 22×8 = 216 key candidates are expected for K0. Using K0, K1 is recovered.
If there are more than one right key candidate, then they are exhaustively tried for
finding the right key candidate.

Complexity Evaluation The attack needs (2 × 26 + 216) encryption queries and
2× 212 decryption queries; its time complexity is 27 inverse BlockShuffle operation, 213

BlockShuffle operation, 27 memory accesses for retrieving the plaintexts, 27 memory
accesses for storing the ciphertexts and 213 memory accesses for retrieving the ciphertexts,
and the memory complexity is 27 Flex-128 states for storing the plaintexts and ciphertexts.

References
[EMdN19] JosÃľ AntÃťnio Moreira XexÃľo Eduardo Marsola do Nascimento. Flex-

AEAD -A Lightweight Cipher with Integrated Authentication. https:
//csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/
documents/round-1/spec-doc/FlexAEAD-spec.pdf, 2019.

[RBH17] Sondre Rønjom, Navid Ghaedi Bardeh, and Tor Helleseth. Yoyo Tricks with
AES. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptol-
ogy – ASIACRYPT 2017, pages 217–243, Cham, 2017. Springer International
Publishing.

https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/FlexAEAD-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/FlexAEAD-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/FlexAEAD-spec.pdf

	State Representation
	Super-Sbox 
	Iterated Differential
	Property of AES DDT Table
	One Round Probabilistic Iterated Truncated Differential 
	Application to Variants of FlexAEAD Permutation
	Key Recovery Using Iterated Truncated Differential

	Yoyo Game
	Attacks on Flex-128
	Deterministic Distinguisher for 6-round Flex-128
	Key Recovery for 7-round Flex-128


