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Abstract. In this paper, the internal keyed permutation of FlexAEAD
is analysed. In our analysis, we report an iterated truncated differential
for one round which holds with a probability of 2−7 and can penetrate
the same number of rounds as claimed by the designers with much less
complexity and can be easily converted to a key-recovery attack. We
further report a Super-Sbox construction in the internal permutation,
which is exploited using the Yoyo game to devise a 6-round determinis-
tic distinguisher and a 7-round key recovery attack for 128-bit internal
permutation. Similar attacks can be mounted for the 64-bit and 256-bit
variants. Success probabilities of all the reported distinguishing attacks
are shown to be high. All practical attacks are experimentally verified.
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1 Introduction

In modern era, the aim is to connect each of the physical devices, even the
miniature ones, with internet so that they can be monitored and controlled re-
motely for maximum utilisation. These devices are powered with the ability of
communicating among themselves. Such a huge interconnected system, consist-
ing of numerous tiny devices, is not free from vulnerabilities. Moreover, security
breach in such systems can be catastrophic. So, a major concern in the world of
internet-of-things is how to provide security and privacy to each systems with the
constraints of limited power and space. NIST LightWeight Crytography (LWC)
competition [NIS] is major step towards addressing these issues. There are total
57 submissions in this competiton. Apart from authenticated encryption algo-
rithm in lightweight environment, some of the designs also comprised of hash
functions. Some of them have also provided new primitives for block cipher de-
sign.

FlexAEAD is one of the round 1 candidates proposed by Nascimento and
Xexo [dNX19]. For authenticated encryption it has three variants-



1. FlexAEAD 128b064 128-bit key, 64-bit block, 64-bit nonce and 64-bit tag
2. FlexAEAD 128b128 128-bit key, 128-bit block, 128-bit nonce and 128-bit

tag
3. FlexAEAD 256b256 256-bit key, 256-bit block, 256-bit nonce and 256-bit

tag

It has its own primitive; internal keyed permutation (PFk) of 64-bit, 128-bit
and 256-bit. We have analysed the PFk function and reported several results.
Brief description of PFk has been provided in Section 2.1. The internal keyed
permutation of FlexAEAD with x-bit state is refer to as Flex-x.

Table 1: Comparison of Trail Probabilities

Block Size rounds Trail Probability Type Reference

64

5 2−66 Differential

Characteristics
[EKS19a]

5 2−46 Clustered

Characteristics
[EKS19a]

5 2−21 Iterated Truncated

Differential

Current Work

Section 3

5 2−13 Yoyo Game
Current Work

Section 4.3

128

6 2−79 Differential

Characteristics
[EKS19a]

6 2−54 Clustered

Characteristics
[EKS19a]

6 2−21 Iterated Truncated

Differential

Current Work

Section 3

6 1 Yoyo Game
Current Work

Section 4.2

256

7 2−108 Differential

Characteristics
[EKS19a]

7 2−70 Clustered

Characteristics
[EKS19a]

7 2−21 Iterated Truncated

Differential

Current Work

Section 3

9 2−11 Yoyo Game
Current Work

Section 4.3



1.1 Existing Security Claims

The designers have claimed that mounting an attack on Flex-x based on dif-
ferential and linear characteristics is more difficult than the brute force attack.
According to their analysis, the probability of best differential characteristic for
Flex-64, Flex-128 and Flex-256 is 2−168, 2−204 and 2240 respectively. The
number of chosen plaintext pairs required for a linear trail in Flex-64, Flex-
128 and Flex-256 are 2272, 2326 and 2380 respectively [dNX19]. Eichlseder et
al. have claimed several forgery attacks on FlexAEAD with complexities less
than those given by the designers. For forging attacks they have follwed sev-
eral different approaches; like changing associated data, truncating ciphertexts
and reordering ciphertexts. They have reported differential characteristics for 5-
round Flex-64, 6-round Flex-128 and 7-round Flex-256 with probability 2−66,
2−79 and 2−108 respectively. They have also reported clustered characteristics
for all variants of PFk [EKS19a,EKS19b]. Length extension attack based on as-
sociated data have also been shown [M‘e19]. Table 1 shows the comparison of
different trail probabilities. For uniformity, we have enlisted trail probabilities
for same number of rounds.

1.2 Our Contributions

First of all, we report an iterated truncated differential for all the variants of
PFk using the property of AES Difference Distribution Table (DDT) where the
output difference of a byte is confined to either upper or lower nibble. These
differentials are further exploited to recover the subkeys.

Next, a deterministic Yoyo distinguisher of 4, 6 and 8 rounds for Flex-64,
Flex-128 and Flex-256 respectively are devised. All these distingushers are
used for mounting key recovery attacks for one more extra round. Yoyo is an
interesting cryptanalytic tool which is studied extensively. Rønjom et al. re-
ported a deterministic Yoyo distinguisher for generic 2-Substitution Permutation
rounds [RBH17]. These results are further exploited in AES-based permutations
and block ciphers [SRP18,BBJ+19]. The key recovery attacks with their com-
puted complexities are summarised in Table 2. For the iterated truncated differ-
ential, the maximum number of rounds that is penetrable for a Flex-x variant
are enlisted in the table.

Outline The necessary details about internal keyed permutation of FlexAEAD
and Yoyo game are briefly visited in Section 2. Section 3 describes the key-
recovery attacks based on Iterated Truncated Differential. Section 4 details the
attacks based on Yoyo game. The success probabilities of distinguishing attacks
and their experimental verification are illustrated in Section 5. Finally, the con-
culding remarks are furnished.



Table 2: Comparison of Key Recovery Attacks. Encs, Decs, MAs refers to encryption
queries, decryption queries and Memory Accesses respectively. For uniformity, memory
accesses and memory complexity has been provided in terms of Flex-128 state. 1 MA
for Flex-128 corresponds to 2 MA in Flex-64 and 0.5 MA in Flex-256. Memory
complexity is also normalised by the same ratio.

Block

Size
rounds

Data

Complexity

Time

Complexity
Memory

Complexity

Attack

Type

Section No. of

Current Work
Encs Decs MAs

64
7 230.5 234.5 218.5 Iterated Truncated

Differential
3.4

5 210 216.5 215.5 210 Yoyo

Attack
4.3

128
16 293.5 2108.5 220.5 Iterated Truncated

Differential
3.4

7 210.5 216.5 216.5 211.5 Yoyo

Attack
4.3

256
21 2109.5 2125.5 222.5 Iterated Truncated

Differential
3.4

9 211 216.5 217.5 213 Yoyo

Attack
4.3

2 Preliminaries

2.1 Internal keyed Permutation PFk

FlexAEAD is a lightweight authenticated encryption algorithm submitted in
NIST lightweight cryptography competition (LWC) [dNX19]. In this version, As-
sociate Data (AD) has been included on the original variants [dN17,dNX18,dNX17].
In this section, a brief description of the internal keyed permutation (PFk) of
FlexAEAD is provided, as the analysis in this paper are based on PFk.

Fig. 1: Byte Representation of Flex-128 Block Cipher



We refer to internal keyed permutation (PFK) of FlexAEAD as the Flex-
x, where x is the block size of the permutation in bits and m = x/8. Each state
is divided into two equal halves- the bytes in the left half being numbered from
B[0] to B[m2 −1], and the ones on the right half from B[m2 ] to B[m−1]. Each byte
is divided into two parts representing the two nibbles with the upper half (upper
nibble) being the most significant one. The other nibble is called as lower nibble.
The upper and lower nibble of B[i] is denoted by U [i] and L[i] respectively. After
the block shuffle operation, m nibbles from B[0] to B[m2 −1] constitute the upper
nibbles of each bytes whereas the nibbles from B[m2 ] to B[m− 1] constitute the
lower ones. The bytes at position B[i] and B[i + m

2 ] are referred to as a “pair
of symmetric bytes”. Application of BlockShuffle operation on state s in r-th
round is denoted by BSr(s). Fig. 1 shows the byte representation in Flex-128
state.

Fig. 2 shows the round function of Flex-128. Each round of Flex-x starts
with the blockshuffle operation. Then the state is bifurcated and the right half
goes through subbytes operation. The left half is modified by XOR-ing it with
the right half and applying the subbytes operation. The modified values of left
half are XOR-ed with the right half values and subbytes is applied to get new
values of the right half. Then the left and right half are combined to form the
new state and the next round follows. In Flex-x there are no round keys; there
are only two subkeys KA, KB which are used at the beginning and the end of
round functions respectively. The total number of rounds for Flex-64, Flex-128
and Flex-256 are 15, 18 and 21 respectively [dNX19].

Key Generation Key generation in Flex-x uses the PFkwhere the master key
K is divided into two parts and used as two subkeys. State is initialized with
0|K|/2 and three times PFkis applied to generate part of the subkey to be used
for encryption of the plaintext. This process is repeated several times till re-
quired number of subkeys are obtained. Apart from the first round, each time
the state is initialised with the output of the previous round. Key generation
algorithm makes it difficult to recover the master key from a known subkey. The
key recovery attacks presented in this paper refers to the recovery of subkeys.

2.2 Yoyo Game

A deterministic distinguisher for two generic Substitution-Permutation (SP)
rounds have been reported by Rønjom et al [RBH17]. This has been used to
devise a 6-round Flex-128 distinguisher and a 7-round Flex-128 key recovery
attack. To apply their results, first Zero Difference Pattern and Swapping
of Words needs to be defined here originally defined in [RBH17].

Let, F : Fn
q → Fn

q be a permutation with q = 2k and

F (x) = S ◦ L ◦ S ◦ L ◦ S(x)



Fig. 2: Round Function of Flex-128 Block Cipher

Here, S is the concatenation of several smaller SBoxes operating on elements
from Fq in parallel and L is the linear layer over Fn

q . A state is defined as the
vector of words α = (α0, α1, · · · , αn−1) ∈ Fn

q .

Definition 1. Zero Difference Pattern.[RBH17] Let, α ∈ Fn
q for q = 2k. The

Zero Difference Pattern for α is

ν(α) = (z0, z1, ..., zn−1),

where ν(α) takes values in Fn
2 and zi = 1 if αi = 0 or zi = 0 otherwise.

Definition 2. Swapping of Words.[RBH17] Let, α, β ∈ Fn
q be two states and

v ∈ Fn
2 be a vector, then ρv(α, β) is a new state in Fn

q created from α, β by



swapping components among them. The ith component of ρv(α, β) is defined as

ρv(α, β)i =

{
αi, if vi = 1;

βi, if vi = 0.
(1)

The following theorem describes the deterministic distinguisher for 2 generic
SP-rounds.

Theorem 1. [RBH17] Let, p0, p1 ∈ Fn
q , c0 = G2(p0) and c1 = G2(p1). For any

vector v ∈ Fn
2 , c

′0 = ρv(c0, c1) and c
′1 = ρv(c1, c0). Then

ν(G−12 (c
′0)⊕G−12 (c

′1)) = ν(p
′0 ⊕ p′1) = ν(p0 ⊕ p1).

The notion behind devising such distinguisher is to choose a plaintext pair
according to some Zero Difference Pattern and query those pairs to the cipher to
obtain a ciphertext pair. Words are swapped between the two ciphetexts on the
basis of substitution layer 2 to obtain modified ciphertexts which are queried to
obtain new pair of plaintexts. Theorem 1 states that Zero Difference Pattern of
the original plaintext pair and the modified plaintext pair should be same if the
cipher is of form S ◦ L ◦ S.

3 Iterated Truncated Differential Attacks on PFk

Differential of iterative characteristics can be easily exploited to penetrate full
rounds of a cipher. The fundamental strategy behind devising an iterated differ-
ential is to choose the output differential in a way such that after some operations
the input differential can be produced easily. Recently, a deterministic iterated
differential has been reported for SNEIK permutation [Per19]. Earlier, Alkhzaimi
et al. have reported such differentials for SIMON family of block ciphers [AL13].
In this work, iterated differential in truncated form have been considered. First
of all, a particular property of AES Sbox which have been exploited needs to be
discussed.

3.1 Property of AES DDT Table

From AES DDT table it has been observed that the number of randomly chosen
input difference maps to an output difference, such that output difference bytes
are confined to the upper nibble or lower nibble is 4096. In other words,∣∣∣{(x1, x2)

∣∣(S(x1)⊕ S(x2)
)

& 0xf0 = 0,∀x1, x2 ∈ F28
}∣∣∣ = 4096∣∣∣{(x1, x2)

∣∣(S(x1)⊕ S(x2)
)

& 0x0f = 0,∀x1, x2 ∈ F28
}∣∣∣ = 4096

S is the AES Sbox. Therefore, with probability 4096
216 = 2−4 a random input dif-

ference transits to upper nibble in the output difference. With same probability,
random input difference transits to lower nibble.



3.2 One Round Probabilistic Iterated Truncated Differential

Refer to Fig. 3 for the iterated differential of Flex-128. In X1, keeping the differ-
ence in B[0] ensures that in Y1 difference are in B[0] and B[8]. With probability
2−7 both differences are confined in either upper nibble or lower nibble in those
bytes. Therefore, after BlockShuffle only one byte is active in X2. In X2 the
active byte can be either B[0] or B[1], depending on whether the upper or lower
nibbles in Y1 are active. Similar kinds of iterated truncated differential with same
probability exists for Flex-64 and Flex-256.

3.3 Application to Variants of FlexAEAD Permutation

The one round iterated truncated differential can be applied to all the versions
of internal keyed permutation PFk. The iterated differential occurs with proba-
bility 2−7. Depending on the blocksize, last few rounds can be made free as no
byte to nibble transition is needed for those rounds.
Let, the iterated truncated differential is kept free for last f rounds for Flex-x.
Then the probability of the trail is 2−7×(r−f). For uniform random discrete dis-

tribution, the same event will occur with probability 2−8×(
x
8−2

f ) = 2−(x−8∗2
f ).

For devising a distinguisher for x-bit flex,

2−7×(r−f) > 2−(x−8∗2
f )

=⇒ r <
(x− 8 ∗ 2fr)

7
+ f (2)

Table 3: Iterated Differential Trails

Block Size f rmax Trail Probability

64
1 7 2−42

2 6 2−28

128

1 16 2−105

2 15 2−91

3 12 2−63

256

1 21 2−140

2 21 2−123

3 21 2−126

4 21 2−119



Fig. 3: Iterated Truncated Differential with One-round probability of 2−7. Note that
the key-addition is not shown, since it has no effect on the trail

Table 4: Comparison of Differential Probabilities

BlockSize Rounds r Active Sboxes P†D Q∗D
64 15 28 2−168 2−98

128 18 34 2−204 2−119

256 21 40 2−240 2−119

† Probability of the classical differential trail claimed by the designers

∗ Probability of the iterated truncated differential trail



Then, the probability of the iterated truncated differential trail for r-round
Flex-x is 2−7×(r−f). Table 3 shows the trail probabilities for different Flex-x.
rmax denotes the maximum number of rounds reachable under the constraints
of fixed f . Table 4 compares the differential probabilities claim of the designers
with our claim using the iterated differential. PD denotes the designers claim
whereas QD denotes our claim.

Another aspect of such kind of trails is the position of active byte in each
round. As mentioned in 3.2, if B[0] is active in X0, then either B[0] or B[1] is
active in X2. If B[1] is active in X2, then either B[2] or B[3] is active in X3. In
general, for Flex-x if B[m] or B[ x

2×8 +m] is active in Xi, then either B[2m] or
B[2m+ 1] is active in X(i+1).

3.4 Key Recovery Using Iterated Truncated Differential

At the end of each round, difference in a pair of symmetric bytes after Sbox
transits to same nibble with probability 2−7. This has been used as a filtering
technique to eliminate wrong key bytes. Let, the first subkey, K0 for Flex-128
is being recovered. Using iterated truncated differential for r rounds a right pair
can be identified with probability 2−7×(r−f), where f is number free rounds.
Suppose, in the right pair the initial difference is in B[i] and B[i + 8]. So, we
guess key byte K[i] and K[i+8]. There are 216 possible guesses and these are used
to verify whether at the end of first round byte to nibble transition occur. Out of
216, 29 key-byte candidates remain. For further filtering, two more right pairs are
used. The second right pair reduces the candidate numbers to 22. After filtering
using three different right pairs, it is expected only one candidate should remain
for the key byte pair

(
216×(2−7)3 = 2−5 < 1

)
. For the remaining symmetric key

bytes, the procedure is repeated for 7 more times. At the end, it is expected that
only one key candidate should pass the test. The other subkeys can be recovered
in same way (After recovering the first subkey, the value of plaintexts are exactly
known till second subkey whitening). Same key recovery attacks are applicable
for Flex-64 and Flex-256.

3.5 Complexity Evaluation

Distinguisher To distinguish iterated truncated differential for r rounds, 27×(r−f)

number of plaintext pairs are required, where f is the number of free rounds at
the end. In devising the distinguishers, difference can be kept in 2 bytes only

in X1, which yields
(
216

2

)
≈ 231 pairs of plaintexts. For distinguishers requiring

more than 231 pairs, a different set of states is needed. So, the data complexity is
27×(r−f)

231 ×216 = 27×(r−f)

215 encryption queries. Time complexity involves the mem-
ory accesses required to compute the specified collisions, which is the number of
plaintext pairs needed, i. e., 27×(r−f). Memory complexity is 216 Flex-x states,
which is the memory required for storing different states.
Consider a particular case for 21-round Flex-256. According to inequality 2,
the value of f can be set to 4. For this case



1. Data Complexity is 27×17

215 = 2104 encryption queries..

2. Time Complexity is 2119 memory accesses.

3. Memory Complexity is 216 Flex-256 states = 217 Flex-128 states.

Key Recovery Complexities of key recovery attack of Flex-x depends on
distinguisher. To recover each pair of key-byte, three different right pairs are
required. This procedure also needs to be repeated x

16 times for recovering the
full key. Therefore, data complexity, time complexity and memory complexity of
distinguisher needs to be multiplied by a factor of 3 × x

16 . Moreover, candidate
key-byte recovery for each pair of byte can be computed in parallel. To recover
the other subkey, a plaintext, ciphertext pair

(
p1, c1

)
is chosen and PFk round

functions till the second subkey whitening is computed offline and XOR-ed with
c1. So, the complexities of r-round Flex-x with f free rounds are-

1. Data Complexity is 3× x
16 ×

27×(r−f)

215 encryption queries.

2. Time Complexity is 3× x
16 × 27×(r−f) memory accesses.

3. Memory Complexity is 3× x
16 × 216 Flex-x states.

The complexities of particular cases for 7-round Flex-64 with f=1, 16-round
Flex-128 with f=1 and 21-round Flex-256 with f=4 have been listed in Ta-
ble 2.

3.6 Experimental Verification

The key recovery attack using iterated differentials have been experimentally
verified for 8 rounds Flex-128 with f=3. The attack initiates after a key is
chosen randomly. The number of key candidates after using the first right pairs
for each pair of symmetric bytes (from (K[0],K[8]) to (K[7],K[15])) are 316,
520, 632, 448, 568, 484, 368 and 356 respectively. It conforms to the theoretical
analysis, which states that the number of candidates should be around 29. After
using the second right pairs, the number of candidates is reduced to 2, 12, 4, 4,
6, 5, 2 and 5 respectively which is close to the theoretical value of 22. The third
right pair reduces the number for all pair of bytes to 1. The key recovery attack
correctly recovers the subkeys.

4 Yoyo Attacks on PFk

The Yoyo distinguishing attack has been briefly described in 2.2. First, the
result of Yoyo game on 2-generic SP rounds have been applied for devising r-
round Flex-x deterministic distinguisher. Then cipher specific properties have
been exploited to penetrate one more extra round and recover the key. Here, r
is 4, 6 and 8 for Flex-64, Flex-128 and Flex-256 respectively.



4.1 Super-Sbox

Refer to Fig. 4 for the Super-Sbox construction in Flex-128 block cipher. Con-
sider the bytes {B[0], B[2], · · ·B[nb − 2]} at X1. Due to round function, only
the symmetric bytes affect each other. So, in Y1 every symmetric bytes depends
on every symmetric bytes at X1. Due to BS2, B[2i], B[2i + 8] (0 ≤ i ≤ 3)
from Y1 constitutes the B[4i], B[4i + 1] (0 ≥ i ≤ 3) at X2. Due to applica-
tion of BS3, {B[2i], B[2i + 1], B[2i + 8], B[2i + 9]}, (0 ≤ i ≤ 1) at Y2 affects
{B[8i], B[8i + 1], B[8i + 2], B[8i + 3]}, (0 ≤ i ≤ 1) at X3. This constitutes a
Super-Sbox which spans over 2.5 rounds (omitting the initial Byte Shuffle). There
are two 64-bit Super-Sbox in the Flex-128 state. In similar way, Flex-64 and
Flex-256 has 32-bit and 128-bit Super-Sbox which span over 1.5 and 3.5 rounds
respectively.

Fig. 4: Super-Sbox of Flex-128 Block Cipher

4.2 Deterministic Distinguisher for r-round Flex-x

In devising this distinguisher, theorem 1 have been used directly. For this pur-
pose, the S ◦ L ◦ S layers need to be identified in this construction. The S here



corresponds to Super-Sbox described in 4.1 whereas the L corresponds to the
BlockShuffle layer. A pair of plaintexts is chosen such that only one of the
Super-Sbox is active at X1. Yoyo game is played using these two plaintexts to
obtain new pair of texts. The same Super-Sbox should be active in the new pair
of texts and the other should be inactive. For a uniform random discrete distri-
bution, this occurs with probability 1

2
x
2

. In attack procedure, steps pertaining

to Flex-128 has been described. Same attack strategy follows for Flex-64 and
Flex-256.

Attack Procedure

1. Choose two 128-bit plaintexts p1, p2 such that, wt(ν(p1 ⊕ p2)) = 1. Inverse
BlockShuffle is applied to p1, p2 and then they are queried to encryption
oracle to obtain c1, c2.

2. As there is two Super-Sboxes, so only one swapping is possible. One of the
Super-Sbox is swapped between c1 and c2 to form c′1, c

′
2, which are queried

to decryption oracle and p′1, p
′
2 is obtained.

3. Check whether wt(ν(BS(p′1)⊕BS(p′2))) = 1 or not. If it is 1, then distinguish
it as Flex-128; otherwise it is a random permutation.

Complexity Evaluation The attack needs 2 encryption queries and 2 decryp-
tion queries; its time complexity is 2 BlockShuffle , 2 inverse BlockShuffle

operation and 2 Flex-128 state XOR, and the memory complexity is negligible.

4.3 Key Recovery for (r + 1)-round Flex-x

For attacking (r + 1)-round Flex-x, Yoyo distinguishing attack on r-round is
composed with the one round trail of iterated truncated differential 3.2. The
attack for Flex-128 is shown in Fig. 5. With probability 2−7 only one Super-
Sbox is active at X2. By virtue of Yoyo game, only one Super-Sbox should be
active in W2. Due to inverse BlockShuffle , the differences should be confined
to either upper nibbles or lower nibbles in Z1; the other half should be free.
With probability 2−8, two symmetric bytes becomes free at Z1. There are 8
(4 and 16 for Flex-64 and Flex-256 respectively) choices for symmetric byte
positions which increases the probability to 2−5

(
2−6 and 2−4 for Flex-64 and

Flex-256
)
. Therefore, at the cost of 2−12, two symmetric bytes become free for

the 7-round Flex-128. The probability of same event for 5-round Flex-64 and
9-round Flex-256 is 2−13 and 2−11 respectively.

Attack Procedure

1. Choose 26 plaintexts such that they differ only in B[0] and B[8]. Apply in-
verse BlockShuffle on them and query them to encryption oracle to obtain
corresponding ciphertexts. Consider all ciphertext pairs, swap bytes between



Fig. 5: 7-round Yoyo Distinguisher for Flex-128

them according to the Super-Sbox output and query them to the decryption
oracle to obtain new pairs of plaintexts. Check whether the pair has a pair
of free symmetric bytes. At least one such pair is expected.

2. Repeat step 1 two more times to obtain two more right pairs. Let, (c1, c2),
(c3, c4) and (c5, c6) be such pairs and their corresponding plaintexts are
(p1, p2), (p3, p4) and (p5, p6). After byte swapping, (c1, c2), (c3, c4) and (c5, c6)
becomes (c′1, c

′
2), (c′3, c

′
4) and (c′5, c

′
6). BlockShuffle is applied on the de-

crypted value of these modified ciphertexts to obtain (p′1, p
′
2), (p′3, p

′
4) and

(p′5, p
′
6).

3. Guess key bytes 0 and 8 for K0, run one round encryption for p′1, p
′
2 and

observe whether same nibble in B[0] and B[8] remains free or not for the
pair. Using nibble transition, out of 216 candidates, 27 are filtered out. Then
the remaining two right pairs subsequently reduces the number of candidates
for K[0] and K[8] to 22 and 1 respectively.

4. For the remaining 7 symmetric pairs of bytes, step 3 is repeated 7 more
times. At, the end 1 key candidates are expected for K0. For each K0, K1

is computed by using a plaintext-ciphertext pair. If there are more than one
K0, K1 pair, they are exhaustively tried for finding the right key candidate.

Complexity Evaluation Let, probability of the event that “two symmetric
bytes become free” is 2−p. So, for retrieving a right pair, 2

p
2 encryption queries

and 2p decryption queries are required. For guessing each pair of key byte, 3 such
right pairs are needed and to recover the key, this process need to be repeated x

16

times. Therefore, data complexity of the attack is 3×x
16 × 2

p
2 encryption queries

and 3×x
16 × 2p decryption queries.

Time complexity is 3×x
16 × 2p memory accesses for retrieving the stored cipher-

texts.
Memory complexity is 3×x

16 × 2
p
2+1 Flex-x states for storing the plaintexts and



ciphertexts.
The complexities of 7-round Flex-128 key recovery attack are-

1. Data Complexity is 24× 26 ≈ 210.5 encryption queries and 24× 212 ≈ 216.5

decryption queries.
2. Time Complexity is 216.5 memory accesses.
3. Memory Complexity is 211.5 Flex-128 states.

Experimental Verification The Yoyo attack for 7-round Flex-128 has been
experimentally verified. Initially the oracle chooses a master key randomly and
computes the subkeys. Adversarial algorithm queries according to 4.3 and re-
trieves right pairs. The number of key candidates corresponding to each sym-
metric bytes

(
from (K[0],K[8]) to (K[7],K[15])

)
after filtering with first right

pairs are 502, 618, 546, 496, 510, 486, 552 and 538 respectively. The second right
pairs further reduces it to 6, 7 6, 7, 7, 3, 3 and 5. The third pairs reduces all these
values to 1. These reduction in the number of key candidates using right pairs
conforms to the theoretical analysis. At last, the algorithm successfully recovers
the subkeys.

5 Success Probability

To deduce the theoretical estimation of success probability, the following theorem
from [PR18] has been applied.

Theorem 2. [PR18] Suppose, the event e happens in uniform random bitstream
with probability p and in keystream of a stream cipher with probability p(1 +
q). Then the data complexity of the distinguisher with false positive and false
negative rates α and β is given by

n >

(
κ1
√

1− p+ κ2

√(
1 + q

)(
1− p(1 + q)

))2
pq2

(3)

where Φ(−κ1) = α and Φ(κ2) = 1− β.

For computing success probability, we consider κ1 = κ2 in theorem 2, which
gives us α = β. Then the success probability is given by (1 − β). Table 5 lists
success probabilities of different distinguishers presented in this paper.

Experimental Verification For experimental verification of success probabil-
ities, the strategy from [SRP18] has been followed. First, consider a blackbox
which can act as either a cipher C or a uniform discrete random permutation R.
Then the experiment is run two times in the following ways:

1. Consider the blackbox as C and repeat the experiment ac times.
2. Consider the blackbox as R and repeat the experiment ar times.



Table 5: Success Probabilities of Various Distinguishers

Distinguisher

Type

Block

Size
f Rounds p× (1 + q) p

Success

Prob

Iterated

64 1 7 2−42 2−48 0.8

128 1 16 2−105 2−112 0.82

256 4 21 2−119 2−192 0.84

Yoyo

64 n/a 5 2−13 2−14 0.61

128 n/a 7 2−12 2−13 0.61

256 n/a 9 2−11 2−12 0.61

Let, out of (ac+ar) experiments, distinguisher decides C and R oc and or times
respectively. nFP and nFN denotes the number of false positives and false neg-
atives respectively. Based on this parameters, the confusion matrix is shown in
Table 6.

Table 6: Confusion Matrix of C and R

Actual

Observed
C R

C oc − nFP nFN

R nFP or − nFN

Then the success probability is calculated by:

Pr[Success] =
(oc − nFP ) + (or − nFN )

oc + or

=
(oc − nFP ) + (or − nFN )

ac + ar
.

Table 7: Experimental Verification of Success Probability

Distinguisher Rounds f #n Blackbox
Detected as

C
Detected as

R

Experimental

Success

Probability

Estimated

Success

Probability

Flex-64 5 2 100
Flex-64 65 35

0.8 0.83
R 5 95

Flex-64 6 2 100
Flex-64 79 21

0.76 0.77
R 27 73



Trade-off between Success Rate and Free Rounds The iterated truncated
differentials can have different number of free rounds at the end. More number
of free rounds reduces the trail complexity at the expense of success rate. For
analysis, consider the case pertaining to 6-round Flex-64 with number of free
rounds 1 and 2. The success rate for both cases is listed in Table 8. Figure 6
and 7 shows the success probabilities under different number of free rounds.

Table 8: Comparison of Success Rate for Flex-64

f rounds p× (1 + q) p
Success

Prob

1 6 2−35 2−48 0.83

2 6 2−28 2−32 0.77
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Fig. 6: Success Prob of Flex-128
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Fig. 7: Success Prob of Flex-64

For 21-round Flex-128, number of free rounds can take any value between
1 and 4. For each of the cases, theoretical estimation of success probability is
almost equal. the estimated success probabilities has been shown in Table 9. The
difference between the distribution of random bitstream and 21-round Flex-128
for each case is so huge, that it has negligible effect on the success probability.

Table 9: Comparison of Success Rate for Flex-256

f p× (1 + q) p
Success

Prob

1 2−140 2−240 0.84

2 2−133 2−224 0.84

3 2−126 2−208 0.84

4 2−119 2−192 0.84



6 Conclusion

In this work, we have shown several key recovery attacks on internal permuta-
tion of FlexAEAD , which are applicable across all variants. All these attacks
are based on either iterated truncated differential or Yoyo game. The iterated
truncated differential based attacks on round-reduced versions and Yoyo attacks
have been experimentally verified (the code of all practical attacks are available
online1). Although, the attacks immediately do not pose a threat to authenti-
cated encryption modes; but forgery or key recovery based on this results might
exists.
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