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Abstract—Right from its introduction by Boneh et al., fault attacks (FA) have been established to be one of the most practical threats
to both public key and symmetric key based cryptosystems. Statistical Ineffective Fault Analysis (SIFA) is a recently proposed class of
fault attacks introduced at CHES 2018. The fascinating feature of this attack is that it exploits the correct ciphertexts obtained during
a fault injection campaign, instead of the faulty ciphertexts. The SIFA has been shown to bypass almost all of the existing fault attack
countermeasures even when they are combined with provably secure masking schemes for side-channel resistance. The goal of this
work is to propose a countermeasure for SIFA. It has been observed that a randomized domain transformation of the intermediate
computation combined with bit-level error correction can throttle SIFA. The randomized domain transformation can be achieved by
standard masking schemes. In fact, we prove that if biased faults are injected at the state register of a block cipher at a target round,
then masking is sufficient to protect against SIFA, until all the shares for a specific bit are corrupted. However, masking alone cannot
prevent SIFA if the faults are injected at certain specific locations inside the S-Boxes. To address this issue, we incorporate a bit-level
error-correction mechanism. The strongest advantage of the proposed countermeasure, called AntiSIFA, is that it provides provable
and quantifiable security guarantees. Proof-of-concept evaluations were performed on software implementations of the block cipher
PRESENT, which correlates with the theoretical results.

Index Terms—Fault Attack, Block Cipher, Masking
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1 INTRODUCTION

The pervasive use of embedded electronics has opened
the avenue for various implementation-based attacks. Fault
attacks (FA) are considered among the forerunner in the
arsenal of these implementation attacks, which are capable
enough to allow practical key recovery [1], [2]. FAs are a
suite of active perturbation attacks, where errors are in-
tentionally injected to create security vulnerabilities. These
vulnerabilities can be of several types including bypassing
critical verification steps, learn sensitive information etc. In
context of ciphers, FA are widely deployed for practical key
recovery attacks. Take AES-128 for example. The best known
theoretical attack needs a brute-force of ≈ 2126 (which is
not practical), whereas a single fault injection can bring the
brute-force complexity to as low as 28 (which can be done on
a standard computer). Thus, the practicality of FA motivates
an adversary to invest in fault injection capabilities and
furthermore, a designer to implement relevant protection
measures.

Several different families of fault analysis techniques and
the underlying fault model required have been introduced

in literature [1]–[7]. The common feature among all the fault
analysis techniques is that they utilize the statistical bias
introduced by the fault into the cipher computation. Such
statistical bias is often called as distinguishers as they filter
out wrong key guesses and help in determining the correct
key. The most common analysis technique is differential
fault analysis (DFA) [2], [3], which exploits the fault dif-
ferentials observed through correct-fault ciphertext pair. An
automated version exploiting the power of SAT solvers also
exist, known as algebraic fault analysis (AFA) [8]. Most of
differential attacks assume a generic and localized random
fault model, which makes the analysis extremely powerful.
Moreover, the required number of faults are the lowest
in DFA compared to other fault analysis techniques. The
most common strategy to throttle DFA is to incorporate
redundancy in computation [9], [10] to detect the presence
of a fault. Various countermeasures have been proposed
which use redundancy in either space, time [9] or infor-
mation [11]. These countermeasures do result in a non-
negligible overhead but can lead to an effective solution.
The most commonly used one from this class is duplication
followed by output matching. In case of a mismatch, the out-



2

put is either suppressed or randomized, preventing further
analysis. Another popular class of DFA countermeasures
are the so-called infection countermeasures which avoids
the explicit detection of faults altogether, and incorporates
a randomized infection function to ”infect” (randomize) the
computation upon the injection of a fault [10], [12].

The other family of FAs are rather based on statistically
biased fault model. The biased model are linked to device
physics where some faulty values occur more often than
the other, like a bit reset (1 → 0) is more likely than
bit set (0 → 1) when using overclocking based injection.
Such biased faults have given rise to multiple simpler albeit
effective classes of analysis mechanisms, namely Statistical
Fault Analysis (SFA) [4], Differential Fault Intensity Analysis
(DFIA) [5], Ineffective Fault Analysis (IFA) [13] etc. Most
importantly, biased faults can evade several FA countermea-
sures as shown in [14], [15]. However, all these attacks are
statistical in nature and requires a good number of faulty
ciphertexts for the key recovery.

The most recent inclusion in the family of biased fault
attacks is the so called Statistical Ineffective Fault Analysis
(SIFA) [6]. SIFA combines the concepts of SFA attacks with
that of the Ineffective Fault Analysis (IFA) proposed by
Clavier [13]. As the name suggests, SIFA exploits ineffective
faults. Ineffective faults are those which have no impact
on the output. Let us take the previous example of bit
reset (1 → 0) being more likely compared to a bit set.
Now if the initial value of the target bit is already 0, the
fault has a higher chance of resulting in 0 → 0) rather
than a (0 → 1), having no impact on the target variable
leading to correct computation. If any redundancy based
countermeasure is in-place, it would not detect this fault
and lead to a correct ciphertext. The adversary can build
a statistical distinguisher based on probability of seeing a
correct ciphertext, despite a (ineffective) fault, which leads
to key recovery. A detailed overview of SIFA is given in the
following sections.

Contrary, to earlier attacks, SIFA exploits correct cipher-
text rather than faulty ciphertext, making it a direct threat to
conventional FA countermeasures which are mostly based
on the fundamental operation of detecting faults. It has
been practically shown in [7] that SIFA can evade all ex-
isting FA countermeasures even while they are combined
with provably secure side-channel (SCA) countermeasures
like masking [16], [17] or threshold implementation (TI).
In a different work, SIFA was exploited for breaking two
authenticated encryption (AE) schemes [18]. All existing FA
countermeasures, being fundamentally dependent on their
fault detection step fails to detect SIFA. Moreover, SIFA,
unlike certain other classes of biased FAs like DFIA, does
not require an explicit knowledge on the nature of the bias
present in the fault distribution.

The focus of this paper is to propose effective coun-
termeasures against SIFA. We first study the mathematical
foundation of SIFA to understand the root cause and in
particular the underlying biased distribution which SIFA
exploits. As a next step, we present a generic framework,
referred to as Transform-and-Encode (TaE), for throttling SIFA.
The proposed framework applies two basic primitives,
namely Domain Transformation (or simply Transform) and
Encode on any block cipher construction to make it SIFA

protected, and is generic in the sense that the two aforemen-
tioned primitives can be realized by various means. There
are two versions of SIFA which were previously proposed.
The first version, further referred as SIFA-1, assumes that
the fault is injected in the state variable and it is statistically
biased. The later version, referred as SIFA-2, considers ran-
dom faults in internal sub-operations of the cipher like sub-
stitution box (S-Box). We theoretically derive the conditions
to prevent both versions of SIFA. As shown later, SIFA-2
is harder to prevent compared to SIFA-1. In fact, we found
that the Transform primitive is sufficient to prevent SIFA-
1, which can be realized by any standard masking scheme.
On the other hand, protecting against SIFA-2 requires both
Transform and Encode to be applied, where the Encode step
can be realized by bit-level Error-Correcting-Codes (ECC).
In summary, the contributions of this work are as follows:

• We propose the first generic framework TaE to
counter SIFA. Unlike a protocol or system level coun-
termeasure (e.g. re-keying or self-destruction upon
observing a few faults), we take one of the most
reasonable approach, that is to offer a cipher level
countermeasure against FA or SCA.

• The Transform step in the proposed framework pro-
vides provable security against the SIFA-1 model. In
fact, it is found that any secured masking scheme
for SCA protection is a concrete realization of the
Transform. The realization of Transform can pro-
vide security against any multi-bit biased fault
provided the fault corrupts a cipher state and
it does not affect all shares of a bit, simultane-
ously. From a practical perspective, this fault model
is fairly reasonable. Furthermore, the realization of
Transform with masking incurs zero-overhead for an
implementation which is supposed to be protected
against both SCA and SIFA-1.

• The SIFA-2 model exploits relatively precise faults
within the S-Box computation to come up with suc-
cessful attacks. In order to throttle SIFA-2, we incor-
porate bit-level error correction via the Encode step
of the proposed framework. As a concrete example of
the Encode, we use simple Duplication Code in a per-
bit manner. The proposed ECC provides quantifiable
security assurance with respect to the fault model.
More concretely, to achieve t bit error correction we
need to employ a code length of 2t + 1, resulting in
a overhead of 2t + 1 times. Although the overhead
may seem significant, it is still affordable, given its
strong security guarantees. Observing the fact that a
straightforward application of error correction could
be fatal, we take necessary precautions to make it suf-
ficiently robust. More precisely, the error-correction
operation we use is implemented in a fault-tolerant
way, and is applied at precise places without caus-
ing any new vulnerability.

• A proof-of-concept evaluation has been made on
the PRESENT block cipher [19] which is a potential
candidate for lightweight cryptography. Extensive
evaluations have been made for the protected im-
plementation which completely correlates with the
theoretical results. For most of our experiments we
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stick to simulated faults as they can give very precise
idea about the capability of the countermeasure. To
be precise, we are able to prevent the SIFA success-
fully.

The rest of the paper is organized as follows. In Sec. 2,
we provide the necessary background on FAs in general
with a focus on SFA and SIFA. We also briefly describe the
PRESENT cipher [19], which is used for proof-of-concept
evaluation. Sec. 3 presents the mathematical model for SIFA
along with the necessary and sufficient conditions for pre-
venting it. A sketch of our main idea is given in Sec. 4. The
actual TaE framework is outlined next, in Sec. 5, followed
by concrete realizations for both Transform and Encode
operations. Sec. 6 describes the proof-of-concept implemen-
tation for PRESENT, with the experimental evaluations of
our claims on it. Finally, Sec. 7 concludes the paper.

2 PRELIMINARIES

In this section, we provide the necessary background on
FA. Given the present context, the main focus is on SIFA.
Furthermore, a brief description of the PRESENT block
cipher [19], which is utilized for a proof-of-concept evalu-
ation, is provided.

2.1 Fault Attacks on Block Ciphers

Malicious exploitation of faults in the context of cryptog-
raphy dates back to 1997 due to Boneh et. al., who first
demonstrated FA on public key cryptosystems [2]. The
concept of DFA was first introduced by Eli Biham and Adi
Shamir for the Data Encryption Standard (DES) [1], and
got readily extended for ciphers like Advanced Encryption
Standard (AES) [20], PRESENT [21], LED [22]. So far, AES
is the most studied one in the context of fault attacks. In
particular, it has been demonstrated that a single random
byte fault can recover the entire 128-bit key of AES [3]
within minutes. The basic principle behind any FA is to
exploit the information leakage caused by the malicious
aberration in the normal execution of a cipher due to a
fault. In an ideal situation, at any time, the intermediate
state of a block cipher should be uniform (Un) if random
plaintexts are being encrypted. However, a computational
fault may force the intermediate state to deviate from Un
(larger statistical distance). Interestingly, such statistical bias
becomes visible only for the correct key (or possibly for a
small set of candidate keys containing the correct key), and
disappears for most of the wrong key choices. Using this
property one can build so-called wrong-key distinguishers
to identify the correct key. The concept of a wrong key
distinguisher (or simply distinguisher) is fundamental in
every fault attack proposed till date.

In DFA, a distinguisher is represented analytically, and
a system of equations is solved, either to extract the key or
to reduce the keyspace to a size where exhaustive search
becomes trivial [3]. The low fault complexity and extremely
relaxed fault model of DFA makes it the most preferred
and explored attack strategy so far. However, the attack
algorithm is specific to the structure of the target cipher and
fairly challenging to discover. In [23], Saha et. al. presented

a framework to construct such attack algorithms automati-
cally, given any block cipher.

A significantly different approach is adapted for fault
exploitation in the case of so-called SFA attacks [4]. The
main crux of these attacks are the statistical bias present
in the fault itself, resulting from the physical characteristics
of the target device. The bias caused by the injected fault
is exploited statistically in this case. More specifically, one
can guess the partial last round key of a cipher and go
back to the fault injection point by means of partial de-
cryption of the faulty ciphertexts. Under the correct key
guess the bias present in the fault distribution would be
visible, whereas for a wrong key guess it would be very
close to a uniform distribution. In general, statistical tests
like Squared-Euclidean-Imbalance (SEI) are utilized to de-
tect the bias and hence the correct key. One advantage of
this attack strategy with respect to DFA is that the attack
algorithm is fairly simple and generic. In fact, the correct
ciphertext corresponding to a faulty one is not required in
some cases [22]. However, the number of required faults
are often significantly high due to the statistical nature of
the attack. There exists several different flavours of this
general strategy. One popular example is the DFIA [22],
which utilizes a slightly different distinguisher based on the
Hamming distance (HD) between two faulty intermediate
states [22].

2.2 Statistical Ineffective Fault Analysis (SIFA)

The SIFA is classified as an instance of SFA where the
correct ciphertexts are utilized for attack [6], instead of the
faulty ciphertexts. The main observation here is that under
a typical biased fault model, some of the injections fail to
alter the value of the target intermediate state resulting in
a correct output. As a simple example, consider a variable
A over {0, 1}4 at some intermediate state of a block cipher.
If a stuck-at-0 fault is injected at the Least Significant Bit
(LSB) of A, the fault will corrupt only the values having 1
at the LSB position. In other words, it remains ineffective
if LSB(A) = 0 and results in a correct ciphertext. One
may observe that the target intermediate A will assume only
8 possible values instead of 16. This is indeed a statistical bias,
and it becomes visible with the correct key guess if the
correct ciphertexts are partially decrypted up to the fault
injection point.

The most fascinating feature of SIFA is that it is some-
what agnostic to the type of bias caused due to fault
injection. In practice, any biased intermediate distribution
can be exploited for key recovery. Further, it was shown
in [7], that the intended statistical bias can be caused even
by a random fault if utilized carefully. More specifically, if
the computation of a bijective S-Box is corrupted in a way so that
its bijectivity gets somehow hindered, the S-Box output assumes a
biased distribution. This typical fault model for corrupting S-
Box computation is able to bypass state-of-the-art masking
schemes used as SCA countermeasures. It has been shown
in [7], that this specific fault model is easily realizable for
software implementations. As already pointed out in the
introduction, we clearly differentiate between these two
fault models. In particular,
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• The biased fault model corrupting the intermediate
states is referred to as SIFA-1.

• The fault model corrupting the S-Box computation is
referred to as SIFA-2.

As we shall show later in this paper, the requirements
for countering these two fault models are quite distinct.
Fortunately, the countermeasure framework we are going
to propose can provide provable and quantifiable security
against both of these models.

2.3 The PRESENT Cipher

PRESENT is a block cipher having a Substitution-
Permutation-Network (SPN) based structure [19]. The most
attractive feature of PRESENT is its extremely low hard-
ware/software footprint, which establishes it as a strong
candidate for lightweight cryptography. The original pro-
posal describes two different versions namely, PRESENT -
80 and PRESENT -128. However, for our purpose, we shall
use the first one having a 64-bit block size, 80-bit master
key and 64-bit key per round derived from the master key.
The iterative construction of PRESENT -80 repeats a round
function (consisting a key addition layer, confusion layer,
and a diffusion layer), 31 times to generate the ciphertext.
The key addition layer (addRoundKey) is the first operation
in the round function of PRESENT , which is eventually
followed by the substitution (confusion) layer and the dif-
fusion layer. The substitution layer (sBoxLayer) consists
of 16 identical 4 × 4 S-Boxes having good cryptographic
properties. The diffusion layer (pLayer) of PRESENT is
constructed with a simple bit-permutation operation. Note
that the bit-permutation is highly favourable for lightweight
hardware implementations as it requires only wirings to
be made without any logic gates. The key schedule of the
cipher generates total 32 round keys, each having 64-bit
length, from a key state of 80 bits. The key schedule of
PRESENT is not important in the current context and hence
we do not describe it here. We refer to [19] for further details
on the cipher.

PRESENT has been targeted previously with different
classes of FAs. In [24] and [21], authors described DFA
attacks on PRESENT . SFA attacks were proposed in [25]
with faulty ciphertexts only. Another distinct class of at-
tack, which utilizes both fault and power analysis was
proposed in [26]. This new class of attack typically exploits
the properties of the bit-permutation layer and is closer to
the classical DFA attacks in principle. However, no result
has been reported so far in the context of SIFA. From this
perspective, our work presents the first analysis of a bit-
permutation-based, lightweight block cipher with respect to
SIFA. However, the results are very similar to the attacks on
AES, in general.

3 MATHEMATICAL ANALYSIS ON SIFA
In this section, we formalize the main idea behind SIFA. The
formalization presented here is subsequently utilized for
proving the security claims made in this work. Before going
to the details, we summarize the mathematical notations
used in the rest of the paper in Table 1 for quick reference.

TABLE 1: List of Notations

Symbol Definition
“+” Bitwise XOR
n Block size of a block cipher
Xg = {0, 1}g State space of g bits
Xg Random variable over X = {0, 1}g
X′g Random variable representing the faulty value

over a state-space X = {0, 1}g
x Fixed valuation over Xg = {0, 1}g
S State of a block cipher (n bits).
Sg Part of a block cipher state having g bits.
Sg = 〈b0, b1, · · ·, bg−1〉 Bit-wise representation of Sg .
Ug Uniformly distributed random variable over a given

state-space Xg

← Represents assignment.
[x1 · · ·xd|x|/me]

m←− x, Parse a string into m bit blocks.
( |xi|= m for 1 ≤ i ≤ d|x|/me and |xd|x|/me|≤ m.)

3.1 How to Represent Faults

With the informal introduction from the last section, now
we construct a mathematical model for the SIFA. Let S be
the intermediate state register of n bits. The fault injection
is supposed to corrupt S (from its actual value) at a specific
time stamp. Also, we assume that the attacker can control
the timing of the fault. Controlling the fault timing is trivial
for modern fault injection setups.

A crucial point here is how S gets corrupted by the
fault injection. Most of the practical fault models in FA
assume that the fault is localized within a specific region
of the entire state, and repeatedly affects the same region.
For example, one may assume that a specific nibble or byte
within the state S is getting affected. It is well-established
that localized faults are preferable for doing practical fault
attacks. Following this trend we consider that the fault
impact is limited within a contiguous chunk of w-bits (we
call w as width) of the state register S1. Also, in practical
fault attack experiments, even a localized fault may corrupt
different parts of S at different injection events. However,
the analyses must focus at a specific w-bit chunk and mea-
sure the bias at that point. The rest of the cases, where the
fault impacts other places are considered as noise.

Let us denote the state space associated with the entire
S as X = {0, 1}n. Our analysis will be focused on a specific
w-bit chunk from X = {0, 1}n. For convenience, we denote
the state space of interest as Xw = {0, 1}w, and the part
of S associated with it as Sw. However, not all the bits
of Sw are equally likely to be affected by fault injection.
In the most general and practical scenario, the fault may
only impact a fixed subset of bits within Sw repeatedly. A
pictorial illustration of such fault behaviour is provided in
Fig. 1. Furthermore, even if a bit is impacted, it may or
may not change its value depending on whether the fault
is ineffective or not. One convenient way of modelling this
whole scenario is to assign probabilities to each of the bits
within Sw, depending on how it gets affected by the fault
injection.

1. Localized faults are even more important in the case of statistical
fault attacks. The reason is statistical fault attacks usually measure the
deviation of a part of the intermediate state from uniform random dis-
tribution to distinguish the keys. If the fault is not localized the analysis
would require to measure the entire S for its deviation from uniformity.
This will become computationally expensive as the number of samples
required could be formidable, and also one need to simultaneously
guess a large number of key bits.
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...

Sw

Affected bits (w’=2)

S

Fig. 1: State fault scenario in SIFA.

Let Xw denote a random variable associated with Sw,
and assuming values from Xw. Further, Sw can be repre-
sented as Sw = 〈b0, b1, · · ·bw−1〉 with bi ∈ {0, 1}∀i. We
characterize the impact of the faults by transition probability
of a value under the influence of a fault. To represent the
faulty valuation of Sw, we use another random variable
X
′

w, assuming values from the same state space Xw. The
transition probability of a value under the influence of a
fault can be represented as:

px(x
′) = P[X

′

w = x′ | Xw = x] (1)

Further, considering the bitwise representation of Sw, where
each bit can be considered to be statistically independent,
px(x

′) can be further expressed as:

px(x
′) =

w−1∏
i=0

P[b′i = x′i|bi = xi] =
w−1∏
i=0

pixi→x′i , (2)

Here, for simplicity, we represent each bit of Sw and its
associated random variable with the same symbol bi (for the
faulty case, the variables are b

′

i). It is also worth mentioning
that x′i (∈ {0, 1}) can either be equal to xi or 1⊕xi. Since, in
SIFA the transition probability of a bit bi depends upon the
value it assumes (i.e. xi), the probability expressions in our
case are parameterized with xi’s rather than bi’s. This slight
abuse of notation helps us to keep the modeling simple.

As it has been already pointed out, given Sw =
〈b0, b1, · · · , bw−1〉, many of the bits are not supposed to get
impacted by fault in an ideal noise-free case. For these bits,
the valuation does not matter as they never come under the
influence of the fault. We model this situation as follows:

pj
xj→x

′
j

=

{
1, if xj = x

′

j

0 otherwise
(3)

Here pjxj→x′j takes the value 1 if the jth-bit of Sw does not
get affected by the fault. To be precise, the probability of
xj , changing to a different valuation is 0,2. However, for the
attacks to work, it is required that ∃j ∈ {0, · · · , w− 1}, such
that pj

xj→x
′
j

6= 0, for xj 6= x′j .

We now derive the necessary an sufficient condition for
SIFA to work. As we shall show, this condition is going to
be the key factor in preventing SIFA.

3.2 Condition for SIFA
Referring to Eq.(1) and (2), we can write px(x) =∏w−1
i=0 pixi→xi , which denotes the transition probability of

a state in the case of ineffective faults. For simplicity,
we use pixi instead of pixi→xi . Note that, for several i ∈
{0, 1, · · ·w − 1}: pixi→xi = 1. Without loss of generality,

2. It is worth mentioning that for all the bits outside Sw , pj
xj→x′j

= 1,

while xj = x
′
j .

consider that w′ non-contiguous bits within a w-bit con-
tiguous chunk (w′ ≤ w) get affected by the fault injection
due to spatial locality. Assume the indices for these w′

bits (confined within contiguous w bits) are i0, i1, · · · , iw′−1.
Let Sw′ = 〈bi0 , bi1 , · · · , biw′−1

〉, and the two associated
random variables representing the correct and faulty val-
uation of Sw′ are Xw′ and X

′

w′ , respectively. The number
of possible values of Sw′ thus reduces to 2w

′
and we

denote this reduced state space by Xred. We also assume
that bi0 , bi1 , · · · biw′−1

are uniform over {0, 1} and w′-wise
independent. We would like to emphasize that SIFA works
when the injected fault (on thew′ bits) is ineffective for some
specific state values. We would now like to state and prove
the following theorem:

Theorem 1. Statistical ineffective fault attacks happen if and only
if ∃ x, y ∈ Xred : p∗x(x) 6= p∗y(y), where p∗x(x) =

∏w′−1
j=0 p

ij
xij

.

Proof. Let us first define the ineffectivity rate π= as π= =
P[Xw′ = X ′w′ ]. Clearly,

π= =
∑

x∈Xred

P[Xw′ = x].P[X ′w′ = x | Xw′ = x]

=
∑

x∈Xred

p∗x(x)

2w′
=

∑
x∈Xred

∏w′−1
j=0 p

ij
xij

2w′

(4)

Next, we derive the probability distribution of ineffective
faults denoted by p= as:

p=(x) = P[X ′w′ = x | X ′w′ = Xw′ ] =
p∗x(x)

2w′π=

=

∏w′−1
j=0 p

ij
xij

2w′π=
=

p∗x(x)∑
x∈Xred

p∗x(x)

(5)

One important fact here is that if p=(x) becomes statistically
indistinguishable from an uniform distribution θ(x) (that is the
statistical bias is negligible) even for the correct key guess, then
the key recovery becomes impossible. This directly follows from
the principle of any distinguishing attack on block ciphers.

We next prove the converse of the above statement
that is if the SIFA attack is throttled, then ∀x, y ∈ Xred :
p∗x(x) = p∗y(y). The only cause of SIFA being throttled is
that the statistical distance between p=(x) and θ(x) is neg-
ligibly small or zero. The uniformity of p=(x) implies that
∀x, y ∈ Xred : p∗x(x) = p∗y(y) and vice versa (because with
this condition p=(x) = 2−w

′
). The other side of the proof is

fairly straightforward and we do not state it here.

4 PREVENTING SIFA: THE MAIN IDEA

The key idea behind preventing SIFA is to make the prob-
ability distribution p=(x) uniformly random or at least
sufficiently close to uniform so that number of samples
(i.e. correct ciphertexts) required for attack goes beyond any
practical limit. 3 It is well-understood that conventional fault
attack countermeasures are not so useful in this context.
A potential strategy could be to transform the domain
of computation during the execution of the cipher in a

3. Another alternative could be to make p=(x) negligibly small ∀x.
However, this property strongly depends on the nature of the fault
injected, and hence not a very good choice.
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way so that even if faults are injected at desired locations
in the transformed computation state, their effect on the
actual computation state causes an unbiased ineffective
distribution. The most straightforward way of realizing
this transformed domain of computation is to use some
randomized encoding strategy. One should note that by
the word ”encoding” here we do not refer to any con-
ventional error-correcting-code (ECC). Rather, the domain
transformation encoding is aimed towards randomizing the
state at each cipher execution in an way, so that the bias
introduced in the state by means of a state-level fault gets
mitigated. Fortunately, it has been observed that the idea of
transforming the computation domain (from now onward,
we call it as domain transformation) actually works. At the
beginning of the next section, we shall theoretically analyze
what kind of transformation may throttle SIFA, at least for
certain reasonable fault models.

One important observation in this work is that state
randomization indeed works till the fault is injected in the
state register. In fact, provable security guarantees can be
achieved even for multi-bit faults with certain reasonable
restrictions. However, if the fault is induced into the inter-
mediate computations (for example, in S-Box computation)
the domain transformation is not sufficient. Putting it dif-
ferently, if the correct computation itself becomes biased, domain-
transformation cannot mitigate it. One option at this point is
to incorporate hiding schemes such as shuffling or infection
countermeasures. However, both of them is found to have
limited success in the sense that they increases the cipher-
texts requirements only quadratically. Another alternative is
to correct the induced errors, so that the adversary becomes
unaware if the fault happened or not. This seems to be
a more reasonable approach for achieving security rather
than hiding. Note that correction ensures the uniformity
of p=(x) by mitigating the effect of faults. Moreover, the
adversary will also have practical limitations in injecting
targeted faults at intermediate computations in a useful
manner. Hence, even an error-correction mechanism having
limited correction power may reasonably solve the issue.
This brings up one practical question in this context, that is
up to what granularity level the error correction is required.
As we shall show later in this paper, the error correction is
required at the granularity of each bit processed within the
cipher. Consequently, we require a number of redundant
bits corresponding to each bit of the computation. Another
important point here is that what happens if the error
correction logic becomes the target of the attacker. We show
that this case is equivalent to a fault injection at the state, and
thus can be handled by the domain transformation strategy.

5 THE COUNTERMEASURE CONSTRUCTION:
TRANSFORM-AND-ENCODE FRAMEWORK

In this section, we propose the Transform-and-Encode (TaE)
framework to harden a given block cipher against SIFA
attacks. First, we explain the general properties expected
from the Transform strategy and present some instantiations
for the same with varying security guarantees. The most
interesting observation in this context is that any secure
masking scheme can be used as Transform operation with rea-
sonably strong security assurance. Next, we formally present

the Encode operation and propose a simple albeit generic
instantiation for it.

The high-level algorithmic representation of the overall
framework is given in Algorithm 1. We begin by describing
the Transform in the following subsection.

Algorithm 1 Transform-and-Encode (TaE)
Input: S ∈ {0, 1}n, d, γ ∈ Z where d ≤ n
Output: Senc ∈ {0, 1}γn, r ∈ {0, 1}d
1: (Stra, r)← Transform(S, d)
2: Senc ← Encode(Stra, γ)
3: Return (Senc, r)

Algorithm 2 Transform
Input: S ∈ {0, 1}n, d ∈ Z where d ≤ n
Output: Stra ∈ {0, 1}n, r ∈ {0, 1}d

1: [S1 · · · Sd]
dn/de←−−−− S

2: r ∈R {0, 1}d
3: Stra ← DomTr([S1 · · · Sd], r)
4: Return (Stra, r)

Algorithm 3 DomTr

Input: [S1 · · · Sd] ∈ {0, 1}n, r ∈ {0, 1}d
Output: Stra ∈ {0, 1}n
1: for i = 1 to d: Strai ← (ri = 1) ? Si : Si
2: Stra ← [Stra1 · · · Strad ]
3: Return Stra

Algorithm 4 Encode
Input: S ∈ {0, 1}∗, γ ∈ Z
Output: Senc ∈ {0, 1}γ|S|
1: Senc ← ECC(S, γ)
2: Return Senc

5.1 The Transform Operation

The Transform operation aims to make the cipher state un-
biased by random coin tossing to resist SIFA that tries to ex-
ploit non-uniformity at the state resulting from biased fault
injection (SIFA-1). The state value should be accompanied
with the output of the random coin tosses for decryption.
Note that, in this case we only intend to protect against
faults which are injected at the state of the cipher and does
not affect the computation of any intermediate function
like an S-Box. The abstract representation of Transform is
presented in Algorithm. 2 and 3. Here the main idea is to
parse an n-bit cipher state in d chunks each having length of
dn/de bits. The d is the security parameter in this case, and
different valuations of d leads to varying levels of security
assurance. Next, a random bit r is generated corresponding
to each dn/de bit chunk of the state. These random bits
together construct the encoding for the randomized domain
transform. The actual domain transformation algorithm is
outlined in Algorithm. 3. Each dn/de-bit state chunk is
considered here one at a time, and depending on the value
of the associated random bit, the chunk is either inverted or
left unaltered.

There are certain generic security requirements expected
from the Transform operation. One may observe that a
biased fault injection at a state reduces its entropy. As a
simple example, consider a stuck-at-0 fault injected at the
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LSB of a 4-bit state chunk. It is easy to see that under the
influence of this fault the state can only assume 8 values
from total 16 possible values of it. In this simplest case we
consider that the stuck-at-0 happens with probability 1.
Even if this condition is relaxed (that is, stuck-at-0 happens
with some probability < 0.5 or > 0.5), the state will still
have some statistical bias and as a result, the entropy will
be less than its maximum possible entropy. The security
requirement for Transform can be stated in terms of entropy.
Informally speaking:

In order to ensure security against biased state faults, it is
essential that each chunk after domain transformation (Strai )
shows dn/de bit entropy even after the fault is injected.

The security criteria may seem a little non-intuitive.
However, the main crux here is the usage of random
bits (coin tosses) for constructing the Transform. This
extra randomness helps us to satisfy the above-mentioned
security criteria efficiently. Further details on this is
provided in the next few subsections, where we detail some
of the concrete instantiations of the Transform operation.

5.2 Instantiations of Transform
As mentioned in the previous subsection, different realiza-
tions of Transform is feasible with varying security guar-
antees. In this subsection, we explore some of such pos-
sible instantiations in detail. We begin with the simplest
possible instantiation of d = 1, which is also referred to
as Randomized-Reverse-Transform (RRT) in this paper. We
show that RRT ensures security against SIFA-1, when the width
of the injected fault is one bit. Next, we elaborate the most
general case, where d = n. As it was found that this
generic transform is practically realizable with any state-of-the-
art masking scheme.

5.2.1 Transform with d = 1

The Transform operation with d = 1, also referred to as RRT,
can be defined as follows:

Definition 1. Given a state register S of length n, and a 1-bit
random coin rRRT , the RRT transform CRRT (S) of S is defined
as:

CRRT (S) =
{
S, if rRRT = 0.
S, otherwise.

(6)

In other words, RRT implies that depending on a random
coin toss either S or its reverse will be processed. Here we
use only one random coin corresponding to the entire state.
If the state of a cipher is encoded with RRT, then we can
achieve SIFA protection against all possible single bit faults
affecting the state. We provide a formal argument on the
security through the following theorem:

Theorem 2. If the fault influences one bit within S then RRT
ensures SIFA protection.

Proof. Without loss of generality, we assume that the i-th bit
in S is influenced by the fault. We also assume that the pixi 6=
pixi , which ensures that the fault is biased (while ineffective).
Now, we know

p=(x) = p∗x(x)/
∑

x∈Xred

p∗x(x).

(ref. Theorem. 1) Also, since the fault is single bit |Xred|= 2.
Let, b

∗

i be the ith bit of CRRT (S). Now, with RRT transform
we have,

p
′i
xi =

∑
x∈{xi,xi}

P[b
∗

i = x] · pix =
pixi + pixi

2
(7)

where, p
′i
xi is the ineffective transition probability of the i-th

bit in the transformed domain (p
′i
xi = p

′i
xi

). Further,

p=(x) = p
′i
xi/(p

′i
xi + p

′i
xi) =

1

2
, (8)

which indicate that the distribution is uniform. The security
against 1-bit fault injections is thus established.

It is worth mentioning that, RRT cannot provide security
if the fault affect w′ non-contiguous bits within a specific w
bit chunk Sw of S. We elaborate this by a counterexample
as follows:
Example: Consider two consecutive bits bi and bi+1 of S
influenced with the biased ineffective faults. Without loss of
generality, let us consider two values of S as x and x′ where
for x, (xi, xi+1) = (0, 0) and for x′, (x′i, x

′
i+1) = (1, 0). Rest

of the bit positions of x and x′ assume same values. With the
RRT transform (xi, xi+1) will be in two possible states (0, 0)
and (1, 1) in x. Likewise, it will be in two possible states
(0, 1) and (1, 0) in x′. Clearly, transition probabilities for x
and x′ will be different while (bi, bi+1) will be influenced
by ineffective faults. More precisely, for the first case, the
transition probability will be pi0p

i+1
0 +pi1p

i+1
1

2 , whereas for the

second case it will be pi0p
i+1
1 +pi1p

i+1
0

2 . Clearly, the distribution
p=(x) will not be uniform.

5.2.2 Transform with d = n

It is apparent that SIFA protection strongly depends on
the distribution p=(x). Any protection mechanism should
ensure the uniformity of this distribution. One interesting
and relevant question in this context is whether there exist
domain transformations which can provide provable secu-
rity against multi-bit ineffective faults. Here we show that
the answer to this question is positive at-least for most of
the reasonable multi-bit faults. The key idea in this case is
to define a Transform instance with d = n. Before, going
into the details of one such instantiation, we elaborate why
Transform with d = n provides multi-bit security.

An obvious interpretation of the domain transformation
strategy is as a mapping from a normal state space to a
transformed state space. Let us denote this mapping as, TD :
Xn 7→ D, D being the transformed domain. Referring to
the RRT transform, any value x ∈ Xn maps to one of the
two values in D depending on a random coin rRRT . One
mandatory property for any such transform is that it must
have a unique reverse transform and hence the mapping
must be one-to-one (in other words |Xn|= |D|).

The SIFA security strongly depends on the number of
options that a value x ∈ Xn may have for getting mapped.
We formalize this in the following theorem.

Theorem 3. A domain transformation strategy TD will provide
perfect SIFA security against multi-bit faults if and only if an
element x in the domain Xn of TD can assume any value from the
range set D, in a uniformly random manner.
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Proof. Let us consider a valuation x for the normal state S
(no transformation applied). We also assume that x ∈ Xn.
The encoding TD strategy maps x over the entire range setD
of size |D|, decided by random coins (note that, |D|= |Xn|).
The transition probability of x can be written as:

px(x) =
1

|D|
∑
xd∈D

p′xd(xd) (9)

where xd = TD(x) and p′xd(xd) is the ineffective transition
probability in the encoded space. Now it can be observed
that, px(x) = 1

|D|
∑
xd∈D p

′
xd(xd) are equal for ∀x ∈ Xn.

Using Theorem. 1, we can thus conclude that SIFA would
not happen in this case. The other direction of the proof is
straightforward and we do not mention it here.

There are some subtle points regarding the Theorem. 3
stated above. One may observe that, we have assumed
|Xn|= |D| and the security proof strongly depends on this
assumption. In other words, we do not consider the random
coin tosses defining the Transform as the part of the state
in the transformed state-space. One justification behind such
assumption is that the transform gets defined at the very
beginning of each execution of the cipher. However, if a
resourceful adversary can corrupt both the Transform as well as
the transformed state, the above-mentioned security claim does
not hold. We note that, such an attack may be fairly simple
for the case d = 1, as the Transform there is defined by
a single bit. Fortunately, for the present case (d = n), this
threat can be handled reasonably. The easiest option is to use
multiple random bits to transform each bit of the normal (before
transformation) state in a way, so that the transformed state-space
remains unbiased until all the random bits corresponding to a
specific state-bit get corrupted with biased faults. An obvious
realization of this strategy is a secure masking scheme.

5.2.3 Masking as a Practical Transform
Masking is the most commonly used provably secure SCA
countermeasure [16], [17]. The main idea of masking stems
from secret-sharing [27]. In some sense, masking imple-
ments secret-sharing at the level of circuits. Several different
flavours of masking have been proposed till date, the most
common being the so-called Boolean masking. The main
idea here is to share each bit bi in a state S into m random
bits denoted as 〈b0i , b1i , · · ·bm−1i 〉. The only constraint on
the sharing is that bi = b0i + b1i + · · ·bm−1i . Furthermore,
the shares, when considered on their own or in groups
of up to m − 1 shares, are statistically independent of
the unshared variable bi. One should note that the shares
never supposed to get combined during the entire compu-
tation. In order to realize this shared computation, the sub-
functions of a cipher are shared into m different component
functions with the restriction that the actual outcome of
a sub-function f , denoted as f(x, y), remains the same
even after the sharing. More precisely, it is required that
f(x, y) = f0(...) + f1(...) + · · · + fm−1(...). The security
parameterm here represents that up to what statistical order
the scheme will be protected against SCA. Most of the secure
masking schemes ensure that a security parameter of m
provides a (m− 1)th order SCA security.

In the present context, any one of the shares of a m-share
masking can be considered as our transformed domain (D).

The rest of the shares can be considered as the part of the
randomness constructing the Transform. In other words, we
slightly extend the definition of Transform in Algorithm. 24.
More precisely, instead of generating one random bit ri in
Line. 2, we generate m − 1 random bits r0i , r

1
i , · · ·, rm−2i .

The actual transformation operation in the Line. 1 of Algo-
rithm. 3 has to be modified as follows: Instead of deciding the
transform of Si (unaltered or complement) based on a single bit
ri, we decide with r0i + r1i + · · · + rm−2i . In order to further
elaborate why masking is a potential candidate for d = n-
Transform we present the following example.
Example: Consider a bit bi in S and its corresponding m
shares 〈b0i , b1i , · · ·bm−1i 〉. By definition of masking, each of
the shares bji are uniformly random. Considering a single
specific share of all the bits of the complete intermediate
state S, it can be observed that this share can assume any
value from the entire state-space with equal probability,
even if the unshared value remains fixed. As a concrete
example, if we consider a 4-bit state S with value (0, 1, 1, 0)
and a 4-bit random mask M , then M can assume total 16
possible values with equal probability at different execu-
tions. Likewise, S +M can also assume the same number
of values in different executions. By this argument, masking
becomes one potential candidate satisfying the requirements
of Theorem 3 with very high probability.

The security implications of masking-based Transform
directly follows from Theorem. 3, if we consider that the
fault is limited within a single share of any bit. However, the
security claim, in practice, is even stronger. More specifically,
unbiased state distribution can be ensured until all the shares
corresponding to a given bit bi comes under the influence of
fault. This follows from the classical Piling-up lemma [28],
in cryptography. To elaborate this further, let us consider a
bit bi and its corresponding m shares 〈b0i , b1i , · · ·bm−1i 〉. Any
masking scheme requires

bi + b0i + b1i + · · ·+ bm−1i = 0. (10)

Now, for a specific valuation of bi, letm−1 shares are simul-
taneously corrupted with faults making their distributions
biased. Without loss of generality we assume that only one
share bui remains unaffected by fault. The bias correspond-
ing to each bji is represented as εji . Quite evidently, εui = 0.
Now, the Piling-up lemma ensures that

P[bi + b0i + b1i + · · ·+ bm−1i = 0] =
1

2
+ 2m

m∏
j=0

εji . (11)

With εui = 0, the probability becomes 1
2 , which is what we

require to ensure SIFA security. Since each bit in masking
is transformed independently, this observation extends for
the entire state. To summarize, we achieve the following:

Masking can provide multi-bit security against SIFA-1 faults
until all m shares corresponding to a specific unmasked bit get
influenced with faults.

Although, masking looks fairly good as SIFA
countermeasure for state faults there are certain
implementation issues to be taken care off.

4. Note that |Si|= 1 for d = n
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Fig. 2: Illustration of SIFA-2 fault on S-Box mapping. Con-
sidering the correct outcomes only, 1 and 7 never appears in
output (statistical bias) under the influence of a SIFA-2 fault.

• As already pointed out, the security implication does
not hold if all the shares corresponding to a specific
bit gets corrupted. In order to ensure this, the masked
bits should be placed at sufficiently distant locations.
Considering the fact that faults are often localized
at a small region within a register, such placement
will reduce the chances of all the shares getting
corrupted, simultaneously. For software implementa-
tions, another reasonable solution is to put different
shares in different registers. If an adversary wants
to corrupt all the shares simultaneously, she has to
affect all the registers together which is fairly chal-
lenging even with most sophisticated fault injection
setups available today.

• Another potential solution is to increase the number
of shares to ensure that the probability of all shares
corresponding to a single bit getting corrupted is
reasonably low. However, this can only happen at
the cost of increased overhead.

The direct application of masking as a SIFA countermea-
sure is interesting from several context. Most importantly,
masking provides a combined protection against both SCA
and SIFA. As a matter of fact, protection against SIFA comes
without any overhead. It is also important to note that in
many hardware and table-based software implementations,
SIFA-1 is the most probable fault model. Hence, in practice,
for most of these implementations masking will be sufficient
to prevent SIFA. However, there also exists implementa-
tions, for which SIFA-2 faults are viable. Masking and hence
the Transform operation cannot assure security against this
fault model. In the next subsection, we elaborate how to
remain secure even at the presence of SIFA-2 faults. More
specifically, we present the second component Encode in
the proposed framework which is meant for this purpose.

5.3 The Encode Operation

Before elaborating the Encode operation, we first provide
the basic intuition behind the use of ECC to prevent SIFA-2
faults.

5.3.1 The Basic Intuition

As already pointed out, Transform is not sufficient while
the fault is injected at some intermediate sub-operation of a
cipher. In particular, nonlinear sub-operations like S-Boxes
are typically susceptible to SIFA even if they are masked.
The typical attack strategy, in this case, is to inject a fault
(possibly unbiased) during some intermediate computation

5 of a sub-operation to create a bias in the actual (unmasked)
output of the sub-operation. The core reason behind the
creation of such output bias is that SIFA-2 faults typically
change the original mapping realized by the target sub-
operation. As a simple example, one may consider the
simple 3 bit S-Box mapping shown in Fig. 2. The original
mapping is bijective as shown in Fig. 2(a). However, under
the influence of a typical SIFA-2 fault, the mapping may
convert to the one shown in Fig. 2(b), even if masking is
present. One may observe that, even for those cases when
the S-Box output is correct, the output distribution becomes
biased, simply due to that fact that all possible values are
not assumed by the output.

In this context, one should note that linear sub-
operations are typically less vulnerable against SIFA-2 as
they require corruption of all the shares corresponding to a
bit, simultaneously to result in a biased output. However,
non-linear mappings, due to the existence of AND gates in
them, do not require this restriction. In [7], it was shown
that corrupting a single share during a masked S-Box com-
putation may lead to a biased S-Box outcome. However, not
any arbitrary corruption can lead to such biased output. It
is observed that corrupting at least one input share during the
computation of the output shares of a specific output bit leads to
the desired bias. Alternatively, one may also consider corrupting
an intermediate gate input in the S-Box equations. In contrast,
corrupting an input share for the computation of every output
share (i.e. shares corresponding to all actual output bits) of a
masked S-Box will lead to an unbiased output. In this case, the
fault is equivalent to a state fault (SIFA-1).

It is apparent from the above discussion that SIFA-2 is
more powerful than SIFA-1. However, the faults in SIFA-
2 cannot be arbitrary. Therefore, a countermeasure which
may not work for any arbitrary fault, but works for fault
instances exploitable in SIFA-2 model, would be reasonable
in this context. Following this fact, we propose the use of
ECC to throttle SIFA-2. It is well-known that correction ca-
pability of any ECC is limited. However, a SIFA-2 adversary
is also supposed to be limited by the same fact, that she
cannot corrupt any arbitrary number of chosen bits with
any practical fault injection setup.

5.3.2 Error Correction Code for Encode
The abstract description of Encode is presented in Algo-
rithm. 4, where the state S is enhanced with the ECC. It
is well-known that redundancy in some form is essential
to achieve error correction. The presence of redundancy
is indicated by the scaling factor γ in Algorithm. 4. One
important question here is that which one of Transform or
Encode should be applied first. From security point of view,
any one of them can be applied before the other. However,
for the sake of simplicity, we consider the Transform to be
applied before the Encode step.

5.3.3 Duplication Code as ECC
The most important question at the this point is how
to realize the function ECC presented abstractly in Algo-
rithm. 4. Several different instantiations of ECC is possible

5. For example, computation of the shares of a single output bit of an
S-Box.
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in principle. However, in this paper we present a specific
instantiation with so-called Duplication codes. The main idea
of duplication code is to repeat each bit multiple times to
form a codeword. Mathematically it can be represented as:

Edup(S) = Edup(〈b0, b1, · · ·, bn−1〉)
= 〈(b0)2t+1, (b1)

2t+1, · · ·, (bn−1)2t+1〉
(12)

Here t is a security parameter. A (2t + 1)-bit duplication
allows t bit error correction. Referring to Algorithm. 4,
the scaling factor γ = (2t + 1). The fascinating feature
of the proposed ECC is its simplicity, which enables easy
understanding of the security implications. Moreover, the
error correction works in a per-bit manner. The correction
circuit can be implemented by simple majority voting among
the duplicated bits corresponding to a specific state bit.

5.3.4 Secure implementation of Encode

Although duplication and majority voting based error cor-
rection is fairly simple, there are several subtle points to
be taken care of while instantiating such a scheme. Below
we note some of the suggestions required for a secure
instantiation of the proposed ECC.

1) The first, and perhaps the most important question is
where to put the error correction blocks. One may note
that duplication code is functionally similar to calling
an unprotected cipher 2t+1 times and performing ma-
jority vote on the ciphertexts. However, there are sev-
eral subtle differences. In the duplication encoding the
redundancy is in-built at the bit level. In order to take the
advantage of this, we propose to instantiate one error correc-
tion block per bit, at the end of the S-Box computation at each
round. For example, if we consider PRESENT (n = 64)
with t = 1 duplication, each of the 64-bits will be
repeated 3 times. After the sBoxLayer, we expect total
64 correction units to be deployed at each round. In
case the PRESENT implementation is masked (which
is suggested), with a m-th order masking, the total
number of units require would be 64 × m. One of
the clear advantages of putting the correction blocks
at each round is that it can prevent some trivial attacks.
Consider an implementation with t = 1, for example. An
adversary may try to corrupt one of the three redundant
branches at the very beginning of the computation with a less
precise fault, and then may inject a desired fault in another
branch. The first injection converts the correction mechanism
to a detection based countermeasure. However, this cannot
happen if the correction-block is present at each round. The
correction logic can readily correct any such fault even if it
is injected at the very beginning of computation. Placement
of correction-block is thus crucial for security.

2) The second crucial question is how the error correction
logic should be implemented. One may note that, a
resourceful adversary may try to corrupt the correction
block to induce a desired fault. In order to throttle this
chance we propose to implement the error correction
in a redundant manner. In order to illustrate this let us
consider the case where t = 1. Without loss of general-
ity, let us denote the redundant bits corresponding to a

specific state bit bi as 〈b0,i, b1,i, b2,i〉. The majority vote
circuit here is given as:

bi,c = b0,ib1,i + b1,ib2,i + b0,ib2,i. (13)

One easy alternative for implementing the correction
logic is to generate bi,c and to create two more copies of
the same to maintain the encoding. Instead we propose
to instantiate the correction circuit 3 times. In essence,
we create three bits 〈bc0,i, bc1,i, bc2,i〉, such that each of
them is generated from an independent copy of the
correction logic. Assuming that the adversary can inject
a (t = 1)-bit precise fault to corrupt the output of the
correction block, such an implementation ensures that the
fault indeed gets corrected by another layer of correction
circuit instantiated in later iterations of the cipher. Moreover,
even if such a fault can be induced by corrupting multiple
instances of the correction circuit, it can at most result in
a biased fault on the state (SIFA-1 fault). Such faults are
throttled by masking.

3) One may wonder that whether masking is still needed
if the bit level error correction is present. The answer is
positive considering the limited correction capability of
the ECC. In other words, the ECC is capable of correct-
ing 1 fault injection per state bit. However, for practical
reasons the adversary may not have any restriction on
injecting multi-bit faults (say up to 5-6 bits) on the state
(i.e. actual bits of the computation), which may result
in alteration of 1-2 actual state bits. This may result in a
biased fault scenario without the presence of masking.
Moreover, masking is essential for SCA protection.

5.3.5 AntiSIFA: Our Final Proposal

The final AntiSIFA proposal suggests the application of
any standard masking scheme for protection against SIFA-1.
Higher order masking is preferred. For SIFA-2, we suggest
bit level redundancy as described with lower values of t
(typically t = 1 or t = 2). The reason behind suggestion
is that high value for t would incur prohibitively large
overhead. A n-bit cipher state expands to a state of n×m×t
with AntiSIFA. It is also important to precisely state which
faults we prevent against. We summarize them as follows:

• For the SIFA-1, AntiSIFA can protect against any
multi-bit faults provided the fault is not corrupting
all the shares of a specific bit.

• For the SIFA-2, AntiSIFA can protect against t bit
faults even while it is induced on all the redundant
bits corresponding to a single bit.

Both of the fault situations for bypassing AntiSIFA are
extremely aggressive and difficult to achieve even with
modern fault injection setups. In the next section we present
a concrete realization of AntoSIFA on PRESENT along with
its security validation.

6 VALIDATION ON PRESENT

This section begins with a brief description of the
PRESENT hardened with AntiSIFA. Next we describe the
experiments we performed to validate the security claims.
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Fig. 3: Illustration of AntiSIFA. Each sub-operation is in
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6.1 PRESENT with AntiSIFA
PRESENT is a lightweight cipher having a block size
n = 64. In order to realize AntiSIFA on PRESENT , we first
need to choose a proper masking scheme. Without loss of
generality, we choose the scheme proposed by Poschmann
et. al. [29]. The proposal describes a 3-share TI implemen-
tation of PRESENT . In order to achieve 3-sharing of the
cubic S-Box of PRESENT , the S-Box is represented as a
composite mapping of two bijective quadratic functions,
usually denoted as G and F . Three sharing is feasible
for these quadratic functions. The TI implementation of
the linear sub-operations (pLayer and addRoundKey) are
straightforward. Comprehensive description of the masking
scheme is out of the scope of this paper and we refer to [29]
for further details. For the ECC component, we employ re-
dundancy with t = 1. The correction blocks are instantiated
accordingly, as pointed out in the previous section. A simple
illustration of the protected PRESENT is depicted in Fig. 3.

6.2 Security Validation
6.2.1 SIFA-1 Model
We first validate the security against SIFA-1 faults. In order
to explain the security claims properly, here we do not
incorporate the ECC block. Fig. 4 presents the results for
different fault scenarios in SIFA-1 model. The figures depict
the variation of SEI scores with the number of correct
ciphertexts. The red curves in the plots indicate SEI scores
of the correct key and the blue curves represent highest SEI
score among the wrong key guesses. For a successful attack
we expect the correct key profile to have the higher and
well-separated SEI value than that of the wrong keys. For
clarity, the SIFA results on the unprotected PRESENT is
also depicted (Fig. 4(a)). It is observed that, with a multi
bit SIFA fault the attack happens with roughly 100 correct
ciphertexts. However, attacks are completely prevented for
the masked implementation. We specifically stress on the
observation that, even corrupting up to two shares corre-
sponding to a specific bit does not lead to a successful
attack (Fig. 4(c)). In fact, to concretely validate this case,
we performed a prolonged injection campaign with almost
100000 correct ciphertexts. The results clearly establish the
efficacy of masking schemes for throttling SIFA-1 faults.

6.2.2 SIFA-2 Model
The experiments to validate our claims against SIFA-2 have
been performed for the complete AntiSIFA. The outcome

of this experiment is depicted in Fig. 5. The exploitable
SIFA-2 faults were profiled prior to the experiment and
used specifically to validate the countermeasure. To clearly
establish the utility of the ECC, we also provide the result
for SIFA-2 faults on masking implementation (Fig. 5(a)).
The ECC block with t = 1 prevents SIFA-2 faults, till a
single redundant bit corresponding to an actual cipher bit
is corrupted with fault (Fig. 5(b)). In summary, AntiSIFA
meets all the expectations developed in theory.

In order to further strengthen our claim, we perform
experiments on a single S-Box with SIFA-2 faults. The results
are depicted in Fig. 6. In the first experiment we consider
a masked S-Box without ECC. The injection campaign is
performed for all possible mask values. As it can be ob-
served (Fig. 6(a)), the SIFA-2 faults create a bias in the actual
output space. However, after the addition of ECC the biased
distribution vanishes as only correct data is outputted by the
hardened S-Box. As already pointed out, faulting the output
of the correction block either results in a state fault or gets
correct by the next correction block at the following round.
The output distribution of the hardened S-Box is illustrated
in Fig. 6(b), which is clearly an uniform distribution.

7 CONCLUSION

Statistical Ineffective Fault Analysis (SIFA) is a recently
proposed class of fault attacks (FA), which typically ana-
lyzes the correct ciphertext obtained from a fault injection
campaign. Most of the state-of-the-art FA countermeasures
fall prey against SIFA. In this paper we propose a general
framework to counter different classes of SIFA attacks in
a provable manner. One of the key observation of this
work is that even masking schemes can provide sufficient
protection against SIFA for a little restricted fault model.
For the general case we propose the use of error correction
codes. Future work in this direction would consider further
optimization of the ECC. Evaluating and protecting public
key implementations against SIFA is another potential di-
rection of research.
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Attack result without ECC; and (b) Attack result with ECC.

0 2 4 6 8 10 12 14 16
Output Value

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

P
ro

b
a
b
ili

ty

(a)

0 2 4 6 8 10 12 14 16
Output Value

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

P
ro

b
a
b
ili

ty

(b)

Fig. 6: S-Box output distribution with SIFA-2 faults: (a)
Masking only; and (b) Masking + ECC.

[7] C. Dobraunig, M. Eichlseder, H. Gross, S. Mangard, F. Mendel, and
R. Primas, “Statistical ineffective fault attacks on masked aes with
fault countermeasures,” in International Conference on the Theory
and Application of Cryptology and Information Security. Springer,
2018, pp. 315–342.

[8] F. Zhang, S. Guo, X. Zhao, T. Wang, J. Yang, F.-X. Standaert,
and D. Gu, “A framework for the analysis and evaluation of
algebraic fault attacks on lightweight block ciphers,” IEEE Trans.
Inf. Forensics Security, vol. 11, no. 5, pp. 1039–1054, 2016.

[9] X. Guo, D. Mukhopadhyay, C. Jin, and R. Karri, “Security analysis
of concurrent error detection against differential fault analysis,”
Journal of Cryptographic Engineering, vol. 5, no. 3, pp. 153–169, Sep
2015.

[10] H. Tupsamudre, S. Bisht, and D. Mukhopadhyay, “Destroying
fault invariant with randomization,” in CHES’14. Springer, 2014,
pp. 93–111.

[11] K. Kulikowski, M. Karpovsky, and A. Taubin, “Robust codes for
fault attack resistant cryptographic hardware,” in FDTC, 2005, pp.
1–12.

[12] B. Gierlichs, J. Schmidt, and M. Tunstall, “Infective computation
and dummy rounds: fault protection for block ciphers without
check-before-output,” in LatinCrypt’12. Springer, 2012, pp. 305–
321.

[13] C. Clavier, “Secret external encodings do not prevent transient

fault analysis,” in International Workshop on Cryptographic Hardware
and Embedded Systems. Springer, 2007, pp. 181–194.
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