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Abstract

This paper describes a new public coin, succinct interactive zero-knowledge argument for NP under
standard cryptographic hardness assumptions—without requiring a trusted setup. In particular, our argument
enables a prover to prove the satisfiability of arithmetic circuits over a large finite field (an NP-complete
language for which there exist efficient reductions from high-level programs of practical interest) to a
verifier. We construct this argument through a novel synthesis of techniques from prior work on short PCPs,
MIPs, and doubly-efficient IPs. Specifically, our interactive argument is a succinct variant of the sum-check
protocol where the protocol is run with a carefully-constructed low-degree polynomial that encodes a given
circuit satisfiability instance. Since our interactive argument is public coin, we make it non-interactive
in the random oracle model, thereby obtaining a zero-knowledge succinct non-interactive argument of
knowledge (zkSNARK), which we call Spartan.

Spartan is the first zkSNARK without trusted setup (i.e., a “transparent” zkSNARK) where verifying a
proof incurs sub-linear costs without requiring data parallelism (or other homogeneity) in the structure
of an arithmetic circuit for which a proof is produced. To achieve this, Spartan introduces a notion of
computation commitments—a primitive to create a short cryptographic commitment to a mathematical
description of an arithmetic circuit. Finally, Spartan is asymptotically efficient with small constants: the
prover performs O(n) cryptographic operations to produce a proof of size O(n1/c) that can be verified in
O(n1−1/c) time (after a one-time, public preprocessing of the circuit to create a computation commitment
that takes O(n) time), where n denotes the size of an arithmetic circuit and c ≥ 2 (Spartan can produce
O(log n)-sized proofs, but the verifier incurs O(n) costs).

1 Introduction
We revisit the problem of designing succinct zero-knowledge arguments for a general class of applications. In particular,
we are interested in arguments for the complexity class NP [32, 66, 73]: they enable a computationally-bounded prover
to convince the membership of a problem instance in an NP language without revealing anything besides the validity of
the statement. Furthermore, the communication costs of the protocol and the cost to verify the prover’s statement are
sub-linear in the size of the statement being proven. We are motivated to design such succinct zero-knowledge arguments
because there is significant interest in employing them in many applications including delegation of computation [40,
76, 80–84, 86] and stateful services [33, 39, 41, 47, 79, 94], distributed ledgers and blockchains [15, 31, 36, 67],
anonymous credentials [43], and decentralized identities [1, 2].

We are particularly interested in arguments that prove the satisfiability of arithmetic circuits over a large finite
field: given an arithmetic circuit instance C, we are interested in a proof that demonstrates the knowledge of a witness
w such that C(x, w) = y where x and y are public inputs and outputs of C respectively.1 We focus on the arithmetic
circuit satisfiability problem because it is an NP-complete language for which there exists efficient transformations
from high-level applications of interest in practice [16, 18, 22, 33, 68, 76, 79, 83, 90].

As we discuss in Section 2, there are many approaches to construct such arguments in the literature, starting with
the work of Kilian [66] who provided the first construction of a succinct interactive argument protocol by employing
probabilistically checkable proofs (PCPs) [4, 5, 8, 45] in conjunction with Merkle trees [72]. Micali [73] made a
similar protocol non-interactive in the random oracle model, thereby obtaining the first zero-knowledge succinct non-
interactive argument of knowledge (zkSNARK) [26, 51]. Unfortunately, the underlying PCP machinery is extremely
expensive—despite foundational advances to achieve optimal asymptotics [17, 23–25]. Thus, the first works with an
explicit motivation to build “practical” systems using probabilistic proofs [40, 80, 82, 83, 86] refine and implement
simple interactive protocols of Ishai et al. [60] and Goldwasser et al. [53], which do not invoke asymptotically-efficient
PCPs. The principal downside, among others, is that they achieve plausible performance and optimal asymptotics for
the prover for only a restricted class of computations (or circuits).

In a breakthrough result, Gennaro, Gentry, Parno, and Raykova (GGPR) [49] address the above issue with a new
formalism for encoding computations called quadratic arithmetic programs (QAPs). By building on the work of

1Although we use the word “proof”, we mean proofs that are computationally sound [32].
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Ishai et al. [60], Groth [56], and Lipmaa [69], GGPR construct a zkSNARK for the arithmetic circuit satisfiability
problem in which the prover’s running time is quasi-linear in the size of the circuit (which is nearly optimal), the size
of a proof is a constant number of group elements, and the verifier incurs a constant-time computation to verify the
proof (in addition to the cost to process the public inputs and outputs of the circuit). Unfortunately, GGPR’s zkSNARK
requires a trusted setup that produces a large O(|C|)-sized structured common reference string and the trapdoor used
in the setup process must be kept secret (to ensure soundness). Relying on such a trusted setup is often infeasible in
practice, especially for applications that do not have any trusted authorities. There exist several advances atop GGPR’s
machinery, but they retain a trusted setup [18, 22, 28, 57, 58], or require interaction [81].

The above state of affairs has motivated another class of works (called “transparent” zkSNARKs or zkSNARKs
without trusted setup) that aim to address the limitation listed above for GGPR—while also providing performance
similar to (or even better than) GGPR [49].2 They prove security in the random oracle model, which is acceptable in
practice. There are five works in this class. First, Hyrax [91] extends a line of work [40, 84, 86–89] that refines the
doubly-efficient interactive proofs (IPs) of Goldwasser et al. [53]. Second, Ligero [3] builds an interactive PCP [64] using
the “MPC in the head” paradigm [61] and then transforms it to a zkSNARK. Third, zkSTARKs [14] and Aurora [19]
build on interactive oracle proofs (IOPs) [20, 78], a generalization of PCPs and IPs. Fourth, Bulletproofs [34] builds on
the work of Bootle et al. [30] and leverages a special-purpose argument protocol for inner product operations. Fifth,
Thaler sketches a succinct argument [85, §3] by replacing the second prover in a two-prover protocol [29] with a
polynomial commitment scheme.

Unfortunately, these works suffer from the following problems: (1) Hyrax [90] requires arithmetic circuits to be
layered, and the verifier’s costs and the proof size scale linearly in the depth (i.e., the number of layers) of the circuit,
so Hyrax is restricted to low-depth circuits (note that converting an arbitrary circuit into a layered form can increase
its size quadratically [53]);3 (2) Hyrax [90] achieves sub-linear verification costs only when its layered circuits have
sufficient data-parallelism (i.e., a threshold number of identical sub-circuits); (3) zkSTARKs [14] assume circuits with a
sequence of repeated sub-circuits (i.e., uniform circuits); although any circuit can be converted to this form [16, 18],
such a transformation incurs 10–1000× blowup in circuit size (which translates to a similar factor increase in the
prover’s costs) when compared to equivalent but non-uniform circuits [90]; (4) The verifier in Aurora [19], Ligero [3],
Bulletproofs [34], and Thaler [85, §3] incurs costs that are linear in the size of an arithmetic circuit, so they are not truly
succinct; and (5) zkSTARKs [14] and Aurora [19] rely on a non-standard conjecture for soundness [14, Appendix B].

The goal of this work is to address the aforementioned problems associated with existing transparent SNARKs.
Specifically, we desire a succinct zero-knowledge argument protocol for an arithmetic circuit satisfiability instance
(C, x, y) with the following properties.

1. The argument’s computational model should be general: the argument should apply to arbitrary circuits without
assuming structure in layering, data-parallelism, or other uniformity.

2. The argument should not require a trusted setup nor a structured common reference string.

3. The prover should only incur O(|C|) cryptographic operations with small constants.

4. Proofs should be succinct (i.e., the size of a proof should be sub-linear in the size of C).

5. The cost to verify a proof should be sub-linear in the size of C and linear in |x|+ |y|.
6. Security should hold under standard cryptographic hardness assumptions (e.g., the hardness of computing discrete

logarithms); non-interactivity can rely on random oracles [12] (such non-falsifiable assumptions are inherent [51]).

Contributions. This paper presents a new zkSNARK without trusted setup, which we call Spartan, for proving the
satisfiability of arithmetic circuits over a large finite field (e.g., the set {0, 1, . . . p− 1} for a large prime p). Spartan
is the first transparent zkSNARK to achieve sub-linear verification costs for arbitrary circuits.4 At its core, Spartan
contains a new public coin interactive argument protocol with succinct communication costs and sub-linear verification
costs where security holds under the hardness of computing discrete logarithms. We make our interactive argument
a zero-knowledge succinct interactive argument (under standard cryptographic hardness assumptions) by using prior
techniques [13, 42] and their use in the context of doubly-efficient interactive proofs [91, 95]. Finally, we make the
succinct zero-knowledge argument non-interactive in the random oracle model using the Fiat-Shamir heuristic [46]. For

2The work of Kilian [66] and Micali [73] do not suffer from the trusted setup issue, but as mentioned earlier, they are infeasible to be used in practice.
3For a depth-d circuit, converting to a layered form increases the circuit size by a factor of O(d).
4To our knowledge, even the classical PCP-based transparent zkSNARKs [66, 73] do not achieve sub-linear verification costs unless one uses uniform
circuits, which as described above incur 10–1000× blowup in the prover’s costs compared to using equivalent non-uniform circuits.
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an arithmetic circuit satisfiability instance (C, x, y) where x and y are public inputs and outputs of an arithmetic circuit C,
Spartan’s prover incurs O(|C|) cryptographic operations and O(|C| log |C|) non-cryptographic finite field operations; the
proof produced is of length O(|C|1/c) and can be verified in O(|C|1−1/c) time (for c ≥ 2). Using a prior idea [91, §6.1],
the proof length can be reduced to O(log |C|) at the cost of making the verifier’s costs O(|C|) (we refer to this variant as
Spartan-log). Using a different prior idea [93, §3.1], the prover time can be made O(|C|), which is time-optimal (we
refer to this variant as Spartan-opt). In more detail, Spartan makes the following contributions.

(1) A new interactive argument with sub-linear verification costs (a succinct sum-check protocol). We design
a new public coin succinct interactive argument under standard cryptographic hardness assumptions where the verifier
incurs sub-linear costs for arbitrary circuits. Our interactive argument can be viewed as a succinct variant of the
sum-check protocol [70] (a seminal interactive proof protocol used in several contexts [8, 9, 53]) when the low-degree
polynomial over which the protocol is run can be decomposed into several multilinear polynomials. The latter maybe of
independent interest.

Our core technical insight is that the sum-check protocol [70] when applied to a suitably-constructed low-degree
polynomial yields a powerful—but highly inefficient—probabilistic proof protocol, but the inefficiency can be tamed,
for certain choices of low-degree polynomials (e.g., a low-degree polynomial that can be decomposed into several
multilinear polynomials), by employing a polynomial commitment scheme [65]. Specifically, we construct our argument
through a careful integration of four techniques: (1) the sum-check protocol [70], (2) a cryptographic commitment
scheme for multilinear polynomials [91, §6.1], which Hyrax employs for a related use; (3) an encoding of a circuit
satisfiability instance as a low-degree polynomial composed of multilinear polynomials, which Blumberg et al. [29,
§4.2] use in a multi-prover interactive proof protocol; and (4) computation commitments, a new primitive for creating a
commitment to a mathematical description of a circuit, which is critical for achieving sub-linear verification costs.

Computation commitments to achieve sub-linear verification costs. Achieving sub-linear verification costs appears
to be fundamentally unrealizable because the verifier must process a circuit for which the proof is produced before it
can verify a purported proof. To address this, our observation is that when verifying a proof, the verifier must evaluate
a low-degree polynomial that encodes the circuit structure at a random point in its domain (§5), which incurs O(|C|)
costs to the verifier. Our primitive, computation commitments, enables verifiably delegating the necessary polynomial
evaluations to the prover by employing a polynomial commitment scheme for multilinear polynomials. Specifically,
in Spartan, the verifier reads the entire circuit for which the proof is produced and retains a short cryptographic
commitment to a set of multilinear polynomials that encode the structure of the circuit. Later, when producing a proof,
the prover evaluates the necessary polynomials and proves that the polynomial evaluations are consistent with the
commitment retained by the verifier. While the verifier incurs O(|C|) cost to compute a computation commitment, the
cost is amortized over all future proofs produced for that circuit.5 This amortization is similar to that of GGPR: the
verifier can verify a proof individually—without batching—while enjoying sub-linear costs. However, unlike GGPR’s
trusted setup, creating a computation commitment does not involve any secret trapdoors. Section 6 provides details.

(2) Shed light on connections among different strands of theory. Our interactive argument sheds light on inter-
connections among different lines of work on probabilistic proofs—from the perspective of zkSNARKs—including
doubly-efficient IPs, MIPs, and short PCPs. Section 5.2 provides details in context, but here is a brief summary:
(1) Spartan is a light-weight mechanism to transform the short PCPs of Babai et al. [8] to a succinct interactive
argument—without employing Kilian’s approach of using Merkle trees; (2) Spartan is a simple mechanism to compile
the two-prover interactive proof protocol of Blumberg et al. [29] (and of Babai et al. [9]) to a single prover argument
and then into a zkSNARK—without relying on general and expensive techniques [27], or incurring linear-time
verification costs [85, §3]; and (3) Spartan is a way to eliminate the requirement of layered circuits in doubly-efficient
IPs [40, 53, 84, 87–89] (and arguments built atop them [91, 94, 95]) by applying cryptography. Finally, in all the three
cases, Spartan achieves sub-linear costs to the verifier for any arithmetic circuit over which the protocol is run (after a
one-time preprocessing of the circuit by the verifier that incurs linear costs). Thus, Spartan unifies three different lines
of prior theory and achieves theoretical improvements.

(3) Simplicity. Compared to other transparent zkSNARKs, especially those based on short PCPs and IOPs, Spartan
is perhaps simpler. While this claim is of non-technical nature and cannot be rigorously proved, Spartan relies only
on well-studied building blocks. The core ingredients in Spartan are the sum-check protocol [70], a classical protocol,
and a cryptographic commitment scheme for multilinear polynomials [90] that relies only on simple homomorphic
commitments [77] and a sigma protocol for inner product operations. Thus, we believe that this work makes it easy for
practitioners to refine, optimize, and incorporate Spartan into their applications, thereby taking several steps toward

5If the circuit has regular structure (e.g., data-parallelism), the cost of creating such a commitment is sub-linear in |C|.
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setup prover proof length verifier assumption computational model

GGPR-based [21, 49, 57] private O(n log n) O(1) O(1) KOE arbitrary circuits
Libra [93] private? O(n) O(d log n) O(d log n) KOE layered circuits
Spartan-koe private? O(n) O(log n) O(log n) KOE arbitrary circuits

Ligero [3] public O(n log n) O(
√

n) O(n) CRHF arbitrary circuits
Hyrax [89] public O(n + m · g) O(m + |w|1/c) O(m + |w|1−1/c) DLOG layered circuits
Hyrax-log [89] public O(n + m · g) O(m + log |w|) O(m + |w|) DLOG layered circuits
Bulletproofs [34] public O(n) O(log n) O(n) DLOG arbitrary circuits
zkSTARKs [14] public O(n log2 n) O(log2 n) O(log2 n) CRHF uniform circuits
Aurora [19] public O(n log n) O(log2 n) O(n) CRHF arbitrary circuits

Spartan public O(n log n) O(n1/c) O(n1−1/c) DLOG arbitrary circuits
Spartan-log public O(n log n) O(log n) O(n) DLOG arbitrary circuits
Spartan-opt public O(n) O(n1/c) O(n1−1/c) DLOG arbitrary circuits
Spartan-opt-log public O(n) O(log n) O(n) DLOG arbitrary circuits

Figure 1: A comparison of zkSNARK schemes geared toward practice. The depicted costs are for an arithmetic circuit satisfiability
instance (C, x, y). n denotes the number of gates in an arithmetic circuit (i.e., n = |C|). For Hyrax [91], we assume a layered arithmetic
circuit of depth d, width g, and k copies (i.e., n = d · g · k); w denotes a witness to C; and m = d · log g. For Hyrax and Spartan, c
is a constant ≥ 2. For Libra, we assume a depth-d layered circuit. The verifier incurs O(|x| + |y|) additional cost in all schemes.
Furthermore, all zkSNARKs without trusted setup listed above achieve non-interactivity in the random oracle model using the
Fiat-Shamir heuristic [46]. Spartan-opt-log applies refinements from Spartan-log to Spartan-opt to reduce proof sizes at the cost of
increasing the verifier’s running time. Private? means that the trusted setup is one-time, not specific to a circuit. Finally, it is worth
noting that Hyrax’s prover performs O(|w|) cryptographic operations whereas Spartan (and others) perform O(n) cryptographic
operations, so for circuits where |w| << n, Hyrax’s prover performs fewer cryptographic operations.

making it possible to deploy transparent zkSNARKs at large scale.
(4) Improvements in zkSNARKs with trusted setup. Although our principal focus is on transparent zkSNARKs,

Spartan improves on prior zkSNARKs that require a trusted setup, in terms of expressiveness and asymptotics. By
employing a different polynomial commitment scheme [75, 94], which requires a trusted setup, in place of the scheme
of Wahby et al. [91], Spartan offers an alternative to Libra [93], a zkSNARK that does not require a per-circuit
trusted setup (instead, the trusted setup is for the polynomial commitment scheme); we refer to this variant as Spartan-
koe. In particular, Spartan-koe supports arbitrary circuits instead of Libra’s computational model of layered circuits.
Furthermore, the proof size and the verifier’s running time drop by a factor of O(d) compared to Libra, where d is
the depth of the arithmetic circuit over which the protocol is run. Finally, Libra achieves sub-linear verification only
for low-depth uniform circuits whereas by employing computation commitments, Spartan-koe achieves sub-linear
verification costs for arbitrary circuits after a one-time O(n) public computation.

Roadmap and paper organization. Section 2 describes related work; Section 3 introduces concepts and terminology
for describing Spartan; Section 4 provides a top-down overview of Spartan and its sub-protocols; Sections 5 and 6
describe technical details of Spartan and offer security proofs; Section 7 describes extensions.

2 Related work
This section compares Spartan with prior approaches to zkSNARKs (and related constructs). For ease of exposition, we
introduce terminology and notation. Recall that for any problem instance X (e.g., a given arithmetic circuit), if X is
in an NP language L (e.g., the set of satisfiable arithmetic circuits), there exists a witness w such that a deterministic
verifier can check if X ∈ L in time O(poly(|X|)). We use n to denote the running time of such a deterministic verifier.
Figure 1 depicts asymptotic costs for the prover and the verifier, proof length, and assumptions made by different
zkSNARK schemes. For transparent zkSNARKs in the table, the assumptions we state are in addition to the random
oracle assumption made by them to achieve non-interactivity.

Short PCPs. Babai et al. [8] and Feige et al. [45] introduce probabilistically checkable proofs (PCPs) [4, 5, 44], a
type of proof that proves the membership of a problem instance in an NP language while requiring a randomized verifier
to inspect only a small (e.g., a constant [59]) number of bits in the proof. The length of a proof in early constructions is
O(poly(n)) (and are called “short PCPs” in the PCP literature [24, 25]), so on their own, PCPs do not offer succinctness.
Kilian [66] constructs the first succinct interactive argument for NP by employing short PCPs in conjunction with
a cryptographic hash function. In Kilian’s approach, the prover cryptographically commits to a short PCP using a
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Merkle tree [72] and then decommits the proof at locations that a verifier wishes to inspect; Micali [73] made a
similar approach non-interactive in the random oracle model. Kilian’s approach achieves O(polylog(n)) communication
(which translates to the size of a non-interactive proof in Micali’s construction). While many works on PCPs focus
on proving inapproximability results [45], there is long line of work to reduce the length of a PCP, and to improve
the asymptotic costs of proof generation and verification [17, 23, 25]. Despite these advances, the PCP machinery
remains too expensive to be used in practice, so Kilian’s and Micali’s approach to build succinct arguments via short
PCPs—even when using state-of-the-art PCPs—remains concretely inefficient.

Spartan achieves similar asymptotics for the prover as instantiating Kilian’s approach with a state-of-the-art PCP,
but with significantly smaller constants. To achieve this, Spartan employs stronger cryptography (in the form of a
polynomial commitment scheme) than a simple hash function (§5), but it still only makes standard cryptographic
hardness assumptions. However, the verifier’s work (and the size of the proof) are asymptotically worse under Spartan.
Note that the asymptotic costs of the verifier in Spartan are inherited from the specific polynomial commitment scheme
we use, so any future improvements in polynomial commitment schemes translate to improvements to Spartan. Finally,
as we discuss in Section 5, Spartan can be seen as a replacement for Kilian’s approach to transform the short PCP scheme
of Babai et al. [8]—where the PCP length is asymptotically longer than in the state-of-the-art constructions [17, 23],
but has the required algebraic structure for applying stronger cryptography—to a succinct interactive argument.

Linear PCPs and QAPs. Ishai, Kushilevitz, and Ostrovsky (IKO) [60] design the first interactive argument protocol
without employing short PCPs. Instead, IKO use linear PCPs, a type of PCP in which the proof is a linear function [4, 5].
Such linear PCPs are far simpler than state-of-the-art PCPs, but they are of size exponential in n. Thus, a polynomial
time prover cannot materialize linear PCPs, a precise issue addressed by IKO: they devise a cryptographic commitment
protocol in which a prover can commit to an exponentially-long PCP without ever materializing the entire PCP.6 Because
of the specific linear PCP construction that they use, which is based on Hadamard codes [4, 5], the prover’s work is
O(n2). Setty et al. [82] strengthen IKO’s cryptographic machinery to directly transform linear PCPs to arguments (IKO
required the use of MIPs as an intermediate step), which simplifies the overall approach and reduces constants. They
also achieve O(n) asymptotics for the prover by designing “tailored” linear PCPs for circuits with regular structure (e.g.,
matrix multiplication, polynomial evaluation). However, they retain the O(n2) costs for the prover in the general case.

Gennaro, Gentry, Parno, and Raykova (GGPR) [49] introduce quadratic arithmetic programs (QAPs), a remarkable
encoding of computations amenable to probabilistic checking. Building on IKO[60], Groth [56], and Lipmaa [69],
GGPR design a zkSNARK in which the prover’s work is O(n log n). Bitansky et al. [28] and Setty et al. [81] prove
that QAPs can be viewed as linear PCPs. Zaatar [81] leverages this observation to build an interactive argument
with O(n log n) asymptotics for the prover by composing a QAP-based linear PCP with a refined variant of IKO’s
cryptographic machinery [82, 83]. The resulting asymptotics matches that of an argument based on state-of-the-art short
PCPs. However, Zaatar retains the rest of IKO’s limitations: the argument is interactive, it is not publicly verifiable, and
it achieves succinctness only when proofs for a batch of statements are verified at once. Note that Zaatar and IKO do
not support zero-knowledge arguments, but it is perhaps not fundamental [60, §3.1].

Pinocchio [76] optimizes and implements GGPR [49] in entirety. It avoids the issues listed above for Zaatar
and IKO—at the cost of making q-type, knowledge of exponent (KOE) assumptions, which are non-standard and
non-falsifiable (Zaatar does not need such assumptions, but it is worth noting that such assumptions are inherent for
achieving non-interactivity in arguments for NP [51]). BCGTV [18], BCTV [22], and Groth [57] offer algorithmic and
concrete performance improvements over Pinocchio’s zkSNARK. However, all these works require a trusted setup,
which must be performed by an incorruptible party, and the trapdoor used in the setup process must be kept secret for
ensuring soundness. The setup incurs O(n) cryptographic operations and produces an O(n)-sized structured common
reference string (CRS). To cope with trusted setup, recent works [58, 71] propose schemes to update the structured CRS
after it is generated. However, at least one updating entity must be trusted.

Interactive proofs. While PCP-based arguments make cryptographic hardness assumptions, interactive proofs (IPs)
are unconditionally secure. The early works on interactive proofs [7, 54] focus on studying the power of IPs in the
context of intractable languages. However, in 2008, Goldwasser, Kalai, and Rothblum (GKR) [53] propose an elegant
interactive proof protocol in the context of delegating computations where both the prover and the verifier are efficient;
such IPs are called doubly-efficient IPs. Specifically, they construct doubly-efficient IPs for computations that can be
expressed as log-space uniform circuits. In their protocol, the prover’s running time is a polynomial in the size of the

6Spartan is analogous to IKO in this aspect: The provers in IKO and Spartan do not materialize a PCP. The difference between these two works is that
Spartan employs the polynomially-sized short PCPs of Babai et al. [8] whereas IKO employ the exponentially-sized linear PCPs of Arora et al. [4, 5].
This necessitates different cryptographic machinery.
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circuit, and the verifier’s running time is linear in the depth of the circuit and logarithmic in the width of the circuit.
Cormode, Mitzenmacher, and Thaler (CMT) [40] refine the GKR protocol to bring down the prover’s work from O(n3)
to O(n log n) by employing a specific polynomial extension to encode the circuit structure. A series of works [84, 86–89]
further refines the approach of GKR and CMT to reduce constants and to improve asymptotics when circuits have
structure such as data-parallelism. Recent work builds interactive arguments [94, 96] and zkSNARKs [91, 93, 95] using
GKR, CMT, and their refinements. Section 5.2 discusses, in context, how these works relate to Spartan.

Interactive oracle proofs. Ben-Sasson et al. [20] and Reingold et al. [78] introduce a new proof model that combines
aspects of PCPs and IPs under two different names: interactive oracle proofs (IOPs) and probabilistically checkable
interactive proofs (PCIPs). In their model model, the prover and the verifier interact over a sequence of rounds (as in
IPs), but the verifier examines only a small number of bits in the prover’s messages (as in PCPs), so this model also
generalizes interactive PCPs [64]. They also extend Kilian’s and Micali’s techniques [66, 73] to transform IOPs to
zkSNARKs in the random oracle model. There are two zkSNARKs in this line of work: zkSTARKs [14] and Aurora [19].
These works only require symmetric key operations (as in the classical PCP-based arguments [66, 73]), but they suffer
from limitations discussed in Section 1, which includes relying on a non-standard conjecture related to Reed-Solomon
codes for proving soundness. Furthermore, it is not entirely clear how these works can achieve sub-linear verification
costs—without employing uniform circuits (which are far more verbose than equivalent non-uniform circuits [90]).

Multi-party computation (MPC). Ishai et al. [61] propose the “MPC in the head” paradigm to build zero-knowledge
arguments from secure multi-party computation protocols. While the earlier instantiations of this paradigm, ZKBoo [52]
and ZKB++ [37], produce proofs of size O(n), Ligero [3] makes the proof size O(

√
n) by employing a sophisticated

multi-party computation protocol and coding techniques to build an interactive PCP [64]. Like Aurora [19] and
zkSTARKs [14], Ligero only relies on symmetric key primitives such as hash functions. However, as discussed in
Section 1, the verifier’s running time in these works is O(n).

Knowledge of discrete logarithms. Bootle et al. [30] building on its predecessors [11, 55] provide a zero-knowledge
argument for the satisfiability of arithmetic circuits under the hardness of computing discrete logarithms. The core
building block in their argument is a special-purpose argument for proving the correctness of an inner product operation
over two committed vectors. The proof size is O(log n), which Bulletproofs [34] improves by ≈3×. Unfortunately, as
mentioned in Section 1, the verifier in these works incurs O(n) costs.

3 Preliminaries
This section introduces notation, terminology, and concepts that we build on. We borrow some of our notation,
terminology, and phrasing from prior work [29, 40, 53, 87, 89, 94].

3.1 Arithmetic circuits, satisfiability, and assignments

Arithmetic circuits. An arithmetic circuit C over a finite field F (e.g., Fp for a large prime p) is a directed network of
input gates, output gates, and internal gates with wires connecting those gates. We assume each gate has two in-neighbor
wires and computes an addition (or multiplication) over F (input gates have no in-neighbors). We consider two types of
input gates in an arithmetic circuit: (1) public input gates, and (2) non-deterministic input gates (we explain differences
between them below). Thus, we can think of C as a function that maps a public input x ∈ Fm and a non-deterministic
input w ∈ F` to a public output y ∈ Fn. Let |C| denote the size of C, that is, the number of gates in C.

Definition 3.1 (Arithmetic circuit satisfiability). Given an arithmetic circuit, C : Fm × Fq → Fn, x ∈ Fm, and y ∈ Fn,
the arithmetic circuit satisfiability is the decision problem of checking whether there exists a non-deterministic input
w ∈ Fq such that C(x, w) = y. This is captured by the following relation: R(C,x,y) = {w ∈ Fq : C(x, w) = y}. We refer to
the tuple (C, x, y) as an arithmetic circuit satisfiability instance.

Note that in the above definition if x = ⊥ and y = 1, then we get a traditional arithmetic circuit satisfiability
problem. We consider our generic setup because in many applications of zkSNARKs (e.g., proof-based verifiable
computation; see [92] for a survey), it is natural to have non-trivial x and y, which correspond to public input and output
of a given delegated computation respectively.

Definition 3.2 (Satisfying assignment). A satisfying assignment to an arithmetic circuit satisfiability instance (C, x, y)
is a vector of values one for each gate in C with the constraint that values assigned to public input gates are consistent
with x, the values assigned to output gates are consistent with y, and the value assigned to any non-input gate g is
consistent with an evaluation of g with values assigned to g’s in-neighbor gates.
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Lemma 3.1. If there exists a satisfying assignment to (C, x, y) then there exists a witness w such that C(x, w) = y.

Proof. Given a satisfying assignment z to (C, x, y), output values assigned to non-deterministic input gates of C in z as
witness w. Since z is a satisfying assignment to (C, x, y), C(x, w) = y.

3.2 Polynomials and low-degree extensions

Polynomials. Recall that a polynomial G over a finite field F is an expression consisting of a sum of monomials where
each monomial is the product of a constant (from F) and powers of one or more variables (which take values from F);
all arithmetic is performed over F. The degree of a monomial is the sum of the exponents of variables in the monomial;
the degree of a polynomial G is the maximum degree of any monomial in G. Finally, the degree of a polynomial G in a
particular variable xi is the maximum exponent that xi takes in any of the monomials in G.

Definition 3.3. A multivariate polynomial is a polynomial with more than one variable (otherwise it is called a
univariate polynomial). A multivariate polynomial is called a multilinear polynomial if the degree of the polynomial in
each variable is at most one.

Definition 3.4. A multivariate polynomial over a finite field F is called low-degree polynomial if the degree of the
polynomial in each variable is small compared to |F|, for example log |F|.

Low-degree extensions (LDEs). Suppose g : {0, 1}m → F is a function that maps m bit elements into an element of
F. A polynomial extension of g is a low-degree m-variate polynomial g̃(·) such that g̃(x) = g(x) for all x ∈ {0, 1}m.

A multilinear polynomial extension (or simply, a multilinear extension or MLE) is a low-degree polynomial
extension where the extension is a multilinear polynomial (i.e., the degree of each variable in g̃(·) is at most one). Given
a function Z : {0, 1}m → F, the unique multilinear extension of Z(·) is the multilinear polynomial Z̃ : Fm → F. It can
be computed as follows.

Z̃(x1, . . . , xm) =
∑

e∈{0,1}m

Z(e) ·
m∏

i=1

(xi · ei + (1− xi) · (1− ei))

=
∑

e∈{0,1}m

Z(e) · χe

= 〈(Z(0), . . . , Z(2m − 1)), (χ0, . . . ,χ2m−1)〉

For any r = (r1, . . . , rm) ∈ Fm, Z̃(r) can be computed, using the above expression, in O(2m) field operations [84, 87].

3.3 The sum-check protocol

We now describe a key technical tool that we employ in Spartan, called the sum-check protocol [70].
Suppose there is an m-variate low-degree polynomial, G : Fm → F where the degree of each variable in G is at most

`. Suppose that a verifier VSC is interested in checking the following claim by an untrusted prover PSC:

H =
∑

x1∈{0,1}

∑
x2∈{0,1}

. . .
∑

xm∈{0,1}

G(x1, x2, . . . , xm)

Of course, given a description of the polynomial G(·), VSC can deterministically evaluate the sum over the Boolean
hypercube and verify whether the sum is H. But, this computation takes time exponential in m.

Lund et al. [70] describe a seminal interactive proof, called the sum-check protocol, that requires far less computation
on VSC’s behalf, but provides a probabilistic guarantee. In the sum-check protocol, VSC interacts withPSC over a sequence
of ` rounds. At the end of this interaction, VSC outputs accept or reject indicating whether it believes in PSC’s claim.
The principal cost to VSC is to evaluate the polynomial G(·) at a random point in its domain (r1, r2, . . . , rm) ∈R Fm.
Figure 2 depicts the sum-check protocol from VSC’s perspective. It offers the following guarantees (note that there are
no assumptions about the computational power of the prover).

• Completeness. If H =
∑

x∈{0,1}m G(x), then a correct PSC can always make VSC output accept.

• Soundness. If H 6=
∑

x∈{0,1}m G(x), then for any prover P∗SC, Pr{VSC outputs accept} ≤ εsc where εsc = ` ·m/|F|.
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1: function SumCheck(G, m, H, `)
2: (r1, r2, . . . , rm)←R Fm // sample m field elements randomly
3: e← H
4: for i = 1, 2, . . . , m do
5: // An honest PSC returns Gi(·) as {Gi(0), Gi(1), . . .Gi(`)} since Gi(·) is a degree-` univariate polynomial
6: // when i = 1, G1(X1) =

∑
(x2,...,xm)∈{0,1}m−1 G(X1, x2, . . . , xm)

7: // when i > 1, Gi(Xi) =
∑

(xi+1,...,xm)∈{0,1}m−i G(r1, . . . , ri−1, Xi, xi+1, . . . , xm)

8: Gi(·)← ReceiveFromProver()
9:

10: if Gi(0) + Gi(1) 6= e then
11: return reject

12:
13: SendToProver(ri)
14: e← Gi(ri) // evaluate Gi(ri) using its point-value form received from the prover
15:
16: // The following check requires computing G(·) at (r1, r2, . . . , rm) ∈ Fm

17: if G(r1, r2, . . . , rm) 6= e then
18: return reject

19: else
20: return accept

Figure 2: Description of the sum-check protocol from the perspective of VSC. VSC checks if the m-variate polynomial
G(·) sums to H over the Boolean hypercube {0, 1}m with the assistance of an untrusted prover PSC. The degree of G(·)
in each variable is at most `.

4 Overview of Spartan
This section provides an overview of Spartan, a zkSNARK [26] without trusted setup. The most novel aspect of Spartan
is a new interactive argument for NP with succinct verification and communication costs. Abstractly speaking, the
new interactive argument is a succinct variant of the sum-check protocol (which maybe of independent interest). In
the classical sum-check protocol [70], the verifier must evaluate the low-degree polynomial over which the sum-check
is run at a random point in its domain (line 17 in Figure 2), whereas our variant makes the verifier’s computational
cost to be sub-linear in the cost of evaluating the low-degree polynomial—as long as the the low-degree polynomial is
composed of several multilinear polynomials. This is achieved by verifiably delegating the task of evaluating multilinear
polynomials to the prover. Besides reducing the verifier’s computational costs, our protocol makes communication costs
from the prover to the verifier to be sub-linear in the communication required for the verifier to locally evaluate the
low-degree polynomial.

Achieving sub-linear verification and communication costs. We observe that when one applies the sum-check
protocol to a suitably-constructed encoding of an arithmetic circuit satisfiability instance (C, x, y), the sum-check
protocol offers an extremely simple probabilistic proof protocol—for proving the satisfiability of arithmetic circuits—
that is unconditionally secure. But, this protocol is highly inefficient as it requires O(|C|) communication from the prover
to the verifier as well O(|C|) computation at the verifier. We further observe that this inefficiency can be addressed by
employing simple cryptography, specifically a cryptographic commitment scheme for polynomials, which in our choice
of the low-degree polynomial requires support for a restricted class of polynomials called multilinear polynomials (§3.2).
The end result is a simple—yet highly efficient—interactive argument with succinct communication costs (§5 describes
this protocol). However, the verifier still incurs O(|C|) computation (for an arbitrary circuit with no structure).

We address the latter issue by again employing a commitment scheme for multilinear polynomials. Specifically, we
observe that during verification, the verifier only needs to evaluate a multilinear extension of several functions (i.e.,
several multilinear polynomials) that encode the circuit structure. Instead of the verifier evaluating those polynomials
locally (which incurs O(n) costs), the verifier computes a succinct cryptographic commitment to each of those
polynomials—which we refer to as a computation commitment—and retains the commitment (we emphasize that there
is no secret trapdoor, so it is a public computation). This incurs O(|C|) costs, but this cost is amortized over all future
verification of proofs for the same circuit (note that those proofs can be verified individually, so there is no need to
batch verify proofs to obtain amortization benefits). Thus, during verification of a proof for a circuit C, the verifier asks
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the prover to evaluate the necessary multilinear polynomials at a point required for its verification in the interactive
argument. For the verifier, the cost of verifying such an evaluation incurs computation and communication that are
sub-linear in |C|. Section 6 provides more details.

Achieving zero-knowledge and non-interactivity. Our interactive argument contains a single invocation of the sum-
check protocol, so we can make it zero-knowledge by essentially using the zero-knowledge variant of the sum-check
protocol developed in the context of doubly-efficient interactive proofs [91, 95]. Instead of running the sum-check
protocol as depicted in Figure 2, the the prover in the zero-knowledge variant of the sum-check protocol commits to all
its messages and proves—using a simple sigma protocol—that the verifier’s checks pass underneath the commitments.7

Zhang et al. [95, Section 4] in particular describe a zero-knowledge variant of the sum-check protocol in isolation,
which we can use in the place of the traditional sum-check protocol in our interactive argument.8 The only difference is
in the specific polynomial on which the sum-check protocol is run, so we will not discuss this further. Finally, since our
protocol is public coin, we can make it non-interactive in the random oracle model using the Fiat-Shamir heuristic [46].

5 A new public coin, succinct interactive argument for NP
This section describes a new public coin, succinct interactive argument for the arithmetic circuit satisfiability problem
under standard cryptographic hardness assumptions. Our description, terminology, and notation is influenced by prior
work that we build on [29, 40, 53, 87, 91].

Interactive arguments. An interactive argument is an interactive protocol between two entities: a prover P and a
verifier V . Both entities start with an NP statement (e.g., an arithmetic circuit satisfiability instance) and P’s goal is to
convince the validity of the statement (e.g., that the given arithmetic circuit satisfiability instance is indeed satisfiable).
The prover is given an additional input: a purported witness w to the NP statement that is being proven. V and P
exchange a sequence of messages over a bounded number of rounds and at the end of the interaction V outputs its
decision (accept or reject) indicating whether V believes that the circuit satisfiability instance is satisfiable. We now
formalize properties necessary for an interactive protocol to be called an interactive argument.

Definition 5.1. An interactive protocol between a pair of probabilistic polynomial time algorithms 〈P ,V〉 is called an
interactive argument for the arithmetic circuit satisfiability problem if the following conditions hold.

• Completeness: For any satisfiable arithmetic circuit satisfiability instance X = (C, x, y), there exists a witness w
such that for all r ∈ {0, 1}∗, Pr{〈P(w),V(r)〉(X) = accept} ≥ 1− εc, where εc is the completeness error.

• Soundness: For any non-satisfiable arithmetic circuit satisfiability instance X = (C, x, y), any probabilistic
polynomial time prover P∗, and for all w, r ∈ {0, 1}∗, Pr{〈P∗(w),V(r)〉(X) = accept} ≤ εs, where εs is the
soundness error.

Such an interactive argument is called succinct if the total communication between P and V is sub-linear in |C| and
is called public coin if V’s messages are chosen uniformly at random (i.e., independent of P’s messages). The rest of
this section describes a public coin, succinct interactive argument underneath Spartan. Toward the end of this section,
we prove that our protocol satisfies the above two properties.

5.1 Spartan’s starting point: Using the sum-check protocol as a foundation for succinct arguments

Suppose P holds a satisfying assignment z to an arithmetic circuit satisfiability instance (C, x, y), the goal of V is to
check if P indeed holds a satisfying assignment. Of course, P could send its purported satisfying assignment z to V and
then V can deterministically verify whether z is a satisfying assignment to (C, x, y). But, this incurs communication costs
proportional to |C|; V also incurs O(|C|) computational costs to verify the purported witness. Thus, it is not succinct.

As discussed in Section 3.3, the sum-check protocol [70] offers an efficient mechanism—with succinct commu-
nication costs—where a verifier V can probabilistically check a claim made by an untrusted prover P about the sum
of polynomial evaluations over a Boolean hypercube. However, to build a succinct interactive argument using the
sum-check protocol, we must solve the following sub-problems:

7Recent work of Xie et al. [93] proposes, in the context of doubly-efficient interactive proofs, an alternate approach to achieve zero-knowledge in the
sum-check protocol, by building on the work for Chiesa et al. [38]. This approach appears more light-weight compared to using cryptographic
commitments and sigma protocols, especially for the verifier.

8Wahby et al. [91] describe several optimizations to reduce communication and computation in the zero-knowledge sum-check protocol, which apply
well to our context.
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1. We must identify a low-degree multivariate polynomial G(·) such that it fits the structure of the sum-check protocol.
Specifically, for a given an arithmetic circuit satisfiability instance (C, x, y), we must identify an m-variate low-degree
polynomial that sums to a specific value (e.g., 0 ∈ F) over the m-dimensional Boolean hypercube {0, 1}m if and
only if (C, x, y) is satisfiable (i.e., there exists a satisfying assignment z to (C, x, y)).

2. We must make the total communication costs of the protocol to be sub-linear in |C|. This is non-trivial because in
the sum-check protocol V must evaluate a multivariate low-degree polynomial G(·) at a random point in its domain,
and G(·) depends on the entire satisfying assignment to (C, x, y). Thus, a straightforward evaluation of G(·) at an
arbitrary point in its domain would require O(|C|) communication (to receive a satisfying assignment) from P to V .

3. We must make V’s costs to participate in the protocol to be sub-linear in |C|. This seems non-trivial as V must at
least read the arithmetic circuit satisfiability instance (C, x, y) for which the proof is produced in entirety and C has
no structure (e.g., data-parallelism or uniformity).

The next subsection describes prior solutions to the three sub-problems. We then describe Spartan’s solution to the
first two sub-problems. The next section describes how Spartan solves the last sub-problem (§6).

5.2 Prior solutions to address the above sub-problems (or works closely related to Spartan)

Prior literature on probabilistic proofs, starting with the work of Babai et al. [8, 9], offers a low-degree polynomial
G(·) that fits the structure of the sum-check protocol. However, most prior proposals construct such a polynomial for
encoding the satisfiability of a Boolean formula [9] (or the correct execution of a program under a pointer machine [8]
or other NP-complete problems). These capture a general model of computation, but those representations are many
orders of magnitude more verbose than arithmetic circuits over a large finite field (verbosity translates to constants in
the prover’s and verifier’s costs in the argument protocol). Fortunately, Blumberg, Thaler, Vu, and Walfish [29] offer an
elegant low-degree polynomial as part of a multi-prover interactive proof (MIP) protocol in the context of proof-based
verifiable computation [8, 48, 53, 92]. Specifically, their low-degree polynomial enables verifying the satisfiability of an
arithmetic circuit via a combination of the sum-check protocol and other machinery discussed below. We now discuss
how prior work addresses the latter two sub-problems.

MIPs. MIP protocols solve the second sub-problem by employing two (or more) provers that are not allowed to
communicate (or collude) with one other. For example, in the protocol of Blumberg et al. [29] (which follows the
high-level structure of the two-prover protocol of Babai et al. [9]), V interacts with the first prover to run the sum-check
protocol. In the last step, V must evaluate G(·) at a random point (which as described above would require O(|C|)
computation by V and O(|C|) communication from P to V). Instead, V interacts with a second prover—via another
protocol called low-degree tests [6, 74]—to learn the evaluation of G(·) at a random point. Despite a sophisticated
analysis of soundness error, their protocol achieves only 23 bits of security when using a finite field of size 300 bits.
Although MIPs require two (or more) non-colluding provers, there exists an elegant compiler to transform MIPs (such
as the construction of Blumberg et al. [29]) to SNARKs [27]. However, the compiler of Bitansky and Chiesa [27] relies
on fully-homomorphic encryption (FHE) [50], which despite massive improvements, remains orders of magnitude more
expensive than simple public-key operations.

If we view Spartan in this light, Spartan is an efficient mechanism—without employing FHE or low-degree tests—to
compile the two-prover protocol of Blumberg et al. [29] and Babai et al. [9] (and other similar two-prover interactive
proofs) into a succinct interactive argument (and then into a zkSNARK without trusted setup). For non-interactivity,
Spartan assumes a random oracle model whereas the compiler of Bitansky and Chiesa [27] requires a non-falsifiable
variant of FHE. Furthermore, Spartan achieves a publicly verifiable argument whereas the compiler of Bitansky and
Chiesa only yields a designated verifier argument (i.e., the proof produced is meant for a specific verifier rather than any
verifier). Relatedly, Thaler [85, §3] sketches a mechanism to compile the two-prover protocol of Blumberg et al. [29] into
a single prover argument using a polynomial commitment scheme. However, the sketch does not offer a security proof
nor prescribe a concrete polynomial commitment scheme. More fundamentally, it does not solve the third sub-problem
to achieve sub-linear verification costs for the verifier.

Short PCPs. The short PCP construction of Babai et al. [8] does not require two provers. Instead, the prover P writes
down a string—a probabilistically checkable proof (PCP)—where a verifier V only needs to inspect at a small number
of locations in the string. In the construction of Babai et al. [8], the string includes two components: (1) the prover’s
responses to all possible V’s challenges in the sum-check protocol (an oracle access to such a string allows V to conduct
the sum-check protocol by accessing only a small subset of the bits in the string), and (2) a low-degree extension (LDE)
of a satisfying assignment Z to an NP-complete problem (which, with an oracle access, allows V to evaluate G(·)
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at a random point as required by the last step of the sum-check protocol). Unfortunately, as discussed in Section 2,
constructing a succinct argument via such short PCPs—using Kilian’s approach [66]—remains highly impractical.

Note that Spartan can be viewed as a more direct transformation of ideas in the short PCP construction of
Babai et al. [8] into a succinct interactive argument: (1) The prover in Spartan does not write down a low-degree
extension of Z (but instead cryptographically commits to a low-degree extension of Z using Z alone); (2) The Spartan
prover also does not write down all possible responses to the verifier’s challenges in the sum-check protocol; instead, the
prover engages in an interactive sum-check protocol with V; (3) Babai et al. [8] avoid multilinear extensions (MLE) of
a satisfying assignment since the resulting PCP string will be super-polynomial in the size of the NP instance; however,
since Spartan’s prover does not write down the entire PCP, the use of a MLE is not only more efficient than other LDEs
but also enables the use of simple cryptographic primitives to commit to such an MLE without ever materializing it. This
view of Spartan is reminiscent of ideas in the work of Ishai et al. [60], and the compiler of Bitansky and Chiesa [27].

Doubly-efficient interactive proofs. Doubly-efficient interactive proofs [40, 53, 84, 86–89] solve all the three sub-
problems—by restricting themselves to deterministic circuits in a layered form where inputs are at layer 0 and outputs
are at layer d (d > 1). They apply a sequence of sum-check protocols, one for each layer, where they transform a claim
about values computed at layer i to a claim about values computed at layer i− 1 in the arithmetic circuit. As a result,
the low-degree polynomial that V must evaluate as part of the final instance of the sum-check protocol is only over the
public inputs to the circuit, which V can locally compute. However, these works are restricted to low-depth circuits
since V’s work is linear in the circuit depth. Furthermore, the circuits in these works cannot take a non-deterministic
witness w as an input from P—without incurring O(|w|) communication from P to V (in other words, these works
cannot support of all of NP while achieving succinct communication costs). Besides generality, the lack of support
for non-determinism requires using Boolean circuits instead of arithmetic circuits in practice (Boolean circuits are
orders of magnitude more verbose than an equivalent arithmetic circuits for many high-level programs of interest).
This is because highly efficient transformations from high-level programs to arithmetic circuits make extensive use of
non-determinism for integer and bitwise operations [76, 83], storage [33, 79], and RAM [16, 21, 90].

Zhang et al. [94] extend doubly-efficient IPs to the complexity class NP by employing a polynomial commitment
scheme [65, 75] and then transform their interactive argument to a zkSNARK [95] using prior transformations [13, 42].
However, their polynomial commitment scheme requires a trusted setup. In a different work, Wahby et al. [91] transform
the Giraffe IP [89] (a doubly-efficient interactive proof in the GKR [53] line of work) into a zkSNARK without
requiring a trusted setup. They rely on an optimized variant of prior transformations [13, 42] in conjunction with a new
polynomial commitment scheme; the polynomial commitment scheme builds on ideas from Groth [55] and is tailored
to a specific type of polynomials called multilinear polynomials (§3.2). However, the zkSNARKs of Wahby et al. [91]
and Zhang et al. [95] retain the requirement of layered circuits in the original GKR protocol. Note that converting an
arbitrary arithmetic circuit into a layered form increases its size quadratically in the worst case [53].

To achieve sub-linear verification costs, Zhang et al. [94] and Wahby et al. [91] focus on data-parallel computations
where a circuit is composed of many identical sub-circuits. Unfortunately, this can pose severe restrictions in practice.
To mitigate perils of such a requirement, Wahby et al. [91] design an irregular circuit layer, called a redistribution
layer (RDL), that allows sharing witness values across different sub-circuits. Naturally, the verifier incurs linear costs
for RDL. Concretely, in two out of their three benchmarks, the verifier’s dominant cost is computation related to RDL.

To avoid the requirement of layered circuits in the GKR protocol [53], Kalai sketches “squashed GKR” [62]: instead
of running the GKR protocol on a layered circuit, it is run on a low-depth circuit that takes as input a witness whose
size is proportional to the number of gates in the original layered circuit. To avoid the verifier materializing the witness,
the proposal employs low-degree tests and a commitment scheme for low-degree polynomials. However, the proposal
produces only designated verifier proofs and it relies on heavy-weight machinery (e.g., FHE) for the commitment
scheme. A more recent version of the proposal [63] avoids prescribing a specific commitment scheme. However, more
fundamentally, neither of the two proposals addresses the third sub-problem to achieve sub-linear costs for the verifier.

If seen from the perspective of this line of work, Spartan is a way to eliminate the requirement of layered circuits
as well as a way to achieve sub-linear verification costs without requiring any homogeneity in circuit structure.9

Specifically, we observe that in the sum-check protocol (applied to a suitable low-degree polynomial G(·)), V can
delegate the required evaluation of G(·) at a random point in its domain to the prover P via a polynomial commitment

9In theory, the work of Canetti et al [35] proposes an alternate approach for achieving sub-linear verification costs: the verifier pre-evaluates the
necessary low-degree polynomials at all points in their domain (which resembles the prover’s effort in the short PCPs of Babai et al. [8]) and builds
a Merkle tree. Later, when verifying proof, the verifier (knowing only the root of the Merkle tree) can obtain desired polynomial evaluations from
the prover with sub-linear costs. The work to create the Merkle tree, while polynomial in the size of the circuit, is too expensive to be implemented
in practice. In contrast, Spartan offers a more straightforward approach where the public computation is linear in the size of the circuit.
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scheme. Furthermore, if we use the low-degree polynomial from Blumberg et al. [29] as G(·), then, as we explain below,
V only needs evaluations of multilinear polynomials at random points in their domain. Indeed, Spartan employs the
commitment scheme for multilinear polynomials from Wahby et al. [91, §6.1], which provides the necessary building
block without requiring a trusted setup.

5.3 A solution to sub-problem #1: encoding a circuit satisfiability instance as a low-degree polynomial

This section describes details of a low-degree polynomial G(·) from Blumberg et al. [29]. We borrow their exposition,
but introduce small changes to their notation, phrasing, and terminology.

Encoding arithmetic circuit satisfiability instances as functions. Given an arithmetic circuit satisfiability instance
(C, x, y), the following four function capture its structure. To introduce these functions, label gates in C with dlog |C|e-bit
identifiers, so that one can reference each gate in C uniquely with its identifier. Let s = dlog |C|e.

The four functions are as follows: (1) add : {0, 1}3s → {0, 1} denotes a function that takes as input three gate
identifiers in C and outputs a Boolean; (2) mul : {0, 1}3s → {0, 1} is defined similarly to add; (3) io : {0, 1}3s → {0, 1}
captures the public input/output gates of C; and (4) Ix,y : {0, 1}s → F captures C’s public input x and output y.
Specifically:

add(a, b, c) =

{
1 if gate a adds the outputs of gates b and c
0 otherwise

mul(a, b, c) =

{
1 if gate a multiplies the outputs of gates b and c
0 otherwise

io(a, b, c) =


1 if a is a public input gate, and b = c = 0
1 if a is an output gate, and b and c are in-neighbors of a
0 otherwise

Ix,y(a) =


xa if a is a public input gate (xa refers to an element of x assigned to a)
ya if a is an output gate
0 otherwise

A function that encodes a purported satisfying assignment. This section describes a function Fx,y(·) that can be
used to encode a purported satisfying assignment Z to (C, x, y) such that Fx,y(·) exhibits a desirable behavior (as detailed
below) if and only if Z is a satisfying assignment to (C, x, y).

Given a satisfying assignment Z to (C, x, y), it is natural to think of Z as a function that maps the identifier of a gate
g to the value assigned to g in Z. That is, Z : {0, 1}s → F. Now, consider the following function:

Fx,y(a, b, c) = io(a, b, c) · (Ix,y(a)− Z(a)) + add(a, b, c) · (Z(a)− (Z(b) + Z(c))) + mul(a, b, c) · (Z(a)− Z(b) · Z(c))

Lemma 5.1 (Blumberg et al. [29]). Fx,y(a, b, c) = 0 for all (a, b, c) ∈ {0, 1}3s if and only if Z is a satisfying assignment
to (C, x, y).

Proof. If Z is a satisfying assignment to (C, x, y) then it is easy to see that Fx,y(a, b, c) = 0 for all (a, b, c) ∈ {0, 1}3s.
For the other direction (i.e., Z is not a satisfying assignment to (C, x, y) yet Fx,y = 0 for all (a, b, c) ∈ {0, 1}3s), then
there are five cases (and they all yield a contradiction).

1. If a ∈ {0, 1}s is the identifier of a public input gate and if Z(a) 6= xa, then Fx,y(a, 0, 0) = Ix,y(a) − Z(a) =
xa − Z(a) 6= 0.

2. If a ∈ {0, 1}s is the identifier of a non-output addition gate with in-neighbors b and c, and if Z(a) 6= (Z(b) + Z(c)),
then Fx,y(a, b, c) = Z(a)− (Z(b) + Z(c)) 6= 0.

3. If a ∈ {0, 1}s is the identifier of a non-output multiplication gate with in-neighbors b and c, and if Z(a) 6= Z(b)·Z(c),
then Fx,y(a, b, c) = Z(a)− Z(b) · Z(c) 6= 0.
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4. If a ∈ {0, 1}s is the identifier of an output addition gate with in-neighbors b and c, and if ya 6= (Z(b) + Z(c)), then
Fx,y(a, b, c) = Ix,y(a)− Z(a) + (Z(a)− (Z(b) + Z(c))) = ya − (Z(b) + Z(c)) 6= 0.

5. If a ∈ {0, 1}s is the identifier of an output multiplication gate with in-neighbors b and c, and if ya 6= Z(b) · Z(c),
then Fx,y(a, b, c) = Ix,y(a)− Z(a) + (Z(a)− Z(b) · Z(c)) = ya − Z(b) · Z(c) 6= 0.

Unfortunately Fx,y(·) is a function, not a polynomial, so it cannot be directly used in the sum-check protocol. But, it
provides the necessary building block as described next.

A polynomial that encodes a purported satisfying assignment. Consider the following polynomial extension
F̃x,y : F3s → F of Fx,y, where f̃ refers to a polynomial extension of a function f .

F̃x,y(u1, u2, u3) = ĩo(u1, u2, u3) · (̃Ix,y(u1)− Z̃(u1))+

ãdd(u1, u2, u3) · (Z̃(u1)− (Z̃(u2) + Z̃(u3)))+

m̃ul(u1, u2, u3) · (Z̃(u2)− Z̃(u2) · Z̃(u3))

Since F̃x,y(·) is a low-degree polynomial over F in 3s variables, a verifier V could check if
∑

a,b,c∈{0,1}3s F̃x,y(a, b, c) =
0 using the sum-check protocol with a prover P . But, this is insufficient: the above sum being zero over the 3s-
dimensional Boolean hypercube does not imply that Fx,y(a, b, c) is zero for all (a, b, c) ∈ {0, 1}3s. This is because the
23s terms in the sum might cancel each other making the final sum zero—even when some of the individual terms are
not zero. The refinement below addresses this issue.

A polynomial that sums to zero if it encodes a satisfying assignment. Consider another polynomial Qx,y whose
coefficients are evaluations of F̃x,y over the Boolean hypercube {0, 1}3s. More specifically:

Qx,y(t) =
∑

u∈{0,1}3s

F̃x,y(u) · t
∑3s−1

i=0 ui·2i
, where ui is the ith bit of u

Note that the bit-string u ∈ {0, 1}3s is interpreted as concatenation of three s-bit elements and passed as a single
element to F̃x,y(·). Observe that Qx,y(t) is a zero-polynomial (i.e., it evaluates to zero for all points in its domain) if
and only if F̃x,y evaluates to zero at all points in the 3s-dimensional Boolean hypercube (and hence if and only if F̃x,y
encodes a satisfying assignment to (C, x, y)). To check if Qx,y(t) is a zero-polynomial, it suffices to check if Qx,y(τ) = 0
where τ ∈R F. This is because, any non-zero univariate polynomial of degree d has at most d roots.

Rewriting Qx,y(τ) in a form suitable for the sum-check protocol. The core observation is that τ
∑3s−1

i=0 ui·2i
can be

rewritten as a multilinear polynomial in variables {u0, . . . , u3s−1}. Define a polynomial S : {0, 1}3s × {0, 1}dlog 3se → F
where ui refers to the ith bit of u.

Sτ (u, i) =

{
τ 2i

if ui = 1
1 otherwise

Sτ (u, i) = 1 + (τ 2i
− 1) · ui

Notice that τ
∑3s−1

i=0 ui·2i
=
∏3s−1

i=0 Sτ (u, i). Thus:

Qx,y(τ) =
∑

u∈{0,1}3s

F̃x,y(u) ·
3s−1∏
i=0

Sτ (u, i)

=
∑

u∈{0,1}3s

Gx,y,τ (u)

Gx,y,τ (·) is a low-degree multivariate polynomial in variables {u0, u1, . . . , u3s−1}. If multilinear extensions of add,
mul, io, and Z are used in F̃x,y, then Gx,y,τ (·) is a low-degree polynomial with degree at most three in each variable (i.e.,
m = 3s = 3dlog |C|e, ` = 3 in the terminology of the sum-check protocol in Section 3.3). Section 5.5 describes how
Gx,y,τ (·) gets used in the Spartan interactive argument.
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5.4 A solution to sub-problem #2: making the communication cost of evaluating Gx,y,τ (·) sub-linear in |C|
The previous subsection established that for V to verify if an arithmetic circuit satisfiability instance (C, x, y) is satisfiable,
it can check if

∑
u∈{0,1}3s Gx,y,τ (u) = 0, where Gx,y,τ (·) is a low-degree polynomial in 3s variables with a degree of

at most 3 in each variable. If the verifier V uses the sum-check protocol to verify the above sum with the prover P ,
then we need a mechanism for V to evaluate Gx,y,τ (·) at a random point in its domain (z1, z2, z3) ∈ F3s (Figure 2,
line 17)—without incurring O(|C|) communication from P to V . Our solution to this problem is for V to employ a
polynomial commitment scheme. We now discuss details.

Details. Recall that

Gx,y,τ (u1, u2, u3) = F̃x,y(u1, u2, u3) ·
3s−1∏
i=0

Sτ ((u1, u2, u3), i)

Thus, to evaluate Gx,y,τ (·) at an arbitrary point in its domain (z1, z2, z3) ∈ F3s, V must be able to evaluate F̃x,y(·) as
the other terms in the expression can be evaluated locally without any information from P . Now, recall that

F̃x,y(u1, u2, u3) = ĩo(u1, u2, u3) · (̃Ix,y(u1)− Z̃(u1))+

ãdd(u1, u2, u3) · (Z̃(u1)− (Z̃(u2) + Z̃(u3)))+

m̃ul(u1, u2, u3) · (Z̃(u2)− Z̃(u2) · Z̃(u3))

Given the above closed-form expression, to evaluate F̃x,y(·) at (z1, z2, z3) ∈ F3s, V must evaluate Z̃(·) at three
different points: z1, z2, and z3 where each zi ∈ Fs. This is because all other terms in the above expression for F̃x,y(·) can
be computed locally by V using (C, x, y) without access to a purported satisfying assignment (Section 6 discusses how
to reduce the cost of those evaluations to be sub-linear in |C|). To evaluate Z̃(·) at z1, z2, and z3, V can of course receive
a purported satisfying assignment from P before the sum-check protocol begins and then evaluate Z̃(·) at three points
in O(|C|) time, but this incurs O(|C|) communication, which we wish to avoid. We now discuss how a polynomial
commitment scheme enables achieving succinct communication.

Achieving succinct communication. The core idea is simple: make P cryptographically commit to Z̃(·) before
the sum-check protocol begins using a polynomial commitment scheme [65, 75]. Informally speaking, a polynomial
commitment scheme enables the following. A sender (e.g., P) can send a commitment to a polynomial to a receiver
(e.g., V), and then later decommit evaluations of the committed polynomial at any point in its domain. Such schemes are
evaluation binding: a probabilistic polynomial time sender cannot commit to one polynomial but decommit evaluations
of a different polynomial at locations requested by the receiver (except for a small probability). Thus, in our context, V
can request a commitment to Z̃(·) before the sum-check protocol begins and then decommit evaluations of Z̃(·) at the
required three points z1, z2, and z3 in the domain of Z̃(·).

There exist many polynomial commitment schemes in the literature [65, 75, 94], but most of them require a trusted
setup that produces a structured common reference string with a secret trapdoor (analogous to GGPR-style protocols),
which we wish to avoid. Fortunately, Wahby et al. [91, §6.1] describe a polynomial commitment scheme tailored for
multilinear polynomials in a related context. Their scheme, which is public coin and interactive, does not require a
trusted setup nor makes non-standard assumptions. The non-interactive version of their scheme relies on the Fiat-Shamir
heuristic [46], so it requires non-standard assumptions and is proven secure in the random oracle model. Nevertheless,
both the interactive and non-interactive variants are consistent with our desired list of qualities (§1). Finally, although
their commitment scheme applies only to multilinear polynomials, it is acceptable in our context. This is because, for
efficiency, as in prior work [29, 40], we always use multilinear extensions (§3.2) in the construction of Gx,y,τ (·), so Z̃(·)
is a multilinear polynomial in our context.

More formally, we consider a polynomial commitment scheme for multilinear polynomials with a tuple of four
algorithms Πpc = (PolyGen, PolyCommit, PolyEval, PolyEvalVerify). Without loss of generality, a multilinear polynomial
over a finite field F in m variables can be represented with a unique vector Z ∈ Fn where n = 2m: Z contains evaluations
of the given multilinear polynomial at all the 2m binary inputs in a canonical order. Our description of the four algorithms
is tailored to this view of multilinear polynomials since the vector Z is explicitly realized by P in our particular use case.
Note that in the interactive variant of the polynomial commitment scheme, PolyEval and PolyEvalVerify are interactive
protocols rather than local algorithms.

• pp← PolyGen(1λ, n): takes as input security parameter λ and the size of the vector Z; produces a public parameter
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pp (e.g., the description of a group G in which the discrete logarithm problem is hard and sequence of randomly
chosen generators for G). For simplicity, pp includes n as well.

• Ẑ ← PolyCommit(pp, Z): takes as input public parameters generated by the above algorithm and a vector Z ∈ Fn

that uniquely represents the multilinear polynomial to be committed; produces a commitment Ẑ.

• (v,π)← PolyEval(pp, Z, z): takes as input public parameters produced by PolyGen, a vector Z ∈ Fn representing a
unique multilinear polynomial, and a point z ∈ Fm in the domain of the polynomial; outputs v = Z̃(z) where v ∈ F,
and a proof of correct evaluation π.

• b ← PolyEvalVerify(pp, Ẑ, z, v,π): takes as input public parameters generated by PolyGen, a commitment to a
multilinear polynomial produced by PolyCommit, z ∈ Fm, v ∈ F, and a proof π; verifies if v is the correct evaluation
of the polynomial underneath the commitment Ẑ using pp, π, and Ẑ; outputs b = 1 denoting accept or b = 0
indicating reject.

Definition 5.2. A tuple of four algorithms Πpc = (PolyGen, PolyCommit, PolyEval, PolyEvalVerify) is a polynomial
commitment scheme for multilinear polynomials over a finite field F if the following conditions hold.

• Completeness. For any multilinear polynomial represented by a vector Z ∈ Fn and security parameter λ,

Pr
{

pp← PolyGen(1λ, n, c); Ẑ ← PolyCommit(pp, Z); (v,π)← PolyEval(pp, Z, z):
PolyEvalVerify(pp, Ẑ, z, v,π) = 1 ∧ v = Z̃(z)

}
≥ 1− negl(λ)

• Soundness. For any probabilistic polynomial time adversary A, size parameter n ≥ 1, and security parameter λ,

Pr
{

pp← PolyGen(1λ, n, c); (Z, z, v,π) = A(1λ, pp); Ẑ ← PolyCommit(pp, Z):
PolyEvalVerify(pp, Ẑ, z, v,π) = 1 ∧ v 6= Z̃(z)

}
≤ negl(λ)

Lemma 5.2. There exists a polynomial commitment scheme for multilinear polynomials with perfect completeness and
soundness where for a multilinear polynomial represented by a vector Z ∈ Fn, PolyCommit produces a commitment of
size O(n1/c), PolyEval produces a proof of size O(n1/c), and PolyEvalVerify runs in time O(n1−1/c).

Proof. The desired result is implied by more general version of the lemma [91, Lemma 5].

Additionally, Wahby et al. [91] prove that their polynomial commitment scheme satisfies a stronger notion of
soundness called generalized special soundness. Specifically, they prove that once the prover in their scheme commits
to a multilinear polynomial by sending a commitment Ẑ, there exists an extractor algorithm that, given oracle access to
the prover, can extract the underlying vector Z (and hence the entire polynomial Z̃(·) and thus the purported satisfying
assignment in our context). We note that our interactive argument, which employs their commitment scheme for Z̃(·),
satisfies a stronger notion of knowledge soundness (this can be proved by adapting their proof that their interactive
argument satisfies knowledge soundness).

5.5 The Spartan succinct interactive argument

We now provide an end-to-end description of the Spartan interactive argument. The verifier V and the prover P start with
an arithmetic circuit satisfiability instance (C, x, y) and P’s goal is to convince V that it there is a satisfying assignment
Z to (C, x, y), which from Lemma 3.1 implies that there exists a witness w such that C(x, w) = y. The following inline
figure depicts the entire interactive argument protocol.

Inputs to both V and P: a circuit satisfiability instance (C, x, y) and public parameters pp for the polynomial
commitment scheme produced by PolyGen(1λ, n, c) for security parameter λ, n = |C|, and a constant c ≥ 2.

P’s input: a satisfying assignment Z to (C, x, y)

V’s output: accept or reject indicating its decision.

15



Interactive protocol between P and V .

• P → V: P sends to V a commitment Ẑ to the unique multilinear polynomial Z̃(·) using the PolyCommit
algorithm discussed in Section 5.4. V outputs reject if the received commitment is not well-formed.

• V → P: V samples a random τ ∈R F and sends τ to P .

• V ↔ P: V and P execute the sum-check protocol using the polynomial Gx,y,τ (·) from Section 5.3 with
H = 0, m = 3s, and ` = 3. On line 17 of the sum-check protocol (Figure 2), V must evaluate Gx,y,τ (·) at
r = (r1, . . . , r3s) = (z1, z2, z3) ∈ F3s (where each zi ∈ Fs) and check if Gx,y,τ (r) = e, where e ∈ F. This is
done as follows.

• V → P: V sends to P three points z1, z2, and z3 where each zi ∈ Fm and m = log n.

• P → V: P runs (vi,πi)← PolyEval(pp, Z, zi) for all i ∈ {1, 2, 3} and sends to V three evaluations along
with three proofs (vi,π) for all i ∈ {1, 2, 3}.

• V runs bi ← PolyEvalVerify(pp, Ẑ, zi, vi,πi) for all i ∈ {1, 2, 3} outputting reject if any bi = 0.
(Section 5.6 reduces the number of decommits from three to one.)

• V locally evaluates:
vx,y ← Ĩx,y(z1)

vio ← ĩo(z1, z2, z3)

vadd ← ãdd(z1, z2, z3)

vmul ← m̃ul(z1, z2, z3)

(The latter three evaluations take time O(|C|); Section 6 makes this sub-linear in |C|.)
• V locally checks and returns accept if the following condition holds (otherwise V returns reject):

e = (vio · (vx,y − v1) + vadd · (v1 − (v2 + v3) + vmul · (v1 − v2 · v3)) ·
∏3s−1

i=0 Sτ (u, i)

The following theorem establishes that Spartan is an interactive argument.

Theorem 5.1. The above protocol is an interactive argument (Definition 5.1) under the discrete logarithm assumption
with εc = 0 and εs = |C|3/|F|+ ` · m/|F|+ negl(λ), where ` = 3 and m = 3 log |C|, negl(·) is a negligible function,
and λ is the security parameter.

Proof. Perfect completeness follows from the perfect completeness of the sum-check protocol and of the commitment
scheme for multilinear polynomials.

We now prove soundness and show that εs is as claimed. Suppose a probabilistic polynomial time prover P∗
commits to a multilinear polynomial Z̃(·) before the sum-check protocol begins. There are two cases. The first is when
the following event E happens: v1 = Z̃(z1) ∧ v2 = Z̃(z2) ∧ v3 = Z̃(z3) (i.e., vi = Z̃(zi) for any zi in the domain of Z̃(·)).
The second case is the event ¬E, which denotes the complement of E.

By standard laws of probability, we have the following. For any non-satisfiable arithmetic circuit satisfiability
instance X = (C, x, y), any probabilistic polynomial time prover P∗, and for all w, r ∈ {0, 1}∗,

Pr{〈P∗(w),V(r)〉(X) = accept} = Pr{(〈P∗(w),V(r)〉(X) = accept) ∧ E}+ Pr{(〈P∗(w),V(r)〉(X) = accept) ∧ ¬E}
≤ Pr{(〈P∗(w),V(r)〉(X) = accept)|E}+ Pr{¬E}
≤ (|C|3/|F|+ 9 log |C|/|F|) + negl(λ), (lemmas 5.3 and 5.2)

We now prove a supporting lemma.

Lemma 5.3. For any non-satisfiable arithmetic circuit satisfiability instance X = (C, x, y), any probabilistic polynomial
time prover P∗, and for all w, r ∈ {0, 1}∗, Pr{〈P∗(w),V(r)〉(X) = accept|E} ≤ |C|3/|F|+ ` · m/|F|, where ` = 3
and m = 3 log |C|.

Proof. The case where E happens is analogous to the one where V has an oracle access to a multilinear polynomial Z̃(·)
and hence to the polynomial Gx,y,τ (·). We analyze this case as follows.
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If (C, x, y) is not satisfiable, then Qx,y(t) is not a zero-polynomial. By the Schwartz-Zippel lemma, Qx,y(t) = 0 for at
most d/|F| values of t in the domain of Qx,y(·), where d is the degree of Qx,y(·). In our context, d = 23s = 23 log s = |C|3,
so Qx,y(·) is zero for at most |C|/|F| points in the domain of Qx,y(·).

There are two cases to consider. First, if V chooses a τ ∈ F where Qx,y(τ) = 0, then the Spartan interactive argument
protocol may make the verifier to incorrectly output accept. Second, If V chooses a τ ∈ F where Qx,y(τ) 6= 0, then a
malicious prover begins with a false claim in the sum-check protocol. By the soundness of the sum-check protocol, the
malicious prover succeeds with probability at most ` ·m/|F|, where m = 3s = 3 log |C| and ` = 3 and the probability is
over V’s randomness. Given these two cases, we can use a standard union bound to establish the desired result.

5.6 Reducing the number of polynomial decommits

In the above interactive argument protocol, V must decommit Z̃(·) at three points in its domain. We now discuss a prior
interactive protocol [29] to reduce this to one. Note that a similar technique appears in doubly-efficient interactive
proofs to reduce two evaluations to one [40, 53, 87, 89, 94]. The reduction is as follows.

Suppose γ(t) : F→ Fs denotes the degree-2 curve that passes through the points at which V wishes to evaluate Z̃(·)
i.e., γ(0) = z1, γ(1) = z2, γ(2) = z3. Through standard interpolation, γ is defined by the following closed form:

γ(t) = 2−1(t − 2)(t − 1) · z1 − (t − 2)t · z2 + 2−1t(t − 1) · z3

1. P sends to V three evaluations of Z̃(·) at z1, z2, and z3—without any proofs. Of course, P can respond with any
values (denote them as v1, v2, and v3 that are purported to be evaluations of Z̃(·) at z1, z2, and z3 respectively).

2. V asks P to send a degree-2s univariate polynomial K∗ where a correct prover would send Z̃(·) restricted to γ(t)
i.e., K∗ = Z̃ ◦ γ (K∗ can be represented with 2s + 1 elements in F).

3. V checks that K∗ agrees with its definition i.e., K∗(0)=v1, K∗(1)=v2, K∗(2)=v3. If all these checks pass, V samples
ρ ∈R F and sets z4 = γ(ρ) and v4 = K∗(ρ).

The above protocol provides the following guarantee to V , where the probability is over V’s random choices. Except
for a probability 2s/|F|, V can assume that Z̃(zi) = vi for all 1 ≤ i ≤ 3 as long as it can verify that Z̃(z4) = v4. Thus,
instead of verifying three evaluations of Z̃(·) via the polynomial commitment scheme, V verifies if Z̃(z4) = v4. Figure 3
depicts the Spartan interactive argument protocol that employs this optimization.

6 Computation commitments: A technique to achieve sub-linear verification time
This section describes a scheme to create a short cryptographic commitment to the description of an arithmetic
circuit. We refer to such commitments as computation commitments. The primary application of this scheme is to
make the verifier’s costs in Spartan’s interactive argument (§5) to be sub-linear in |C|, thereby addressing the third
sub-problem; so, we describe computation commitments in that context. We note that this scheme can be used to achieve
sub-linear verification costs in Hyrax [91] and the protocol of Zhang et al. [94, 95]—even when circuits do not have
data-parallelism or other structure. However, it may less profitable in the context of those systems, on concrete terms,
because a separate commitment must be created for each layer of an arithmetic circuit.

6.1 Motivation and scheme

Recall from Section 5.3 that an arithmetic circuit can be encoded as four functions: add, mul, io, and Ix,y. We now
examine the cost of evaluating these functions as part of verifying a proof.

Of these four functions, only the last one, Ix,y, depends on the concrete values of the public inputs and outputs of an
arithmetic circuit satisfiability instance (C, x, y). Since Ĩx,y(·) is a multilinear extension of Ix,y(·), the cost of evaluating
Ĩx,y(·) at any point in its domain is linear in |x|+ |y| [87]. Thus, the verifier can afford to evaluate Ĩx,y(·) at a random
point in its domain when verifying a proof for (C, x, y).

The other three functions depend only on the structure of the arithmetic circuit C (i.e., they do not depend on x, y,
or a purported satisfying assignment to (C, x, y)). However, evaluating ãdd(·), m̃ul(·), and ĩo(·) at a point (z1, z2, z3) in
their domain (lines 26–28 in Figure 3) incurs O(|C|) cost. The O(|C|) cost is unavoidable if the circuit C has no structure
such as data-parallelism or other homogeneity. We now discuss a new primitive, called computation commitments, that
a verifier can use to verifiably outsource this work to the prover by incurring a one-time cost of O(|C|). We emphasize
that the one-time computation by the verifier is a public computation, so there are no secret trapdoors.
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Computation commitments is a set of four algorithms: Πcc = (ComputationGen, ComputationCommit, ComputationDecommit,
ComputationDecommitVerify).

1. pp← ComputationGen(1λ, n): On input security parameter λ and an upper bound on the circuit size n, it produces
public parameters pp.

2. Ĉ ← ComputationCommit(pp, C): Produces a short commitment to C using public parameters pp.

3. (v,π)← ComputationDecommit(pp, C, z): Produces an evaluation v along with a proof π when given with public
parameters pp, a circuit C, and a location z in the domain of Ĉ.

4. b ← ComputationDecommitVerify(pp, Ĉ, z, v,π): Outputs true if v is the correct evaluation of object underneath
commitment Ĉ at location z using the supplied proof π and public parameters pp.

We now discuss a concrete scheme for computation commitments. We assume a polynomial commitment scheme
for multilinear polynomials Πpc (the scheme from the prior section suffices for our purposes).

1. pp← ComputationGen(1λ, n): Invoke Πpc.PolyGen(1λ, n, c) and output public parameters pp produced by the call.

2. Ĉ ← ComputationCommit(pp, C): Encode the circuit C into three functions add(·), mul(·), io(·), which in turn
determine three multilinear polynomials ãdd(·), m̃ul(·), ĩo(·); call Πpc.PolyCommit thrice once for each multilinear
polynomial and output a vector of polynomial commitments. Ĉ = ( ˆadd, m̂ul, îo).

3. (v,π) ← ComputationDecommit(pp, C, z): Invoke Πpc.PolyEval thrice once for each multilinear polynomial in
Ĉ = ( ˆadd, m̂ul, îo) at location z; output evaluations of the three multilinear polynomials along with proofs for each
i.e., v = (vadd, vmul, vio) and π = (πadd,πmul,πio).

4. b← ComputationDecommitVerify(pp, Ĉ, z, v,π): Invoke Πpc.PolyEvalVerify thrice once for each of Ĉ = ( ˆadd, m̂ul, îo)
at location z and the corresponding evaluation and proof; output reject if any invocation outputs reject.

It is straightforward to show that the above commitment scheme provides a standard notion of binding by essentially
proving a reduction to the binding property of the underlying polynomial commitment scheme.

6.2 Using computation commitments in the Spartan interactive argument

We now discuss how the above commitment scheme gets used in the Spartan interactive argument.

Creating computation commitments. V calls ComputationGen(1λ, n) to create public parameters pp. Then, when
a verifier V reads the description of an arithmetic circuit C, it calls ComputationCommit(pp, C), which outputs a
commitment Ĉ. With the aforementioned choice of the polynomial commitment scheme, the total size of the computation
commitment is O(|C|1/c) for any c ≥ 2, which is of size that is sub-linear in O(|C|). And, the verifier incurs O(|C|) time
to create such a commitment. However, as we discuss below, this one-time cost is amortized over all future verification
of proofs associated with C. Note that in practice, these commitments can be created at the time the verifier compiles a
high-level program to a circuit satisfiability instance.

Using computation commitments. When participating in the Spartan interactive argument protocol, the verifier starts
with a computation commitment to C, say Ĉ. It must evaluate the polynomials underneath the commitment at location z =
(z1, z2, z3) in the Spartan interactive argument. To assist the verifier, the prover invokes ComputationDecommit(pp, C, z)
to produce an evaluation along with a proof. The verifier then invokes ComputationDecommitVerify and outputs reject
if the innovation returns reject. If not, the verifier uses the evaluation in the rest of the protocol. The verifier incurs an
additional O(|C|1−1/c) time to invoke ComputationDecommitVerify, and the prover, which is in charge of providing the
evaluation, incurs O(|C|) cost to execute ComputationDecommit.

Figure 5 depicts the Spartan succinct interactive argument that uses computation commitments to achieve sub-linear
verification costs. It is straightforward to show that the modified protocol provides perfect completeness and soundness
as in the previous section.

7 Discussion
Achieving post-quantum security. A reasonable criticism for this work is that Ligero [3], zkSTARKs [14], and
Aurora [19] are plausibly post-quantum secure (as they rely only on symmetric key primitives), but Spartan as
described in this paper is not. However, as detailed in Section 5, Spartan is based on the sum-check protocol (which is
unconditionally secure) and a commitment scheme for multilinear polynomials (which is secure under the hardness of
computing discrete logarithms). Thus, the cryptographic hardness assumptions made by Spartan stem from the latter
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primitive. Recent work by Baum et al. [10] proposes a lattice-based zero-knowledge argument protocol that is plausibly
post-quantum secure. Although their verifier does not achieve sub-linear costs, we can substitute the DLOG-based
primitives in the commitment scheme (used in Spartan) with one based on their scheme. In principle, this makes it
possible to obtain a post-quantum secure variant of Spartan. We leave it to future work to work out all details.
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1: function SpartanVerifier(Circuit C, Public input x, Output y, Param pp)
2: // receive a commitment to a multilinear polynomial Z̃(·)
3: Ẑ ← ReceiveFromProver()
4:
5: τ

R←− F
6: SendToProver(τ )
7:
8: // apply the sum-check protocol to polynomial Gx,y,τ
9: m← 3s, H ← 0, ` = 3

10: (e, r1, . . . , r3s)← SumCheckWithoutFinalCheck(Gx,y,τ , m, H, `)
11:
12: // receive evaluations of Z̃(·) at z1 ← (r1, . . . rs), z2 ← (rs+1, . . . , r2s), z3 ← (r2s+1, . . . , r3s)
13: SendToProver(z1, z2, z3)
14: (v1, v2, v3)← ReceiveFromProver()
15: (z4, v4)← ReduceFromThreeToOne(s, z1, v1, z2, v2, z3, v3)
16:
17: // decommit the evaluation of Z̃(·) at z4
18: SendToProver(z4)
19: (v′4,π4)← ReceiveFromProver()
20: b← PolyEvalVerify(pp, Ẑ, z4, v4,π4) // verify if the returned decommitments are correct
21: if b 6= true then
22: return reject

23:
24: // locally evaluate terms of Gx,y,τ (·) that do not depend on a satisfying assignment
25: vx,y ← Ĩx,y(z1)

26: vio ← ĩo(z1, z2, z3)

27: vadd ← ãdd(z1, z2, z3)

28: vmul ← m̃ul(z1, z2, z3)
29:
30: // perform the final check in the sum-check protocol
31: if e 6= (vio · (vx,y − v1) + vadd · (v1 − (v2 + v3) + vmul · (v1 − v2 · v3)) ·

∏3s−1
i=0 Sτ (u, i) then

32: return reject

33: else return accept

34:
35: function SumCheckWithoutFinalCheck(G, m, H, `)
36: (r1, r2, . . . , rm)←R Fm // sample m field elements randomly
37: e← H
38: for i = 1, 2, . . . , m do
39: // An honest PSC returns Gi(·) as {Gi(0), Gi(1), . . .Gi(`)} since Gi(·) is a degree-` univariate polynomial
40: // when i = 1, G1(X1) =

∑
(x2,...,xm)∈{0,1}m−1 G(X1, x2, . . . , xm)

41: // when i > 1, Gi(Xi) =
∑

(xi+1,...,xm)∈{0,1}m−i G(r1, . . . , ri−1, Xi, xi+1, . . . , xm)

42: Gi(·)← RECEIVEFROMPROVER()
43:
44: if Gi(0) + Gi(1) 6= e then
45: return reject

46:
47: SENDTOPROVER(ri)
48: e← Gi(ri) // evaluate Gi(ri) using its point-value form received from the prover
49: return e, (r1, r2, . . . , rm)

Figure 3: The Spartan succinct interactive argument described from the perspective of the verifier. SumCheck-
WithoutFinalCheck differs from the protocol in Figure 2 in that it returns without performing the final check on
G(r1, r2, . . . , rm) = e. PolyEvalVerify refers to a routine in the polynomial commitment scheme for multilinear poly-
nomials (see text for details). ReduceFromThreeToOne is depicted in Figure 4. Our depiction is inspired by prior
works [29, 87, 91]. 24



1: function ReduceFromThreeToOne(s, z1, v1, z2, v2, z3, v3)
2: // receive a degree-2s polynomial K(·) in point-value representation
3: // a correct prover returns K = Z̃◦` for ` : F→ Fs, where `(t) = 2−1(t−2)(t−1)·z1−(t−2)t·z2 +2−1t(t−1)·z3
4: k0, k1, . . . , k2s ← ReceiveFromProver()
5: if k0 6= v1 or k1 6= v2 or k2 6= v3 then
6: return reject
7: r R←− F
8: z4 ← `(r)
9: v4 ← K∗(r) // K∗ is the polynomial interpolation of k0, . . . , k2s

10: return (z4, v4)

Figure 4: An interactive protocol, depicted from the verifier’s perspective, for reducing three evaluations of a polynomial
into a single evaluation (see text for details).

25



1: function SpartanVerifier(Circuit C, Public input x, Output y, PolyParam pppc, CompParam ppcc, ComputationCom-
mitment Ĉ)

2: // receive a commitment to a multilinear polynomial Z̃(·)
3: Ẑ ← ReceiveFromProver()
4:
5: τ

R←− F
6: SendToProver(τ )
7:
8: // apply the sum-check protocol to polynomial Gx,y,τ
9: m← 3s, H ← 0, ` = 3

10: (e, r1, . . . , r3s)← SumCheckWithoutFinalCheck(Gx,y,τ , m, H, `)
11:
12: // receive evaluations of Z̃(·) at z1 ← (r1, . . . rs), z2 ← (rs+1, . . . , r2s), z3 ← (r2s+1, . . . , r3s)
13: SendToProver(z1, z2, z3)
14: (v1, v2, v3)← ReceiveFromProver()
15: (z4, v4)← ReduceFromThreeToOne(s, z1, v1, z2, v2, z3, v3)
16:
17: // decommit the evaluation of Z̃(·) at z4
18: SendToProver(z4)
19: (v′4,π4)← ReceiveFromProver()
20: b← PolyEvalVerify(pppc, Ẑ, z4, v4,π4) // verify if the returned decommitments are correct
21: if b 6= true then
22: return reject

23:
24: vx,y ← Ĩx,y(z1) // locally evaluate Ĩx,y(·)
25:
26: // employ computation commitments to evaluate remaining terms of Gx,y,τ (·)
27: z← (z1, z2, z3)
28: (v,π)← ReceiveFromProver(z)
29: b← ComputationDecommitVerify(pppc, Ẑ, z, v,π) // verify if the returned decommitment is correct
30: if b 6= true then
31: return reject

32: (vadd, vmul, vio)← v
33:
34: // perform the final check in the sum-check protocol
35: if e 6= (vio · (vx,y − v1) + vadd · (v1 − (v2 + v3) + vmul · (v1 − v2 · v3)) ·

∏3s−1
i=0 Sτ (u, i) then

36: return reject

37: else return accept

Figure 5: Spartan succinct interactive argument—with sub-linear verification costs via the use of computation
commitments—from the verifier’s perspective. This protocol differs from Figure 3 in one aspect: on line 28 of
this protocol, the verifier takes the assistance of the prover to evaluate three multilinear polynomials ãdd(·), m̃ul(·), and
ĩo(·) at location z = (z1, z2, z3).
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