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Abstract

This paper introduces Spartan, a new family of zero-knowledge succinct non-
interactive arguments of knowledge (zkSNARKs) for the rank-1 constraint satisfiabil-
ity (R1CS), an NP-complete language that generalizes arithmetic circuit satisfiability.
A distinctive feature of Spartan is that it offers the first zkSNARKs without trusted
setup (i.e., transparent zkSNARKs) for NP where verifying a proof incurs sub-linear
costs—without requiring uniformity in the NP statement’s structure. Furthermore,
Spartan offers zkSNARKs with a time-optimal prover, a property that has remained
elusive for nearly all zkSNARKs in the literature.

To achieve these results, we introduce new techniques that we compose with the
sum-check protocol, a seminal interactive proof protocol: (1) computation commit-
ments, a primitive to create a succinct commitment to a description of a computation;
this technique is crucial for a verifier to achieve sub-linear costs after investing a
one-time, public computation to preprocess a given NP statement; (2) SPARK, a cryp-
tographic compiler to transform any existing extractable polynomial commitment
scheme for multilinear polynomials to one that efficiently handles sparse multilinear
polynomials; this technique is critical for achieving a time-optimal prover; and (3)
a compact encoding of an R1CS as a low-degree polynomial. The end result is a
public-coin succinct interactive argument of knowledge for NP (which can be viewed
as a succinct variant of the sum-check protocol); we transform it into a zkSNARK
using prior techniques. By applying SPARK to different commitment schemes, we
obtain four zkSNARKs where the verifier’s costs and the proof size range from
O(log2 n) to O(

√
n) depending on the underlying commitment scheme (n denotes

the size of the NP statement). Three of these schemes do not require a trusted setup
and one requires a one-time trusted setup that is universal and updateable.

We implement Spartan as a library in about 8,000 lines of Rust. We use the library
to build a transparent zkSNARK in the random oracle model where security holds
under the discrete logarithm assumption, and compare it with recent zkSNARKs.
Among transparent SNARKs, Spartan offers the fastest prover with a speedup of
17.5–115× depending on the baseline, produces proofs that are shorter (except
compared to SuperSonic and Bulletproofs) by 2–540×, and incurs verification times
that are faster (except compared to Fractal) by 71–240×. When compared to the
state-of-the-art zkSNARK with trusted setup, Spartan’s prover is 1.5× faster for
arbitrary R1CS instances and > 10× faster for data-parallel workloads.

1 Introduction
We revisit the problem of designing zero-knowledge succinct non-interactive arguments
of knowledge (zkSNARKs) [27, 63] for a general class of applications (i.e., for the
complexity class NP): they enable a computationally-bounded prover to convince the
membership of a problem instance in an NP language by producing a proof—without
revealing anything besides the validity of the statement. Furthermore, the proof size
and the verifier’s costs are sub-linear in the size of the statement. We are motivated
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to design zkSNARKs because there is significant interest in employing them in many
applications that involve various forms of delegation of computation for scalability or
privacy [16, 33, 35, 37, 39, 44, 48, 50, 51, 53, 58, 78, 90, 93–98, 100, 107, 111].

Specifically, we are interested in zkSNARKs that prove the satisfiability of R1CS in-
stances over a finite field F (an NP-complete language that generalizes arithmetic circuit
satisfiability; see §2.1 for details): given a problem instance X = (F , A, B, C, io, m, n), we
desire a proof that demonstrates the knowledge of a witness w such that SatR1CS(X, w) =
1.1 We desire zkSNARKs for R1CS because there exist efficient compiler toolchains to
transform high-level applications of interest to R1CS [17, 19, 23, 37, 79, 90, 93, 97, 104].

There are many approaches to construct such arguments in the literature, starting
with the work of Kilian [77] who provided the first construction of a succinct interactive
argument protocol by employing probabilistically checkable proofs (PCPs) [7, 8, 11,
54, 56, 71] in conjunction with Merkle trees [85]. Micali [86] made a similar protocol
non-interactive in the random oracle model, thereby obtaining the first zkSNARK.
Unfortunately, the underlying PCP machinery is extremely expensive for the prover
and the verifier—despite foundational advances [18, 24–26]. Thus, the first works with
an explicit motivation to make proof systems practical [50, 94, 96, 97, 100] refine and
implement interactive protocols of Ishai et al. [72] and Goldwasser et al. [64], which do
not require asymptotically-efficient PCPs. The principal downside is that they achieve
practicality for only a restricted class of NP statements.

In a breakthrough result, Gennaro, Gentry, Parno, and Raykova (GGPR) [61] address
the above issue with a new formalism for encoding computations called quadratic arith-
metic programs (QAPs). By building on Ishai et al. [72], Groth [66], and Lipmaa [82],
GGPR construct a zkSNARK for R1CS in which the prover’s running time is O(n log n),
the size of a proof is O(1), and the verifier incurs O(|io|) computation to verify the
proof, where n is the size of the statement and io denotes the public input and output.
Unfortunately, GGPR’s zkSNARK requires a per-statement trusted setup that produces a
O(n)-sized structured common reference string and the trapdoor used in the setup process
must be kept secret to ensure soundness. Relying on such a trusted setup is often infeasi-
ble in practice, especially for applications that do not have any trusted authorities. There
exist several advances atop GGPR, but they retain a trusted setup [19, 23, 29, 67, 69, 90],
or require interaction [95].

The above state of affairs has motivated another class of works (called transparent
zkSNARKs or zkSNARKs without trusted setup) that aim to eliminate the require-
ment of a trusted setup—while also providing performance similar to (or even better
than) GGPR [61].2 They prove security in the random oracle model, which is accept-
able in practice. There are six works in this class. First, Hyrax [105] extends a line
of work [50, 98, 100–103] that refines the doubly-efficient interactive proofs (IPs) of
Goldwasser et al. [64]. Second, Ligero [5] builds an interactive PCP [75] using the “MPC
in the head” paradigm [73] and then transforms it to a zkSNARK. Third, zkSTARKs [15],
Aurora [20], and Fractal [47] build on interactive oracle proofs (IOPs) [21, 91], a general-
ization of PCPs and IPs. Fourth, Bulletproofs [41] builds on the work of Bootle et al. [34]

1Although we use the word “proof”, we mean proofs that are computationally sound [36].
2The work of Kilian [77] and Micali [86] do not suffer from the trusted setup issue, but as mentioned earlier,
they are infeasible to be used in practice.
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and leverages a special-purpose argument protocol for inner product operations. Fifth,
Virgo [109] builds an IOP-based polynomial commitment scheme for dense polynomials
and couples it with a prior system [108] in the line of work that includes Hyrax. Sixth,
SuperSonic [38] replaces the polynomial commitment scheme in PLONK [59] (which
requires a trusted setup) with one based on groups of unknown order, which can be
instantiated without a trusted setup using class groups.

Unfortunately, these works face the following problems. First, the computational
model of Hyrax [104] and Virgo [109] is layered arithmetic circuits, and the verifier’s
costs and the proof size scale linearly in the depth of the circuit; converting an arbitrary
circuit into a layered form can increase its size quadratically [64],3 so Hyrax and Virgo
are restricted to low-depth circuits. Second, Hyrax [104] and Virgo [109] achieve sub-
linear verification costs only when their layered circuits have uniform structure (e.g.,
data-parallelism). Third, zkSTARKs [15] require circuits with a sequence of identical
sub-circuits. Any circuit can be converted to this form [17, 19], but the transformation
increases circuit sizes by 10–1000×, which translates to a similar factor increase in the
prover’s costs [104]; otherwise, zkSTARKs do not achieve sub-linear verification costs.
Fourth, the verifier in Aurora [20], Ligero [5], and Bulletproofs [41] incurs costs that are
linear in the size of the statement, so these schemes are NIZK [31] with succinct proofs.
Fifth, zkSTARKs [15], Aurora [20], Fractal [47], and Virgo [109] rely on a non-standard
conjecture for soundness [15, Appendix B]. Sixth, the prover in Fractal, Aurora, and
zkSTARKs is > 10× slower than Groth16 [67], the state-of-the zkSNARK with trusted
setup based on GGPR. Finally, SuperSonic’s prover can be orders of magnitude more
expensive than other schemes described here.4

Our goal is to address the aforementioned problems associated with existing trans-
parent SNARKs. Specifically, we desire zkSNARKs with the following properties.

1. The argument’s computational model should be general: the argument should apply
to arbitrary R1CS instances without assuming structure (e.g., layering, uniformity).

2. The prover should be time-optimal i.e., it should run in O(n) time.

3. Proofs should be succinct i.e., the size of a proof should be sub-linear in n.

4. The cost to verify a proof should be sub-linear in n and linear in |io|.
5. The constants in the asymptotics should be small.

6. The argument should not require a trusted setup nor a structured reference string.

7. Security should hold under standard cryptographic assumptions; non-interactivity
can rely on random oracles [13] (since non-falsifiable assumptions are inherent [63]).

1.1 Summary of contributions

This paper presents a new family of zkSNARKs, which we call Spartan, for proving the
satisfiability of NP statements over a large finite field expressed in R1CS. Spartan offers
the first transparent zkSNARK that achieves sub-linear verification costs for arbitrary

3For a depth-d circuit, converting to a layered form increases the circuit size by a factor of O(d).
4SuperSonic does not report the prover’s concrete costs. At 128-bit security level, we find that operations over
class groups can be ≈ 200× slower than operations over primer-order groups such as ristretto [2, 3, 70].
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setup prover proof length verifier computational model

GGPR [61] private O(n log n) O(1) O(1) R1CS
Libra [108] private? O(n) O(d log n) O(d log n) uniform circuits
Marlin [46] private? O(n log n) O(log n) O(log n) R1CS
PLONK [59] private? O(n log n) O(1) O(1) arithmetic circuits

zkSTARKs [15] public O(n log2 n) O(log2 n) O(log2 n) uniform circuits
Hyrax [103] public O(n + m · g) O(m +

√
w) O(m +

√
w) data-parallel circuits

Virgo [110] public O(n log n) O(d log n) O(d log n) uniform circuits
Ligero [5] public O(n log n) O(

√
n) O(n) arithmetic circuits

Bulletproofs [41] public O(n) O(log n) O(n) arithmetic circuits
SuperSonic [38] public O(n log n) O(log n) O(log n) arithmetic circuits
Aurora [20] public O(n log n) O(log2 n) O(n) R1CS
Fractal [47] public O(n log n) O(log2 n) O(log2 n) R1CS

Variants in Spartan’s family of zkSNARKs:
SpartanDL public O(n) O(

√
n) O(

√
n) R1CS

SpartanCL public O(n) O(log2 n) O(log2 n) R1CS
SpartanPKE private? O(n) O(log2 n) O(log2 n) R1CS
SpartanCRHF public O(n log n) O(log2 n) O(log2 n) R1CS

Figure 1—A comparison of zkSNARK schemes, where n denotes the size of the NP statement (e.g., number
of gates). For Hyrax [105], we assume a layered arithmetic circuit of depth d, width g, and β copies (i.e.,
n = d · g · β); w denotes the size of a witness to C; and m = d · log g. Hyrax and SpartanDL can achieve
sub-sqrt proofs at the cost of increasing V’s time. For Libra and Virgo, we assume a depth-d layered uniform
circuit. The verifier incurs O(|io|) additional cost in all schemes where io denotes the public inputs and outputs
of the NP relation being proved. Furthermore, all zkSNARKs without trusted setup listed above achieve
non-interactivity in the random oracle model using the Fiat-Shamir heuristic [57]. Private? means that the
trusted setup is universal and updateable. Ligero, Virgo, zkSTARKs, Aurora, Fractal, and SpartanCRHF are
plausibly post-quantum secure.

NP statements.5 Spartan also offers zkSNARKs with a time-optimal prover, a property
that has remained difficult to achieve in nearly all prior zkSNARKs.

In a nutshell, Spartan introduces a new public-coin succinct interactive argument of
knowledge where the verifier incurs sub-linear costs for arbitrary R1CS instances. Our
argument makes a black box use of an extractable polynomial commitment scheme in
conjunction with an information-theoretic protocol, so its soundness holds under the
assumptions needed by the polynomial commitment scheme (note that there exist many
polynomial commitment schemes that can be instantiated under standard cryptographic
assumptions [38, 105, 110], which can be made non-interactive in the random oracle
model). The interactive argument is public-coin, so we add zero-knowledge using ex-
isting compilers [105, 108, 112], which themselves build on prior theory [14, 45, 52].
We then make the resulting zero-knowledge argument of knowledge non-interactive in
the random oracle model using the Fiat-Shamir transform [57]. Since our interactive
argument employs a polynomial commitment scheme as a black box, we obtain a family
of zkSNARKs where each variant is built by starting with a different polynomial com-
mitment scheme. Figure 1 compares the asymptotic costs of Spartan-based zkSNARKs
with prior schemes. In more detail, Spartan makes the following contributions.

5To our knowledge, short PCP-based transparent zkSNARKs [77, 86] do not achieve sub-linear verification
costs unless one uses uniform circuits, which is undesirable as noted above.
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(1) A new family of public-coin succinct interactive arguments of knowledge. Our
core insight is that the sum-check protocol [83], a seminal interactive proof protocol
(where soundness holds unconditionally), when applied to a suitably-constructed low-
degree polynomial yields a powerful—but highly inefficient—interactive proof protocol,
but the inefficiency can be tamed with new techniques. Specifically, we introduce three
techniques (Figure 2 offers a visual depiction of how these techniques work together):

(i) Computation commitments, a primitive for creating succinct cryptographic com-
mitments to a mathematical description of an NP statement, which is critical for
achieving sub-linear verification costs.

Achieving sub-linear verification costs appears fundamentally unrealizable because
the verifier must process an NP statement for which the proof is produced before it
can verify a purported proof. Our observation is that most of this cost can be made
sub-linear in the size of an NP statement by introducing a preprocessing step that
only looks at the structure of the NP statement, but not public inputs or outputs.

In more detail, our observation is that when verifying a proof under our interactive
argument, the verifier must evaluate a low-degree polynomial that encodes the NP
statement, which incurs O(n) costs to the verifier. Our primitive, computation com-
mitments, enables verifiably delegating the necessary polynomial evaluations to the
prover. Specifically, in Spartan, the verifier reads an R1CS instance (without the io
component) for which the proof is produced and retains a short cryptographic com-
mitment to a set of sparse multilinear polynomials that encode the R1CS structure.
Later, when producing a proof, the prover evaluates the necessary polynomials and
proves that the sparse polynomial evaluations are consistent with the commitment
retained by the verifier. While the verifier incurs O(n) cost to compute a computation
commitment, the cost is amortized over all future proofs produced for all R1CS
instances with the same structure. This amortization is similar to that of GGPR.
However, unlike GGPR’s trusted setup, creating a computation commitment does
not involve any secret trapdoors. Section 6 provides details.

(ii) SPARK, a cryptographic compiler to transform any existing extractable polynomial
commitment scheme for dense multilinear polynomials to one that efficiently handles
sparse multilinear polynomials. Using the compiler, we obtain schemes with time-
optimal costs for both creating commitments to sparse multilinear polynomials and to
produce proofs of evaluations of the committed polynomials. This compiler is crucial
for achieving a time-optimal prover in Spartan. In more detail, SPARK employs an
existing extractable polynomial commitment scheme as a black box and uses it in
conjunction with a special-purpose zkSNARK run on a carefully-constructed circuit
(that employs offline memory checking techniques [6, 30, 49, 55, 93]) to efficiently
prove evaluations of sparse multilinear polynomials. Section 7 provides details.

(iii) A compact encoding of an R1CS instance as a degree-3 multivariate polynomial
that can be decomposed into four multilinear polynomials. The decomposition into
multilinear polynomials is critical for achieving a time-optimal prover in the sum-
check protocol by employing prior ideas [98, 108]. Section 4 provides details.

The following theorem states our main result informally and the result follows from
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our construction in the rest of the paper (Section 2 provides formal definitions). The
corollary below follows from prior transformations to achieve zero-knowledge [103,
108, 112] and non-interactivity [57].

Theorem 1.1. There exists a family of public-coin succinct interactive arguments of
knowledge for NP under standard cryptographic hardness assumptions where the prover
incurs O(n) costs and the verifier’s costs and communication range from O(log2 n) to
O(
√

n) (depending on the underlying extractable polynomial commitment scheme for
multilinear polynomials), where n is size of the NP statement.

Corollary 1.1. There exists a family of zkSNARKs for NP in the random oracle model
where the prover incurs O(n) costs and the verifier’s costs and proof sizes range from
O(log2 n) to O(

√
n) (depending on the underlying polynomial commitment scheme for

multilinear polynomials), where n denotes the size of the NP statement.

(2) An optimized implementation and experimental evaluation. We implement
Spartan as a library in about 8,000 lines of Rust. We use the library to build a trans-
parent zkSNARK that employs an extractable polynomial commitment scheme due to
Wahby et al. [105] where soundness holds under the hardness of computing discrete log-
arithms. We compare Spartan with five state-of-the-art zkSNARKs on the same hardware
platform. Among transparent SNARKs, Spartan offers the fastest prover with a speedup
of 17.5–115× depending on the baseline, produces proofs that are shorter (except com-
pared to Bulletproofs and SuperSonic) by 2–540×, and incurs verification times that are
faster (except compared to Fractal) by 71–240×. When compared to Groth16 [67], the
state-of-the-art zkSNARK with trusted setup based on GGPR [61], Spartan’s prover is
1.5× faster for arbitrary R1CS instances and > 10× faster for data-parallel workloads.

(3) Connections among different strands of theory. Our interactive argument ex-
poses inter-connections among different lines of work on probabilistic proofs—from
the perspective of zkSNARKs—including doubly-efficient IPs, MIPs, and short PCPs.
Section 3.2 provides details in context, focusing on how Spartan unifies different strands.

(4) Improvements in zkSNARKs with stronger assumptions. Our principal focus is
on transparent zkSNARKs, but Spartan improves on prior zkSNARKs if it can make
assumptions similar to theirs.

First, by employing a different polynomial commitment scheme [89, 111], which
requires q-type, knowledge of exponent assumptions, in SPARK, Spartan offers an alterna-
tive to Libra [108], Marlin [46], and PLONK [59]; we refer to this variant as SpartanPKE.
Unlike Marlin and PLONK, SpartanPKE features a linear-time prover. Compared to Li-
bra, SpartanPKE supports arbitrary R1CS instances instead of layered arithmetic circuits.
Furthermore, unlike Libra, the proof size and the verifier’s running time in SpartanPKE
are independent of the circuit depth. Finally, Libra achieves sub-linear verification costs
only for low-depth uniform circuits whereas SpartanPKE achieves sub-linear verification
costs for arbitrary R1CS instances with preprocessing via computation commitments.

Second, by employing a different polynomial commitment scheme [110], which
requires assuming a non-standard conjecture for soundness, in SPARK and by employing
their zero-knowledge compiler, we can obtain a zkSNARK that is plausibly post-quantum
secure; we refer to this variant as SpartanCRHF. Improvements of SpartanCRHF over Virgo
are essentially the same as improvements of SpartanPKE over Libra noted above.
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1.2 Recent schemes and additional related work

Recent developments. Several schemes mentioned above appeared following a prior
version of Spartan. This includes Fractal [47], Marlin [46], PLONK [59], and Super-
Sonic [38]. We include these schemes in our comparisons for completeness. All these
schemes employ a form of computation commitments, a technique introduced in this
paper, to preprocess NP statements to achieve sub-linear verification costs. While Marlin
and PLONK require a trusted setup, Fractal and SuperSonic do not. Section 8 provides a
performance comparison with the latter two systems.

Linear PCPs and QAPs. Ishai, Kushilevitz, and Ostrovsky (IKO) [72] design the first
interactive argument protocol without employing short PCPs. Instead, IKO use linear
PCPs, a type of PCP in which the proof is a linear function [7, 8]. Such PCPs are
simpler than short PCPs, but they are of size exponential in n. Thus, a polynomial time
prover cannot materialize linear PCPs, a precise issue addressed by IKO: they devise
a commitment protocol in which a prover can commit to an exponentially-long PCP
without materializing the entire PCP.6 Because of the specific linear PCP construction
that they use, which is based on Hadamard codes [7, 8], the prover’s work is O(n2).
Setty et al. [96] strengthen IKO’s cryptographic machinery to directly transform linear
PCPs to arguments (IKO required the use of MIPs as an intermediate step), which
simplifies the overall approach and significantly reduces constants. They also achieve
O(n) asymptotics for the prover by designing “tailored” linear PCPs for circuits with
regular structure (e.g., matrix multiplication, polynomial evaluation). However, they
retain the O(n2) costs for the prover in the general case.

As discussed in Section 1, GGPR [61] address the prover’s asymptotics with QAPs.
Bitansky et al. [29] and Setty et al. [95] observe that QAPs can be viewed as linear PCPs.
Zaatar [95] leverages this observation to build an interactive argument with O(n log n)
asymptotics for the prover by composing a QAPs-based linear PCP with a refined variant
of IKO’s machinery [96, 97]. The resulting asymptotics matches that of an argument
based on state-of-the-art short PCPs. However, Zaatar retains the rest of IKO’s limitations:
the argument is interactive, is not publicly verifiable, and achieves succinctness only
when proofs for a batch of statements are proved at once. Note that Zaatar and IKO do
not support zero-knowledge arguments, but it is not fundamental [72, §3.1].

Pinocchio [90] optimizes and implements GGPR [61] in entirety. It avoids the issues
listed above for Zaatar and IKO—at the cost of making q-type, knowledge of exponent
assumptions, which are non-standard and non-falsifiable (Zaatar does not need such
assumptions, but it is worth noting that such assumptions are inherent for achieving
non-interactivity in arguments for NP [63]). BCGTV [19], BCTV [23], and Groth [67]
offer algorithmic and concrete performance improvements over Pinocchio’s zkSNARK.
However, all these works require a trusted setup as detailed earlier. To cope with trusted
setup, recent works [46, 59, 69, 84] propose schemes to update the structured reference
string after it is generated. However, at least one updating entity must be trusted.

6Spartan is analogous to IKO in this aspect: The provers in IKO and Spartan do not materialize a PCP.
The difference between these two works is that Spartan employs the polynomially-sized short PCPs of
Babai et al. [11] whereas IKO employ the exponentially-sized linear PCPs of Arora et al. [7, 8]. This
necessitates different cryptographic machinery.
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Figure 2—Overview of our techniques for constructing zkSNARKs.

Interactive proofs. While PCP-based arguments make cryptographic hardness assump-
tions, interactive proofs (IPs) are unconditionally secure. The early works on interactive
proofs [10, 65] focus on studying the power of IPs in the context of intractable languages.
However, in 2008, Goldwasser, Kalai, and Rothblum (GKR) [64] propose an elegant
interactive proof system in the context of delegating computations where both the prover
and the verifier are efficient; such IPs are called doubly-efficient IPs. Specifically, they
construct doubly-efficient IPs for computations that can be expressed as log-space uni-
form circuits. In their protocol, the prover’s running time is a polynomial in the size of the
circuit, and the verifier’s running time is linear in the depth of the circuit and logarithmic
in the size of the circuit. Cormode, Mitzenmacher, and Thaler (CMT) [50] refine GKR’s
protocol to reduce the prover’s work from O(n3) to O(n log n) by employing a specific
polynomial extension to encode the circuit structure. A series of works [98, 100–103]
further refines the approach of GKR and CMT to reduce constants and to improve
asymptotics when circuits have structure such as data-parallelism. Recent work builds
interactive arguments [111, 113] and zkSNARKs [105, 108, 112] using GKR, CMT, and
their refinements. Section 3.2 discusses, in context, how these works relate to Spartan.

2 Preliminaries
We use F to denote a finite field (e.g., the prime field Fp for a large prime p) and λ to
denote the security parameter. We use negl(λ) to denote a negligible function in λ. We
use PPT algorithms to refer to probabilistic polynomial time algorithms.

2.1 Problem instances in R1CS

Recall that for any problem instance X, if X is in an NP language L, there exists a
witness w and a deterministic algorithm Sat(·, ·) such that:

SatL(X, w) =

{
1 if X ∈ L
0 otherwise

Alternatively, the set of tuples of the form 〈X, w〉 form a set of NP relations. The
subset of those for which SatL(X, w) = 1 are called satisfiable instances, which we
denote as:RL = {〈X, w〉 : SatL(X, w) = 1}.

As an NP-complete language, we focus on the rank-1 constraint satisfiability (R1CS).
As noted earlier, R1CS is a popular target for most compiler toolchains that accept
applications expressed in high-level languages. R1CS is implicit in the QAPs formalism
of GGPR [61], but it is used with (and without) QAPs in subsequent works [20, 81, 95].
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Definition 2.1 (R1CS instance). An R1CS instance is the tuple (F , A, B, C, io, m, n),
where io denotes the public input and output of the instance, A, B, C ∈ Fm×m, where
m ≥ |io|+ 1 and there are at most n non-zero entries in each matrix.

Note that matrices A, B, C are defined to be square matrices for conceptual simplicity.
Below, we use the notation z = (x, y, z) (where each of x, y, z is a vector over F ) to mean
that z is a vector that concatenates the three vectors in a natural way. WLOG, we assume
that n = O(m) throughout the paper.

Definition 2.2 (R1CS). An R1CS instance (F , A, B, C, io, m, n) is said to be satisfiable
if there exists a witness w ∈ Fm−|io|−1 such that (A · z) ◦ (B · z) = (C · z), where
z = (io, 1, w), · is the matrix-vector product, and ◦ is the Hadamard (entry-wise) product.

Note that R1CS generalizes arithmetic circuit satisfiability because the entries in ma-
trices A, B, C can be used to encode addition and multiplication gates over F . Furthermore,
they can be used to encode a class of degree-2 constraints of the form L(z) ·R(z) = O(z),
where L, R, O are degree-1 polynomials over variables that take values specified by
z = (io, 1, w). In other words, R1CS supports arbitrary fan-in addition gates, and multi-
plication gates verify arbitrary bilinear relations over the entire z.

Definition 2.3. For an R1CS instance X = (F , A, B, C, io, m, n) and a purported witness
w ∈ Fm−|io|−1, we define:

SatR1CS(X, w) =

{
1 (A · (io, 1, w) ◦ (B · (io, 1, w)) = (C · (io, 1, w))

0 otherwise

The set of satisfiable R1CS instances can be denoted as:

RR1CS = {〈(F , A, B, C, io, m, n), w〉 : SatR1CS((F , A, B, C, io, m, n), w) = 1}

Definition 2.4. For a given R1CS instance X = (F , A, B, C, io, m, n), the NP statement
that X is satisfiable (i.e., X ∈ RR1CS) is of size O(n).

2.2 Succinct interactive arguments of knowledge

Let 〈P ,V〉 denote a pair of PPT interactive algorithms and Setup denote an algorithm
that outputs public parameters pp given as input the security parameter λ.

Definition 2.5. A protocol between a pair of PPT algorithms 〈P ,V〉 is called a public-
coin succinct interactive argument of knowledge for a language L if:

• Completeness. For any problem instance X ∈ L, there exists a witness w such that
for all r ∈ {0, 1}∗, Pr{〈P(pp, w),V(pp, r)〉(X) = 1} ≥ 1− negl(λ).

• Soundness. For any non-satisfiable problem instance X, any PPT prover P∗, and
for all w, r ∈ {0, 1}∗, Pr{〈P∗(pp, w),V(pp, r)〉(X) = 1} ≤ negl(λ).

• Knowledge soundness. For any PPT adversary A, there exists a PPT extractor E
such that for any problem instance X and for all w, r ∈ {0, 1}∗, if Pr{〈A(pp, w),V(pp, r)〉(X) =
1} ≥ negl(λ), then Pr{SatL(X, w′) = 1|w′ ← EA(pp,X)} ≥ negl(λ).
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• Succinctness. The total communication between P and V is sub-linear in the size
of the NP statement X ∈ L.

• Public coin. V’s messages are chosen uniformly at random.

We adapt the following definitions from [105] for our notation.

Definition 2.6 (Witness-extended emulation [68]). An interactive argument (Setup,P ,V)
for L has witness-extended emulation if for all deterministic polynomial time programs
P∗ there exists an expected polynomial time emulator E such that for all non-uniform
polynomial time adversaries A and all zV ∈ {0, 1}∗, the following probabilities differ by
at most negl(λ): Pr{pp← Setup(1λ) ; (X, zP)← A(pp) ; t← tr〈P∗(zP),V(zV)〉(X) :
A(t) = 1} and Pr{pp← Setup(1λ) ; (X, zP)← A(pp) ; (t, w)← EP

∗(zP)(X) : A(t) =
1 ∧ if t is an accepting transcript then SatL(X, w) = 1}, where tr denotes the random
variable that corresponds to the transcript of the interaction between P∗ and V .

Definition 2.7. An interactive argument (Setup,P ,V) for L is computational zero-
knowledge if for every PPT interactive machine V∗, there exists a PPT algorithm S called
the simulator, running in time polynomial in the length of its first input such that for
every problem instance X ∈ L, w ∈ RX, and z ∈ {0, 1}∗, the following holds when the
distinguishing gap is considered as a function of |X|:

View(〈P(w),V∗(z)〉(X)) ≈c S(X, z),

where View(〈P(w),V∗(z)〉(X)) denotes the distribution of the transcript of interaction
between P and V∗, and ≈c denotes that the two quantities are computationally indistin-
guishable. If the statistical distance between the two distributions is negligible then the
interactive argument is said to be statistical zero-knowledge. If the simulator is allowed
to abort with probability at most 1/2, but the distribution of its output conditioned on
not aborting is identically distributed to View(〈P(w),V∗(z)〉(X)), then the interactive
argument is called perfect zero-knowledge.

2.3 Polynomials and low-degree extensions

We recall a few basic facts about polynomials:

• A polynomial G over F is an expression consisting of a sum of monomials where
each monomial is the product of a constant (from F ) and powers of one or more
variables (which take values from F ); all arithmetic is performed over F .

• The degree of a monomial is the sum of the exponents of variables in the monomial;
the degree of a polynomial G is the maximum degree of any monomial in G. Fur-
thermore, the degree of a polynomial G in a particular variable xi is the maximum
exponent that xi takes in any of the monomials in G.

• A multivariate polynomial is a polynomial with more than one variable; otherwise it
is called a univariate polynomial.

Definition 2.8 (Multilinear polynomial). A multivariate polynomial is called a multilin-
ear polynomial if the degree of the polynomial in each variable is at most one.
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Definition 2.9 (Low-degree polynomial). A multivariate polynomial G over a finite field
F is called low-degree polynomial if the degree of G in each variable is exponentially
smaller than |F |.

Low-degree extensions (LDEs). Suppose g : {0, 1}m → F is a function that maps m-
bit elements into an element of F . A polynomial extension of g is a low-degree m-variate
polynomial g̃(·) such that g̃(x) = g(x) for all x ∈ {0, 1}m.

A multilinear polynomial extension (or simply, a multilinear extension, or MLE) is a
low-degree polynomial extension where the extension is a multilinear polynomial (i.e.,
the degree of each variable in g̃(·) is at most one). Given a function Z : {0, 1}m → F ,
the multilinear extension of Z(·) is the unique multilinear polynomial Z̃ : Fm → F . It
can be computed as follows.

Z̃(x1, . . . , xm) =
∑

e∈{0,1}m

Z(e) ·
m∏

i=1

(xi · ei + (1− xi) · (1− ei))

=
∑

e∈{0,1}m

Z(e) · ẽq(x, e)

= 〈(Z(0), . . . , Z(2m − 1)), (ẽq(x, 0), . . . , ẽq(x, 2m − 1)〉

Note that ẽq(x, e) =
∏m

i=1(ei · xi + (1 − ei) · (1 − xi)), which is the MLE of the
following function:

eq(x, e) =

{
1 if x = e
0 otherwise

For any r ∈ Fm, Z̃(r) can be computed in O(2m) operations in F [98, 101].

Dense representation for multilinear polynomials. Since the MLE of a function is
unique, it offers the following method to represent any multilinear polynomial. Given
a multilinear polynomial G(·) : Fm → F , it can be represented uniquely by the list
of evaluations of G(·) over the Boolean hypercube {0, 1}m (i.e., a function that maps
{0, 1}m → F ). We denote such a representation of G as DenseRepr(G).

Lemma 2.1. If for any x ∈ {0, 1}m, G(x) = 0 then DenseRepr(G) does not have to
include an entry for x.

Proof. Recall the closed-form expression for evaluating G(·) at (r1, . . . , rm) ∈ Fm:
G(r1, . . . , rm) =

∑
x∈{0,1}m G(x) ·

∏m
i=1 (ri · xi + (1− ri) · (1− xi)). Observe that if for

any x ∈ {0, 1}m, G(x) = 0, x does not contribute to G(r) for any r ∈ Fm.

Definition 2.10 (Dense and sparse multilinear polynomials). A multilinear polynomial
G : Fm → F is said to be a sparse multilinear polynomial if |DenseRepr(G)| is sub-linear
in O(2m). Otherwise, it is a dense multilinear polynomial.

As an example, suppose G : F 2s → F . Suppose |DenseRepr(G)| = O(2s), then G(·)
is a sparse multilinear polynomial because O(2s) is sublinear in O(22s).
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2.4 A polynomial commitment scheme for multilinear polynomials

We adopt our definitions from Bünz et al. [38] where they generalize the definition of
Kate et al. [76] to allow interactive evaluation proofs. We also borrow their notation: in a
list of arguments or returned tuples, variables before the semicolon are public and the
ones after are secret; when there is no secret information, semicolon is omitted.

A polynomial commitment scheme for multilinear polynomials is a tuple of four
protocols PC = (Setup, Commit, Open, Eval):

• pp ← Setup(1λ,µ): takes as input µ (the number of variables in a multilinear
polynomial); produces public parameters pp.

• (C; S) ← Commit(pp; G): takes as input a µ-variate multilinear polynomial over a
finite field G ∈ F [µ]; produces a public commitment C and a secret opening hint S .

• b ← Open(pp, C,G,S): verifies the opening of commitment C to the µ-variate
multilinear polynomial G ∈ F [µ] with the opening hint S; outputs a b ∈ {0, 1}.

• b ← Eval(pp, C, r, v,µ; G,S) is an interactive public-coin protocol between a PPT
prover P and verifier V . Both V and P hold a commitment C, the number of vari-
ables µ, a scalar v ∈ F , and r ∈ F µ. P additionally knows a µ-variate multilinear
polynomial G ∈ F [µ] and its secret opening hint S. P attempts to convince V that
G(r) = v. At the end of the protocol, V outputs b ∈ {0, 1}.

Definition 2.11. A tuple of four protocols (Setup, Commit, Open, Eval) is an extractable
polynomial commitment scheme for multilinear polynomials over a finite field F if the
following conditions hold.

• Completeness. For any m-variate multilinear polynomial G ∈ F [µ],

Pr
{

pp← Setup(1λ,µ); (C,S)← Commit(pp; G):
Eval(pp, C, r, v,µ; G,S) = 1 ∧ v = G(r)

}
≥ negl(λ)

• Binding. For any PPT adversary A, size parameter µ ≥ 1,

Pr

 pp← Setup(1λ, m); (C,G0,G1,S0,S1) = A(pp);
b0 ← Open(pp, C,G0,S0); b1 ← Open(pp, C,G1,S1):

b0 = b1 6= 0 ∧ G0 6= G1

 ≤ negl(λ)

• Knowledge soundness. Eval is a public-coin succinct interactive argument of knowl-
edge with witness-extended emulation (Definition 2.6) for the following NP relation
given pp← Setup(1λ,µ) for a size parameter on the number of variables µ:

REval(pp) = {〈(C, r, v), (G,S)〉 : G ∈ F [µ] ∧ G(r) = v ∧ Open(pp, C,G,S) = 1}

Definition 2.12. An extractable polynomial commitment scheme (Setup, Commit, Open, Eval)
provides hiding commitments if for all PPT adversaries A = (A0,A1):∣∣∣∣∣∣∣∣∣∣∣∣

1− 2 · Pr



b = b̄ :
pp← Setup(1λ, m);

(G0,G1, st) = A0(pp);
b←R {0, 1};

(C,S)← Commit(pp,Gb);
b̄← A1(st, C)



∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ)
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If the above holds for all algorithms, then the commitment is statistically hiding.

Definition 2.13. An extractable polynomial commitment scheme (Setup, Commit, Open, Eval)
with hiding commitments (Definition 2.12) is zero-knowledge if Eval is a public-coin
succinct interactive argument of knowledge with witness-extended emulation (Defi-
nition 2.6) and zero-knowledge (Definition 2.7) for the following NP relation given
pp← Setup(1λ,µ) for a size parameter on the number of variables µ:

REval(pp) = {〈(C, r, v), (G,S)〉 : G ∈ F [µ] ∧ G(r) = v ∧ Open(pp, C,G,S) = 1}

3 The sum-check protocol: opportunities and challenges
An interactive proof is an interactive argument where the soundness holds uncondition-
ally. We now describe a seminal interactive proof protocol that we employ in Spartan,
called the sum-check protocol [83]. Suppose there is an µ-variate low-degree polynomial,
G : F µ → F where the degree of each variable in G is at most `. Suppose that a verifier
VSC is interested in checking a claim of the following form by an untrusted prover PSC:

T =
∑

x1∈{0,1}

∑
x2∈{0,1}

. . .
∑

xµ∈{0,1}

G(x1, x2, . . . , xµ)

Of course, given G(·), VSC can deterministically evaluate the above sum and verify
whether the sum is T . But, this computation takes time exponential in µ.

Lund et al. [83] describe an interactive proof, called the sum-check protocol, that
requires far less computation on VSC’s behalf, but provides a probabilistic guarantee.
In the protocol, VSC interacts with PSC over a sequence of ` rounds. At the end of
this interaction, VSC outputs b ∈ {0, 1}. The principal cost to VSC is to evaluate the
polynomial G at a random point in its domain r ∈ F µ. We denote the sum-check protocol
as b← 〈PSC,VSC(r)〉(G,µ, `, T). For any µ-variate polynomial G with degree at most `
in each variable, the following properties hold.

• Completeness. If T =
∑

x∈{0,1}µ G(x), then for a correct PSC and for all r ∈ {0, 1}∗,
Pr{〈PSC(G),VSC(r)〉(µ, `, T) = 1} = 1.

• Soundness. If T 6=
∑

x∈{0,1}µ G(x), then for any P?SC and for all r ∈ {0, 1}∗,
Prr{〈P?SC(G),VSC(r)〉(µ, `, T) = 1} ≤ ` · µ/|F |.

• Succinctness. The communication between PSC and VSC is O(µ · `) elements of F .

An alternate formulation. In the rest of the paper, it is natural to view the sum-check
protocol as a mechanism to reduce a claim of the form

∑
x∈{0,1}m G(x)

?
= T to the claim

G(r) ?
= e. This is because in most cases, V uses an auxiliary protocol to verify the latter

claim, so this formulation makes it easy to describe our end-to-end protocols. Figure 3
depicts the V’s side of the protocol from this perspective. We denote this reduction
protocol with e← 〈PSC(G),VSC(r)〉(µ, `, T).
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1: // reduces the claim
∑

x∈{0,1}s G(x)
?
= T to G(r) ?

= e
2: function SumCheckReduce(µ, `, T , r)
3: (r1, r2, . . . , rµ)← r
4: e← T
5: for i = 1, 2, . . . ,µ do
6: Gi(·)← ReceiveFromProver() // an honest PSC returns {Gi(0),Gi(1), . . .Gi(`)}
7: if Gi(0) + Gi(1) 6= e then
8: return 0
9: SendToProver(ri)

10: e← Gi(ri) // evaluate Gi(ri) using its point-value form received from the prover
return e

Figure 3—Description of the sum-check protocol from the perspective of VSC. VSC checks if the
µ-variate polynomial G(·) sums to T over the Boolean hypercube {0, 1}µ with the assistance of
an untrusted prover PSC. The degree of G(·) in each variable is at most `.

3.1 Challenges with using the sum-check protocol for succinct arguments

To build a succinct interactive argument of knowledge for R1CS, we need an inter-
active protocol for V to check if P knows a witness w to a given R1CS instance
X = (F , A, B, C, io, m, n) such that SatR1CS(X, w) = 1.

At first glance, the sum-check protocol [83] seems to offer the necessary building
block (it is public-coin, incurs succinct communication, etc.). However, to build a suc-
cinct interactive argument of knowledge (that can in turn be compiled into a zkSNARK),
we must solve the following sub-problems:

1. Encode R1CS instances as sum-check instances. For any R1CS instance X =
(F , A, B, C, io, m, n), we must devise an degree-`, µ-variate polynomial that sums
to a specific value T over {0, 1}µ if and only if there exists a witness w such that
SatR1CS(X, w) = 1, where µ = O(log m) and ` is a small constant (e.g., 3).

2. Achieve communication-succinctness. Although the sum-check protocol offers
succinctness (if the first sub-problem is solved with constraints on µ and ` noted
above), building a succinct interactive argument is non-trivial. This is because after
the sum-check reduction, V must verify G(r) ?

= e. Unfortunately, G(r) depends on the
P’s witness w to X. Thus, a naive evaluation of G(r) requires O(m) communication
to transmit w. Transmitting w is also incompatible with zero-knowledge.

3. Achieve verifier-succinctness. To compile an interactive argument to a zkSNARK,
V’s costs must be sub-linear in the size of an NP statement, but evaluating G(r)
requires O(n) computation if the statement has no structure (e.g., data-parallelism).
A potential way around this fundamental issue is for V to preprocess the structure of
the R1CS instance to accelerate all future verifications of proofs for different R1CS
instances with the same structure. However, to avoid any form of trusted setup, the
preprocessing must not involve secret trapdoors.

The next subsection describes prior solutions to the three sub-problems.
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3.2 Prior solutions to solve the above problems (Spartan’s closely related works)

Prior literature on probabilistic proofs, starting with Babai et al. [11, 12], offers a low-
degree polynomial G(·) that fits the structure of the sum-check protocol. However, most
prior proposals construct such a polynomial for encoding the satisfiability of a Boolean
formula [12] (or the correct execution of a program under a pointer machine [11]).
These capture a general model of computation, but those representations are orders of
magnitude more verbose than R1CS (verbosity translates to constants in the prover’s
and verifier’s costs in the argument protocol). Blumberg et al. [32] offer a low-degree
polynomial as part of a multi-prover interactive proof (MIP) protocol [11, 60, 64, 106]
for the arithmetic circuit satisfiability (ACS) problem. In theory, this addresses the
first sub-problem, but in practice, arithmetic circuits impose overheads that range from
small constant factors to orders of magnitude in degenerate cases compared to R1CS.
Furthermore, they pose programmability challenges (e.g., ACS must explicitly encode
additions whereas R1CS obtains them for free, checking a non-deterministic witness
requires additional effort as part of the toolchain or the programmer).

We now discuss how prior work addresses the latter two sub-problems.

MIPs. MIP protocols solve the second sub-problem by employing two (or more) non-
colluding provers. For example, in the protocol of Blumberg et al. [32] (which builds on
the two-prover protocol of Babai et al. [12]), V interacts with the first prover to run the
sum-check protocol, which requires V to evaluate G(·) at a random point (as described
above, this would require O(n) computation by V and O(|w|) communication from
P to V). Instead, V interacts with a second prover—via low-degree tests [9, 87]—to
learn the desired evaluation of G(·). Despite a sophisticated analysis of soundness error,
their protocol achieves only 23 bits of security (for |F | ≈ 2300). Although MIPs require
two (or more) non-colluding provers, Bitansky and Chiesa [28] offer a compiler to
transform MIPs to SNARKs [28]. However, their compiler relies on fully-homomorphic
encryption (FHE) [62], so it is only of theoretical interest at this point.

If we view Spartan in this light, Spartan is an efficient mechanism—without employ-
ing FHE or low-degree tests—to compile the two-prover protocol of Blumberg et al. [32]
and Babai et al. [12] (and other similar two-prover IPs) into a public-coin succinct
interactive argument of knowledge (and then into a zkSNARK without trusted setup).
For non-interactivity, Spartan assumes a random oracle model whereas the compiler of
Bitansky and Chiesa [28] requires a non-falsifiable variant of FHE. Furthermore, Spartan
achieves a publicly verifiable argument whereas the compiler of Bitansky and Chiesa
only yields a designated verifier argument (i.e., the proof produced is meant for a specific
verifier rather than any verifier). Relatedly, Thaler [99, §3] observes that the MIP of
Blumberg et al. [32] can be compiled into a single prover argument using a polynomial
commitment scheme. However, the proposal does not solve the third sub-problem to
achieve sub-linear verification costs for the verifier, so it does not lead to a zkSNARK.

Short PCPs. Babai et al. [11] devise a short PCP where the PCP includes two compo-
nents: (1) the prover’s responses to all possible V’s challenges in the sum-check protocol
(an oracle access to such a PCP allows V to conduct the sum-check protocol by accessing
only a few bits in the PCP) and (2) a low-degree extension (LDE) of a purported witness
w to an NP-complete problem (which, with an oracle access, allows V to evaluate G(·)

15



at a random point as required by the last step of the sum-check protocol). Unfortunately,
as discussed in Section 1, constructing a succinct interactive argument of knowledge via
such short PCPs—using Kilian’s approach [77]—remains highly impractical.

Note that Spartan is a more direct transformation of the short PCP construction of
Babai et al. [11] into a succinct interactive argument of knowledge: (1) The prover in
Spartan does not write down a low-degree extension of w (but instead cryptographically
commits to a low-degree extension of w using w alone); (2) The Spartan prover also
does not write down all possible responses to the verifier’s challenges in the sum-check
protocol; instead, the prover engages in an interactive sum-check protocol with V; (3)
Babai et al. [11] avoid multilinear extensions (MLE) of a witness since the resulting PCP
string will be super-polynomial in the size of the NP instance; however, since Spartan’s
prover does not write down the entire PCP, the use of a MLE is not only more efficient
than other LDEs but also enables the use of simple cryptographic primitives to commit
to such an MLE without ever materializing it. This view of Spartan is reminiscent of
ideas in the work of Ishai et al. [72], and the compiler of Bitansky and Chiesa [28].

Doubly-efficient interactive proofs. Doubly-efficient interactive proofs [50, 64, 98,
100–103] solve all the three sub-problems—by restricting themselves to deterministic
circuits in a layered form. They apply a sequence of sum-check protocols to recursively
reduce a claim about outputs to a claim about inputs of the circuit. As a result, the
low-degree polynomial that V must evaluate as part of the final instance of the sum-
check protocol is only over the public inputs to the circuit, which V can locally compute.
Naturally, these works are restricted to low-depth circuits since V’s work is linear in the
circuit depth. Furthermore, the circuits in these works cannot take a non-deterministic
witness w as an input from P—without incurring O(|w|) communication from P to
V [101] or using additional machinery (see below). Besides generality, the lack of support
for non-determinism necessitates using Boolean circuits instead of arithmetic circuits
(Boolean circuits are orders of magnitude more verbose than an equivalent arithmetic
circuits for many programs of interest). This is because efficient transformations from
high-level programs to ACS (or R1CS) make extensive use of non-determinism for
integer and bitwise operations [90, 97], storage [37, 93], and RAM [17, 22, 104].

Zhang et al. [111] extend doubly-efficient IPs to the complexity class NP by em-
ploying a polynomial commitment scheme [76, 89] and then transform their interactive
argument to a zkSNARK [108, 112] using prior transformations [14, 52]. However,
their polynomial commitment scheme requires a trusted setup. In a different work,
Wahby et al. [105] transform the Giraffe IP [103] (a doubly-efficient IP in the GKR [64]
line of work [50, 98, 102, 103]) into a zkSNARK without requiring a trusted setup.
They design optimized variants of prior zero-knowledge transformations [14, 52] in
conjunction with a new polynomial commitment scheme. However, the zkSNARKs of
Wahby et al. [105] and Zhang et al. [112] retain the requirement of layered circuits. To
address this, Kalai sketches “squashed GKR” [74]: instead of running the GKR protocol
on a layered circuit, it is run on a low-depth circuit that takes as input a witness whose
size is proportional to the number of gates in the layered circuit. To avoid the verifier
from having to materialize the witness, the proposal employs low-degree tests and a
polynomial commitment scheme. However, the scheme only produces designated verifier
proofs and it relies on FHE. However, more fundamentally, the proposal does not address
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the third sub-problem to achieve sub-linear costs for the verifier.
To achieve sub-linear verification costs, Zhang et al. [111] and Wahby et al. [105]

focus on data-parallel computations. Unfortunately, this poses severe restrictions in
practice. To mitigate perils of such a requirement, Wahby et al. [105] design an irregular
circuit layer, called a redistribution layer (RDL), that allows sharing witness elements
across different data-parallel units. Naturally, V incurs linear costs for RDL. Concretely,
in two out of their three benchmarks, V’s dominant cost is computation related to RDL.

If seen from the perspective of this line of work, Spartan is a way to eliminate
the requirement of layered circuits as well as a way to achieve sub-linear verification
costs—without requiring any homogeneity in circuit structure.7 Specifically, we observe
that the sum-check protocol (applied to a suitable low-degree polynomial G(·)), V can
delegate the required evaluation of G(·) at a random point in its domain to the prover P .

4 An encoding of R1CS instances as low-degree polynomials
This section describes a compact encoding of an R1CS instance as a degree-3 multivariate
polynomial. The following theorem summarizes our result, which we prove below.

Theorem 4.1. For any R1CS instance X = (F , A, B, C, io, m, n), there exists a degree-3
log m-variate polynomial G such that

∑
x∈{0,1}log m G(x) = 0 if and only if there exists a

witness w such that SatR1CS(X, w) = 1 (except for a soundness error that is negligible
in λ) under the assumption that |F | is exponential in λ and m = O(λ).

For a given R1CS instance X = (F , A, B, C, io, m, n), let s = dlog me. Thus, we
can view matrices A, B, C ∈ Fm×m as functions with the following signature: {0, 1}s ×
{0, 1}s → F . Specifically, any entry in them can be accessed with a 2s-bit identifier (or
two s-bit identifiers). Furthermore, given a purported witness w to X, let Z = (io, 1, w).
It is natural to interpret Z as a function with the following signature: {0, 1}s → F , so
any element of Z can be accessed with an s-bit identifier.

We now describe a function Fio(·) that can be used to encode w such that Fio(·)
exhibits a desirable behavior if and only if SatR1CS(X, w) = 1.

Fio(x) =

 ∑
y∈{0,1}s

A(x, y) · Z(y)

 ·
 ∑

y∈{0,1}s

B(x, y) · Z(y)

− ∑
y∈{0,1}s

C(x, y) · Z(y)

Lemma 4.1. ∀x ∈ {0, 1}s, Fio(x) = 0 if and only if SatR1CS(X, w) = 1.

Proof. This follows from the definition of SatR1CS(X, w) (Section 2.1) and of Z(·).

Unfortunately Fio(·) is a function, not a polynomial, so it cannot be directly used in

7In theory, Canetti et al [43] propose an alternate approach for achieving sub-linear verification costs: the
verifier pre-evaluates the necessary low-degree polynomials at all points in their domain (which resembles
the prover’s effort in the short PCPs of Babai et al. [11]) and builds a Merkle tree. Later, when verifying
proof, the verifier (with the root of the Merkle tree) can obtain desired polynomial evaluations from the prover
with sub-linear costs. The work to create the Merkle tree is too expensive to be used in practice. In contrast,
Spartan offers a more direct approach where the public computation is linear in the size of the NP relation.
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the sum-check protocol. But, consider its polynomial extension F̃io : F s → F .

F̃io(x) =

 ∑
y∈{0,1}s

Ã(x, y) · Z̃(y)

 ·
 ∑

y∈{0,1}s

B̃(x, y) · Z̃(y)

− ∑
y∈{0,1}s

C̃(x, y) · Z̃(y)

Lemma 4.2. ∀x ∈ {0, 1}s, F̃io(x) = 0 if and only if SatR1CS(X, w) = 1.

Proof. For any x ∈ {0, 1}s, F̃io(x) = Fio(x), so the result follows from Lemma 4.1.

Since F̃io(·) is a low-degree multivariate polynomial over F in s variables, a verifier V
could check if

∑
x∈{0,1}s F̃io(x) = 0 using the sum-check protocol with a prover P . But,

this is insufficient:
∑

x∈{0,1}s F̃io(x) = 0 does not imply that Fio(x) is zero ∀x ∈ {0, 1}s.
This is because the 2s terms in the sum might cancel each other making the final sum
zero—even when some of the individual terms are not zero.

We addresses the above issue using a prior idea [12, 32, 42]. Consider:

Qio(t) =
∑

x∈{0,1}s

F̃io(x) · ẽq(t, x),

where ẽq(t, x) =
∏s

i=1(ti · xi + (1− ti) · (1− xi)).
Observe that Qio(·) is a multivariate polynomial such that Qio(t) = F̃io(t) for all

t ∈ {0, 1}s. Thus, Qio(·) is a zero-polynomial (i.e., it evaluates to zero for all points
in its domain) if and only if F̃io(·) evaluates to zero at all points in the s-dimensional
Boolean hypercube (and hence if and only if F̃io(·) encodes a witness w such that
SatR1CS(X, w) = 1). To check if Qio(·) is a zero-polynomial, it suffices to check if
Qio(τ) = 0 where τ ∈R F s. This introduces a soundness error, which we quantify below.

Lemma 4.3. Prτ{Qio(τ) = 0|∃x ∈ {0, 1}s s.t. F̃io(x) 6= 0} ≤ log m/|F |

Proof. If ∃x ∈ {0, 1}s such that F̃io(x) 6= 0, then Qio(t) is not a zero-polynomial. By the
Schwartz-Zippel lemma, Qio(t) = 0 for at most d/|F | values of t in the domain of Qio(·),
where d is the degree of Qio(·). Here, d = s = log m.

Proof of Theorem 4.1. For a given R1CS instance X = (F , A, B, C, io, m, n), define,
Gio,τ (x) = F̃io(x) · ẽq(τ , x), so Qio(τ) =

∑
x∈{0,1}s Gio,τ (x). Observe that Gio,τ (·) is

a degree-3 s-variate polynomial if multilinear extensions of A, B, C, and Z are used
in F̃io(·). In the terminology of the sum-check protocol, T = 0,µ = s = log m,
and ` = 3. Furthermore, if τ ∈R F s,

∑
x∈{0,1}s Gio,τ (x) = 0 if and only F̃io(x) = 0

∀x ∈ {0, 1}s—except for soundness error that is negligible in λ under the assumptions
noted above (lemma 4.3). This combined with lemma 4.2 implies the desired result.

5 A NIZK with succinct proofs for R1CS
This section describes a new NIZK [31] for R1CS with succinct proofs. We first design
an interactive argument with succinct communication costs and then compile it into a
proof-succinct NIZK in the random oracle model using prior transformations.
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5.1 A new public-coin succinct interactive argument of knowledge

The following theorem summarizes our result in this section.

Theorem 5.1. Given an extractable polynomial commitment scheme for multilinear
polynomials, there exists a public-coin succinct interactive argument of knowledge where
security holds under the assumptions needed for the polynomial commitment scheme
and assuming |F | is exponential in λ and the size parameter of R1CS instance n = O(λ).

To prove the above theorem, we first provide a construction of a public-coin succinct
interactive argument of knowledge, and then analyze its costs and security. The proof of
Theorem 4.1 established that for V to verify if an R1CS instance X = (F , A, B, C, io, m, n)
is satisfiable, it can check if

∑
x∈{0,1}s Gio,τ (x) = 0. By using the sum-check protocol,

we can reduce the claim about the sum to ex
?
= Gio,τ (rx) where rx ∈ F s, so V needs a

mechanism to evaluate Gio,τ (rx)—without incurring O(m) communication from P to V .
Recall that Gio,τ (x) = F̃io(x) · ẽq(τ , x). Thus, to evaluate Gio,τ (rx), V must evaluate

F̃io(rx) and ẽq(τ , rx). The latter can be evaluated in O(log m) time. Furthermore, recall:

F̃io(rx) =

 ∑
y∈{0,1}s

Ã(rx, y) · Z̃(y)

 ·
 ∑

y∈{0,1}s

B̃(rx, y) · Z̃(y)

− ∑
y∈{0,1}s

C̃(rx, y) · Z̃(y)

To evaluate F̃io(rx), V needs to evaluate the following ∀y ∈ {0, 1}s: Ã(rx, y), B̃(rx, y),
C̃(rx, y), and Z̃(y). However, the evaluations of Z̃(y) for all y ∈ {0, 1}s is the same as
(io, 1, w), so the communication from P to V is ≥ O(|w|). We now address this issue.

Our solution is a combination of three protocols: the sum-check protocol, a ran-
domized mini protocol, and a polynomial commitment scheme. Our first observation is
that the structure of the individual terms in Fx,y(·) evaluated at rx are in a form suitable
for the application of a second instance of the sum-check protocol. Specifically, let
F̃io(rx) = A(rx) · B(rx)− C(rx), where

A(rx) =
∑

y∈{0,1}s

Ã(rx, y) · Z̃(y)

B(rx) =
∑

y∈{0,1}s

Ã(rx, y) · Z̃(y)

C(rx) =
∑

y∈{0,1}s

Ã(rx, y) · Z̃(y)

This observation opens up the following solution: the prover can make three separate
claims to V , say that A(rx) = vA, B(rx) = vB, and C(rx) = vC. Then, V can evaluate:

Gio,τ (rx) = (vA · vB − vC) · ẽq(rx, τ),

which in turn enables V to verify Gio,τ (rx)
?
= ex. Of course, V must still verify three new

claims from P: A(rx)
?
= vA, B(rx)

?
= vB, and C(rx)

?
= vC. Of course, V and P can run
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three independent instances of the sum-check protocol to verify these claims. Instead,
we use a prior idea [45, 105] to combine three claims into a single claim:

• V samples rA, rB, rC ∈R F and computes c = rA · vA + rB · vB + rC · vC.

• V uses the sum-check protocol withP to verify rA·A(rx)+rB·B(rx)+rC ·C(rx)
?
=

c. In more detail, let L(rx) = rA · A(rx) + rB · B(rx) + rC · C(rx).

L(rx) =
∑

y∈{0,1}s

rA · Ã(rx, y) · Z̃(y) + rB · B̃(rx, y) · Z̃(y) + rC · C̃(rx, y) · Z̃(y)

=
∑

y∈{0,1}s

Mrx (y)

Mrx (y) is an s-variate polynomial with degree at most 2 in each variable. In the
terminology of the sum-check protocol, µ = s, ` = 2, and T = c.

Lemma 5.1. PrrA,rB,rC{rA · A(rx) + rB · B(rx) + rC · C(rx) = c|A(rx) 6= vA ∨ B(rx) 6=
vB ∨ C(rx) 6= vC} ≤ 1/|F |, where c = rA · vA + ry · vB + rC · vC.

Proof. The LHS is a polynomial in rA, rB, rC of total degree 1; the same holds for the
RHS. So, the desired result follows from the Schwartz-Zippel lemma.

V is not out of the woods. At the end of the second instance of the sum-check
protocol, V must evaluate Mrx (ry) for ry ∈ F s:

Mrx (ry) = rA · Ã(rx, ry) · Z̃(ry) + rB · B̃(rx, ry) · Z̃(ry) + rC · C̃(rx, ry) · Z̃(ry)

= (rA · Ã(rx, ry) + rB · C̃(rx, ry) + rC · C̃(rx, ry)) · Z̃(ry)

Observe that the only term in Mrx (ry) that depends on the prover’s witness is Z̃(ry).
This is because all other terms in the above expression can be computed locally by
V using X = (F , A, B, C, io, m, n) in O(n) time (Section 6 discusses how to reduce
the cost of those evaluations to be sub-linear in n). Our second observation is that to
evaluate Z̃(ry) without incurring O(|w|) communication from P to V , we can employ
an extractable polynomial commitment scheme for multilinear polynomials (§2.4). A
similar observation was made by Zhang et al. [111] in a different context (§3.2).

In more detail, P sends a commitment to w̃(·) (i.e., a multilinear extension of its
purported witness) to V before the first instance of the sum-check protocol begins using
an extractable polynomial commitment scheme for multilinear polynomials. To evaluate
Z̃(ry), V does the following. WLOG, assume |w| = |io|+ 1. Thus, by the closed form
expression of multilinear polynomial evaluations, we have:

Z̃(ry) = (1− ry[0]) · w̃(ry[1..]) + ry[0] · (̃io, 1)(ry[1..]),

where ry[1..] refers to a slice of ry that excludes the the first element.
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Putting things together. We now describe our succinct interactive argument of knowl-
edge for R1CS as follows. We assume that there exists an extractable polynomial
commitment scheme for multilinear polynomials PC = (Setup, Commit, Open, Eval). Let
m denote the size parameter from the R1CS instance.

• pp← Setup(1λ): Invoke pp← PC.Setup(1λ, log m); output pp.

• b← 〈P(w),V(r)〉(F , A, B, C, io, m, n):

1. P : (C,S)← PC.Commit(pp, w̃) and send C to V .

2. V : τ ∈R F log m and send τ to P .

3. Let T1 = 0, µ1 = log m, `1 = 3.

4. V : Sample rx ∈R F µ1

5. Sum-check#1. ex ← 〈PSC(Gio,τ ),VSC(rx)〉(µ1, `1, T1)

6. P: Compute vA = A(rx), vB = B(rx), vC = C(rx); send (vA, vB, vC) to V .

7. V : Abort with b = 0 if ex 6= (vA · vB − vC) · ẽq(rx, τ).

8. V: Sample rA, rB, rC ∈R F and send (rA, rB, rC) to P .

9. Let T2 = rA · vA + rB · vB + rC · vC, µ2 = log m, `2 = 2.

10. V : Sample ry ∈R F µ2

11. Sum-check#2. ey ← 〈PSC(Mrx),VSC(ry)〉(µ2, `2, T2)

12. P: v← w̃(ry[1..]) and send v to V .

13. be ← 〈PPC.Eval(w̃,S),VPC.Eval(r)〉(pp, C, ry, v,µ2)

14. V: Abort with b = 0 if be = 0.

15. V : vZ = (1− ry[0]) · w̃(ry[1..]) + ry[0] · (̃io, 1)(ry[1..])

16. V : v1 ← Ã(rx, ry), v2 ← B̃(rx, ry), v3 ← C̃(rx, ry)

17. V : Abort with b = 0 if ey 6= (rA · v1 + rB · v2 + rC · v3) · vZ .

18. V : Output b = 1.

Choice of a polynomial commitment scheme. There exist many extractable polyno-
mial commitment schemes for multilinear polynomials [38, 76, 89, 105, 109, 111] that
suffice for our purposes. The particular choice impacts the costs of our protocol as well
as assumptions, so we review prior commitment schemes’ costs and assumptions.

Analysis of costs. By employing prior ideas [98, 103, 108] to implement a linear-time
prover for the sum-check protocol, the costs of our interactive argument are as follows.

• P incurs: (1) O(n) costs to participate in the sum-check instances; (2) the cost of
PC.Commit and PC.Eval for a log m-variate multilinear polynomial w̃(·).

• V incurs: (1) O(log m) costs for the sum-check instances; (2) the cost of PC.Eval for a
log m-variate multilinear polynomial; and (3) O(n) costs to evaluate Ã(·), B̃(·), C̃(·).

• The amount of communication is: (1) O(log m) in the sum-check instances; (2) the
size of the commitment to w̃(·) and the communication in PC.Eval for w̃(·).
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prior scheme setup PEval |C| communication VEval assumption

Hyrax-PC [103] public O(Γ) O(
√

Γ) O(log Γ) O(
√

Γ) DLOG
DARK-CL [38] public O(Γ) O(log Γ) O(log Γ) O(log Γ) G (unknown order)
vSQL-VPD [111] private O(Γ) O(1) O(log Γ) O(log Γ) q-PKE
Virgo-VPD [109] public O(Γ log Γ) O(1) O(log2 Γ) O(log2 Γ) CRHF

Figure 4—A comparison of candidate extractable polynomial commitment schemes for multilinear polyno-
mials. Here, Γ = 2µ where µ is the number of variables in the multilinear polynomial. Hyrax-PC refers to the
scheme of Wahby et al. [105], which also supports shorter commitments at the cost of increasing the verifier’s
time. DARK-CL refers to the scheme of Bunz et al [38] instantiated with class groups. vSQL-VPD refers
to the zero-knowledge variant [112] of the scheme of Zhang et al. [111]. Virgo-VPD refers to the scheme
of Zhang et al. [110]. The communication column refers to the amount of communication required in the
interactive argument for PC.Eval.

PC choice setup prover communication verifier assumption

Hyrax-PC [103] public O(n) O(
√

m) O(n +
√

m) DLOG
DARK-CL [38] public O(n) O(log m) O(n + log m) G (unknown order)
vSQL-VPD [111] private O(n) O(log m) O(n + log m) q-PKE
Virgo-VPD [109] public O(n + m log m) O(log2 m) O(n + log2 m) CRHF

Figure 5—Costs of our public-coin succinct interactive argument of knowledge instantiated with different
polynomial commitment schemes. The depicted costs are for an R1CS instance X = (F , A, B, C, io, m, n).

Proof of Theorem 5.1. The desired completeness of our interactive argument of knowl-
edge follows from the completeness of the sum-check protocol and of the underlying
polynomial commitment scheme. Furthermore, in all the four candidate constructions
for polynomial commitment schemes, the communication from P to V is sub-linear
in m (Figure 5), which satisfies succinctness. Thus, we are left with proving witness-
extended emulation (Definition 2.6), which we prove in Appendix A.

5.2 NIZK with succinct proofs for R1CS

The interactive argument from the prior subsection is public coin, so we add zero-
knowledge using prior techniques [14, 52]. There are two prior compilers that are
particularly efficient: (1) the compiler employed by Hyrax [105], which relies on a
sigma protocol for proving dot-product relationships; and (2) the compiler employed
by Libra [108] and Virgo [110], which relies on an extractable polynomial commitment
scheme. Both compilers require the polynomial commitment scheme used in the interac-
tive argument to support zero-knowledge (Definition 2.13); all of our candidate schemes
in Figure 4 satisfy this requirement. This transformation not change asymptotics of P ,
V , or of the amount of communication (Figure 5). Finally, since our protocol is public
coin, it can be made non-interactive in the random oracle model using the Fiat-Shamir
transform [57], thereby obtaining a family of NIZKs with succinct proofs for R1CS.

6 Computation commitments: zkSNARKs for R1CS from NIZK
The previous section constructed a family of NIZKs but not zkSNARKs. This is because
the verifier incurs costs linear in the size of the R1CS instance to evaluate Ã, B̃, C̃ at
(rx, ry). We now discuss how to achieve sub-linear verification costs.

At first blush, this appears impossible: The verifier incurs O(n) costs to evaluate
Ã, B̃, C̃ at (rx, ry) (step 16,§5.1), which is time-optimal [98, 101] if X has no structure
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(e.g., uniformity). We get around this impossibility by introducing a preprocessing
step for V . In an offline phase, V with access to non-io portions of an R1CS instance
X = (F , A, B, C, io, m, n) executes the following, where ppcc ← PC.Setup(1λ, 2 log m)
and PC is an extractable polynomial commitment scheme for multilinear polynomials.

Encode(ppcc, (A, B, C)):

• (CA,SA)← PC.Commit(ppcc, Ã)

• (CB,SB)← PC.Commit(ppcc, B̃)

• (CC,SC)← PC.Commit(ppcc, C̃)

• Output (CA, CB, CC)

V retains commitments output by Encode (which need not hide the underlying poly-
nomials, so in practice SA = SB = SC = ⊥). The interactive argument proceeds as in
the prior section except that at step 16, instead of V evaluating Ã, B̃, C̃, we have:

• P : v1 ← Ã(rx, ry), v2 ← B̃(rx, ry), v3 ← C̃(rx, ry). Send (v1, v2, v3) to V .

• b1 ← 〈PPC.Eval(Ã,⊥),VPC.Eval(r)〉(ppcc, CA, (rx, ry), v1, 2 log m)

• b2 ← 〈PPC.Eval(B̃,⊥),VPC.Eval(r)〉(ppcc, CB, (rx, ry), v2, 2 log m)

• b3 ← 〈PPC.Eval(C̃,⊥),VPC.Eval(r)〉(ppcc, CC, (rx, ry), v3, 2 log m)

• V: Abort with b = 0 if b1 = 0 ∨ b2 = 0 ∨ b3 = 0.

Lemma 6.1. The interactive argument from Section 5.1 where step 16 is replaced with
the above protocol is a public-coin succinct interactive argument of knowledge assuming
PC is an extractable polynomial commitment scheme for multilinear polynomials.

Proof. The result follows from the knowledge soundness property satisfied by PC scheme
used in the Encode algorithm.

If V’s costs to verify the three evaluations and the added communication are sub-
linear in O(n), the modified interactive argument leads to a zkSNARK (if we add
zero-knowledge and non-interactivity as before).

Unfortunately, existing polynomial commitment schemes do not satisfy the desired
efficiency properties: (1) to participate in Eval for any of Ã, B̃, C̃, P incurs quadratic costs
i.e., O(m2); and (2) in some schemes (e.g., Hyrax-PC), the modified interactive argument
does not offer improved asymptotics for the verifier.

Details. Recall that polynomials Ã, B̃, C̃ are are multilinear extensions of matrices
A, B, C in an R1CS instance X = (F , A, B, C, io, m, n) (§4). Furthermore, these multilin-
ear polynomials are defined over µ = 2s variables, where s = log m. Thus, if we apply
any existing polynomial commitment from prior subsection (Figure 4): Γ = 2µ = 22 log m.
Thus, PEval incurs at least O(m2), which is also quadratic in n since n = O(m). Further-
more, in schemes such as Hyrax-PC, VEval incurs O(n) costs. Neither is desirable for
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instantiating computation commitments (§6), which aims to make V’s costs sub-linear
in O(n) by delegating evaluations of Ã, B̃, C̃ at (rx, ry) to P .

The next section describes a scheme that meets our efficiency requirements and leads
to asymptotics noted in Figure 1.

7 The SPARK compiler
This section describes SPARK, a new cryptographic compiler to transform an existing
extractable polynomial commitment scheme for dense multilinear polynomials to one
that can efficiently handle sparse multilinear polynomials. In particular, we describe two
compilers: one that offers a standard polynomial commitment scheme and another that
is more efficient but requires the Commit algorithm to be run by a trusted entity. This
limitation is acceptable in the context of computation commitments because the verifier
runs the Commit algorithm as part of Encode (§6). Furthermore, it is worth noting that
this does not introduce a trusted setup as there are no secret trapdoors.

Our core observation is that it is possible to build a polynomial commitment scheme
that efficiently handles sparse multilinear polynomials by using a zkSNARK that achieves
sub-linear verification costs for a restricted class of NP statements. Two attractive
candidates here include: Hyrax [105] and the Spartan-based NIZK from Section 5.2
(both can achieve sub-linear verification costs for NP statements with uniform structure).

For ease of exposition, we focus on describing SPARK that applies to 2 log m-variate
sparse polynomials Ã, B̃, C̃ (where their dense representation is of size ≤ n) from
Section 5.1, but our result generalizes to other sparse multilinear polynomials. We also
conjecture that our solution generalizes to sparse bivariate polynomials of high degree.

7.1 SPARK-naive: A straw-man solution

To present our solution, we describe a straw-man that helps introduce the necessary build-
ing blocks as well as articulate difficulties addressed by SPARK. We recall Hyrax [105],
a zkSNARK that achieves sub-linear verification costs for uniform circuits, specifically
data-parallel circuits. The prover’s costs in Hyrax can be made linear in the circuit size
using subsequent ideas [108]. Furthermore, the verifier’s costs are O(d log n + e) where
d is the depth of the circuit and e is to the verifier to participate in PC.Eval to evaluate a
log |w|-variate multilinear polynomial where w is a witness to the circuit.

Details. Let M denote one of {A, B, C} and let s = log m, so µ = 2s. Recall the
closed-form expression for multilinear polynomial evaluations at r ∈ F µ.

M̃(r) =
∑

i∈{0,1}µ :: M(i)6=0

M(i) · ẽq(i, r) (1)

The above sum has at most n terms since M(i) 6= 0 for at most n values of i. Also,
each entry in the sum can be computed with µ+1 multiplications. Consider the following
circuit to evaluate M̃(r).

A O(logµ)-depth circuit with O(n · µ) gates that:

• Takes as witness the list of tuples of the form (i, M(i)) :: M(i) 6= 0, where each i is
represented with a vector of µ elements of F , so each entry in the list is µ+ 1 elements
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of F (in other words, the witness is a log(n · (µ + 1))-variate multilinear polynomial
whose dense representation is the above list of tuples);

• Takes as public input r ∈ F µ;

• Computes v← M̃(r) using Equation 1;

• Outputs v

Note that the above circuit is uniform: there are n identical copies of a sub-circuit,
where each sub-circuit computes O(µ + 1) multiplications; the outputs of these sub-
circuits is fed into a binary tree of addition gates to compute the final sum. Furthermore,
there is no sharing of witness elements across data-parallel units, so it truly data-parallel.

Construction. Given an extractable polynomial commitment scheme PC for multilinear
polynomials, we build a scheme for sparse multilinear polynomials as follows.

PCnaive:

• pp← Setup(1λ,µ, n): PC.Setup(1λ, log((µ+ 1) · n))

• (C; S)← Commit(pp; M̃): PC.Commit(pp,D), where D is the unique log((µ+ 1) · n)-
variate multilinear polynomial whose dense representation is the list of tuples (i, M(i)) ::
M(i) 6= 0 and each entry is (µ+ 1) elements of F .

• b← Open(pp, C, M̃,S): PC.Open(pp, C,D,S), where D is defined as above.

• b← Eval(pp, C, r, v,µ, n; M̃,S): P and V use Hyrax to verify the claim that M̃(r) = v
using the circuit described above.

Analysis of costs. Recall that computing M̃(r) for M ∈ {A, B, C} and r ∈ F µ takes
O(n) costs. The costs of PCnaive are as follows. The principal downside is that the the
prover is slower than a direct evaluation of the polynomial by a factor of O(µ), so it does
not lead to time-optimal costs. This slowdown is also significant in practice (§8).

PC choice setup PEval |C| communication VEval

Hyrax-PC [103] public O(Υ) O(
√

Υ) O(log Υ · log logµ) O(
√

Υ)
DARK-CL [38] public O(Υ) O(log Υ) O(log Υ · log logµ) O(log Υ · log logµ)
vSQL-VPD [111] private? O(Υ) O(1) O(log Υ · log logµ) O(log Υ · log logµ)
Virgo-VPD [109] public O(Υ log Υ) O(1) O(log2 Υ) O(log2 Υ)

Figure 6—Costs of PCnaive with different choice for PC. Here, Υ = n ·µ where µ is the number of variables
in the multilinear polynomial and n is size of the dense representation of a sparse multilinear polynomial.

Lemma 7.1. PCnaive is a polynomial commitment scheme for multilinear polynomials
with the costs noted above.

Proof. Completeness follows from the completeness of PC and Hyrax. Binding follows
from the uniqueness of the dense representation of a sparse multilinear polynomial.
Knowledge soundness follows from the witness-extended emulation offered by Hyrax
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and PC.Eval. The claimed costs follow from the cost model of Hyrax and PC applied to a
(log n · (µ+ 1))-variate multilinear polynomial.

7.2 Breaking the O(n log m) barrier by leveraging memory checking

We now discuss how to improve on the straw-man scheme by a factor of O(µ) on the
prover. Our focus is on realizing a polynomial commitment scheme for the purpose of
efficiently realizing computation commitments (§6). For this purpose, the Spartan verifier
runs the Commit algorithm as part of the Encode algorithm, so unlike the general setup of
polynomial commitments, the sender is not untrusted. The solution below leverages this
observation to create additional metadata about the sparse polynomial as part of Commit.
Without it, the circuit for evaluating the sparse polynomial will be O(n log |F |), which in
practice may not be better than the O(n log m)-sized circuit from the prior subsection.

Details. Observe that for M ∈ {A, B, C}, M ∈ Fm×m and any r ∈ F µ, we can rewrite
the evaluation of M̃(r) as follows. In our context µ = 2 log m, interpret r as a tuple
(rx, ry) where rx, ry ∈ F s and s = log m = µ/2. Thus, we can rewrite Equation 1 as:

M̃(rx, ry) =
∑

(i,j)∈({0,1}s,{0,1}s) :: M(i,j)6=0

M(i, j) · ẽq(i, rx) · ẽq(j, ry)

In our context, the above sum still contains n terms. Furthermore, computing each
entry in the sum still requires (µ+ 1) multiplications over F . However, it is possible to
compute evaluations of ẽq(i, rx) for all i ∈ {0, 1}s in O(2s) = O(m) time. Similarly, we
can compute a table of evaluations of ẽq(j, ry) for all j ∈ {0, 1}s in O(m) time.

Unfortunately, this observation is insufficient: even though these tables can be
computed in O(m) time, the sum is taken over the list of (i, j) ∈ ({0, 1}s, {0, 1}s) where
M(i, j) 6= 0 and for an arbitrary 2s-variate sparse multilinear polynomial, such a list of
(i, j) has no structure, so computing the sum requires n random accesses into the two
tables, each of size m. We could attempt to build a circuit that supports RAM operations.
Unfortunately, existing techniques to encode RAM in circuits incur a logarithmic blowup
or constants that in practice are larger than a logarithmic blowup.

For m RAM operations over a memory of size m,

• Pantry [37], using Merkle trees, trees [30, 85], offers a circuit of size O(m log m).

• Buffet [104], using permutation networks [17], offers a circuit of size O(m log m)
with constants smaller than the ones in Pantry.

• vRAM [113] offers a O(m)-sized circuit with a constant of log |F | (to encode consis-
tency checks over a memory transcript), so, in practice, this does not improve on the
straw-man. Other downsides: (1) it only supports 32-bit sized memory cells, whereas
we need a memory over elements of F ; (2) nearly all of the circuit’s non-deterministic
witness must be committed by P during circuit evaluation.

Our solution specializes and improves upon a recent implementation of offline mem-
ory checking techniques [30] in Spice [93], which builds circuits to encode operations
on persistent storage with serializable transactions. The storage abstraction can be used
as a memory abstraction where for m operations, the circuit is of size O(m), but the
constants are worse than those of VRAM: ≥ 1000 (to encode an elliptic-curve based
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multiset collision-resistant hash function for each memory operation). We get around
this issue by designing a new randomized check. Furthermore, unlike a vRAM-based
solution, most of the non-deterministic witness needed by the circuit can be created by
PC.Commit (i.e., by the Encode algorithm in computation commitments).

Encoding sparse polynomials. Given a sparse polynomial M̃ (e.g., M̃ ∈ {Ã, B̃, C̃}),
we encode it using three lists of size n as follows. Since M̃ is represented by n tuples
of the form (i, j, M(i, j)), where each tuple has 3 elements of F (this differs from the
straw-man where each i and j were encoded using a vector of s elements of F ), such that
M(i, j) 6= 0. In some canonical order, let row, col, val be three lists that encode the above
n tuples such that for k ∈ [0, n− 1] row(k) = i, col(k) = j, val(k) = M(i, j).

“Memory in the head”. We now capture additional metadata about M̃ that is nec-
essary for memory checking during the evaluation of M̃(r). Note that computing this
additional metadata only needs the following parameters: memory size (which is de-
termined by 2s = m) and the sequence of addresses at which the memory is accessed
(which are provided by row and col).

Let read-tsrow ∈ F n, write-tsrow ∈ F n denote the timestamps associated with read and
write operations and audit-tsrow ∈ Fm denote the final timestamps of memory cells in the
offline memory checking primitive [30, §4.1] for the address sequence specified by row
over a memory of size m = O(2s). Similarly, let read-tscol ∈ F n, write-tscol ∈ F n denote
the timestamps associated with read and write operations and audit-tscol ∈ Fm denote the
final timestamps of memory cells in the offline memory checking primitive [30, §4.1] for
the address sequence specified by col over a memory of size m = O(2s). The following
pseudocode summarizes how these timestamps are computed (vec! uses Rust notation).

MemoryInTheHead(m, n, addrs):

• read-ts← vec![n ; 0]; write-ts← vec![n ; 0]; audit-ts← vec![m ; 0]; ts← 0

• for i in (0..addrs.len()):

• addr ← addrs[i]

• r-ts← audit-ts[i]

• ts← max(ts, r-ts) + 1

• read-ts[i]← r-ts

• write-ts[i]← ts

• audit-ts[addr]← ts

• return (read-ts, write-ts, audit-ts)

An O(n)-sized circuit. We now describe an O(n)-sized circuit to compute an evalua-
tion of M̃. We prove that the circuit indeed computes the correct evaluation of the sparse
polynomial in lemma 7.5. In the description of the circuit, we assume hash functions H
andH, which are defined after the description of the circuit.
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An O(n)-sized, O(log n)-depth circuit (Circuiteval-opt).

• Takes as witness the following lists (Hyrax can accept witness in separate lists).

1. a succinct description of M̃: three lists row, col, val, where each list has n entries.

2. two lists erow, ecol, where each list contains n elements of F .

3. six lists: read-tsrow,read-tscol,write-tsrow, write-tscol,audit-tsrow, and audit-tscol. The
first four are of size n and the last two are of size m; each entry is an element of F .

4. two challenges γ1, γ2 ∈ F .

• Takes as public input r = (rx, ry) ∈ F µ;

• Output M̃(r) using v←
∑n−1

k=0 val[k] · erow[k] · ecol[k].

• Memory checking for erow:

• memrow ← [ẽq(0, rx), . . . , ẽq(m− 1, rx)] ∈ F m

• Initrow ← Hγ1([0, . . . , m− 1], memrow, [0, . . . , 0]) ∈ F m

• RSrow ← Hγ1(row, erow, read-tsrow) ∈ F n

• WSrow ← Hγ1(row, erow, write-tsrow) ∈ F n

• Auditrow ← Hγ1([0, . . . , m− 1], memrow, audit-tsrow) ∈ F m

• AssertHγ2(Initrow) · Hγ2(WSrow) = Hγ2(RSrow) · Hγ2(Auditrow)

• Memory checking for ecol:

• memcol ← [ẽq(0, ry), . . . , ẽq(m− 1, ry)] ∈ F m

• Let Initcol ← Hγ1([0, . . . , m− 1], memcol, [0, . . . , 0]) ∈ F m

• Let RScol ← Hγ1(col, ecol, read-tscol) ∈ F n

• Let WScol ← Hγ1(col, ecol, write-tscol) ∈ F n

• Let Auditcol ← Hγ1([0, . . . , m− 1], memcol, audit-tscol) ∈ F m

• AssertHγ2(Initcol) · Hγ2(WScol) = Hγ2(RScol) · Hγ2(Auditcol)

Definitions for H and H. The above description of the circuit uses H and H, which
we now define. Unlike ECC-based multiset hash functions in Spice [93], we leverage the
public-coin nature of Hyrax to verify the multiset relationship at a random point chosen
using public coins. Specifically, we define two hash functions: (1) hγ : F 3 → F ; and (2)
Hγ : F ∗ → F , where F ∗ denotes a multiset with elements from F and γ ∈R F .

hγ(a, v, t) = a · γ2 + v · γ + t

Hγ(M) = Πe∈M(e− γ)

Given (A, V , T) ∈ (F `, F `, F `) for ` > 0, we define a map Hγ : (F `, F `, F `)→ F `:

Hγ(A, V , T) = [hγ(A[0], V[0], T[0]), . . . , hγ(A[`− 1], V[`− 1], T[`− 1])]

Lemma 7.2. For any two pairs (a1, v1, t1) ∈ F 3 and (a2, v2, t2) ∈ F 3, Prγ{hγ(a1, v1, t1) =
hγ(a2, v2, t2)|(a1, v1, t1) 6= (a2, v2, t2)} ≤ 3/|F |.
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Proof. This follows from the Schwartz-Zippel lemma.

Lemma 7.3. For any ` > 0, (A1, V1, T1) ∈ (F `, F `, F `) and (A2, V2, T2) ∈ (F `, F `, F `)
Prγ{∃i :: Hγ(A1, V1, T1)[i] = Hγ(A2, V2, T2)[i]|(A1, V1, T1) 6= (A2, V2, T2)} ≤ 3 · `/|F |.

Proof. This follows from a standard union bound with the result of the lemma 7.2.

Lemma 7.4. For any two multisetsM1,M2 of size ` over F ,

Pr
γ
{Hγ(M1) = Hγ(M2)|M1 6=M2} ≤ `/|F |

Proof. This follows from the Schwartz-Zippel lemma.

Lemma 7.5. Assuming that |F | is exponential in λ and n = O(λ), for any 2 log m-
variate multilinear polynomial M̃ whose dense representation is of size at most n and for
any given erow, ecol ∈ F n,

Pr
γ1,γ2
{Circuiteval-opt(w, (γ1, γ2), r) = v|M̃(r) 6= v} ≤ negl(λ),

where w = (row, col, val, erow, ecol, MemoryInTheHead(m, n, row), MemoryInTheHead(m, n, col))
and (row, col, val) denotes the dense representation of M̃.

Proof. This follows from the soundness of the memory checking primitive [30] and the
collision-resistance of the underlying hash functions used (lemmas 7.4 and 7.3).

Construction. Given an extractable polynomial commitment scheme PC for multilinear
polynomials, we build a scheme for sparse multilinear polynomials as follows.

PCSPARK:

• pp← Setup(1λ,µ, n): (PC.Setup(1λ,µ)), PC.Setup(1λ, log(n)))

• (C; S)← Commit(pp; M̃):

• Let (ppm, ppn)← pp

• Let (row, col, val) denote the dense representation of M̃ as described in text.

– (Crow,Srow)← PC.Commit(ppn, r̃ow)

– (Ccol,Scol)← PC.Commit(ppn, c̃ol)

– (Cval,Sval)← PC.Commit(ppn, ṽal)

• Let (read-tsrow, write-tsrow, audit-tsrow)← MemoryInTheHead(2µ/2, n, row)

– (Cread-tsrow ,Sread-tsrow)← PC.Commit(ppn, ˜read-tsrow)

– (Cwrite-tsrow ,Swrite-tsrow)← PC.Commit(ppn, ˜write-tsrow)

– (Caudit-tsrow ,Saudit-tsrow)← PC.Commit(ppm, ˜audit-tsrow)

• Let (read-tscol, write-tscol, audit-tscol)← MemoryInTheHead(2µ/2, n, col)

– (Cread-tscol ,Sread-tscol)← PC.Commit(ppn, ˜read-tscol)
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– (Cwrite-tscol ,Swrite-tscol)← PC.Commit(ppn, ˜write-tscol)

– (Caudit-tscol ,Saudit-tscol)← PC.Commit(ppm, ˜audit-tscol)

• Let C ← (Crow, Ccol, Cval, Cread-tsrow , Cwrite-tsrow , Caudit-tsrow , Cread-tscol , Cwrite-tscol , Caudit-tscol)

• Let S ← (Srow,Scol,Sval,Sread-tsrow ,Swrite-tsrow ,Saudit-tsrow ,Sread-tscol ,Swrite-tscol ,Saudit-tscol)

• Output (C,S)

• b← Open(pp, C, M̃,S):
• Let (ppm, ppn)← pp.

• Let row, col, val denote dense representation of M̃ as defined above.

• Output PC.Open(ppn, C.Crow, r̃ow,S.Srow) ∧ PC.Open(ppn, C.Ccol, c̃ol,S.Scol) ∧
PC.Open(ppn, C, Cval, ṽal,S.Sval)

• b← Eval(pp, C, r, v,µ, n; M̃,S):
• Let (ppm, ppn)← pp and let (rx, ry) = r, where rx, ry ∈ F µ/2.

• Let row, col, val denote dense representation of M̃ as defined above.

• P :

– Compute erow and ecol with 2n lookups over a table of size m = 2µ/2.
That is, erow = [ẽq(row(0), rx), . . . , ẽq(row(n − 1), rx)]; let ecol =
[ẽq(col(0), ry), . . . , ẽq(col(n− 1), ry)].

– (Cerow ,Serow)← PC.Commit(ppn, ẽrow); send Cerow to V .
– (Cecol ,Secol)← PC.Commit(ppn, ẽcol); send Cecol to V .

• V : (γ1, γ2) ∈R F 2. Send (γ1, γ2) to P .

• P and V use Hyrax (with PC as the extractable polynomial commitment scheme)
to verify the claim that M̃(r) = v using Circuiteval-opt.

Analysis of costs. Circuiteval-opt is uniform because computing H using a binary tree
of multiplications [98] constitutes nearly all of the work in the above circuit. Figure 7
depicts the costs of PCSPARK with different choices for PC.

PC choice setup PEval |C| communication VEval

Hyrax-PC [103] public O(n) O(
√

n) O(log2 n) O(
√

n)
DARK-CL [38] public O(n) O(log n) O(log2 n) O(log2 n)
vSQL-VPD [111] private? O(n) O(1) O(log2 n) O(log2 n)
Virgo-VPD [109] public O(n log n) O(1) O(log2 n) O(log2 n)

Figure 7—Costs of PCSPARK with different choices for PC. Here, n is number of entries in the dense
representation of the multilinear polynomial.

Lemma 7.6. Assuming that PCSPARK.Commit is run by an honest entity, then PCSPARK is a
polynomial commitment scheme for multilinear polynomials with the costs noted.

Proof. Completeness follows from the completeness of PC, Hyrax, and Circuiteval-opt.
Binding follows from the uniqueness of the dense representation of the sparse multi-

30



linear polynomial as (row, col, val). Knowledge soundness follows from the witness-
extended emulation offered by Hyrax and PC, and from the negligible soundness error of
Circuiteval-opt (lemma 7.5). Finally, the claimed costs follow from the cost model of Hyrax
and of PC applied to a constant number of O(log n)-variate multilinear polynomials.

7.3 Optimizations

We now describe many optimizations to SPARK to reduce constants.

1. Instead of using Hyrax as a black box, we tailor it for Circuiteval-opt using prior
ideas [98]. This reduces overall costs significantly. We also do not need Hyrax’s
zero-knowledge compiler for computation commitments.

2. For computation commitments, we build a single circuit that produces evaluations of
Ã, B̃, C̃ at (rx, ry). This enables reusing parts of the memory checking circuit (related
to the state of the memory) across evaluations.

3. In our particular context, we can set ∀0 ≤ i < n: write-tsrow[i] = read-tsrow[i] + 1
and write-tscol[i] = read-tsread[i] + 1. This is because unlike the traditional setting of
offline memory checking, the read timestamps are not untrusted. This avoids having
to commit to ˜write-tsrow and ˜write-tscol.

4. During PCSPARK.Eval, at the witness layer in Hyrax, V needs to evaluate a number of
multilinear polynomials at either rrow, rcol ∈ F log n or rmem ∈ F log m. We avoid having
to commit to them by leveraging their succinct representations.

• V can compute m̃emrow(rrow) and m̃emcol(rcol) in O(log m) as follows:

m̃emrow(rrow)← ẽq(rrow, rx)

m̃emcol(rcol)← ẽq(rcol, ry)

This avoids P having to commit to m̃emrow and m̃emcol. It also avoids V having
to verify if the commitments correctly represent ẽq(i, rx) and ẽq(i, ry) ∀0 ≤ i <
m, which in turn would require verifying the satisfiability of another circuit.

• We leverage the following facts: (1) ˜(0, 1, . . . , m− 1)(rmem) =
∑log m

i=0 2i · rmem[i];

(2) ˜(0, 0, . . . , 0)(rmem) = 0.

5. It is possible to combine k µ-variate multilinear polynomials into a single multilinear
polynomial over µ+ log k variables. We employ this technique to reduce the number
of committed multilinear polynomials from 23 to 3.

8 Implementation and experimental evaluation
8.1 Implementation details

We implement Spartan as a modular library in about 8,000 lines of Rust including many
optimizations listed throughout the paper as well as optimizations to the sum-check
protocol from prior work [98, 101, 103, 105, 108]. Our codebase can leverage multiple
CPU cores using rayon.8 We also implement SPARK-naive to demonstrate benefits of
8https://github.com/rayon-rs/rayon
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SPARK (in our experiments we find SPARK to be faster by about 10× than SPARK-naive
for R1CS instances with 220 constraints).

Below, we present results from SPARK instantiated with Hyrax-PC [105], that is,
we evaluate a zkSNARK whose security holds under the discrete logarithm prob-
lem (SpartanDL). For curve arithmetic, we use curve25519-dalek [2], which offers an
efficient implementation of a prime-order Ristretto group [3, 70] called ristretto255.
The scalar arithmetic in the library is however slow since it represents the underlying
scalar elements as byte strings (to facilitate fast curve arithmetic). To cope with this, we
optimize the underlying scalar arithmetic by≈ 10× by adapting code from bls12-381,9

which offers optimized 256-bit arithmetic for the field of scalars of the BLS12-381 curve,
to the field of scalars of ristretto255.

We report results from SpartanDL rather than SpartanCL because the latter requires
operations over class groups, which are orders of magnitude slower than operations
over a prime-order elliptic curve group needed by Hyrax-PC [105]. As we show below,
despite O(

√
n)-sized proofs, SpartanDL offers proofs (and verification times) that are

shorter (and smaller) than nearly all other schemes.

8.2 Metrics, methodology, and testbed

Our principal evaluation metrics are: (1) P’s costs to produce a proof; (2) V’s costs to
preprocess an R1CS instance; (3) V’s costs to verify a proof; and (4) the size of a proof.
We measure P’s and V’s costs using a real-time clock and the size of proofs in bytes by
serializing proof data structures using serde.10

We experiment with Spartan and several baselines (listed below) on a machine
with the following configuration: Intel Xeon CPU E3-1280 v5 3.70 GHz with 64 GB
RAM running Ubuntu 18.04 (on Windows 10). We report results from a single-threaded
configuration since not all our baselines leverage multiple cores. As with prior work [20],
we vary the size of the R1CS instance by varying the number of constraints and variables
m and maintain the ratio n/m to approximately 1. In all Spartan experiments |io| = 10.

Baselines. We compare Spartan with five state-of-the-art zkSNARKs.

1. Groth16 [67], the most efficient zkSNARK with trusted setup based on GGPR [61].

2. Ligero [5], a prior transparent zkSNARK with a light-weight prover.

3. Aurora [20], a prior transparent zkSNARK with short proofs.

4. Fractal [47], a recent transparent zkSNARK that uses a technique analogous to
computation commitments to achieve sub-linear verification costs.

5. Hyrax [105], a prior transparent zkSNARK that achieves sub-linear verification costs
for data-parallel computations.

For Groth16, we benchmark its implementation from libsnark with bn128 curve.11

For Hyrax, we use its reference implementation with curve25519.12 For Ligero, Aurora,
and Fractal, we use their implementations from libiop with a prime field of size

9https://github.com/zkcrypto/bls12_381
10https://github.com/serde-rs/serde
11https://github.com/scipr-lab/libsnark/
12https://github.com/hyraxZK/fennel
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≈ 2256.13 We choose these fields and/or curves to offer an apples-to-apples comparison
with Spartan (in terms of the expressiveness of the underlying computational model),
which uses the Ristretto group where the field size is ≈ 2256.

Additional baselines. There are other transparent zkSNARKs in the literature (§1).
We now provide a rough comparison with Spartan and leave it to future work to run
them on the same hardware. Bulletproofs [41] offers shorter proofs (≈ 1.5 KB) than
all transparent zkSNARKs discussed here, but it incurs orders of magnitude higher
prover and verifier costs than Spartan and other schemes discussed here [108, Table
1]. SuperSonic [38] estimates that its proof size is ≈ 10 KB and verification time is
≈100 ms for circuits with 220 gates, but as discussed earlier, there are no reports of
prover’s concrete costs and our benchmarks suggest that the prover’s costs can be
≈ 200× higher than SpartanDL. zkSTARKs [15] perform worse than Aurora on all our
performance aspects for arbitrary R1CS instances: prover time, verifier time, and proof
sizes [15, §11.2]. Virgo [109] is specialized to layered arithmetic circuits over Fp where
p = 261 − 1, so it precludes many computations including efficient representations of
ECC-based digital signatures (or other cryptographic primitives) that operate over fields
of size ≈ 2256 [1, 39, 40, 80, 88, 107]. Switching to a 256-bit prime field increases
Virgo’s prover’s costs by at least 17×, which is much slower than Spartan.

A note about comparison with Hyrax. Hyrax’s model of computation is layered
arithmetic circuits and its codebase only supports three circuits. To offer an approximate
comparison with Spartan, we take the following approach. We use the matrix multi-
plication benchmark, which allows the prover to prove that it knows two secret ` × `
matrices such that their product is a public matrix. We choose this benchmark because
the R1CS instances that we generate for other baselines perform n multiplications using
n constraints. Given that `× ` matrix multiplication requires `3 constraints in R1CS [4],
when we experiment with other systems for a given R1CS instance with n constraints,
we set the dimension of the matrix for Hyrax as ` = n1/3. This is optimistic for Hyrax’s
prover: in all other systems, the prover’s cryptographic operations is O(n) whereas for
this benchmark the Hyrax prover only performs cryptographic operations proportional to
the size of the witness to the layered circuit i.e., O(n2/3) operations for this benchmark.
On the other hand, this is somewhat pessimistic for Hyrax’s verifier: the public io in
the case of Hyrax is `2 elements of F whereas for other systems, it is nearly 0. At
220 constraints, we estimate that this discrepancy underestimates Spartan’s verifier’s
performance by 5 ms of CPU-time (which is < 3.8% of Spartan’s verifier’s time).

Spartan variants and amortization. For Spartan, we report results from two variants:
the SNARK (Spartan-snark) and NIZK (Spartan-nizk). The former incurs sub-linear
verification costs and the latter incurs linear verification costs. We report the performance
of the NIZK variant for two reasons: (1) Two of our baselines (Aurora and Ligero) offer
only a linear-time verifier (so this helps offer an apples-to-apples comparison); and (2) for
data-parallel workloads, the NIZK variant depicts the performance that Spartan-snark
can achieve for the prover and proof sizes (this is because Spartan-snark can amortize
the costs of computation commitments across different data-parallel units to approach
the performance of Spartan-nizk for the prover and proof sizes).

13https://github.com/scipr-lab/libiop
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8.3 Performance results

Prover. Figure 8 depicts the prover’s costs under Spartan and its baselines. As ex-
pected, Spartan outperforms all its baselines. Specifically, Spartan-snark is faster than its
baselines by 1.5×–17.6×, and Spartan-nizk by 12.4×–115×.

When compared to the most related system, Spartan-snark is 17.5× faster than
Fractal at 219 constraints.14 Even compared to Ligero, a transparent SNARK with an
efficient prover, Spartan-snark is up to 3× faster. When we compare Ligero, Aurora,
and Hyrax with Spartan-nizk (since all of them are proof-succinct NIZKs),15 Spartan-
nizk is up to 24× faster than Ligero, 115× faster than Aurora, and 82× faster than
Hyrax. Finally, compared to Groth16 (the state-of-the-art in SNARKs with trusted setup),
Spartan’s prover is 1.5× faster and Spartan-nizk’s prover is 12.4× faster.

210 211 212 213 214 215 216 217 218 219 220

Groth16 0.2 0.3 0.5 1 1.6 3.1 5.8 11.3 21.4 42 81

Aurora 0.5 1.1 2.2 4.4 9.0 19.6 40.5 84.3 175.3 363.4 752.6
Ligero 0.3 0.6 1.1 2.0 4.0 6.6 11.7 21.5 40.4 79.0 156.7
Fractal 0.6 1.2 2.5 5.3 11.8 25.0 51.4 105.8 218.9 447.2 –
Hyrax 0.7 0.8 1.6 3.2 7.6 14.6 26.2 55.4 118.5 246 534.6

Spartan-nizk 0.01 0.02 0.04 0.07 0.14 0.24 0.52 0.95 1.73 3.18 6.5
Spartan-snark 0.1 0.2 0.3 0.6 1.1 2.0 3.7 7.2 12.9 25.4 52

Figure 8—Prover’s performance (in seconds) for varying R1CS instance sizes under different schemes.

Proof sizes. Figure 9 depicts proof sizes under Spartan and its baselines. Although
Spartan-snark’s proofs are asymptotically larger than Fractal (Figure 1), Spartan-snark
offers up to 2× shorter proofs. When we compare the proof-succinct NIZKs, Spartan-nizk
offers proofs that are 1.8–540× shorter than Hyrax, Aurora, and Ligero. All transparent
zkSNARKs produce orders of magnitude longer proofs than Groth16.

210 211 212 213 214 215 216 217 218 219 220

Aurora 52.1 57.4 70.0 74.6 82.7 95.7 101.7 108.7 119.3 131.1 141
Ligero 550 627 1M 1.2M 2M 3M 5.6M 5.8M 10M 10.6M 20M
Fractal 125 136 149 162 171 191 202 216 232 249 –
Hyrax 23.3 25.1 26.4 33.8 36.9 37.7 46.5 49.9 52.2 61.2 65.9

Spartan-nizk 3.3 3.6 4.7 4.9 7.2 7.4 11.7 11.9 20.2 20.5 37.0
Spartan-snark 29.9 35.5 40 47.9 53.9 66.3 74.6 95.6 108.4 146.2 167.6

Figure 9—Proof sizes in KBs for various zkSNARKs. Entries with “M” are in megabytes. The proof sizes
under Groth16 [67] is 128 bytes for all instance sizes.

Verifier. Figure 10 depicts the verifier times under different schemes. Groth16 offers
the fastest verifier, but it requires a trusted setup. Among transparent zkSNARKs, Fractal
offers the fastest verifier, which is 7.2× faster than Spartan-snark at 219 constraints.
However, arguably, Spartan-snark’s verification times are concretely efficient for many

14Unfortunately, we could not run the Fractal prover at 220 constraints.
15Hyrax incurs linear-time verification costs if the computation has no data-parallelism.
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applications. Furthermore, Spartan-snark’s verifier is 71× faster than Aurora, 240× faster
than Ligero, and 60× faster than Hyrax. This type of performance is expected because
Aurora, Ligero, and Hyrax incur linear costs for the verifier whereas Spartan-snark (and
Fractal) incur sub-linear verification costs due to the use of computation commitments,
which requires preprocessing the non-io component of an R1CS instance. We quantify
the costs of that process below. Finally, note that Spartan-snark beats Spartan-nizk for
verification costs at roughly 218 constraints since the former incurs O(

√
n) costs whereas

the latter incurs O(n) costs, where n is the size of the R1CS instance.

210 211 212 213 214 215 216 217 218 219 220

Aurora 12.1 20 35.7 68.5 130 262 542 1.1s 2.2s 4.5s 9.5s
Ligero 45.6 90 161 335.3 627.5 1.0s 1.9s 3.6s 7.1s 14.5s 32s
Fractal 7.5 7.7 9.0 9.0 9.9 10.2 10.8 11.7 11.8 13.5 –
Hyrax 285 303 331 507 653 737 963 1.5s 2.3s 4.2s 8.1s

Spartan-nizk 1.7 2.1 3.3 4.7 8.4 14.4 27.4 45.9 90.0 201.1 439.5
Spartan-snark 12.0 12.5 15.6 19.5 25.6 33.0 44.0 56.8 73.8 97.7 133.0

Figure 10—Verifier’s performance (in ms) under different schemes. Entries with “s” are in seconds. The
verifier under Groth16 [67] takes ≈ 2 ms at all instance sizes.

Encoder. Figure 11 depicts the cost to the verifier to preprocess an R1CS instance
(without the io component) under Spartan-snark, Fractal [47], and Groth16 [67]. We do
not depict other baselines because they do not require any preprocessing. Spartan-snark’s
encoder is up to 26× faster than Fractal’s encoder and about 3.5× faster than the trusted
setup for Groth16 at the largest instance sizes.

210 211 212 213 214 215 216 217 218 219 220

Groth16 0.14 0.25 0.5 0.8 1.6 3.1 5.9 11 20 39.7 74
Fractal 0.25 0.55 1.2 2.6 5.8 12.7 27.3 56.6 117.2 242.1 562.2
Spartan-snark 0.08 0.1 0.18 0.31 0.61 1.1 2.13 3.3 6.7 10.3 20.8

Figure 11—Encoder’s performance (in seconds) for varying R1CS instance sizes under different schemes. For
Groth16 [67], we depict the cost of trusted setup, which preprocesses a given R1CS instance to generate keys
for the prover and the verifier. For Spartan and Fractal, the preprocessing is untrusted and public computation.
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A Proof of witness-extended emulation for the protocol in §5.1
To simplify the proof, we define an information-theoretic protocol (which we denote as
〈PIP,VIP〉 and refer to it as Spartan-core) that is identical to the interactive argument in
Section 5.1 except for the following:

• At step 1, instead of a commitment C, V receives w̃′, which is a log m-variate
multilinear polynomial, as an auxiliary input.

• At steps 13 and 14, V simply evaluates v← w̃′(rx)

Spartan-core is similar to the Gir++ doubly-efficient interactive proof, except that
Spartan-core only invokes two instances of the sum-check protocol whereas Gir++
invokes O(d) sum-check instances for a depth-d circuit.

Lemma A.1. For any non-satisfiable R1CS instance X, any PPT prover P∗IP, and for all
w, r ∈ {0, 1}∗, Pr{〈P∗IP(w),VIP(r)〉(X) = 1} ≤ (6 log m + 1)/|F |

Proof. If X is not satisfiable, then Qio(t) is not a zero-polynomial. By the Schwartz-
Zippel lemma, Qio(t) = 0 for at most d/|F | values of t ∈ F s, where d is the degree of
Qio. In our context, d = s = log m. There are two cases to consider.

First, if V chooses a τ ∈ F s where Qio(τ) = 0, then the verifier in Spartan-Core may
incorrectly output b = 1.

Second, If V chooses a τ ∈ F s where Qio(τ) 6= 0, then a malicious prover begins with
a false claim in the sum-check protocol. By the soundness of the sum-check protocol (§3
and a standard analysis of soundness error for a sequence of sum-checks [92, §3.3.3]) and
the soundness error of the random linear combination (lemma 5.1), the malicious prover
succeeds with probability at most (`1 · µ1 + `2 · µ2 + 1)/|F |, where µ1 = µ2 = log m,
`1 = 3, `2 = 2, and the probability is over V’s randomness.

Applying a standard union bound establishes the desired result.

Theorem A.1. Given an extractable polynomial commitment scheme for multilinear
polynomials PC that satisfies witness-extended emulation for PC.Eval, the protocol in
Section 5.1 has witness-extended emulation.

Proof. The proof is identical to Hyrax’s except where their proof invokes properties of
Gir++, we invoke properties of Spartan-core.
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