
Optimal TNFS-secure pairings on elliptic curves
with composite embedding degree

Georgios Fotiadis1 and Chloe Martindale2 ?

1 SnT, University of Luxembourg, Luxembourg
georgios.fotiadis@uni.lu

2 Technische Universiteit Eindhoven, the Netherlands
chloemartindale@gmail.com

Abstract. In this paper we present a comprehensive comparison be-
tween pairing-friendly elliptic curves, considering different curve forms
and twists where possible. We define a measure of the efficiency of a
parametrized pairing-friendly family that takes into account the number
field sieve (NFS) attacks (unlike the ρ-value). This measure includes an
approximation of the security of the discrete logarithm problem in F∗

pk ,
computed via the method of Barbulescu and Duquesne [4]. We compute
the security of the families presented by Fotiadis and Konstantinou in
[13], compute some new families, and compare the efficiency of both of
these with the (adjusted) BLS, KSS, and BN families, and with the new
families of [19]. Finally, we present an optimal pairing-friendly elliptic
curve for security level 128 and recommend two pairing-friendly elliptic
curves for security level 192.

Keywords: Optimal ate pairing, twists of elliptic curves, jacobian co-
ordinates, TNFS-secure, SexTNFS.

1 Introduction

Pairings first appeared in 1940 when André Weil showed that there is a way to
map points of order r on a supersingular elliptic curve to an element of order
r in a finite field; his map became known as the Weil pairing. In 1986, Victor
Miller [24] gave an algorithm that computes the Weil pairing efficiently, and in
1993, Menezes, Okamoto and Vanstone [23] applied Miller’s method to the ellip-
tic curve discrete logarithm problem (ECDLP) for supersingular elliptic curves.
They reduced ECDLP for supersingular elliptic curves to the discrete logarithm
problem in a finite field (DLP), giving a subexponential attack now known as the
MOV-attack. This attack was followed by the more general FR-reduction [16],

? Author list in alphabetical order; see https://www.ams.org/profession/leaders/

culture/CultureStatement04.pdf. Georgios Fotiadis was supported by European
Union’s Horizon 2020 research and innovation programme under grant agreement
No. 779391 (FutureTPM). Chloe Martindale was supported by the Netherlands Or-
ganisation for Scientific Research (NWO) under CHIST-ERA USEIT (grant number
651.002.004). Date of this document: May 24, 2019.

https://www.ams.org/profession/leaders/ culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/ culture/CultureStatement04.pdf

which can be applied to ordinary elliptic curves (and higher-dimensional abelian
varieties) when using a variant of the Weil pairing called the Tate pairing. In the
early 2000s however, several authors presented secure and efficient pairing-based
protocols (see e.g. [7,8,20]) which are now the backbone of privacy-related cryp-
tosystems. More recently, pairings have started being deployed in the market
place, for example in the Elliptic Curve Direct Anonymous Attestation (EC-
DAA) protocol that is embedded in the current version of the Trusted Platform
Module (TPM), namely TPM2.0 [18].

1.1 Pairings on elliptic curves

For the introductory material on pairings and attacks in this section, Section 1.2,
and Section 2.1, we follow [14, Section 1.1], [14, Section 1.2], and [14, Section
2.1] respectively.

Let G1,G2 and GT be cyclic groups of prime order r and assume that the
DLP is intractable in all three groups. An abstract pairing is a bilinear, non-
degenerate, efficiently computable map of the form:

ê : G1 ×G2 → GT . (1)

When G1 6= G2 the pairing is called asymmetric.
Let E be an ordinary elliptic curve defined over a prime field Fp and let r

be largest prime such that r|#E(Fp). We define the embedding degree k of E to
be the minimal integer k for which all the r-th roots of unity are contained in
Fpk . For all pairings on elliptic curves that are currently used in cryptography,
the groups G1 and G2 are r-order subgroups of E(Fpk) and the group GT is the
subgroup µr ⊆ F∗pk of rth roots of unity. That is, a pairing of elliptic curves is a
map:

ê : E(Fpk)[r]× E(Fpk)[r]→ µr ⊂ F∗pk .

The most widely used pairings on ordinary elliptic curves can be efficiently com-
puted using variations of Miller’s algorithm [24].

1.2 Attacks on pairings

For the curves that we consider, the best attack on ECDLP in an r-order sub-
group of E(Fpk) is Pollard’s rho algorithm, which has complexity O(

√
r). The

complexity of DLP in the multiplicative group F∗pk depends both on the con-
struction of k and of p. In the case of most pairing-friendly curves, the prime p
is large (at least 256 bits) and is derived from the evaluation of a polynomial;
such a prime p is of special form.

When k is prime, the asymptotic complexity of DLP in F∗pk is Lpk [1/3, 1.923],

due to the number field sieve (NFS) method. For composite embedding de-
grees, Kim and Barbulescu’s [22] improvements on the tower number field sieve
(TNFS) method have reduced the complexity of DLP in F∗pk from Lpk [1/3, 1.923]

to Lpk [1/3, 1.526] (in the most extreme cases). The concrete complexity of the

2

number field sieve method for a given example can be computed using Bar-
bulescu and Duquesne’s method [4]. These new improvements have immediate
consequences on the selection of the extension fields Fpk . A summary of (new)
recommendations of pairing-friendly elliptic curves, for many different embed-
ding degrees, that are resistant against the new TNFS attacks is presented in [13].
The security of these recommendations was calculated via the asymptotic for-
mula Lpk [1/3, 1.526].

1.3 Our contributions

We present new candidates for pairing-friendly families for both security levels
128 and 192. We also introduce a new measure, the τn-value, for the efficiency
of a pairing-friendly family that takes into account the latest attacks (unlike the
ρ-value). We compare the candidate families and present an optimal family for
security level 128 together with a choice of elliptic curve in that family, which
should perform about 10% faster than the fastest pairing-friendly elliptic curve
that was previously available the literature. Finally, we recommend two efficient
pairing-friendly elliptic curves for security level 192.

Acknowledgments

We would especially like to thank Prof. Sylvain Duquesne for taking the time to
discuss with us in detail his work with Barbulescu on computing the complexity
of attacks on pairings, and for sharing his code with us. We would also like to
thank Rémi Clarisse for useful discussions.

2 Preliminaries

We use the method of Brezing and Weng [9] for generating pairing-friendly fami-
lies of elliptic curves, and in order to make concrete recommendations for pairing-
friendly elliptic curves, we use the method of Barbulescu and Duquesne [4] to
compute the security of the target group, both of which we briefly summarize
here for the convenience of the reader. Additionally, we recall what is necessary
to count the number of multiplications required to compute a pairing, which is
needed in order to compare our results with those in the literature.

2.1 Pairing-Friendly Curves

For the construction of pairing-friendly elliptic curves we use complete polynomial
families, introduced by Brezing and Weng in [9]. For a given embedding degree
k > 0 the elliptic curve parameters p, t and r are described as polynomials
p(x), t(x), r(x) ∈ Q[x] respectively such that

4p(x)− t(x)2 = Dy(x)2,

3

where D > 0 is the CM discriminant and y(x) ∈ Q[x]. These polynomials must
also satisfy the relation

Φk(t(x)− 1) ≡ 0 mod r(x),

where Φ(x) is the kth cyclotomic polynomial. Additionally, these polynomials
satisfy p(x) + 1− t(x) ≡ 0 mod r(x), which ensures that the order of the elliptic
curve has a polynomial representation as #E(Fp(x)) = h(x)r(x).

We can generate elliptic curve parameters by evaluating the polynomial fam-
ily at some integer u such that r = r(u) and p = p(u) are both prime and
t = t(u) ≤ 2

√
p (cf. Hasse bound). The polynomials p(x), t(x), r(x) from our

constructions are integer-valued, which we define to mean that there exist in-
finitely many u ∈ Z for which these polynomials produce integer values.

2.2 Efficient Pairings

To our knowledge, the most efficient asymmetric pairing in the literature is the
optimal ate pairing, which was introduced in [25]. In this case we set:

G1 = E(Fp)[r] ∩ ker(πp − [1]) and G2 = E(Fp)[r] ∩ ker(πp − [p]),

where πp denotes the p-power Frobenius endomorphism on E. Note that G1 =
E(Fp)[r] and G2 ⊆ E(Fpk)[r].

Let E, p, r, and k be as above. Recall that pairing-friendly curves satisfy
Φk(p) ≡ 0 mod r, where Φk is the kth cyclotomic polynomial. We consider the
ϕ(k)-dimensional lattice L (spanned by the rows):

L =

r 0 0 . . . 0
−p 1 0 . . . 0
−p2 0 1 . . . 0

...
...

...
. . .

...
−pϕ(k)−1 0 0 . . . 1

 (2)

and let V = [c0, c1, . . . , cϕ(k)−1] be the shortest vector of this lattice. By [25,
Theorem 7], the shortest vector V of the lattice L satisfies

‖V ‖2 ≥
r1/ϕ(k)

‖Φk‖2
and ‖V ‖∞ ≤

r1/ϕ(k)

(ϕ(k)− 1)‖Φk‖∞
,

where ‖·‖2 and ‖·‖∞ are the square and infinite norms respectively. The optimal
ate pairing is defined as the bilinear, non-degenerate map â : G2×G1 → µr ⊂ F∗pk
given by

(Q,P) 7→

ϕ(k)−1∏
i=0

fp
i

ci,Q
(P) ·

ϕ(k)−2∏
i=0

h[si+1]Q,[cipi]Q(P)︸ ︷︷ ︸
H

pk−1
r

, (3)

4

where for two points R,S on the curve E, hR,S is the rational function with
divisor (R) + (S)− (S+R)−P∞ and the values si are obtained by the relation:

si =

ϕ(k)−1∑
j=i

cjp
j .

By [25] this choice of the coordinates ci ensures the non-degeneracy property
of the above pairing. Furthermore, we give some properties that derive from
the definition of the optimal ate pairing and will be used throughout the paper
(see [25] for details and proofs):

– For every ci < 0, we have fci,Q = 1/(f−ci,Qv[ci]Q), where v[ci]Q is the vertical
line passing through the point [ci]Q.

– For every a, b ∈ Z≥0 we have fab,Q = f ba,Qfb,[a]Q.
– It is trivial to see that f0,Q = f1,Q = f−1,Q = 1.

We wish to compare different choices for pairings in order to find the most
efficient choice. The pairings that we consider here are all computed on elliptic
curves over a finite field Fp via Miller’s algorithm (Algorithm 1), and on a basic
level the whole algorithm can be written in terms of arithmetic in Fp. We compare
our recommendations with earlier suggestions therefore by giving the complexity
of computing one pairing as a number of multiplications in Fp; we can then
compare by counting clock cycles for a generic algorithm (such as Montgomery
multiplication) for Fp-multiplication. The computation of the cost of Algorithm 1

Algorithm 1 Miller’s algorithm

Input: P ∈ G1, Q ∈ G2, V = [c0, c1, . . . , cϕ(k)−1].
Output: â(Q,P).
1: for j = 0 to ϕ(k)− 1 do
2: n← blog2 cjc; f ← 1; R← Q; vj ← (Tn, Tn−1, Tn−2, . . . , T1, T0);
3: for i = n− 2 to 0 do
4: f ← f2 · hR,R(P)
5: R← 2R
6: if Ti 6= 0 then
7: f ← f · hR,Ti·Q(P)
8: R← R+ Ti ·Q
9: if T < 0 then

10: f ← 1/f

11: f ← f ·H (cf. (3)).

12: return f
pk−1
r

is typically split into two parts: the Miller loop, defined as the cost of steps
1-11, and the final exponentiation, defined as the cost of raising an element

5

in Fpk to the power of pk−1
r . Note that if two divides k, then the expensive-

looking inversion in Step 10 can be replaced by exponentiation by pk/2 [2]. This
is just conjugation in Fpk/Fpk/2 , so is free. For computing the number of Fp-
multiplications in the Miller loop, we followed the same method as Guillevic,
Masson, and Thomé [19].

Final exponentiation. Raising an element f ∈ F∗pk directly to e = (pk − 1)/r
is very expensive and thus we need to come up with various tricks in order to
make this operation more efficient. As stated in several papers (see e.g. [1]), for
even embedding degrees, the above exponent can be rewritten as:

e =
(
pk/2 − 1

)[pk/2 + 1

Φk(p)

] [
Φk(p)

r

]
, where

Φk(p)

r
=

ϕ(k)−1∑
i=0

λip
i, (4)

for some λi ∈ Q. The first two exponentiations are easy to compute via the
Frobenius exponentiation. The final step is to raise f to the exponent λ0 +
λ1p + . . . + λϕ(k)−1p

ϕ(k)−1. We refer to this as the “hard part” of the final
exponentiation, as it is typically more costly. In Section 4 we will give more
details on the final exponentiation for the families that we recommend in this
paper. Our process for computing the final exponentiation may not be optimal
and further improvements can possibly be made.

2.3 Security

As stated in Section 1.2, the best attack on a pairing ê : G2 × G1 → GT is the
best attack on any of G1, G2, or GT . In the case of an asymmetric pairing on
E/Fp, where E has embedding degree k, the relevant groups for an attack are G1,
which is an r-order subgroup of E(Fp), and GT ⊆ F∗pk . The best known attack on

G1 is the Pollard-rho method, which has complexity O(
√
r), and the best known

attack on GT is the number field sieve (NFS) method, or more precisely Kim
and Barbulescu’s special extended tower number field sieve (SexTNFS) algo-
rithm [22], the concrete complexity of which can be computed using Barbulescu
and Duquesne’s method [4]. We summarize the computation of the concrete com-
plexity in Algorithm 2. Note that the output of Algorithm 2 depends on some
choices: especially on κ, h, and S. The inputs A and B can be approximated
and then refined by trial and error (as described in [4]), but the choices of κ, h,
and S should be approached with more care. The subtlety of choosing the best
κ, h, and S is discussed in detail in [4]; we demonstrate on a case-by-case basis
how to compute these inputs for our recommendations in Section 4.

Finally, note that Algorithm 2 uses Dickman’s ρ-function ρ(v): this is defined
to be 1 if v ≤ 1, and is defined such that

dρ/dv = −ρ(v − 1)/v

otherwise.

6

The best attack complexity of computing discrete logarithms in GT ⊆ F∗pk
previous to the attacks [22] outlined above was guaranteed to be worse than

√
r

(given that necessarily p ≥ r) for all the embedding degrees k that were used for
computing pairings. Hence the best measure at that time for finding an efficient
pairing-friendly family was the ρ-value, given by

ρ = log(p)/ log(r).

A family with ρ-value (close to) 1 had the r as close as possible to p, so that the
Fp arithmetic was as efficient as possible.

Algorithm 2 Computation of the complexity of the SexTNFS Algorithm of [22],
as presented in [4].

Input: A polynomial p(x) ∈ Q(x), an integer u such that p = p(u) is prime,
small integers κ and k such that κ|k, positive integers A and B.

Output: The cost of finding discrete logarithms in Fpk with the SexTNFS
method (for these inputs), or failure.

1: Set η ← k/κ.
2: Find h ∈ Z[t] such that deg(h) = η and h is irreducible mod p.
3: Set A to be the number of automorphisms of h.
4: Set w to be the number of roots of unity in Q(t)/h(t).
5: Find S(x, t) ∈ Z[x, t] such that g(x, t) ← xκ + S − u is irreducible over

Fpη = Fp[t]/(h(t)).
6: Perform a linear change of variables on p(x) to minimize the coefficients.
7: Set f(x, t)← p(xκ + S).
8: Compute {(a0, . . . , aη−1, b0, . . . , bη−1 ∈ [−A,A]2η : a0 ≥ 0}.
9: Set

Nf ← Rest

(
Resx

(
η−1∑
i=0

ait
i − x

η−1∑
i=0

bit
i, f(t, x)

)
, h(t)

)

Ng ← Rest

(
Resx

(
η−1∑
i=0

ait
i − x

η−1∑
i=0

bit
i, g(t, x)

)
, h(t)

)
.

10: Set pf ← ρ
(

logNf
logB

)
and pg ← ρ

(
logNg
logB

)
.

11: if
(2A+ 1)2η

2w
· pf · pg <

2B

lnB

then return Failure.
12: else return

2B

A lnB
· p−1f · p

−1
g + 27 · B2

A ln2B · log2B
.

7

However, in most cases asking for a ρ-value close to 1 now forces log(r) to
be much larger than necessary, since log(p) has to be increased to account for
the number field sieve attacks. The complexity of Algorithm 2 varies slightly
for different members of the same polynomial family, due to its dependance on
u. Barbulescu and Duquesne also suggested a method to compute an (best-case
for the attacker) approximation for any given family: choose h = tη − t− 1 and
S = 0 or t. Of course we cannot check that h and g are irreducible, but this does
give a first approximation for the security level for a family. The security level
of a specific curve in a given family is typically 1-5 bits higher than this case.

We recommend a new measure of efficiency, the τn-value of a pairing-friendly
family. We define the τn-value to be

τn = log(
√
r)/2n,

where the family has “minimum” security level n, as computed by the method
outlined above. For a family with τn-value (close to) 1, the complexity of the
best attack on G1 is approximately the same as the complexity of the best attack
on GT .

3 New candidate families

3.1 Security level 128

Using the Brezing-Weng method [9], we generated 20 pairing-friendly families
and computed, for each family, the size of log(p) and log(r) that is neces-
sary to achieve (at least) 128-bit security, using the method of Barbulescu and
Duquesne [4]. In Table 1, the value D is the CM discriminant of the elliptic curve
family, and the value δ is the highest degree of twist that occurs for the fam-
ily. Families 1, 13, and 17 were already presented by Fotiadis and Konstaninou
in [13] together with the values of log(p) and log(r) corresponding to a security
level computation with the asymptotic formula Lpk [1/3, 1.529].

Comparing the families in Table 1, Family 17 is a clear winner (at least given
only this information). It has the most efficient Fp- and Fpk/δ -arithmetic; the
efficient Fp-arithmetic is a consequence of the fact that Family 17 has both the
smallest τ128-value and the smallest ρ-value of the table. Also, the degrees of
both defining polynomials p and r are the smallest of the table, and having low
degree polynomials contributes to a more efficient final exponentiation.

Recall from Algorithm 1 that the efficiency of the optimal ate pairing relies
also on the short vector of the lattice. For Family 17 we choose the short vector:

[6x+ 2,−1,−1,−1],

which contains only one non-constant term, and this is (only) linear.
For all of the above reasons, we assume that the most efficient family of

Table 1 with respect to pairing computation is Family 17. In Section 4, we give
more details on the efficiency of computing a pairing on an elliptic curve in this
family and show that this family produces a more efficient choice compared with
other recommendations in the literature.

For the full information on each family in Table 1 (defining polynomials,
short vectors) please see Appendix B.

8

Table 1. Candidate families for Security Level 128

Label k D deg(r) deg(p) log(p) k log(p) k/δ log(p) ρ τ128
1 8 1 4 8 760 6080 1520 2 1.48
2 8 1 4 8 760 6080 1520 2 1.48
3 8 2 4 8 768 6144 3072 2 1.5
4 8 3 8 16 512 4906 2048 2 1
5 8 1 4 8 752 6016 1504 2 1.47
6 8 1 4 8 704 5632 1408 2 1.375
7 8 1 4 8 752 6016 1504 2 1.47
8 8 1 4 8 752 6016 1504 2 1.47
9 8 1 8 16 512 4096 1024 2 1
10 9 3 6 12 624 5616 1872 2 1.22
11 9 3 6 12 516 4644 1548 2 1.008
12 9 3 6 12 512 4608 1536 2 1
13 10 1 8 14 448 4480 2240 1.75 1
14 10 5 8 14 448 4480 2240 1.75 1
15 10 15 8 14 448 4480 2240 1.75 1
16 10 1 8 14 448 4480 2240 1.75 1
17 12 3 4 6 384 4608 768 1.5 1
18 12 2 8 14 448 5376 2688 1.75 1
19 12 3 4 6 444 5328 888 1.5 1.16
20 12 3 4 6 480 5760 960 1.5 1.25

3.2 Security level 192

Using the Brezing-Weng method [9], we generated 7 pairing-friendly families and,
for each family, computed the size of log(p) and log(r) that is necessary to achieve
(at least) 192-bit security via the method of Barbulescu and Duquesne [4].

Table 2. Candidate families for Security Level 192

Label k D deg(r) deg(p) log(p) k log(p) k/δ log(p) ρ τ192
21 15 3 8 16 784 11760 3920 2 1.02

22 15 3 8 16 768 11520 3840 2 1

23 16 1 8 16 768 12288 3072 2 1

24 16 1 8 16 768 12288 3072 2 1

25 18 3 6 12 792 14256 2376 2 1.03

26 18 3 6 12 768 13824 2304 2 1

27 20 1 8 12 648 12960 3240 1.5 1.125

9

Families 21, 23, and 27 were already presented by Fotiadis and Konstaninou
in [13] together with the values of log(p) and log(r) corresponding to a security
level computation with the asymptotic formula Lpk [1/3, 1.529].

Where for security level 128, the comparison table gave a clear answer, for
security level 192 there are many similar options. We chose to analyze families
23 and 25 in more detail as both of these families have simple defining polyno-
mials p(x) and r(x), which helps to reduce the cost of the final exponentiation;
both families also have a good choice of short vector (although this is true for
more families). For the full information on each family of Table 2 (eg. defining
polynomials, short vectors) please see Appendix B.

4 Recommendations

As justified in Section 3, for security level 128, we recommend Family 17 from
Table 1:

Family 17: k = 12, D = 3, ρ = 1.5, τ128 = 1, sextic twists.

Defining polynomials:

p(x) = 1728x6 + 2160x5 + 1548x4 + 756x3 + 240x2 + 54x+ 7.

t(x) = −6x2 + 1, r(x) = 36x4 + 36x3 + 18x2 + 6x+ 1.

– Short vector: [6x+ 2,−1,−1,−1].
– Choice (a): u = −264−263−211−210, NAF-hw(6u+2) = 5, log(p(u)) =

398, log(r(u)) = 257.
– Choice (b): u = −266 + 225 + 217, NAF-hw(6u+ 2) = 7, log(p(u)) = 407,

log(r(u)) = 269.

We want the NAF-hamming weight of both u and 6u + 2 to be minimal in
this case, for minimizing the cost of the final exponentiation and the Miller
loop respectively. The security levels for choices (a) and (b) are 127 and 128
respectively.

4.1 Computing the cost of finite field arithmetic

To compute the cost of the finite field arithmetic, we follow Guillevic, Masson,
and Thomé [19].

Notation

m Multiplication in Fp
mk Multiplication in Fpk
sk Squaring in Fpk
ik Inversion in Fpk
fi Exponentiation by pi in Fpk
eu Exponentiation by u in Fpk

10

Table 3 gives the cost, in terms of m, of all the extension field arithmetic
operations that occur in the computation of the pairing for Family 17. The
costs in this case are from [19, Table 5]. This is assuming that Karatsuba-style
methods are followed for multiplication, and assuming the generic formula that
fi = (k − 2)m if k is even.

We use the generic formula for fi here because it is the fastest method in
these instances. The other natural method supposes that i|k: Define ω such that

Fpk = Fpi [ω]. Then for a ∈ Fpk we can compute ap
i

via

ap
i

= (a0 + a1ω + · · ·+ ak/i−1ω
k/i−1)p

i

= a0 + a1ω
pi + · · ·+ ak/i−1ω

(k/i−1)pi ,

which as the powers of ω can be precomputed, costs (k/i− 1)mi.

Table 3. Costs of extension field arithmetic when k = 12

m2 m12 s1 s2 s12 i1 i2 i12 fi, i 6= 6, 12

3m 54m m 2m 36m 25m 4m + i1 94m + i1 10m

4.2 Computing the cost of the Miller loop

Plugging in the values for Family 17 into (3), we see that optimal ate pairing of
(Q,P) ∈ G2 ×G1 is given by

â(Q,P) = (f6u+2,Q(P) ·H)
pk−1
r .

From Table 9 we see that the most efficient computation of the optimal ate
pairing in the case of degree 6 twists is from [10, Section 5]: with k = 12 each
addition step (cf. Steps 7, 8, and 9 of Algorithm 1) costs a total of

23m2 + 2s2 + 4m = 77m

and each doubling step (cf. Steps 4 and 5 of Algorithm 1) costs a total of

15m2 + 7s2 + s12 + 4m = 99m,

except for the first, which costs

2m2 + 7s2 + 4m = 24m.

For choice (a), our short vector 6u + 2 has NAF-hamming weight 5 and the
binary expansion of 6u+ 2 is length 68, so the computation of f6u+2,Q(P) costs

24m + 66 · 99m + 4 · 77m = 6866m.

11

Similarly, for choice (b), the computation of f6u+2,Q(P) costs 7218m.
Finally, we must compute the factor H, where

H = h−(p+p2+p3)Q,xQ(P) · h−(p2+p3)Q,−pQ(P) · h−p3Q,−p2Q(P).

Recall that the group order r divides 6u+ 2− p− p2 − p3, so

−(p+ p2 + p3)Q = −(6u+ 2)Q, (5)

hence h−(p+p2+p3)Q,(6u+2)Q(P) goes to 1 in the final exponentiation. The de-
nominators of h−(p2+p3)Q,−pQ(P) and h−p3Q,−p2Q(P) go to 1 in the final expo-
nentiation by construction of Q, so by (5) we can put

h−(p2+p3)Q,−pQ(P) = `−(6u+2)Q,−pQ(P)

and
h−p3Q,−p2Q(P) = `(p−(6u+2))Q,−p2Q(P).

Therefore, the total cost for computing H is the cost of computing pQ and p2Q,
one point addition (to compute pQ− (6u+ 2)Q), two evaluations at P , and one
multiplication.

– AsQ = [XQ, YQ, ZQ] ∈ G2 ⊇ ker([p]−π), we can compute pQ as [Xp
Q, Y

p
Q, Z

p
Q].

Furthermore, by construction of Q we have that ZQ ∈ Fp2 , so ZpQ amounts to
conjugation of ZQ in Fp2/Fp. In other words, the computation of pQ costs
2f1 = 20m, and similarly the computation of p2Q = p · pQ costs another
2f1 = 20m.

– The points being added are images under the degree six twist isomorphism
of points with coordinates in Fp2 , so the cost is for point addition in Fp2 .
Using the point addition formulae from [6], this gives 11m2 + 5s2 = 43m.

– For both line functions, the gradient is an element of ωFp2 , where Fp12 =
Fp2(ω), by construction of Q. Therefore the evaluation of each line at P can
be performed by multiplying an element of Fp with an element of Fp2 , which
costs 2m, giving a total cost of 4m for evaluation.

– The multiplication of the two line functions to obtain H is a multiplication
in Fp12 , costing 54m.

Putting this together, for Family 17a the cost of the Miller loop is therefore
the cost 6866m of computing f6u+2,Q(P) via Miller’s algorithm, plus 141m for
the computation of H, plus 54m for multiplying by H. All together, this gives
a total cost of 7061m for the whole Miller loop. Similarly, for Family 17b, the
total cost of the Miller loop is 7314m.

4.3 Final exponentiation

By Eq. (4), the exponent e = (p12 − 1)/r can be equivalently written in the
following way:

e = (p6 − 1)(p2 + 1)(λ3p
3 + λ2p

2 + λ1p+ λ0),

12

where in our case u = −u0 = −(264 + 263 + 211 + 210) and the λi are defined as:

λ3 = 48u20 − 12u0 + 7

λ2 = −288u40 + 72u30 − 42u20 + 1

λ1 = 1728u50 − 1296u40 + 756u30 − 294u2 + 60u0 − 17

λ0 = −1728u50 + 1872u40 − 1188u30 + 498u20 − 114u0 + 22

The easy part of raising f to (p6−1)(p2 +1) can be computed with 2fi+1m12 +
1i12 operations. Then we set:

f ← f (p
6−1)(p2+1).

Raising f to the power of (λ3p
3+λ2p

2+λ1p+λ0) can be simplified to computing
F/G, where:

F = (((((((((x211x10)2x9)2x8)2x7)2x6)2x5)2x4)2x3)2x2)2x1

G = (((((((((y211y10)2y9)2y8)2y7)2y6)2y5)2y4)2y3)2y2)2y1

and the values xi, yi are defined as:

x1 = fp
2+p3 y1 = fp

x2 = f1+u
2
0+p

3

y2 = fu0+u
2
0p+u

2
0p

2

x3 = f1+(u0+u
3
0)p+p

3

y3 = fu
3
0+u

2
0p+u0p

3

x4 = fu0p+u
3
0p

2

y4 = fu
2
0p

2+u0p
3

x5 = f1+u
2
0+u

4
0+(u0+u

3
0)p+u

2
0p

3

y5 = fu0+(1+u4
0)p

x6 = fu
2
0+(u0+u

3
0)p+u

2
0p

3

y6 = fu0+u
3
0+u

2
0p+(u2

0+u
4
0)p

2

x7 = fu
2
0+u

4
0+(u3

0+u
5
0)p+u

3
0p

2

y7 = fu0+u
5
0

x8 = fu
2
0+(u3

0+u
5
0)p y8 = ff

u30+u50

x9 = fu
2
0+u

4
0 y9 = f (u

2
0+u

4
0)p+u

4
0p

2

x10 = fu
4
0+(u3

0+u
5
0)p y10 = fu

5
0

x11 = fu
4
0+u

5
0p y11 = fu

3
0+u

5
0+u

4
0p

Hence the total cost of the final exponentiation for choice (a) is:

15fi + 5eu0 + 55m12 + 20s12 + 2i12 = 9128m,

where, as in [21], the cost for an exponentiation of an element in F∗pk to the
exponent u0, is calculated by:

eu0 = 4(log(u0)− 1)m2 + (6N − 3)m2 +Nm12 + 3Ns2 + 1i2,

where N = wt(u0) − 1 and wt(u0) denotes the NAF-Hamming weight of u0.
Similarly, for choice (b), we get eu0 = 956m for exponentiation by u0 and 8858m
for the total cost of the final exponentiation. We do not claim that this is the
best implementation of the final exponentiation–further improvements may be
possible.

13

4.4 Computing the security level

We also searched for the best choices of κ, h, and S, in Algorithm 2 to give
the most effective attack, in order to more carefully analyze the security. By [4,
Table 5], the best choice of κ for k = 12 is either 1 or 2. The change of variables
that we apply for Step 6 of Algorithm 2 is p(x) → 108 · p((x − 6)/2), which
results in

p(x) = 4x6 − 18x5 + 69x4 − 94x3 + 108x2 + 132x+ 28;

thank you to Aurore Guillevic for this suggestion.

Choice (a) With κ = 2, we get η = 6 as k = κ·η, so we search for an irreducible
polynomial h(t) ∈ Fp[t] of degree 6. For the best attack we would like h(t) to
have many automorphisms (more than 2)–the only choices for such an h (of
small level) are the cyclotomic polynomials Φ7 and Φ9 [4, Table 4] which in this
case are both reducible. So we search manually for an irreducible polynomial
h(t) with small coefficients (again to make the attack as effective as possible).
In this case

h(t) = t6 − t4 + t2 + 1

is an irreducible polynomial (and the best one we could find). Finally, we search
for S(t, x) as small as possible such that g(t, x) = x2 + S − u is irreducible over
Fp[t]/h(t). In this case, we found that S(t, x) = t satisfies this. The SexTNFS
algorithm performed with these choices has complexity approximately 2127.4.

With κ = 1, we get η = 12 as k = κ · η, so we search for an irreducible
polynomial h(t) ∈ Fp[t] of degree 12. For the best attack we would like h(t)
to have many automorphisms so again we check for cyclotomic polynomials. In
this case the only choice (of small level) is h(t) = Φ13(t), which is reducible.
(In fact, this u was chosen so that Φ7, Φ9, and Φ13 are all reducible). Searching
manually for an irreducible polynomial h(t), the most effective choice we find
for the attack is

h(t) = t12 − t4 − t3 + t2 − 1.

In this case, the smallest S(t, x) we found such that g = x2 + S − u is irre-
ducible over Fp[t]/h(t) was S = t2. The SexTNFS algorithm performed with
these choices has complexity approximately 2129.5.

In conclusion, the most effective parameters for the SexTNFS algorithm that
we found were κ = 2, h = t6 − t4 + t2 + 1, and S = t, giving a complexity of
2127.4.

Choice (b) The calculation follows the same procedure as for choice (a). The
most effective parameters for the SexTNFS algorithm that we found in this case
were κ = 1, h = Φ13(t), and S = t + 1, giving a complexity of 2127.7. The best
choices for h and S that we found with κ = 2 were h = t6 − t4 + t2 + 1 and
S = t+ 1, giving a complexity of 2130.

14

4.5 Comparison with the literature

Guillevic, Masson, and Thomé [19, Table 9] presented a summary of the most
efficient known pairings providing 128-bit security: BN, BLS12, KSS16, and their
new families.

Table 4. Fp-multiplication timings as given in [19]

log(p) [324, 384] [385, 447] [448, 512] [512, 576] [640, 704]

m 69ns ≈90ns∗ 120ns 154ns 230ns

∗ Not given in [19]. Estimation based on clock cycles (for easy comparison).

Table 5. Number of clock cycles per Fp-multiplication using generic Montgomery-
schoolbook methods

log(p) [324, 384] [385, 447] [448, 512] [512, 576] [640, 704]

m 99 129 166 210∗∗ 314∗∗

∗∗ This is an estimate; we did not implement these cases.

We compare our Family 17 with these examples in Table 6. We refer to
the timings given in [19, Table 8] for comparison only; those timings are also
written here in Table 4 for the convenience of the reader. Lorenz Panny was kind
enough to compute for us the number of clock cycles, using generic Montgomery-
schoolbook methods for multiplication in Fp, for 64-bit words p of length 6, 7,
or 8; see Table 5.

Table 6. Comparison of Family 17 with all known examples of ≤ 3× 106 clock cycles

Curve log(p) Miller loop Final exponentiation Time Clock cycles

BN 462 12180m 5691m ≈2.20ms 2966586
k = 6 [19] 672 4601m 3871m ≈1.95ms ≈2660208

KSS16 339 7691m 18235m ≈1.79ms 2566674
k = 8 [19] 544 4502m 7134m ≈1.79ms ≈2443560

BLS12 461 7685m 6193m ≈1.67ms 2303748
Family 17 (a) 398 7061m 9128m ≈1.46ms 2088381
Family 17 (b) 407 7314m 8858m ≈1.46ms 2086188

Remark Very recently, Barbulescu, El Mrabet, and Ghammam presented more
candidate families [5], which they claim to be “very competitive with BN, BLS12

15

and KSS16 at 128 bits of security”. However, we leave a careful analysis of the
number of multiplications in the Miller loop and the final exponentiation for a
good member of each of their families, in order for a full comparison, for future
work.

4.6 Two recommendations for security level 192

As justified in Section 3, we recommend Families 23 and 25 from Table 2.

Family 23

k = 16, D = 1, ρ = 2, τ192 = 1, quartic twists.

Defining polynomials:

p(x) = (x16 + x10 + 5x8 + x2 + 4x+ 4)/4, t(x) = x8 + x+ 2, r(x) = x8 + 1.

– Short vector: [x,−1, 0, 0, 0, 0, 0, 0].
– Gives prime values for p(u) and r(u) when u = 248 + 228 + 226.
– log(r) = 384 and log(p) = 766.

The formula for the optimal ate pairing in this example is:

â(Q,P) = fu,Q(P)
p16−1
r .

Table 7 shows the costs of the extension field arithmetic occurring in the com-
putation of a pairing on an elliptic curve in Family 23. Again, we follow [19]
to compute the cost of each operation in terms of Fp-multiplications m. The
costs for m16, s16, i16, and fi are in [19, Table 5]. We computed m4 and s4 via
m4 = m2

2 and s4 = 2 · s2 + m2.

Table 7. Costs of extension field arithmetic when k = 16

m4 m16 s1 s4 s16 i16 fi, i 6= 8, 16

9m 81m m 7m 54m 134m + i1 14m

For Family 23, the elliptic curve E/Fp on which we compute the pairing has
quartic twists, which we make use of to perform extension field arithmetic in Fp4
instead of Fp16– this requires performing elliptic curve arithmetic on the quartic
twist Et/Fp4 of E. There are two known curve forms for which both E and Et

can be written in the same form: Weierstrass and Jacobi Quartic. Writing E
and Et in different forms would be expensive; we would pay for many costly
curve conversions. Comparing the fastest Miller addition and Miller doubling
formulas on Weierstrass curves and Jacobi Quartic curves in Table 9, we find that

16

Weierstrass curves are the more efficient choice. With the Weierstrass formulae
(see Table 9 for more details), we obtain a cost of

47(10m4+8s4+8m+s16)+2(17m4+5s4+8m)+(2m4+8s4+8m)+m16 = 10331m

for computing the Miller loop.
By Eq. (4), the final exponentiation in this case is equivalently written as:

e = (p8 + 1)(λ7p
7 + λ6p

6 + λ5p
5 + λ4p

4 + λ3p
3 + λ2p

2 + λ1p+ λ0),

where λ7 = (u8 + u2 + 4)/4. The remaining λi are calculated recursively by
λi = uλi+1, for i = 1, 2, 3, 4, 5, 6 and λ0 = uλ1 + 1. Then the hard part is:

f
p8+1
r = y

∑7
i=0(u

ip7−i)f with y = f
u8+u2+4

4 =
[(
f
u
2

)u
2

]u6 (
f
u
2

)u
2 f.

In conclusion, the total cost for the final exponentiation in this case is:

8fi + 2eu
2

+ 13eu + 12m16 + 1i16 = 41635m,

where the exponentiations by u/2 and u in the general case (see e.g. [15]) cost:

1eu
2

= (log(u/2)− 1)s16 + (wt(u/2)− 1)m16 = 2646m

In the same way we get: 1eu = 2700m. It is likely that there are analogous tricks
as in the method of Karabina [21] (for 6 | k) to significantly reduce the cost for
computing the exponentiations eu and eu/2; we leave this for future work. We
conclude that the total cost for calculating the pairing is: 51966m.

Finally, the most effective parameters for the SexTNFS algorithm that we
found were κ = 1, h = Φ17(t), and S = t+ 1, giving a complexity of 2196.4.

Family 25

k = 18, D = 3, ρ = 2, τ192 = 1.03, sextic twists.

Defining polynomials:

p(x) = (3x12 − 3x9 + x8 − 2x7 + 7x6 − x5 − x4 − 4x3 + x2 − 2x+ 4)/3.

t(x) = x6 − x4 − x3 + 2, r(x) = x6 − x3 + 1.

– Short vector: [x, 1, 0, 0,−1, 0].
– Gives prime values for p(u) and r(u) when u = −264 − 235 + 211 − 1.
– log(r) = 384 and log(p) = 768.

The formula of the optimal ate pairing in this case is given by:

â(Q,P) = fu,Q(P)
p18−1
r .

17

One may think at first sight that, as τ128 > 1, choosing a value of u for which
log(r(u)) = 384 would not give the required the security level. This is a valid
concern, but recall that the computation of the security level before choosing
a parameter u is typically an underestimation by between 1 and 5 bits; in this
case in turns out to be an underestimation by about 5 bits, so this choice of u
is sufficient.

Table 8 shows the costs of the extension field arithmetic occurring in the
computation of a pairing on an elliptic curve in Family 25. Again, we follow [19]
to compute the cost of each operation in terms of Fp-multiplications m. The
costs for m3 and s3 are also in [19, Table 5]. We computed i18 via the recursive
formulae i3i = ii + 3si + 9mi and i2i = ii + 2si + 2mi as is done in [19] with
other examples. We computed m18 via m18 = 6 ·m6 = 6 · (6 ·m2), that is, using
Karatsuba multiplication for cubic field extensions as outlined in [11]. The cost
for s18 is from [17].

Table 8. Costs of extension field arithmetic when k = 18

m3 m18 s1 s3 s18 i18 fi, i 6= 9, 18

6m 108m m 5m 72m 208m + i1 16m

For Family 25, the elliptic curve E/Fp on which we compute the pairing has
sextic twists, which we make use of to perform extension field arithmetic in Fp3
instead of Fp18– this requires performing elliptic curve arithmetic on the sextic
twist Et/Fp3 of E. The only known curve form for which both E and Et can be
written in the same form is Weierstrass.

With the Weierstrass formulae (see Table 9 for more details), we obtain a
cost of

43(15m3+7s3+6m+s18)+3(23m3+2s3+6m)+(2m3+7s3+6m)+m18 = 13412m

for computing the Miller loop.
For the final exponentiation, by Eq. (4) we obtain:

e = (p9 − 1)(p3 + 1)(λ5p
5 + λ4p

4 + λ3p
3 + λ2p

2 + λ1p+ λ0),

where

λ5 = (3u60 + u20 + 2u0 + 4)/3

λ4 = −(3u100 + u60 + 2u50 + 4u40 − 3u20)/3

λ3 = −(3u110 + 3u80 + u70 + 2u60 + 4u50 + u40 − u30 + 4u20)/3

λ2 = −(3u90 + 3u6 + u50 + 2u4 + 4u30 + u2 − u0 + 4)/3

λ1 = −(3u70 + u30 + 2u20 + 4u0)/3

λ0 = (3u110 + u70 − 2u60 + 4u50 + 3u30 + 3)/3

with u = −u0 and u0 = 264+235−211+1. Setting u1 = u0+1 and u2 = (u0+1)/3,
the exponentiation of f to the power λ5p

5 + λ4p
4 + λ3p

3 + λ2p
2 + λ1p+ λ0 can

18

be equivalently written as e = y0y
p
1y
p2

2 y
p3

3 y
p4

4 y
p5

5 , where

y5 = fu
6
0+1fu1u2 , y4 =

(
fu

2
0(u

6
0+1)−1

)−u2
0

(fu1u2)
−u4

0

y3 =
(
fu

2
0(u

6
0+1)−1

)−u3
0

f−u
2
0(u

6
0+1) (fu1u2)

−u5
0−u

2

y2 =
(
fu

2
0(u

6
0+1)−1

)−u0

f−(u
6
0+1) (fu1u2)

−u3
0−1

y1 =
(
fu

6
0+1
)−u0

(fu1u2)
−u0 , y0 =

(
fu

2
0(u

6
0+1)−1

)u3
0

f (fu1u2)
u5
0 .

The cost of the final exponentiation for this example is

26fi + 16eu + 1eu1
+ 1eu2

+ 30m18 + 2i18 = 40266m,

where 1eu = 1eu1 = 2008m and 1eu2 = 46798, and the total cost for the pairing
computation is 60210m. The final exponentiation is the most expensive part and
needs further optimization, which we leave for future work.

Finally, the most effective parameters for the SexTNFS algorithm that we
found were κ = 1, h = t18 − t5 + 1, and S = t, giving a complexity of 2194.2.

With our current methods, Family 23 requires approximately 8200 less mul-
tiplications in the base field Fp than Family 25. Since in both cases the prime
field Fp has approximately the same size, we recommend Family 23 (pending
more work on optimizations of final exponentiation).

Remark. In [1], Aranha, Fuentes-Castañeda, Knapp, Menezes, and Rodŕıguez-
Henŕıquez studied the implementation of pairings that aim at a security level
of 192-bits. However this paper appeared before the Kim and Barbulescu at-
tack [22], so we do not compare our examples with [1]. Again, in future work
we would like to do a comparison with the new work of Barbulescu, El Mrabet,
and Loubna Ghammam [5], but this requires doing precise computations for a
well-chosen member of each family that they propose, so we leave this for future
work.

References

1. Diego F. Aranha, Laura Fuentes-Castañeda, Edward Knapp, Alfred Menezes, and
Francisco Rodŕıguez-Henŕıquez. Implementing pairings at the 192-bit security
level. In Pairing-Based Cryptography - Pairing 2012 - 5th International Confer-
ence, Cologne, Germany, May 16-18, 2012, Revised Selected Papers, pages 177–195,
2012.

2. Diego F. Aranha, Koray Karabina, Patrick Longa, Catherine H. Gebotys, and Julio
López. Faster explicit formulas for computing pairings over ordinary curves. In
Advances in Cryptology – EUROCRYPT 2011, pages 48–68, 2011.

3. Christophe Arne, Tanja Lange, Michael Naehrig, and Christophe Ritzenthaler.
Faster computation of the tate pairing. Journal of Number Theory, 131(5):842 –
857, 2011.

19

4. Razvan Barbulescu and Sylvain Duquesne. Updating key size estimations for pair-
ings. IACR Cryptology ePrint Archive, 2017:334, 2017. http://eprint.iacr.org/
2017/334.

5. Razvan Barbulescu, Nadia El Mrabet, and Loubna Ghammam. A taxonomy
of pairings, their security, their complexity. Cryptology ePrint Archive, Report
2019/485, 2019. https://eprint.iacr.org/2019/485.

6. Daniel J. Bernstein and Tanja Lange. Explicit-formulas database. http://www.

hyperelliptic.org/EFD/.
7. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil

pairing. SIAM J. Comput., 32(3):586–615, 2003. https://doi.org/10.1137/

S0097539701398521.
8. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the

weil pairing. J. Cryptology, 17(4):297–319, 2004. https://doi.org/10.1007/

s00145-004-0314-9.
9. Friederike Brezing and Annegret Weng. Elliptic curves suitable for pairing based

cryptography. Des. Codes Cryptography, 37(1):133–141, 2005. https://doi.org/

10.1007/s10623-004-3808-4.
10. Craig Costello, Tanja Lange, and Michael Naehrig. Faster pairing computations

on curves with high-degree twists. In Public Key Cryptography – PKC 2010, pages
224–242. Springer Berlin Heidelberg, 2010.

11. Augusto Jun Devegili, Colm Ó Héigeartaigh, Michael Scott, and Ricardo Dahab.
Multiplication and squaring on pairing-friendly fields. Cryptology ePrint Archive,
Report 2006/471, 2006.

12. Sylvain Duquesne, Nadia El Mrabet, and Emmanuel Fouotsa. Efficient computa-
tion of pairings on jacobi quartic elliptic curves. Journal of Mathematical Cryp-
tology, 8(4):331–362, 2014. https://hal.archives-ouvertes.fr/hal-01095359/

document.
13. Georgios Fotiadis and Elisavet Konstantinou. TNFS resistant families of pairing-

friendly elliptic curves. IACR Cryptology ePrint Archive, 2018:1017, 2018. https:
//eprint.iacr.org/2018/1017.

14. Georgios Fotiadis and Chloe Martindale. Optimal tnfs-secure pairings on elliptic
curves with even embedding degree. Cryptology ePrint Archive, Report 2018/969,
2018. https://eprint.iacr.org/2018/969.

15. Emmanuel Fouotsa, Nadia El Mrabet, and Aminatou Pecha. Optimal ate pairing
on elliptic curves with embedding degree 9, 15 and 27. IACR Cryptology ePrint
Archive, 2016:1187, 2016. http://eprint.iacr.org/2016/1187.

16. Gerhard Frey and Hans-Georg Rück. A remark concerning m-divisibility and the
discrete logarithm in the divisor class group of curves. Mathematics of computation,
62(206):865–874, 1994.

17. Robert Granger and Michael Scott. Faster squaring in the cyclotomic subgroup of
sixth degree extensions. In Public Key Cryptography – PKC 2010, pages 209–223,
2010.

18. Trusted Computing Group. TPM 2.0 library specification, 2016. https://

trustedcomputinggroup.org/resource/tpm-library-specification/.
19. Aurore Guillevic, Simon Masson, and Emmanuel Thome. Cocks-pinch curves of

embedding degrees five to eight and optimal ate pairing computation. Cryptology
ePrint Archive, Report 2019/431, 2019. https://eprint.iacr.org/2019/431.

20. Antoine Joux. A one round protocol for tripartite diffie–hellman. Journal of
cryptology, 17(4):263–276, 2004.

21. Koray Karabina. Squaring in cyclotomic subgroups. Math. Comput., 82(281):555–
579, 2013. https://doi.org/10.1090/S0025-5718-2012-02625-1.

20

http://eprint.iacr.org/2017/334
http://eprint.iacr.org/2017/334
https://eprint.iacr.org/2019/485
http://www.hyperelliptic.org/EFD/
http://www.hyperelliptic.org/EFD/
https://doi.org/10.1137/S0097539701398521
https://doi.org/10.1137/S0097539701398521
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/s10623-004-3808-4
https://doi.org/10.1007/s10623-004-3808-4
https://hal.archives-ouvertes.fr/hal-01095359/document
https://hal.archives-ouvertes.fr/hal-01095359/document
https://eprint.iacr.org/2018/1017
https://eprint.iacr.org/2018/1017
https://eprint.iacr.org/2018/969
http://eprint.iacr.org/2016/1187
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://eprint.iacr.org/2019/431
https://doi.org/10.1090/S0025-5718-2012-02625-1

22. Taechan Kim and Razvan Barbulescu. Extended tower number field sieve: A new
complexity for the medium prime case. In Advances in Cryptology - CRYPTO 2016
- 36th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 14-18, 2016, Proceedings, Part I, pages 543–571, 2016.

23. Alfred Menezes, Tatsuaki Okamoto, and Scott A. Vanstone. Reducing elliptic
curve logarithms to logarithms in a finite field. IEEE Trans. Information Theory,
39(5):1639–1646, 1993. https://doi.org/10.1109/18.259647.

24. Victor S. Miller. The Weil pairing, and its efficient calculation. J. Cryptology,
17(4):235–261, 2004. https://doi.org/10.1007/s00145-004-0315-8.

25. Frederik Vercauteren. Optimal pairings. IEEE Trans. Information Theory,
56(1):455–461, 2010. https://doi.org/10.1109/TIT.2009.2034881.

A Computing the cost of the Miller loop

There is lot of literature on the optimization of the Miller loop [3,10,12]. Our
three recommendations are for curves with quartic and sextic twists, for which
the curve forms Jacobi Quartic and Weierstrass are the most efficient; here fol-
lows a table with the most efficient formulae for Miller’s algorithm in these cases
to date. As, in the case of Jacobi Quartic curves, the curve constants are typi-
cally very large, we have assumed here that multiplication by a constant in Fpi
with an element in Fpi costs mi.

Table 9. Cost of Miller’s algorithm for different curve shapes

Twist degree 6 4 4

Curve form Weierstrass Weierstrass Jacobi Quartic

Cost hR,R(P) 2m k
6

+ 7s k
6

+ k
3
m1 2m k

4
+ 8s k

4
+ (k

2
)m1 4m k

4
+ 7s k

4
+ k

2
m1

Cost f2 · h sk + 13m k
6

sk + 8m k
4

sk + 8m k
4

Cost hR,P (P) 10m k
6

+ 2s k
6

+ k
3
m1 2m k

4
+ 8s k

4
+ k

2
m1 13m k

4
+ 7s k

4
+ k

2
m1

Cost f · h 13m k
6

8m k
4

8m k
4

Reference [10] [10] [12]

B Defining polynomials of Candidate Families

We include here some more details on the families of Tables 1 and 2.

128-bit security level:
1. k = 8, D = 1, ρ = 2, quartic twists, V = [x,−1, 0, 0], x = 0 (mod 2)
p(x) = (x8 + x6 + 5x4 + x2 + 4x+ 4)/4, r(x) = x4 + 1, t(x) = x4 + x+ 2

2. k = 8, D = 1, ρ = 2, quartic twists, V = [x,−1, 0, 0], x = 1 (mod 2)
p(x) = (2x8−2x7+3x6+7x4−2x3+3x2+4x+5)/4, r(x) = x4+1, t(x) = x4+x+2

21

https://doi.org/10.1109/18.259647
https://doi.org/10.1007/s00145-004-0315-8
https://doi.org/10.1109/TIT.2009.2034881

3. k = 8, D = 2, ρ = 2, quadratic twists, V = [x, 0, 0,−1], x = 1 (mod 2)
p(x) = (2x8 + 4x7 + 3x6 + 2x5 + 11x4 + 12x3 + 3x2 + 2x+ 9)/8
r(x) = x4 + 1, t(x) = x4 + x3 + 2

4. k = 8, D = 3, ρ = 2, quadratic twists, V = [x2, x, 1, 0], x = 1 (mod 3)
p(x) = (3x16 − 9x12 + x10 − 2x9 + 16x8 − x6 + 5x5 − 13x4 + x2 − 5x+ 7)/3
r(x) = x8 − x4 + 1, t(x) = x8 + x5 − x4 − x+ 2

5. k = 8, D = 1, ρ = 2, quartic twists, V = [1, x, 1, 1], x = 3 (mod 6)
p(x) = (72x8 + 12x7 − 251x6 − 78x5 + 1631x4 + 240x3 − 2429x2 − 606x+ 6849)/288
r(x) = x4 − 2x2 + 9, t(x) = (12x4 + x3 − 21x2 − 5x+ 117)/12

6. k = 8, D = 1, ρ = 2, quartic twists, V = [x, 2, 2,−2], x = 6 (mod 12)
p(x) = (4608x8 + 96x7 − 73151x6 − 2676x5 + 1624364x4 + 29280x3 − 10588304x2 −
278592x+ 96549696)/18432
r(x) = x4 − 8x2 + 144, t(x) = (96x4 + x3 − 762x2 − 20x+ 13896)/96

7. k = 8, D = 1, ρ = 2, quartic twists, V = [x+ 1,−1,−1, 0],
x = 2, 14, 20, 26, 44, 50, 56, 62, 68, 74, 80, 86, 92, 98 (mod 102)
p(x) = (9x8 + 60x7 + 223x6 + 590x5 + 1175x4 + 1756x3 + 1963x2 + 1578x+ 666)/36
r(x) = x4 + 4x3 + 8x2 + 12x+ 9, t(x) = (12x4 + 47x3 + 48x2 + 8x+ 112)/12

8. k = 8, D = 1, ρ = 2, quartic twists, V = [x+ 1,−1,−1, 0], x = 3 (mod 6)
p(x) = (72x8 +564x7 +1681x6 +2352x5 +2876x4 +5656x3 +5416x2 +928x+6304)/288
r(x) = x4 + 4x3 + 4x2 + 8, t(x) = (12x4 + 47x3 + 42x2 − 4x+ 112)/12

9. k = 8, D = 1, ρ = 2, quartic twists, V : could not find a useful short vector
x = 10, 60 (mod 70)
p(x) = (1225x16−56x14 +117601x12−4320x10 +4356173x8−113448x6 +73619425x4−
1023276x2 + 480062500)/4900
r(x) = x8 + 48x4 + 625, t(x) = (175x8 − 4x6 + 8400x4 − 117x2 + 109550)/175

10. k = 9, D = 3, ρ = 2, cubic twists, V = [x, 0,−1, 0, 0, 0], x = 2 (mod 3)
p(x) = (3x12 + 3x11 + x10 + 9x9 + 7x8 + x7 + 16x6 + 10x5 + x4 + 13x3 + 4x2 + 7)/3
r(x) = x6 + x3 + 1, t(x) = x6 + x5 + x3 + 2

11. k = 9, D = 3, ρ = 2, cubic twists, V = [x− 1,−2, 1, 0, 0, 0], x = 2 (mod 3)
p(x) = 29241x12 − 350721x11 + 1576798x10 − 2506904x9 − 1833891x8 − 88143x7 +
59402835x6−144152175x5+18500997x4+173184927x3+464941830x2−1565297066x+
1150985383)/29241
r(x) = x6− 6x5 + 9x4 + 11x3− 6x2− 135x+ 199, t(x) = (171x6− 1021x5 + 1522x4 +
1883x3 − 964x2 − 22916x+ 33737)/171

12. k = 9, D = 3, ρ = 2, cubic twists, V = [x, 0, 3, 0, 0, 2], x = 7 (mod 21)
p(x) = (147x12−24x11+x10+10731x9−1322x8+37x7+294049x6−24299x5+343x4+
3584644x3 − 149048x2 + 16403632)/147
r(x) = x6 + 37x3 + 343, t(x) = (49x6 − 3x5 + 1813x3 − 62x2 + 16856)/49

13. k = 10, D = 1, ρ = 1.75, quadratic twists, V = [x2,−1, 0, 0], x = 1 (mod 2)
p(x) = (x14−2x12+x10+x4+2x2+1)/4, r(x) = x8−x6+x4−x2+1, t(x) = x2+1

22

14. k = 10, D = 5, ρ = 1.75, quadratic twists, V = [x2 − 1, 1,−1, 1], x = {0, 4, 6}
(mod 10)
p(x) = (4x14 − 7x12 + 11x10 − 11x8 − 9x6 + 13x4 − 16x2 + 20)/20
r(x) = x8 − x6 + x4 − x2 + 1, t(x) = x2 + 1− x6 + x4 − x2 + 2

15. k = 10, D = 15, ρ = 1.75, quadratic twists, V = [x, 0,−1, x2], x = {1, 3, 6, 13}
(mod 15)
p(x) = (4x14 + 4x13 + x12 − 12x11 − 12x10 − 7x9 + 11x8 + 17x7 + 15x6 − 3x5 − 11x4 +
x3 − 2x2 + 3x+ 6)/15
r(x) = x8 + x7 − x5 − x4 − x3 + x+ 1, t(x) = x3 + 1

16. k = 10, D = 2, ρ = 1.875, quadratic twists, V = [x4 − 1, 1,−1, 1], x = 0 (mod 4)
p(x) = (x30−2x26 +2x24 +x22−2x20 +2x16−10x12 +x10 +10x8−2x6−8x4 +x2 +8)/8
r(x) = x16 − x12 + x8 − x4 + 1, t(x) = −x12 + x8 − x4 + 2

17. k = 12, D = 3, ρ = 1.5, sextic twists, V = [6x+ 2,−1,−1,−1], x ∈ Z
p(x) = 1728x6 + 2160x5 + 1548x4 + 756x3 + 240x2 + 54x+ 7, r(x) = 36x4 + 36x3 +
18x2 + 6x+ 1, t(x) = −6x2 + 1

18. k = 12, D = 2, ρ = 1.75, quadratic twists, V = [x2,−1, 0, 0], x = 1 (mod 2)
p(x) = (x14−4x10 + 2x8 + 4x6−2x4 + 5x2 + 2)/8, r(x) = x8−x4 + 1, t(x) = x2 + 1

19. k = 12, D = 3, ρ = 1.5, sextic twists, V = [x,−2,−1, 1], x = {8, 23} (mod 30)
p(x) = (x6 − 8x5 + 21x4 − 17x3 + 13x2 + 45x+ 21)/225
r(x) = x4 − 2x3 − 3x2 + 4x+ 13, t(x) = (−x3 + 4x2 + 5x+ 6)/15

20. k = 12, D = 3, ρ = 1.5, sextic twists, V = [2, x, 3, 0], x = {209, 266} (mod 285)
p(x) = (x6 + 8x5 − 18x4 − 326x3 − 342x2 + 3143x+ 6859)/1425
r(x) = x4 − 37x2 + 361, t(x) = (−2x3 + 17x+ 95)/95

192-bit security level:
21. k = 15, D = 3, ρ = 2, cubic twists, V = [x, 0, 0, 0,−1, 0, 0, 0], x = 0 (mod 3)
p(x) = (3x16−9x15 + 10x14 + 4x13−19x12 + 24x11−14x10−6x9 + 37x8−36x7 + 8x6 +
19x5 − 20x4 + 21x3 − 3x2 − 12x+ 12)/3
r(x) = x8 − x7 + x5 − x4 + x3 − x+ 1, t(x) = x8 − x7 + x5 + x3 − x+ 2

22. k = 15, D = 3, ρ = 2, cubic twists, V = [3 ∗ x, 0, 0, 0,−1, 0, 0, 0], x ∈ Z
p(x) = 43046721x16−14348907x15−3188646x14+2125764x13−708588x12+177147x11+
78732x10 − 59049x9 + 15309x8 − 972x6 + 567x5 − 54x4 + 9x2 − 3x+ 1
r(x) = 6561x8 − 2187x7 + 243x5 − 81x4 + 27x3 − 3x+ 1, t(x) = 6561x8 − 2187x7 +
243x5 + 27x3 − 3x+ 2

23. k = 16, D = 1, ρ = 2, quartic twists, V = [x,−1, 0, 0, 0, 0, 0, 0], x ≡ 0 (mod 2)
p(x) = (x16 + x10 + 5 ∗ x8 + x2 + 4 ∗ x+ 4)/4, r(x) = x8 + 1, t(x) = x8 + x+ 2

24. k = 16, D = 1, ρ = 2, quartic twists, V = [2, 0, 0, x, 1, 0, 0, 0], x ≡ {10, 60}
(mod 70)
p(x) = (245x16 + 28x13 + 23520x12 + x10 + 1920x9 + 871225x8 + 48x6 + 45204x5 +
14723760x4 + 625x2 + 361148x+ 96012500)/980

23

r(x) = x8 + 48x4 + 625, t(x) = (35x8 + 2x5 + 1680x4 + 41x+ 21910)/35

25. k = 18, D = 3, ρ = 2, sextic twists, V = [x, 1, 0, 0,−1, 0], x ≡ 1 (mod 3)
p(x) = (3x12 − 3x9 + x8 − 2x7 + 7x6 − x5 − x4 − 4x3 + x2 − 2x+ 4)/3
r(x) = x6 − x3 + 1, t(x) = x6 − x4 − x3 + 2

26. k = 18, D = 3, ρ = 2, sextic twists, V = [1, 0, x, 2, 0, 0], x ≡ 1 (mod 3)
p(x) = (21x12 − 6x10 + 1533x9 + x8 − 334x7 + 42007x6 + 37x5 − 6199x4 + 512092x3 +
343x2 − 38368x+ 2343376)/21
r(x) = x6 + 37x3 + 343, t(x) = (7x6 + x4 + 259x3 + 16x+ 2408)/7

27. k = 20, D = 1, ρ = 1.5, quartic twists, V = [x,−1, 0, 0, 0, 0, 0, 0], x ≡ 1 (mod 2)
p(x) = (x12−2x11 +x10 +x2 +2x+1)/4, r(x) = x8−x6 +x4−x2 +1, t(x) = x+1

24

	 Optimal TNFS-secure pairings on elliptic curves with composite embedding degree

