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Abstract. Designing an identity-based encryption (IBE) scheme supporting additive homomor-
phism modulo a large integer is not an easy job. At PKC 2019, Clear and McGoldrick (CM)
proposed the first such IBE scheme based on the IBE scheme of Boneh, LaVigne and Sabin (BLS).
In this paper, we further improve the CM scheme. In particular, 1) we improve the efficiency by
removing the evaluation of e-th power residue symbols in the encryption process; when e = 2, this
modification even makes the encryption considerably efficient than that in Cocks scheme. We also
construct an anonymous IBE scheme without sacrificing the encryption speed. 2) our construction
widens the BLS scheme and the CM scheme to the case that e is square-free. Furthermore, we have
two results that may be of independent interests. 1) We generalize the notable Galbraith’s test
by introducing the general reciprocity law over function fields. With the help of the generalized
Galbraith’s test, we show the BLS scheme is not anonymous in general). 2) We also provide some
new methods for computing the e-th power residue symbols, which can be used to generalize the
public key encryption scheme due to Joye and Libert proposed at CRYPTO 2013.

Keywords: identity-based encryption · e-th power residue symbol · the general reciprocity law
over function fields · anonymity.

1 Introduction

Identity-based encryption (IBE), originally proposed by Shamir in 1984 [34], is an extension of the public
key encryption. The motivation of IBE is to solve some existing but unavoidable problems in classic pub-
lic key encryption systems. For example, it substitutes the Public Key Generator (PKG) for Public Key
Infrastructure (PKI), and thus removes the overload of the certificate management. So far, there have
been three practical ways to construct IBE; the pairing-based one, the lattice-based one and the quadratic
residuosity (QR)-based one. In 2001, Boneh and Franklin gave a pairing-based construction of IBE [6],
which is a breakthrough work realizing practical IBE. In 2008, Gentry, Peikert and Vaikuntanathan pro-
posed a lattice-based IBE [20]. These two constructions have been extended to substantial cryptographic
schemes that support different access controls. Back towards the year 2001, Clifford Cocks came up
with a totally different construction of IBE [16], whose security relies on the standard QR assumption.
Its encryption solely includes several operations modulo an RSA modulus and two evaluations of the
Jacobi symbol. As we all know, QR-based IBE is more efficient than the lattice-based one. In addition,
it is additively homomorphic, supporting an unbounded number of homomorphic operations. Although
additively homomorphic pairing-based IBE can be transformed from a multiplicatively homomorphic
one, the number of operations is bounded. Due to its unique functionality, QR-based IBE captures some
researchers’ attention. However, Cocks scheme encrypts one bit plaintext into a ciphertext composed
of a pair of two large integers, and hence is used to encrypt short session keys in practice. Intuitively,
encryption of more than one bit at a time can be achieved by introducing higher-power residue symbols.

1.1 Related Work

The notion of key-privacy was put forward by Bellare et al. [4] as an additional security requirement of an
encryption scheme; if an adversary learns nothing about the identity of a ciphertext, we call this scheme
anonymous. Halevi gave a sufficient condition for key-privacy in a short note [22]. In 2005, Abdalla et
⋆⋆ Corresponding author



al. [1] led into the conception of AIBE (Anonymous Identity-Based Encryption). Cocks scheme is known
not to be anonymous due to the test developed by Galbraith [5]. In 2007, Boneh, Gentry and Hamburg [7]
addressed the ciphertext expansion issue and anonymity issue, they designed an anonymous IBE system
(BGH) which merely expands an `-bit plaintext to a ciphertext about a size of ` + log2N . However,
the encryption in their scheme is not efficient. In [24], Jhanwar and Barua presented a scheme which is
more time efficient, but larger ciphertext expansion than BGH scheme. Next, Susilo et al. [18] gave an
improvement of Jhanwar-Barua scheme. However, neither of the two schemes are IND-ID-CPA secure due
to the security flaw discovered by Schipor [33].

In 2013, Clear, Hughes, and Tewari [14] considered Cocks scheme over the polynomial quotient ring
ZN [x]/(x2 − Rid) because it is natural and convenient to view ciphertexts as elements in it. With the
help of this sharp observation, they constructed a strongly XOR-homomorphic IBE scheme. In the same
year, Boneh, LaVigne and Sabin [8] generalized Cocks scheme to eth residuosity so that it can encrypt
more than one bit in a message. The downside of this generalization is that the ciphertext expansion is
massive, which is intractable to optimize yet because any intuitive attempt of compression fails to be
secure due to the attack found by Boneh, LaVigne and Sabin [14]. Recently, Clear and McGoldrick [15]
extended BLS scheme so that it can use a hash function which can be securely instantiated.

Constructing cryptosystems from higher-power residue symbols has been explored in several studies
by researchers. For example, Cao [10] proposed a type of extension of the Goldwasser-Micali QR-based
cryptosystem [21]. His scheme is based upon kth-power residues and enables segment encryption instead
of bit encryption. In 2013, Joye and Libert [26] revisited the Goldwasser-Micali QR-based cryptosystem
using 2k-th power residue symbols and described a more efficient lossy trapdoor function based upon the
k-QR assumption, k-Squared Jacobi Symbol assumption and DDH assumption. Subsequently, Cao [11]
proposed a type of extension of Joye-Libert cryptosystem based upon kth-power residues. The extended
scheme is more efficient than Joye-Libert cryptosystem in decryption speed. Recently, Brier et al. [9]
introduced new prq-based one-way functions and companion signature schemes which replace the Jacobi
symbol with higher-power residue symbols.

1.2 Our Contributions

In this work, we investigate BLS scheme [8] as well as CM scheme [15], and make the following contri-
butions.

Our first contribution is to improve these two schemes in the following two aspects:

1. We omit the superfluous computation of e-th power residue symbols, a very time-consuming part
in the encryption phase of BLS scheme. Also, this modification does not influence the security. It is
worth mentioning that in the case e = 2, our improved scheme can be anonymous and is much more
efficient in encryption, while its ciphertext extension is increased by a factor of 2, compared with
Cocks scheme.

2. In BLS scheme, e must be a prime number. We leverage knowledge of classical number theory to
extend BLS scheme to the case e is a square-free number, which strengthens its flexibility.

Our second contribution is to reformulate the analyses on the incompressibility of BLS scheme in [8]
rigorously by introducing the general reciprocity law over function fields. Applying this technique, we
fully generalize the famous Galbraith’s test to the case e > 2 and show that BLS scheme is not anonymous
in general.

Our third contribution is to provide methods for computing e-th power residue symbols. We correct
a theorem proposed in [19] and give an analogous conclusion with the same effect. Furthermore, we focus
on computing e-th power residue symbols in a particular condition. The results can be utilized to extend
Joye-Libert cryptosystem [26].

2 Preliminaries

2.1 Notations

If X is a finite set, the notation #X means the cardinality of X, writing x $←↩ X to indicate that x is an
element sampled from the uniform distribution over X. If A is an algorithm, then we write x ← A (y)
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to mean: “run A on input y and the output is assigned to x”. PPT is short for “probabilistic polynomial
time”.

For a group G, the subgroup of G generated by the set X is denoted by 〈X〉. If R is a ring, a, b ∈ R
and I is an ideal of R, the relation a− b ∈ I is written a ≡ b (I). A finite field of size q is denoted by Fq.
For a polynomial f , we denote as deg(f) = n to say f has degree n. log stands for the binary logarithm.( ·
·
)

stands for Jacobi symbol. ϕ denotes the Euler’s totient function.

2.2 Identity-Based Encryption

An identity-based encryption scheme is defined as a tuple of PPT algorithms (Setup,KeyGen,Enc,Dec):
Setup(1λ) The setup algorithm Setup is a randomized algorithm that takes a security parameter 1λ

as input, and outputs a tuple (mpk,msk), where the mpk denotes the public parameters and msk
denotes the master secret key.

KeyGen (mpk,msk, id) The key generation algorithm KeyGen is a deterministic algorithm that takes
msk and an identity id as inputs, and outputs a decryption key skid associated with the identity id.

Enc (mpk, id,m) The encryption algorithm Enc is a randomized algorithm that takes mpk, id and a
plaintext m as inputs, and outputs a ciphertext c. That is, we encrypt plaintext m with an identity
id and achieve a ciphertext c.

Dec(mpk, skid, c) The decryption algorithm Dec is a deterministic algorithm that takes mpk, skid, c as
inputs, and outputs the corresponding plaintext m if c is a valid ciphertext, and ⊥ otherwise.

2.3 Security Notions

Correctness The correctness property states that any valid ciphertext can be decrypted to recover the
corresponding plaintext. For a formal definition, we denotes M, ID,C as the plaintext space, the identity
space and the ciphertext space respectively. An IBE scheme Σ = (Setup,KeyGen,Enc,Dec) is said correct
if ∀m ∈ M, ∀id ∈ ID, it satisfies

Pr[Dec (mpk, skid,Enc (mpk, id,m)) = m] = 1.

where mpk, id, skid are obtained from Setup and KeyGen.

Semantic Security The semantic security property states that it is infeasible for any adversary with the
limited computation ability to get any information of plaintext if it is given the corresponding ciphertext.
The behaviors of an adversary A can be simulated by a pair of probabilistic PPT algorithms (A1,A2).
The game between the adversary and the challenger contains the following five phases:
Initialization phase: The challenger runs the algorithm Setup and keeps the master secret key msk and

gives the public parameters mpk to the adversary.

The first query phase: After receiving mpk, the adversary chooses a subset ID1 ⊆ ID and issues the key
generation queries and obtains the private key corresponding to each identity in ID1. The queries can
be asked adaptively so the adversary can update and enrich its knowledge about the scheme, which
is denoted by the state s.

Challenge phase: The adversary chooses a challenge identity id∗ /∈ ID1 and two different plaintexts
m0, m1 ∈ M of the same length. It sends them to the challenger.

The second query phase: This phase is the same as the first query phase except that the query identity
subset ID2 ⊆ ID cannot contain id∗.

Guess phase: The challenger chooses a random bit b and encrypts mb with mpk, id∗. It then sends the
corresponding ciphertext c ∈ C to the adversary. The adversary tries to guess the bit b. It wins the
game (carries a successful attack) if the guess is right.
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Formally, an IBE scheme Σ is said to be semantically secure if

AdvIND-ID-CPA
A,Σ (λ) =

∣∣∣∣∣∣∣∣∣Pr

(mpk,msk)

$←↩ Setup(1λ)

(id∗,m0,m1, s)← AKeyGen(mpk,msk,·)
1 : AKeyGen(mpk,msk,·)

2 (s, c) = b

b
$←↩ {0, 1}, c← Enc(mpk, id∗,mb)

− 1
2

∣∣∣∣∣∣∣∣∣
is negligible, where A1 denotes the behaviors of the adversary in two query phases and in the Chal-
lenge phase, A2 denotes the behaviors of the adversary in the Guess phase. Because the adversary can
adaptively choose the challenge identity and challenge plaintexts and attempts to distinguish them, the
semantic security can also be called indistinguishable chosen-identity chosen-plaintext security (IND-ID-
CPA).

Anonymity Generally, an IND-ID-CPA secure IBE scheme may not possess anonymity. To formally
define this property combined with IBE, we should modify the behaviors of A in the last three phases
as:
Challenge phase: The adversary chooses two different challenge identities id∗0, id∗1 /∈ ID1 and a plaintext

m ∈ M. It sends them to the challenger.

The second query phase: This phase is the same as the first query phase except that the query identity
subset ID2 ⊆ ID cannot contain id∗0 and id∗1.

Guess phase: The challenger chooses a random bit b and encrypts r $←↩ M (|r|2 = |m|2) with mpk, id∗b .
It then sends the corresponding ciphertext c ∈ C to the adversary. The adversary tries to guess the
bit b. It wins the game (carries a successful attack) if the guess is right.

Formally, an IND-ID-CPA secure IBE scheme Σ is said to be anonymous (ANO-IND-ID-CPA) if

AdvANO-IND-ID-CPA
A,Σ (λ) =

∣∣∣∣∣∣∣∣∣∣∣∣
Pr


(mpk,msk)

$←↩ Setup(1λ)

(id∗0, id
∗
1,m, s)← A

KeyGen(mpk,msk,·)
1

: AKeyGen(mpk,msk,·)
2 (s, c) = b

b
$←↩ {0, 1}, r $←↩ M (|r|2 = |m|2)

c← Enc(mpk, id∗b , r)

−
1
2

∣∣∣∣∣∣∣∣∣∣∣∣
is negligible.

2.4 e-th Power Residue Symbol

Let K be a number field, and OK be the ring of integers in K, and e ≥ 1 be an integer. We say a prime
ideal p in OK is relatively prime to e if p - eOK . It is easy to see that p is relatively prime to e if and
only if gcd(q, e) = 1, where q = pf = Norm(p) for some f ∈ N. For every α ∈ OK , α /∈ p, we have

αq−1 ≡ 1 (p)

Let ζe = exp(2πi/e) be an e-th root of unity. If ζe ∈ K and p is relatively prime to e, the order of the
subgroup of

(
OK

p

)×
generated by ζe mod p is e. This indicates that e divides q− 1, hence we can define

the e-th power residue symbol
(

α
p

)
e

as follows:

1.
(

α
p

)
e
= 0 if α ∈ p.

2. If α /∈ p,
(

α
p

)
e

is the unique e-th root of unity such that α
Norm(p)−1

e ≡
(

α
p

)
e

(p).

Next, we extend the symbol multiplicatively to all ideals. Suppose a ⊂ OK is an ideal prime to e. Let
a = p1p2 · · · pm be the prime decomposition of a. For α ∈ OK define

(
α
a

)
e
=
∏m

i=1

(
α
pi

)
e
. If β ∈ OK and
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β is prime to e, we define
(

α
β

)
e
=
(

α
(β)

)
e
. See [23, 28, 29] for more properties about e-th power residue

symbols.
From here on we only consider the case K = Q(ζe). It’s well-known that OK = Z [ζe]. Let N = pq

be a product of two distinct primes satisfying p ≡ 1 (mod e), q ≡ 1 (mod e), then both p and q split
completely in K. Suppose that µ ∈ Z∗

N is a primitive e-th root of unity modulo p and modulo q, we
say it a non-degenerate primitive e-th root of unity modulo N . The following lemma is crucial for the
instance of schemes based upon higher-power residue.

Lemma 1 (Freeman et al. [19]). Let e be a positive integer, N = pq be a product of two distinct
primes p, q with p ≡ q ≡ 1 mod e. Let µ ∈ Z∗

N be a non-degenerate primitive e-th root of unity modulo
N . For each i ∈ Z∗

e, let ai = NOK +(ζe−µi)OK , pi = pOK +(ζe−µi)OK and qi = qOK +(ζe−µi)OK .
Then, we have Norm(ai) = N, ai = piqi for each i ∈ Z∗

e and pOK =
∏

i∈Z∗
e
pi, qOK =

∏
i∈Z∗

e
qi,

NOK =
∏

i∈Z∗
e
ai.

3 Security Assumption and Properties of e-th Power Residue Symbols

In this section, we define the security assumption related to our new schemes and prove some properties
about e-th power residue symbols.

3.1 Security Assumption

For a better understanding of the schemes based upon higher-power residue, we first give definitions of
the notations to be used. Then, we describe the security assumption our proposed schemes rely on.

We define a function JN,e : ZN 7→ {0, . . . , e− 1} as follows:

JN,e(x) =

0, if gcd(x,N) 6= 1;

i, if gcd(x,N) = 1 and
(
x

a1

)
e

= ζie.

It is easy to check that, if x, y ∈ Z∗
N , then JN,e (xy) = JN,e (x)JN,e (y).

Squirrel [37] gave a polynomial algorithm with expensive precomputations to compute the e-th power
residue symbols. Although Boer [17] managed to propose an improved algorithm that does not rely on
heavy precomputations and runs fast in experiments, he could not give a rigorous proof to verify that it
runs in polynomial time.

For e ≥ 2, we say an integer x ∈ Z∗
N is an e-th residue modulo N if there exists an integer y ∈ Z∗

N

such that ye ≡ x (mod N). Note that if x is an e-th residue, then
(

x
pi

)
e
=
(

x
qi

)
e
= 1 holds for each

i ∈ Z∗
e. We denote the set of all e-th residues in Z∗

N by ERN,e. Correspondingly, J k
N,e is denoted as

J k
N,e =


{
x ∈ Z∗

N

∣∣∣ ( x

a1

)
e

= 1
}

k = 0;{
x ∈ Z∗

N

∣∣∣ ( x

a1

)
e

= 1,
(
x

p1

)
e

and
(
x

q1

)
e

are primitive
} ⋃

ERN,e k = 1.

We alter the MER assumption defined in [8] as follows.

Definition 1 (Modified e-th Residue (MERi
e, i ∈ {0, 1}) Assumption). A PPT algorithm RSAgen (λ)

generates two equally sized primes p, q and a square-free integer e such that p ≡ q ≡ 1 mod e and
gcd(p+q−2

e , e) = 1, then picks a random number u ∈ J i
N,e \ ERN,e and µ ∈ Z∗

N a non-degenerate prim-
itive e-th root of unity to N = pq. We define the following two distributions relative to RSAgen (λ)
as:

Di
ER :

{
(N, v, e, µ) : (p, q, e, µ)← RSAgen (λ), v

$←↩ ERN,e

}
Di

ENR :

{
(N, v, e, µ) : (p, q, e, µ)← RSAgen (λ), v

$←↩ J i
N,e \ ERN,e

}
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The MERi
e assumption relative to RSAgen (λ) asserts that the advantage Adv

MERi
e

A,RSAgen (λ) defined as∣∣∣∣Pr[A (N, v, e, µ, u) = 1
∣∣∣ (N, v, e, µ)

$←↩ Di
ER (λ)

]
− Pr

[
A (N, v, e, µ, u) = 1

∣∣∣ (N, v, e, µ)
$←↩ Di

ENR (λ)

]∣∣∣∣
is negligible for any PPT adversary A.

Both of the two assumptions are natural extensions to the standard QR assumption [25] (when e = 2,
we have ζ2 = µ = −1, so MER0

2 = MER1
2 are equivalent to the standard QR assumption except for

the choices of the RSA modulus and u). Therefore, we believe that it is intractable to break both of
them. Obviously, MER1

e implies MER0
e. The next subsection may be helpful for illuminating the relation

between the two assumptions.

3.2 Properties of e-th Power Residue Symbols

Now, we investigate more properties of e-th power residue symbols.

Theorem 1. #J 0
N,e =

ϕ(N)

e
, #J 1

N,e = (ϕ(e) + 1)
ϕ(N)

e2

Proof. Let U =
{
1, ζe, . . . , ζe−1

e

}
denotes the subgroup of roots of unity in OK . The map θ : Z∗

p → U

given by x 7→
(
x

p1

)
e

is an homomorphism. Let

ERp,e =
{
y ∈ Z∗

p | y ≡ xe mod p for some x ∈ Z∗
p

}
be the subgroup composed of e-th residues in Z∗

p. It’s an easy matter to check that the cardinality of

ERp,e is p− 1
e

. Therefore, an integer z ∈ Z∗
p satisfying

(
z

p1

)
e

= 1 must be in ERp,e. Hence the kernel

of θ is exactly ERp,e and we have the following isomorphic

Z∗
p

ERp,e

∼= U

due to the equality of cardinality. Of course, elements in different cosets of ERp,e in Z∗
p have different

e-th power residue symbols, whence there is a one to one correspondence between cosets of ERp,e in Z∗
p

and e-th roots of unity via the e-th power residue symbol. Note that the above arguments are also valid
for Z∗

q . As a result, we derive

#J 0
N,e = e

ϕ(N)

e2
=
ϕ(N)

e

#J 1
N,e = (ϕ(e) + 1)

ϕ(N)

e2

�

We are now in a position to describe the core theorem to the follow-up security proof.

Theorem 2. Let e be a prime number, t ∈ Z∗
N a transport key, R an element in Z∗

N such that
(
R

p1

)
e

=

ζiRe ,

(
R

q1

)
e

= ζjRe where iR, jR are relatively prime to e. If c(x) =
f(x)e

t
mod (xe − R) for some

f(x)
$←↩ Z∗

N [x] is a polynomial of degree e− 1, then the sets

Ωk =

{
g(x) ∈ Z∗

N [x]
∣∣∣ deg g(x) = e− 1,

g(x)e

k
mod (xe −R) = c(x)

}
are of the same cardinality for each transport key k ∈ Z∗

N .
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Proof. Consider the two sets Ωt, Ωt, to prove the theorem, it suffices to prove that #Ωt = #Ωt for any

t ∈ Z∗
N . Suppose that

(
tt

−1

p1

)
e

= ζite ,

(
tt

−1

q1

)
e

= ζjte . Since

(
Ri−1

R it

p1

)
e

=

(
tt

−1

p1

)
e

,

(
Rj−1

R jt

q1

)
e

=

(
tt

−1

q1

)
e

,

by the proof of Theorem 1, there exist Wp ∈ Z∗
p and Wq ∈ Z∗

q such that

W e
pR

i−1
R it ≡ tt−1

(mod p), W e
qR

j−1
R jt ≡ tt−1

(mod q).

According to the Chinese remainder theorem, we have
ZN [x]

(xe −R)
∼= Zp[x]

(xe −R)
⊕ Zq[x]

(xe −R)
.

Therefore, the map φ : Ωt → Ωt given by h(x) 7→ g(x) where

g(x) ≡Wpx
i−1
R ith(x) (mod p)

g(x) ≡Wqx
j−1
R jth(x) (mod q)

is well defined for a fixed t. In the other direction, the inverse map ψ : Ωt → Ωt is given by g(x) 7→ h(x)
where

h(x) ≡W−1
p

(
R−1xe−1)i−1

R it
g(x) (mod p)

h(x) ≡W−1
q

(
R−1xe−1)j−1

R jt
g(x) (mod q)

It is straightforward to verify ψ ◦ φ = 1Ωt
and φ ◦ ψ = 1Ωt

where 1Ωt
and 1Ωt

denote the identity maps
on Ωt and on Ωt respectively. �
We close this section by showing that the precondition of Proposition 4.3 proposed in [19] can be relaxed
as follows.

Proposition 1. Let e be an integer. Let N = pq where p ≡ q ≡ 1 (mod e). Suppose that gcd(p− 1
e

, e) =

gcd(
q − 1
e

, e). Then there is a ν such that

1. ν is a non-degenerate primitive e-th root of unity modulo N .
2.
(
ν

ai

)
e

= 1 for every ideal ai ⊂ OK as in Lemma 1.

Proof. The condition gcd(
p− 1
e

, e) = gcd(
q − 1
e

, e) implies that there exist integers sp, tp, sq, tq such that

sp
p− 1
e

+ tpe = sq
p− 1
e

+ tqe. Let µp = µ mod p and µq = µ mod q. Observe that every primitive e-th
root of unity in Zp has the form µi

p for some i ∈ Z∗
e. It follows that(

µ
sp
p

p1

)
e

=

(
ζ
sp
e

p1

)
e

= ζ
p−1
e sp

e

Similarly, (
µ
−sq
q

q1

)
e

=

(
ζ
−sq
e

q1

)
e

= ζ
− q−1

e sq
e

Hence, letting ν be the integer congruent to µsp
p modulo p and µ

−sq
q modulo q. Then,(

ν

a1

)
e

=

(
ν

p1

)
e

(
ν

q1

)
e

= ζ
sp

p−1
e −sq

q−1
e

e = 1

Since ν ∈ Z, the result
(
ν

ai

)
e

= 1 follows from Galois-equivalence of the e-th power residue symbol. �
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4 Identity-Based Encryption from e-th Power Residue Symbols

BLS scheme naturally generalizes Cocks scheme to e-th residuosity so that it encrypts more than one
bit at a time, whereas it is less efficient and bandwidth-wise than Cocks scheme. In this section, we first
review BLS scheme. Then, we present a scheme that makes the encryption much more efficient than BLS
scheme’s, and even than Cocks scheme’s. Our scheme also enables BLS scheme to support the case e is
square-free.

4.1 Review of BLS Scheme

We now describe the IBE scheme presented by Boneh, LaVigne and Sabin [8]. The scheme allows en-
crypting multiple bits at a time.

Setup(1λ) Given a security parameter λ, Setup selects a prime e, then generates an RSA modulus
N = pq a product of two large primes p and q such that e | p−1, e | q−1. The public parameters are
mpk = {N, e, µ,H } where µ is a non-degenerate primitive e-th root of unity in ZN , H is a publicly
available cryptographic hash function mapping an arbitrary binary string to an e-th residue in Z∗

N .
The master secret key is msk = {p, q}.

KeyGen(mpk,msk, id) Using the hash function H and p, q, KeyGen sets Rid = H (id), then calculates
rid = H (id)

1
e mod N . Finally, KeyGen returns skid = {rid} as user’s private key.

Enc (mpk, id,m) To encrypt a message m ∈ {0, . . . , e− 1} for a user with identity id, Enc derives the
hash value Rid = H (id). It then chooses a random polynomial f of degree e − 1 from ZN [x] and
calculates g(x) = f(x)e mod (xe −Rid) =

∑e−1
i=0 aix

i. Next, it chooses a transport key t $←↩ Z∗
N . The

returned ciphertext is

C =
{a0
t
,
a1
t
, . . . ,

ae−1

t
, (m+ JN,e (t)) mod e

}
.

Dec(mpk, skid, C) When a user with skid = {rid} receives a ciphertext set C, it parses C as
{c0, c1, . . . , ce−1, c}, Dec recovers the plaintext m as

m =

(
JN,e

(
e−1∑
i=0

cir
i
id

)
+ c

)
(mod e)

Remark 1. BLS scheme ingeniously extends Cocks scheme to higher-power residue case. To understand
the point just pick e = 2 and f(x) = t + x with

(
t
N

)
= (−1)m, the ciphertext polynomial is g(x)

t =

t+ Rid

t + 2x, which agrees with the construction of Cocks scheme.

Remark 2. In Cocks scheme, the PKG can easily derive a user’s secret key by several efficient probabilistic
algorithms taking square roots in finite fields, such as Cipolla-Lehmer [27] algorithm, Tonelli-Shanks [35]
algorithm and Adleman-Manders-Miller [2] algorithm. Fortunately, these methods can also be applied to
general situations, e.g. [12], the extended Adleman-Manders-Miller algorithm can extract an e-th root
modulo a prime p in O

(
log4 p+ e log3 p

)
time complexity.

Since it’s tough to implement such a hash function H without leaking information about msk, BLS
scheme was not given a formally security proof in the original paper. In [15], the authors proposed an
approach which is akin to Cocks scheme to circumventing the issue, but at the cost of a lower efficiency
and a larger ciphertext extension.

4.2 Our IBE Scheme

We perceive that it is redundant to compute e-th power residue symbols during the encryption process
in BLS scheme. To clearly describe our improved scheme with this method, we first give the construction
in the specific case e = 2 (also is the most commonly used), namely Π2, and make a comparison of Π2
and Cocks scheme.
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Construction in the Case e = 2

Setup(1λ) Given a security parameter λ, Setup generates an RSA modulus N = pq a product of two
distinct large primes p and q such that p+ q

2
is even and an element u ∈ J 0

N,2 \ ERN,2. The pub-
lic parameters are mpk = {N, u,H } where H is a publicly available cryptographic hash function
mapping an arbitrary binary string to J 0

N,2. The master secret key is msk = {p, q}.

KeyGen(mpk,msk, id) Using the hash function H and p, q, KeyGen sets Rid = H (id). If Rid ∈ ERN,2,
KeyGen calculates rid = H (id)

1
2 mod N ; otherwise it calculates rid = (uH (id))

1
2 mod N . Finally,

KeyGen returns skid = {rid} as user’s private key.

Enc (mpk, id,m) To encrypt a message m ∈ {0, 1} for a user with identity id, Enc derives the hash
value Rid = H (id). It then chooses two random polynomials f1, f2 of degree 1 from ZN [x] and
calculates g1(x) = f1(x)

2 mod (x2−Rid) = a1x+a0 and g2(x) = f2(x)
2 mod (x2−uRid) = b1x+ b0.

The returned ciphertext is

C =

{
{a0, a1, b0, b1} , if m = 0;
{N − a0, N − a1, N − b0, N − b1} , if m = 1.

Dec(mpk, skid, C) When a user with Rid = H (id) and skid = {rid} receives a ciphertext set C =
{c1, c2, c3, c4}, it parses C as g1(x) = c1 + c2x and g2(x) = c3 + c4x. If r2id ≡ Rid mod N , Dec
sets h(x) = g1(x); otherwise it sets h(x) = g2(x). Finally, Dec recovers the plaintext m as m =
JN,2 (h(rid)).

Clearly, the ciphertext in the scheme above is twice the length of that in Cocks scheme, whereas encryp-
tion operations just amounts to several multiplications in contrast to the heavy computations about the
modular multiplicative inverse and the Jacobi symbol in Cocks scheme. In fact, this space-time trade-
off method makes encryption considerably efficient. Also, Π2’s security is guaranteed by the following
theorem whose proof is similar to the proof of Proposition 1 in [25].

Theorem 3. Let A = (A1,A2) be an adversary against the IND-ID-CPA security of our scheme Π2,
making at most qH queries to the random oracle H and a single query to the Challenge phase. Then,
there exists an adversary B against the MER0

2 assumption such that

AdvIND-ID-CPA
A,Π2

(λ) =
qH
2
· AdvMER0

2
B,RSAgen(λ)

Proof. Suppose that the adversary B is given an RSA modulus N from the algorithm RSAgen(λ), a
random element w ∈ J 0

N,2 and u ∈ J 0
N,2 \ ERN,2 and is asked to determine whether w ∈ J 0

N,2 \ ERN,2. B
sets mpk = {N, u,H } and gives it to A1, who has oracle access to hash queries and extraction queries
(i.e., ask the private key corresponding to each identity in the chosen set ID1). B answers the oracle
queries as follows:

Hash queries Initially, B maintains a counter ctr = 0 and a list SH ← ∅ whose entry is in the form
of {id,Rid, rid}. In addition, B selects i∗ $←↩ {1, . . . , qH }.
When A queries oracle H on an identity id, B increments ctr and checks whether there is an entry
whose first component is id. If so, it returns Rid; otherwise, if ctr = i∗, it returns w and appends
{id, w,⊥} to SH ; else, it sets h = u−jr2 mod N with r $←↩ Z∗

N and j $←↩ {0, 1} and appends {id, h, r}
to SH .

Extraction queries When A queries the secret key on id, B first checks whether there is an entry
whose first component is id. If not, it invokes H (id) to generate an entry (id,Rid, rid). Finally, if
rid =⊥, it aborts; otherwise, it returns rid.

Afterward, A1 selects a challenge identity id∗ /∈ ID1. If H (id∗) 6= w, B returns a random bit b ∈ {0, 1}
to A; otherwise, B does the following process:

9



1. Choose b $←↩ {0, 1} and two random polynomials f1, f2 of degree 1 from ZN [x], and calculate g1(x) =
f1(x)

2 mod (x2 − w) = a1x + a0 and g2(x) = f2(x)
2 mod (x2 − uw) = b1x + b0. The corresponding

ciphertext is

Cb =

{
{a0, a1, N − b0, N − b1} , if b = 0;
{N − a0, N − a1, b0, b1} , otherwise.

2. Give Cb to A2 —— A2 may issue more hash queries and extraction queries except that the query
identity subset ID2 cannot contain id∗. Finally, A2 returns a bit b′.

3. If b = b′ return 1; otherwise return 0.
We shall only analyze the success probability of B solving the MER0

2 assumption in the subcase w =
H (id∗) ∈ J 0

N,2 \ ERN,2 as the analyses of the other subcases are analogous to those in the proof of
Proposition 1 in [25]. From H (id∗) ∈ J 0

N,2 \ ERN,2 and Theorem 2, we conclude that Cb is a valid
ciphertext for (−1)1−b. Hence, B returns 1 if and only if A loses the game. Let ε be the probability that
A can break the IND-ID-CPA security of Π2, thus we have

Adv
MER02
B,RSAgen(λ) =

∣∣Pr[B (N,w, u) = 1
∣∣ w ∈ ERN,2

]
− Pr

[
B (N,w, u) = 1

∣∣ w ∈ J 0
N,2 \ ERN,2

]∣∣ =∣∣∣Pr[w = H (id∗)] · Pr
[
B (N,w, u) = 1

∣∣ w ∈ J 0
N,2 ∧ w = H (id∗)

]
+

Pr[w ̸= H (id∗)] · Pr
[
B (N,w, u) = 1

∣∣ w ∈ J 0
N,2 ∧ w ̸= H (id∗)

]
−

(
1− ε

qH
+

1− 1
qH

2

)∣∣∣ =∣∣∣∣ ε

qH
+

(
1− 1

qH

)
· 1
2
− 1

2
−

1
2 − ε

qH

∣∣∣∣ = 2
qH
· AdvIND-ID-CPA

A,Π2 (λ)

�

Construction for Square-free Integer e For ease of description, we suppose that there exists a hash
function H mapping an arbitrary binary string to an e-th residue in Z∗

N , our IBE scheme Πe for a
square-free integer e is defined as follows:
Setup(1λ) Given a security parameter λ, Setup generates an RSA modulus N = pq a product of

two distinct large primes p and q, and selects a square-free integer e with the prime decomposition
e =

∏ℓ
i=1 ei such that e | p− 1, e | q − 1 and gcd(

p+ q − 2
e

, e) = 1. The settings of µ is the same as
for in BLS scheme. The public parameters are mpk = {N, e, µ,JN,e(µ),H }. The master secret key
is msk = {p, q}.

KeyGen(mpk,msk, id) Using the hash function H and p, q, KeyGen sets Rid = H (id), then calculates
rid = H (id)

1
e mod N . Finally, KeyGen returns skid = {rid} as user’s private key.

Enc (mpk, id,m) To encrypt a message m ∈ {0, . . . , e− 1} for a user with identity id, Enc first derives
the hash value Rid = H (id). Then, it generates a transport key t = µk where k $←↩ {0, . . . , e− 1}.
We define the sub-algorithm E which takes as inputs a prime number P and a public key Rid as
Algorithm 1.

Algorithm 1 E
Input: a prime number P, a public key Rid

Output: a polynomial

1: Generate a uniform random polynomial f(x) $←↩ Z∗
N [x] of degree P − 1

2: Compute g(x)← f(x)P mod xP −Rid

3: Output the polynomial c(x) = g(x)

µk mod P

The returned ciphertext is

C = {E (e1) , . . . , E (eℓ) , (m+ JN,e (t)) mod e} .

10



Dec(mpk, skid, C) When a user with skid = {rid} receives a ciphertext set C, it parses C as
{c1(x), . . . , cℓ(x), c}, Dec recovers the plaintext m as

m =

(
JN,e

(
ℓ∏

i=1

ci(r
e
ei

id )
e
ei mod N

)
+ c

)
mod e

Remark 3. The condition gcd(
p+ q − 2

e
, e) = 1 ensures that JN,e(µ) is primitive through the proof of

Proposition 1. In the encryption phase, computing JN,e (t) = kJN,e(µ) mod e can be very convenient.

Correctness Correctness can be verified directly as follows.

Dec(mpk, skid, (Enc(id,m))) ≡
ℓ∑

i=1

JN,e

(
ci(r

e
ei

id )
e
ei

)
+m+ JN,e(µ

k)

≡
ℓ∑

i=1

JN,e

(
1

µ
(k mod ei)

e
ei

)
+m+ JN,e(µ

k)

≡JN,e

(
µk

µ
∑ℓ

i=1(k mod ei)
e
ei

)
+m

≡ m (mod e)

Theorem 4. Let A = (A1,A2) be an adversary against the IND-ID-CPA security of our scheme Πe,
making at most qH queries to the random oracle H and a single query to the Challenge phase. Then,
there exists an adversary B against the MER1

e assumption such that

AdvIND-ID-CPA
A,Πe

(λ) = qH · Adv
MER1

e

B,RSAgen(λ)

Proof. We prove it by defining a sequence of three games. For simplicity, we omit the procedure of Enc
in the Challenge phase.

GameA1 (λ): This game is the real attack against our IBE scheme.

GameA2 (λ): In this game, we guess the number of the challenge identity and abort the game if the guess
is wrong.

GameA3 (λ): We change the simulation of the H phase so that it returns a random element in J 1
N,e \ ERN,e

for the i∗-th query.
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GameA1 (λ)

phase Setup(λ)

b
$←↩ {0, 1}

SH ← ∅ ; ctr ← 0
msk ←{p, q}
mpk ←{N, e, µ,JN,e(µ), `, e1, . . . , eℓ}
return mpk

phase KeyGen(id)
if (ctr, id, Rid, ·) /∈ SH H(id)
read (ctr, id, Rid, ·) ∈ SH

usk← R
1
e
id mod N

return usk

phase H(id)
if (ctr, id, Rid, ·) ∈ SH return Rid

ctr ← ctr + 1

Rid
$←↩ ERN,e

SH ← SH ∪{(ctr, id, Rid,⊥)}
return Rid

phase Challenge(id∗,m0,m1)
C ← Enc(mpk, id∗,mb)

return C

phase Guess(b′)

return b′ = b

GameA2 (λ)GameA3 (λ)

phase Setup(λ)

b
$←↩ {0, 1}

i∗
$←↩ {1, . . . , qH }

SH ← ∅ ; ctr ← 0
msk ←{p, q}
mpk ←{N, e, µ,JN,e(µ), `, e1, . . . , eℓ}
return mpk

phase KeyGen(id)
if (ctr, id,Rid, rid) /∈ SH H(id)
read (ctr, id,Rid, rid) ∈ SH

if rid =⊥ abort
usk← rid

return usk

phase H(id)
if (ctr, id,Rid, rid) ∈ SH return Rid

ctr ← ctr + 1

if ctr = i∗

rid
$←↩ Z∗

N ; Rid = reid mod N Rid
$←↩ J 1

N,e \ ERN,e

SH ← SH ∪{(ctr, id, Rid,⊥)}
else

rid
$←↩ Z∗

N ; Rid = reid mod N

SH ← SH ∪{(ctr, id, Rid, rid)}
return Rid

phase Challenge(id∗,m0,m1)
if (i∗, id, Rid, rid) ∈ SH and id = id∗

C ← Enc(mpk, id∗,mb)

else abort
return C

phase Guess(b′)

return b′ = b

We claim:
Claim 1: AdvIND-ID-CPA

A,Πe
(λ) =

∣∣∣Pr[GameA1 (λ) = true
]
− 1

2

∣∣∣.
Claim 2: Pr

[
GameA2 (λ) = true

]
= 1

2 (1−
1

qH
) + 1

qH
Pr
[
GameA1 (λ) = true

]
.

Claim 3:
∣∣∣Pr[GameA3 (λ) = true

]
− Pr

[
GameA2 (λ) = true

] ∣∣∣ ≤ Adv
MER1

e

B,RSAgen(λ).

Claim 4: Pr
[
GameA3 (λ) = true

]
= 1

2 .

Proof. Claim 1 follows immediately by the definition of semantic security. Claim 2 is derived from Bayes’
theorem. Claim 3 follows from Difference Lemma [36]. If the public key Rid∗ of the challenge identity

id∗ is chosen from J 1
N,e \ ERN,e, then

(
Rid∗

p1

)
ej

and
(
Rid∗

q1

)
ej

are both primitive ej-th roots of unity
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for each 1 ≤ j ≤ `. Since
(
µ

a1

)
e

is primitive, the set{{(
µk mod e1

a1

)
e1

, . . . ,

(
µk mod eℓ

a1

)
eℓ

} ∣∣∣ 0 ≤ k < e

}
takes over combinations of all ej-th roots of unity for each 1 ≤ j ≤ `. Hence, by Theorem 2, ciphertexts
are statistically indistinguishable to an adversary, which completes the proof of Claim 4. �
Combining all above claims gives this theorem. �

5 Anonymity
In this section, we review the basic theory of the reciprocity law over function fields, and then extend the
Galbraith’s test [5] to e-th power residue situation in order to prove that BLS scheme is not anonymous
when e is small. Some attempts to extend Cocks scheme to achieve anonymity have been proposed by
several researchers, e.g., in [3,7,25,32]. These methods may be adaptive to BLS scheme and ours as they
share many common features with Cocks scheme. In particular, we utilize the methodology originated
from Joye [25] to make our scheme Π2 satisfy ANO-IND-ID-CPA security. Moreover, the new scheme
ΠANO

2 does not sacrifice the efficiency of encryption.

5.1 Reciprocity Law over Function Fields
We start by explaining notation to be used and briefly give crucial definitions and results due to Carlitz
[13]. We here refer to Chapter 3 in [31].

Every element in Fq[t] has the form f(t) = αnt
n+αn−1t

n−1+ · · ·+α0. In this case we set sgn(f) = αn

and call it the sign of f . Let P ∈ Fq[t] of degree γ be an irreducible polynomial and e a divisor of q − 1.
Note that there is a unique α ∈ F∗

q such that a qγ−1
e ≡ α (mod P ).

Definition 2. If a ∈ Fq[t] and P does not divide a, let
(
a
P

)
e

be the unique element of F∗
q such that

a
qγ−1

e ≡
( a
P

)
e

(mod P ).

If P | a define
(
a
P

)
e
= 0. The symbol

(
a
P

)
e

is called the e-th power residue symbol.
Proposition 2. The e-th power residue symbol has the following properties:
1.
(
a
P

)
e
=
(

b
P

)
e

if a ≡ b (mod P ).
2.
(
ab
P

)
e
=
(
a
P

)
e

(
b
P

)
e
.

3. Let α ∈ Fq. Then,
(
α
P

)
e
= α

q−1
e γ .

Just as the Jacobi symbol, the definition of the e-th power residue symbol can be extended to the case
that P is an arbitrary non-zero element b ∈ Fq[t] with the prime decomposition b = sgn(b)Qf1

1 · · ·Qfs
s ,

and thus define (a
b

)
e
=

s∏
j=1

(
a

Qj

)fj

e

.

Proposition 3. The symbol
(
a
b

)
e

has the following properties:
1. If a1 ≡ a2 (mod b), then

(
a1
b

)
e
=
(
a2
b

)
e
.

2.
(
a1a2
b

)
e
=
(
a1
b

)
e

(
a2
b

)
e
.

3.
(

a
b1b2

)
e
=
(

a
b1

)
e

(
a
b2

)
e
.

4.
(
a
b

)
e
6= 0 if and only if a is relatively prime to b.

5. If xe ≡ a (mod b) is solvable, then
(
a
b

)
e
= 1.

The following fascinating theorem tells the general reciprocity law for Fq[t].
Theorem 5. [The general reciprocity law [13]] Let a, b ∈ Fq[t] be relatively prime, non-zero elements.
Then, (a

b

)
e
=

(
b

a

)
e

(
(−1)deg(a)deg(b)sgn(a)deg(b)sgn(b)−deg(a)

) q−1
e
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5.2 Galbraith’s Test on Higher-power Residues
Let a = H(id), N, c be the public key of a user id, an RSA modulus and a ciphertext as in Cocks scheme
respectively. Here, we consider a as a quadratic residue modulo N . Galbraith constructed the following
elegant test

G T (a, c) =

(
c2 − 4a
N

)
to distinguish the identity of a ciphertext. The reason it can be successful is: if the ciphertext c is
generated by the user id with public key a, then c2 − 4a must be a square, but is not always the case
if the public key a is replaced by another one. In [3], Ateniese and Gasti proved that Galbraith’s test
is the best test against the anonymity of Cocks scheme. Recently, in [38], the authors developed exact
formulas for the distributions of quadratic residues and non-residues on special sets and rigorously made
deep analyses on Galbraith’s test. Equivalently, in BLS scheme, if g(x) = f(x)e mod (xe −Rid) is a
ciphertext polynomial encrypted by the user id, it is uncertain whether g(x) can be obtained by another
user id′ if the modulus xe −Rid is replaced by xe −Rid′ .

In BLS scheme, an adversary who intercepts ciphertexts has the ability of recreating the polynomial

g(x)

t
=
f(x)e

t
mod (xe −Rid) .

Let xe −Rid =
∏m

j=1 η
pj

j be the prime decomposition of xe −Rid in Fp[x]. There is(
t−1g(x)

xe −Rid

)
e,Fp

=

(
t−1f(x)e

xe −Rid

)
e,Fp

=

m∏
j=1

(
t−1

ηj

)pj

e,Fp

=

m∏
j=1

t−
p−1
e pjdeg(ηj) = t−

p−1
e e ≡ 1 (p1). (1)

Similarly, (
t−1g(x)

xe −Rid

)
e,Fq

≡ 1 (q1). (2)

Notice that all the following three situations occur with overwhelming probability.
1. gcd(xe −Rid, f(x)) = 1.
2. The leading term xe−1 of g(x)

t has non-zero coefficient.
3. All terms in each polynomial in process have coefficients relatively prime to N .

Therefore, we may assume that all of them hold by default. By continuously applying Theorem 5 until
the process terminates, i.e., modulo a polynomial of degree 1, one can get(

t−1g(x)

xe −Rid

)
e,Fp

≡
(
cp
p1

)
e

(
αp

Φ(x)

)
e,Fp

(p1),

(
t−1g(x)

xe −Rid

)
e,Fq

≡
(
cq
q1

)
e

(
βq
Ψ(x)

)
e,Fq

(q1) (3)

where αp, cp ∈ Fp, βq, cq ∈ Fq and Φ(x) ∈ Fp[x], Ψ(x) ∈ Fq[x], deg(Φ(x)) = deg(Ψ(x)) = 1. An adversary
can perform the above steps as well, but in ZN [x]. In other words, it can, however obtain cN , γN and
Θ(x) such that

cN ≡ cp (mod p) γN ≡ αp (mod p) Θ(x) ≡ Φ(x) (mod p)

cN ≡ cq (mod q) γN ≡ βq (mod q) Θ(x) ≡ Ψ(x) (mod q)

With this terminology, we define the e-th Galbraith’s test as

G T (Rid, C)e =

(
cNγN
a1

)
e

=


(
t−1g(x)

xe −Rid

) e
p−1

e,Fp

p1


e


(
t−1g(x)

xe −Rid

) e
q−1

e,Fq

q1


e

.

Now that the ciphertext C is generated by the user id, the equation G T (Rid, C)e = 1 must hold with
all but negligible probability. While for another user id′, we conjecture that the value G T (Rid′ , C)e is
statistically close to the uniform distribution on

{
ζie
∣∣ i ∈ {0, 1, . . . , e− 1}

}
. Furthermore, we naturally

conjecture that the e-th Galbraith’s test is the most effective test against the anonymity of BLS scheme.
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Remark 4. When e = 2, let c0, c1 ∈ Z∗
N and c(x) = c1x+ c0 be the ciphertext polynomial, then

x2 −Rid ≡ (c−1
1 c0)

2 −Rid (mod c1x+ c0).

By Theorem 5, cN = c21 and γN = (c−1
1 c0)

2 −Rid. Hence, the 2-th Galbraith’s test simplifies to

G T (Rid, C)2 =

(
cNγN
a1

)
2
=

(
c20 − c21Rid

N

)
,

as mentioned in [14]. Substituting c for c0 and 2 for c1 into G T (Rid, C)2, we derive the original form of
Galbraith’s test on Cocks scheme.

Finally, we give an example to demonstrate how the e-th Galbraith’s test works.

Example 1. Assume that all parameters of BLS scheme are set as in Table 1:

Table 1. Parameters of BLS scheme in Example 1

Parameter Value Parameter Value

N 4331 rid 67

p 61 Rid′ 467

q 71 rid′ 51

e 5 t 7

µ 1900 f(x) x4 + 2x3 + 3x2 + 4x+ 6

Rid 822 g(x)

t
3184x4 + 3485x3 + 1183x2 + 3757x+ 1193

Here, the ciphertext polynomial g(x)
t is generated by the user id. To distinguish the identity of g(x)

t
between id and id′, an adversary may perform the following calculations:

Rid = 822
x5 − 822 ≡ 3855x3 + 649x2 + 1331x+ 1525 (mod 3184x4 + 3485x3 + 1183x2 + 3757x+ 1193)
3184x4 + 3485x3 + 1183x2 + 3757x+ 1193 ≡ 29x2 + 460x+ 1742 (mod 3855x3 + 649x2 + 1331x+ 1525)
3855x3 + 649x2 + 1331x+ 1525 ≡ 3938x+ 951 (mod 29x2 + 460x+ 1742)
29x2 + 460x+ 1742 ≡ 55 (mod 3938x+ 951)
Rid′ = 467
x5 − 467 ≡ 3855x3 + 649x2 + 1331x+ 1880 (mod 3184x4 + 3485x3 + 1183x2 + 3757x+ 1193)
3184x4 + 3485x3 + 1183x2 + 3757x+ 1193 ≡ 29x2 + 105x+ 3020 (mod 3855x3 + 649x2 + 1331x+ 1880)
3855x3 + 649x2 + 1331x+ 1880 ≡ 3512x+ 99 (mod 29x2 + 105x+ 3020)
29x2 + 105x+ 3020 ≡ 4315 (mod 3512x+ 99)

Next, it derives

cN = (3184× 3855× 29× 3938)2 mod 4331 c′N = (3184× 3855× 29× 3512)2 mod 4331
γN = 55 γ′N = 4315

and computes
(

cNγN

a1

)
5
= 1 and

(
c′Nγ′

N

a1

)
5
= ζ35 6= 1. Finally, it captures the fact that the ciphertext

polynomial g(x)
t belongs to the identity id. Indeed, there is

(
cNγN

p1

)
5
=
(

cNγN

q1

)
5
= 1.
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5.3 An Anonymous Scheme

To avoid our scheme Π2 from being attacked against the anonymity by the 2-th Galbraith’s test, one
should generate two types of ciphertexts with values {±1} when taking them to do the 2-th Galbraith’s
test. Obviously, multiplying the ciphertext polynomial by a scalar doesn’t work as the 2-th Galbraith’s
test doesn’t change. What about multiplying a polynomial? In fact, x is suitable as

G T (Rid, x)2 =

(
(−1)2 · −1

N

)
= −1.

Therefore, inspired by the anonymous IBE scheme Γ without ciphertext expansion from [Section 6.2, [25]],
we construct the following anonymous IBE scheme ΠANO

2 with fast encryption.
Setup(1λ) Given a security parameter λ, Setup generates an RSA modulus N = pq a product of two

distinct large primes p and q such that p+ q

2
is even and an element u ∈ J 0

N,2 \ ERN,2. The pub-
lic parameters are mpk = {N, u,H } where H is a publicly available cryptographic hash function
mapping an arbitrary binary string to J 0

N,2. The master secret key is msk = {p, q}.

KeyGen(mpk,msk, id) Using the hash function H and p, q, KeyGen sets Rid = H (id). If Rid ∈ ERN,2,
KeyGen calculates rid = H (id)

1
2 mod N ; otherwise it calculates rid = (uH (id))

1
2 mod N . Finally,

KeyGen returns skid = {rid} as user’s private key.

Enc (mpk, id,m) To encrypt a message m ∈ {0, 1} for a user with identity id, Enc derives the hash
value Rid = H (id). It then chooses two random polynomials f1, f2 of degree 1 from ZN [x] and lets

g1(x)
0 = (−1)mf1(x)2 mod (x2 −Rid), g1(x)

1 = (−1)mx · f1(x)2 mod (x2 −Rid)

g2(x)
0 = (−1)mf2(x)2 mod (x2 − uRid), g2(x)

1 = (−1)mx · f2(x)2 mod (x2 − uRid)

It also chooses at random two bits β1, β2 ∈ {0, 1}. The returned ciphertext is

C = {g1(x)β1 , g2(x)
β2}

Dec(mpk, skid, C) When a user with Rid = H (id) and skid = {rid} receives a ciphertext polynomial
set C = {c1(x), c2(x)}. If r2id ≡ Rid mod N , Dec sets h(x) = c1(x), 4 = Rid; otherwise it sets
h(x) = c2(x), 4 = uRid. Next, it computes σ = G T (4, h(x))2. Finally, Dec recovers the plaintext
m as

m =

{
JN,2 (h(rid)) , if σ = 1;
JN,2 (ridh(rid)) , otherwise.

Remark 5. Note that when taken f1 = x+ t1, f2 = x+ t2 with
(
t1
N

)
=
(
t2
N

)
= (−1)m, ΠANO

2 is identical
to Γ in the case d = 0 where d is the hash index in Γ .

6 Computing
( ·
a1

)
e

In this section, we first develop a method for computing
(

·
a1

)
e

for large values of e, and then show that

computing
(

·
a1

)
e

becomes much easier if the factorization a1 = p1q1 is already known. Finally, we extend
Joye-Libert cryptosystem [26] to the higher-power residue case.

6.1 Computing
( ·
a1

)
e

for Large Values of e

In [19], to compute the e-th power residue symbol, the authors constructed a “compatibility” identity
and claimed that it holds for all ideals in Z[ζe]. But this is not correct, e.g., If U is a prime ideal in Z[ζe]
and B = U ∩ Z[ζf ] is a prime ideal in Z[ζf ] where f | e, the argument NormZ[ζe](U) = NormZ[ζf ](B) is
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not always true. In fact, when B is singular, the local-global principle makes the “compatibility” identity
hold, see Chapter 1 in [17]. Furthermore, note that in the case NormZ[ζe](U) = p − 1, it also holds due

to the inclusion map ι :
Z[ζe]
U
7→ Z[ζf ]

B
. Hence, we formalize the following revised theorem.

Theorem 6. Let e, f be integers with f | e. Let p1 be as Lemma 1, and let x ∈ Z[ζe]. Then(
x

p1 ∩ Z[ζf ]

)
f

=

(
x

p1

) e
f

e

.

It follows readily that p1 ∩ Z[ζf ] = pZ[ζf ] + (ζf − µ
e
f )Z[ζf ] due to the fact that µ

e
f is a non-degenerate

primitive f -th root of unity modulo N . Therefore, we are able to learn the value of
(
x

a1

)
e

by computing x

NZ[ζf ] + (ζf − µ
e
f )Z[ζf ]


f

for each prime factor f of e and applying the Chinese remainder theorem.

6.2 Computing
( ·
a1

)
e

if the Factorization a1 = p1q1 is Known

The following simple theorem demonstrates that computing
(
·
p1

)
e

is related to solving the discrete

logarithm problem in a certain cyclic group. Recall that the discrete logarithm problem (DLP) is defined
as: given a finite cyclic group G of order n with a generator α and an element β ∈ G, find the integer
x ∈ Zn such that αx = β.

Theorem 7.
(
y

p1

)
e

= ζxe if and only if µx = y
p−1
e in Z∗

p. Therefore, the solution to the DLP in the

finite cyclic subgroup 〈µ〉 of order e allows the computation of
(
·
p1

)
e

.

Proof. ⇐ If µx = y
p−1
e , then y

p−1
e − ζxe = µx − ζxe ∈ p1. It follows that

(
y

p1

)
e

= ζxe .

⇒ If
(
y

p1

)
e

= ζxe for some x ∈ Ze, that is y p−1
e − ζxe ∈ p1. As the order of y p−1

e divides e, y p−1
e can be

expressed as µz with an integer z ∈ Ze, which implies µx − µz ∈ p1. The fact that the order of µ is e
forces x = z. �

Although the DLP is considered to be intractable in general, it can be quickly solved in a few particular
cases, e.g., if the order of G is smooth, the Pohlig-Hellman algorithm [30] turns out to be quite efficient.
Taking advantage of the discovery above, Joye-Libert scheme [26] which generalizes Goldwasser-Micali
cryptosystem using 2k-th power residue symbols can be extended and rephrased as follows:
KeyGen (1κ) Given a security parameter κ. KeyGen selects arbitrary e =

∏ℓ
i=1 e

fi
i a product of small

prime numbers, then generates an RSA modulus N = pq a product of two large primes p and q such
that e | p− 1, e | q − 1 and picks at random µ ∈ Z∗

N a non-degenerate primitive e-th root of unity to
N and y ∈ J 1

N,e \ ERN,e. The public and private keys are pk = {N, e, y} and sk = {p, µ}.

Enc (pk,m) To encrypt a message m ∈ Ze, Enc picks a random x ∈ Z∗
N and returns the ciphertext

c = ymxe mod N.

Dec (sk, c) Given the ciphertext c and the private key sk = {p, µ}, Dec first computes
(
c

p1

)
e

= ζze

and then recovers the plaintext as m = zk−1 mod e where
(
y

p1

)
e

= ζke .

The above scheme has the similar security proof as Goldwasser-Micali cryptosystem’s, i.e., by the proof
of Theorem 1, it is IND-CPA secure under the ERe assumption defined as:
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Definition 3 (e-th Residue (ERe) Assumption). A PPT algorithm RSAgen (λ) generates two equally
sized primes p, q and an integer e such that p ≡ q ≡ 1 mod e, and chooses at random µ ∈ Z∗

N a non-
degenerate primitive e-th root of unity to N = pq. We define the following two distributions relative to
RSAgen (κ) as:

DER :

{
(N, v, e, µ) : (p, q, e, µ)← RSAgen (κ), v

$←↩ ERN,e

}
DENR :

{
(N, v, e, µ) : (p, q, e, µ)← RSAgen (κ), v

$←↩ J 1
N,e \ ERN,e

}
The ERe assumption relative to RSAgen (κ) asserts that the advantage AdvERe

A,RSAgen (κ) defined as∣∣∣∣Pr[A (N, v, e) = 1
∣∣∣ (N, v, e, µ) $←↩ DER (κ)

]
− Pr

[
A (N, v, e) = 1

∣∣∣ (N, v, e, µ) $←↩ DENR (κ)

]∣∣∣∣
is negligible for any PPT adversary A.
Note that when e = 2k for an integer k, ERe assumption holds if and only if the k-QR assumption
(Definition 2, [26]) holds since

(
a

p

)
= −1 if and only if

(
a

p1

)
e

is primitive (for a fixed p and arbitrary

µ). Therefore, the above scheme for e = 2k (Joye-Libert scheme) is IND-CPA secure under the k-QR
assumption.
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A Incompressibility of BLS Scheme
BLS scheme has a space-efficient variation (see [8]) that seems to work. If a trusted PKG sets the user’s
secret key to the root of xδ − Rid for some δ satisfying 2 ≤ δ < e with some prime e, and operations
of polynomials are performed in the quotient ring ZN [x]

(xδ−Rid)
in the encryption phase, then the number of

elements in the ciphertext can be significantly reduced to δ + 1. However, this ambitious method makes
the scheme insecure. Moreover, there even exists an attack that recovers the decrypted messages with
the help of the reciprocity law over Fq[t], the polynomial ring over some finite field Fq. This attack also
shows that it is incompressible for any generalization of similar methods, and as a result it hinders the
progress of Cocks scheme. We next employ the notations and terminology in section 5 to demonstrate
this attack.

An adversary who intercepts ciphertexts has the ability of recreating the polynomial
g(x)

t
=
f(x)e

t
mod

(
xδ −Rid

)
.

Let xδ −Rid =
∏m

j=1 η
pj

j be the prime decomposition of xδ −Rid in Fp[x]. There are(
t−1g(x)

xδ −Rid

)
e,Fp

≡
(
t−1

p1

)δ

e

(p1), (4)

(
t−1g(x)

xδ −Rid

)
e,Fq

≡
(
t−1

q1

)δ

e

(q1). (5)

Combining with the formulas above and (3) yields(
t−1

p1

)δ

e

=

(
cp
p1

)
e

(
α

p1

)
e

,

(
t−1

q1

)δ

e

=

(
cq
q1

)
e

(
β

q1

)
e

. (6)

Since an adversary can find cN and γN , it then gains
(
t−1

a1

)
e

by computing
(
cNγN
a1

)δe−2 mod e

e

.

Example 2. Finally, we give a toy example to demonstrate how an adversary attacks the space-efficient
variation of BLS scheme. Assume that all parameters are set as in Table 2.

Table 2. Parameters of the space-efficient variation of BLS scheme in Example 2

Parameter Value Parameter Value

N 4331 Rid 158

p 61 rid 67

q 71 f(x) x4 + 2x3 + 3x2 + 4x+ 6

e 5 t 7

µ 1900 g(x)

t
2102x+ 3769

δ 2

By calculation, we learn
(

7
p1

)
5
= ζ45 ,

(
7
q1

)
5
= ζ5. An adversary first analyzes as

x2 − 158 ≡ 2102−237692 − 158 = 1416 (mod 2102x+ 3769),

then gets cN =
(
(−1)221022

)
, γN = 1416, and finally discloses the plaintext

(
cNγN

a1

)3
5
= 1 =

(
7−1

a1

)
5
.

Actually, one can check that
(

cNγN

p1

)
5
=
(

7
p1

)3
5
= ζ25 ,

(
cNγN

q1

)
5
=
(

7
q1

)3
5
= ζ35 .

20


	Identity-Based Encryption from e-th Power Residue Symbols

