
Lattice RingCT v2.0 with Multiple Input and Multiple Output
Wallets

Wilson Alberto Torres1, Veronika Kuchta1, Ron Steinfeld1,
Amin Sakzad1, Joseph K. Liu1 and Jacob Cheng2

1 Faculty of IT, Monash University, Melbourne, Australia
{Wilson.Torres,Veronika.Kuchta,Ron.Steinfeld,

Amin.Sakzad,Joseph.Liu}@monash.edu
2 Collinstar Capital, Melbourne, Australia

jacob@collinstar.com

Abstract. This paper presents the Lattice-based Ring Confidential Transactions “Lattice RingCT
v2.0” protocol. Unlike the previous Lattice RingCT v1.0 (LRCT v1.0) protocol, the new protocol
supports Multiple-Input and Multiple-Output (MIMO) wallets in transactions, and it is a fully
functional protocol construction for cryptocurrency applications such as Hcash. Since the MIMO
cryptocurrency setting introduces new balance security requirements (and in particular, security
against out-of-range amount attacks), we give a refined balance security model to capture such
attacks, as well as a refined anonymity model to capture amount privacy attacks. Our protocol
extends a previously proposed ring signature scheme in the LRCT v1.0 protocol, to support the
MIMO requirements while preserving the post-quantum security guarantees, and uses a lattice-based
zero-knowledge range proof to achieve security against out-of-range attacks. Preliminary parameter
estimates and signature sizes are proposed as a point of reference for future studies.
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1 Introduction

In the current digital age, cryptocurrencies are applications that use virtual assets and cryptographic
mechanisms to conduct e-commerce operations such as electronic payments or money transfers. Those
payments can be carried out among accounts or wallets, independently of a central party [11]. Cryptocur-
rencies lead to some advantages like lower transaction fees, theft resistance and anonymous transactions.
Bitcoin [26] is by far the most widely known and decentralised cryptocurrency to date, having its three
underlying building blocks: transactions, blockchain and consensus protocol. Contrary to the traditional
banking model, Bitcoin allows electronic financial operations in a decentralised Peer-to-Peer (P2P) net-
work. Although Bitcoin was intended to achieve the security properties of privacy and anonymity by using
pseudonyms, some analyses [30, 17] show that these security properties can be compromised, therefore
information about the payers, payees and transactions can be revealed. Thus Bitcoin is only a pseudo-
anonymous cryptocurrency.

Nonetheless, since its creation, Bitcoin has revolutionised the field of digital currency and motivated
the invention of new cryptocurrencies, also known as alcoins. As an example, CryptoNote [34] was proposed
to address the privacy weaknesses of Bitcoin, as it also offers a framework that can be extended by other
cryptocurrencies such Bytecoin [7] and Monero [25]. CryptoNote uses traceable ring signatures [16] as a
fundamental component to achieve true anonymity, where any member of the ring (or group) can create
a signature, but it is infeasible by a verifier to identify the real signer. This type of signature hides
information about the sender and receiver, and it also has a linking tag to prevent double spending coins.
Further enhancements to this framework have resulted in an extended protocol called Ring Confidential
Transactions “RingCT” [27]. The RingCT protocol uses three techniques: a new type of ring signature
Linkable Ring Signatures [19], a homomorphic commitment and a range proof, to preserve the privacy of
the sender and the receiver as well as the transaction amounts.

However, the security of this RingCT protocol relies on classical number-theory assumptions, such
as the hardness of discrete logarithms [14]. As a consequence, this protocol will be vulnerable in the
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event of powerful quantum computers [31]. This situation has motivated researchers in the area of post-
quantum cryptography to construct secure approaches against quantum attacks. Among the alternatives,
lattice-based cryptography has attracted attention due to its distinguishing features and robust security
guarantees [24, 9].

To the best of our knowledge, the first post-quantum RingCT scheme using Lattice-based cryptography
was proposed in [1]. However, this proposal is limited. Firstly, it only enables transfers from a single input
wallet to a single output wallet (SISO). In the RingCT model, signatures are one-time, then if one needs
to receive change after making a payment or transfer, a new output wallet is required, so this points out
the importance of supporting multiple input and output wallets. Secondly, having more than one output
wallet also introduces a new security problem like the negative output amount (or out-of-range) attack
[6], where an adversary is capable of creating extra coins. This attack is addressed in the previous RingCT
[27] by using a range proof technique; however, this technique is not post-quantum secure.

1.1 Contributions

– We construct the Lattice-based Ring Confidential Transactions (LRCT) for Multiple-Input and
Multiple-Output wallets (MIMO). This construction is a generalisation of the SISO.LRCT scheme in
[1] where we changed its underlying framework (L2RS signature) to be compatible. Our MIMO.LRCT
inherits the post-quantum security guarantees, like the hardness of lattice mathematical assumptions
as well as unconditional anonymity.

– We improve the MIMO.LRCT’s security model, in particular, the balance and anonymity properties.
We explicitly define a balance model that considers out-of-range attacks [6], and we prove the security
of our protocol which previous RingCT’s proposals [1, 33] did not address. User anonymity is only
addressed in [33], while we include the analysis of both user anonymity and amount privacy.

– We show how to incorporate a lattice-based range proof into our MIMO.LRCT protocol, which was a
missing ingredient in former proposals [1, 33]. To begin with, our protocol deals with the difficulties
of the imperfection of lattice-based zero-knowledge proofs, Section 5.1 discusses more on this. In
particular, range proofs follow the approach based on 1-of-2 OR-proofs, but our analysis shows that
directly applying lattice-based OR-proofs from [12] does not provide soundness for the range proof.
This argument leads us to carefully select the challenge space as we describe in Lemma 3. Although
these challenges are smaller (in norm) than the ones used in the OR-proofs, they are still larger than
the challenges in [18]. In this framework, we achieve lower soundness error than the previous lattice-
based range proof [18]. We also provide a thorough concrete analysis of the MIMO.LRCT protocol by
including this range proof analysis.

– We apply our concrete bounds to derive preliminary scheme parameters for regular RingCT transac-
tions that support 64-bit amounts along with fewer Multiple Input and Output wallets. This analysis
serves as a benchmark for future practical implementations.

The organisation of this work is as follows. Section 1.2 presents CryptoNote and RingCT protocols litera-
ture. After introducing the notation and concepts used in our work in Section 2, we define the MIMO.LRCT
as well as its security model in Section 3. Section 4.1 involves the concrete construction of the homomor-
phic commitment and the MIMO.L2RS signature schemes, then Section 5 illustrates the construction of
MIMO.LRCT. Section 6 and 7 point out the MIMO.LRCT’s security and performance analyses, respectively.

1.2 Related Work

Evaluations [22, 28] of CryptoNote have discovered serious vulnerabilities which impact the privacy of the
involved parties in the transactions. Therefore, the Ring Confidential Transactions RingCT [27] protocol
was devised to address these issues. The RingCT extends the CryptoNote scheme by using a new class of
linkable ring signature called Multi-layered Linkable Spontaneous Anonymous Group Signature (MLSAG)
[19]. This signature is spontaneous (or ad-hoc), which removes the dependency of a trusted third party
and group members are unaware of belonging to a determined group, thereby enhancing the anonymity
property. It is also multilayered, meaning that it enables multiple input and output wallets in transactions.
The security of RingCT is ameliorated by introducing the Confidential Transactions [23], which enables
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amounts to be hidden by using the Pedersen Commitment [29] technique. This cryptographic primitive
enables a party to commit to a chosen secret value while keeping it hidden to other parties, where this
commitment can later be opened. Such a primitive offers homomorphic properties allowing parties to
prove the account balance by computing homomorphically input and output accounts to show that their
result is zero. RingCT added another verification mechanism for the committed output amounts which
was called range proof, guaranteeing that this amount lies in a range of non-negative values and avoiding
the creation of free money. Bulletproofs [6] is an efficient technique for this range preservation.

RingCT v2.0 [33] was later proposed. It provided sound security analysis of the (RingCT) protocol
as well as improved the size of the signature by using one-way accumulators [4] along with signatures of
knowledge “SoK” [8]. However, it requires a trusted setup for its accumulator to achieve the signature
constant size. The first post-quantum RingCT protocol was proposed in [1], where the authors named it
Lattice RingCT v1.0. This construction uses lattice-based cryptography to design a new Linkable Ring
Signature, which is called Lattice-based Linkable Ring Signature (L2RS). The L2RS follows the well known
Fiat-Shamir [15] transformation signature: Bimodal Lattice Signature Scheme (BLISS) [13], a practical
and secure lattice-based signature scheme. The L2RS offers computational security as per the hardness
of lattice assumptions for unforgeability, linkability and non-slanderability, it also achieves unconditional
anonymity. However, the proposed Lattice RingCT v1.0 showed no security definition or proofs, and
transactions were restricted to Single Input and Single Output wallets.

2 Preliminaries

The polynomial ring R = Z[x]/f(x), where f(x) = xn + 1 with n being a power of 2. The ring Rq is
then defined to be the quotient ring Rq = R/(qR) = Zq[x]/f(x), where Zq denotes the set of all positive
integers modulo q (a prime number q = 1 mod 2n) in the interval [−q/2, q/2]. The challenge space Sn,κ, is
the set of all binary vectors of length n and weight κ. A hash function modeled as Random Oracle Model
(ROM), H1 with range Sn,κ ⊆ R2q. When we use x← D for a distribution D, it means that x is sampled
from D, and when we use x← S for a set S, it means that x is uniformly sampled at random from S. If
we use r||, it means r is concatenated such

(
r(1), . . . , r(θ)

)
for any θ. The discrete Gaussian distribution

over Zm with standard deviation σ ∈ R and center at zero, is defined by Dm
σ (x) = ρσ(x)/ρσ(Zm), where

ρσ is the m-dimensional Gaussian function ρσ(x) = exp(−‖x‖2/(2σ2)). Vector transposition is denoted
by vT . The hardness assumption of this work is the Module-SIS (Short Integer Solution) problem and is
defined as follows.

Definition 1 (MSISKq,m,k,β problem). Let K be some uniform distribution over the ring Rk×mq . Given

a random matrix A ∈ Rk×mq sampled from K distribution, find a non-zero vector v ∈ Rm×1
q such that

Av = 0 and ‖v‖2 ≤ β, where ‖ · ‖2 denotes the Euclidean norm.

Lemma 1 (Rejection Sampling-BLISS). (Based on [13], Lemma 2.1). Let V be an arbitrary set, and
h : V → R and f : Zm → R be probability distributions. If gv : Zm → R is a family of probability
distributions indexed by v ∈ V with the property that there exists a M ∈ R such that ∀v ∈ V,∀v ∈
Zm,M · gv(z) ≥ f(z). Then the output distributions of the following two algorithms are identical:

1. v ← h, z← gv, output(z, v) with probability f(z)/(M · gv(z)).
2. v ← h, z← f, output(z, v) with probability 1/M .

Lemma 2 (Rejection Sampling-Gaussian Distribution).

Lemma 3. (Based on [5]) Let R = Z[X]/(Xn + 1) where n > 1 is a power of 2 and 0 < i, j < 2n − 1.
Then all the coefficients of 2(Xi−Xj)−1 ∈ R are in {−1, 0, 1}. This implies that ‖2(Xi−Xj)−1‖ ≤

√
n.

Lemma 4. For a, b ∈ Rq = Zq[X]/(Xn + 1) the following relations hold ‖a‖ ≤
√
n‖a‖∞, ‖a · b‖ ≤√

n‖a‖∞ · ‖b‖∞, ‖a · b‖∞ ≤ ‖a‖ · ‖b‖.

Lemma 5 (Leftover Hash Lemma (LHL)). (Based on [13], Lemma B.1). Let H be a universal hash
family of hash functions from X to Y. If h← H and x← X are chosen uniformly and independently, then

the statistical distance between (h,h(x)) and the uniform distribution on H× Y is at most
1

2

√
|Y |/|X|.
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Remark 1. We use this lemma for a SIS family of hash function H(S) = A · S ∈ Rq,with S ∈ DomS,

where each function is indexed by A ∈ R1×(m−1)
q and DomS ⊆ R1×(m−1)

q consists of vectors of Rq
elements with coefficients in Γ , (−2γ , 2γ). This is a universal hash family if for all S 6= S′, we have

Pr
[
A · S = A · S′

]
=

1

|Rq|
.

This is a universal hash family if there exists 1 ≤ i ≤ m − 1 such that si − s′i is invertible in Rq with
si, s

′
i ∈ Γn. This can be guaranteed by appropriate choice of q, e.g. as shown in ([21], Corollary 1.2), it is

sufficient to use q such that f(x) = xn + 1 factors into k irreducible factors modulo q and 2γ < 1√
k
· q1/k.

We assume that Rq is chosen to satisfy this condition.

2.1 Homomorphic Commitment Definition

This is a cryptographic technique that is used to provide confidential transactions, in particular cryp-
tocurrencies [27]. This primitive allows one party to commit to a chosen value while keeping it secret to
other parties, then this committed value can be revealed later. The definition of such technique, which is
based on [2], has three algorithms: (KeyGen, Com, Open), such that:

– Pub-Params ← KeyGen(1λ): A PPT algorithm that produces a public commitment parameter Pub-
Params after receiving the security parameter (λ).

– c← Com: A PPT algorithm that receives the Pub-Params, the randomness r and the message m. This
algorithm generates the commitment c.

– m′ ← Open: A PPT algorithm that receives the commitment c along with the randomness r, and it
outputs m′. A valid commitment c is opened if (m′ = m).

The security properties of this non-interactive homomorphic commitment scheme are defined as:

Definition 2 (Hiding). This property ensures that the commitment Com(m, r) does not leak information
on m, that is, for any PPT adversary A, it holds that:∣∣∣∣Pr

[
A(cb) = b :

Pub-Params← KeyGen(1λ); r← RandGen(Pub-Params);
(m,m′)← A(Pub-Params); b← {0, 1}; cb ← Com(r,mb)

]
− 1

2

∣∣∣∣ ,
is negl(λ).

Definition 3 (β−Binding). This property ensures that the commitment Com(m, r) can only be opened
in one way, that is, for any PPT adversary A, it holds that:

Pr

 r 6= r′ ∧
m 6= m′ ∧
Com(m, r) = Com(m′, r′)

:
Pub-Params← KeyGen(1λ);
r← RandGen(Pub-Params);
(m, r,m′, r′)← A(r)

 ≤ negl(λ),

where ‖r‖, ‖r′‖ ≤ β.

2.2 Fiat-Shamir Non-Interactive Zero-Knowledge Proofs in the Random Oracle Model

Zero-knowledge proof of knowledge (ZKPoK) is a two party protocol between the prover and the verifier,
which allows the prover to convince the verifier that he knows some information, without revealing
anything about the secret apart from what the claim itself already reveals [5].

Definition 4. Let be L ⊆ {0, 1}∗ the language that has witness relationship R ⊆ {0, 1}∗ × {0, 1}∗ if
x ∈ L ↔ ∃(x,w) ∈ R. We call w a witness for x ∈ L. Let (P,V) be a two-party protocol where P (prover)
and V (verifier) are PPT algorithms, and L,L′ be languages with witness relations R,R′ with R ⊂ R′.
Then (P,V) has a proof σ with completeness error α, public input x and private input w, if the following
conditions are satisfied:
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– The protocol uses a hash function H modeled as a random oracle which is called by both P and V.
This protocol has the following form: on input (x,w), P outputs a proof σ that is sent to V. On input
x, the verifier V accepts or rejects σ.

– Completeness: whenever (x,w) ∈ R, the honest verifier accepts the proof σ with probability at least
1− α.

– Soundness: given a dishonest prover A with input x, it outputs a valid proof σ with non-negligible
probability, then there there exists a PPT algorithm E (the knowledge extractor) that extracts a witness
w′ satisfying (x,w′) ∈ R′.

– Special honest-verifier zero-knowledgeness (HVZK): there exists two PPT algorithms S (the simulator)
and SH (random oracle simulator) that take x ∈ L, and output the proofs σsim = S(x) and SH(x, ·)
such that is computationally indistinguishable from σ = P(x,w) and H(·) generated by a real protocol.

3 Ring Confidential Transaction Protocol (RCT)

The RCT protocol is defined based on the former RingCT 2.0 protocol in [33].

Definition 5 (Account or wallet). A wallet has a public component “act” and a private component
“ask”. The act is composed of the user’s pk (or a valid address) and the coin cn, while the ask is formed
of the user’s sk along with the coin-key ck.

The RCT protocol has five PPT algorithms (RCT.Setup, RCT.KeyGen, RCT.Mint, RCT.Spend, RCT.Verify)
as well as the correctness (RCT.Correctness). The RCT’s algorithms are defined as follows:

– RCT.Setup: this PPT algorithm takes the security parameter λ and outputs the public parameters
Pub-Params.

– RCT.KeyGen: this PPT algorithm uses the Pub-Params to produce a pair of keys, the public-key pk
and the private-key sk.

– RCT.Mint: a PPT algorithm generating new coins by receiving Pub-Params and the amount $. This
algorithm outputs a coin cn and a coin-key ck.

– RCT.Spend: a PPT algorithm that receives the Pub-Params, a set of input wallets {IWi}i∈[w] with w
being the size of the ring, a user π’s input wallets IWπ along with its set of secret keys Kπ, a set of
output addresses OA, some transaction string µ ∈ {0, 1}∗, the output amount $ and the set of output
wallets OW . Then, this algorithm outputs: the transaction TX = (µ, IW,OW ), the signature sig and
a set of transaction/serial numbers TN , which is used to prevent the double spending coins.

– RCT.Verify: a deterministic PPT algorithm that takes as input the Pub-Params, the signature sig,
the TX, and the TN and verifies if the transaction was legitimately generated and outputs either:
Accept or Reject.

Transaction Correctness requirements: RCT.Correctness ensures that an honest user (payer) is
able to spend or transfer any of his accounts (wallets) into a group of destination accounts (payee), where
this transaction is accepted with overwhelming probability by a verifier. Thus the correctness of RCT is
guaranteed if for all PPT adversaries A, it holds that:

Pr


LRCT.Verify

(
TX, sig, TN

)
= 1:

Pub-Params←LRCT.Setup(1λ);
(µ, IW,OA)←A(Pub-Params, IWπ,Kπ)
with (IWπ,Kπ) as in Table 1;
(pk, sk)←LRCT.KeyGen(Pub-Params);
(cn, ck)←LRCT.Mint(Pub-Params, $);
(TX, sig, TN)←LRCT.Spend(µ,
Pub-Params, IWπ,Kπ, IW,OA, $(out)).


=1.

3.1 Oracles for adversaries

We now list all the adversarial oracles used in RCT, and we define them as:
– AddGen(i): on input a query number i, this oracle picks randomness τi, runs algorithm

(
pki, ski

)
←

RCT.KeyGen(Pub-Params, τi), and returns the public-key or one-time address pki.
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– ActGen(i, $i): on input a query number i and an amount $i, it runs (cni, cki) ←
RCT.Mint

(
Pub-Params, $i

)
. Then, ActGen adds i and the account acti =

(
pki, cni

)
to empty lists I

and IW , respectively. ActGen outputs (acti, cki) for the one-time address pki, where these addresses
are added to a list PK. The associated secret key with account acti is defined as aski , (ski, cki).
With this aski, the challenger calls MIMO.L2RS.SigGen(ski, · , · , · ) to determine the transaction num-
ber TNi of acti and adds it to a list T N .

– O-Spend(µ, IW, IWπ, OA, $(out),Pub-Params): on input the transaction string µ, input ac-
counts (wallets) IW containing IWπ and output addresses OA, it runs (TX, sig, TN) ←
RCT.Spend(µ,Kπ, IW, IWπ, OA, $(out),Pub-Params) and adds the outputs to T , where IWπ ∈ IW .
We assume that at least one account/address in IWπ has not been corrupted. We define the set of
transaction numbers in the RCT.Spend queries as T N ∗.

– Corrupt(i): on input query number i ∈ I, uses account key aski to determine the transaction/serial
number TNi of account acti with address pki, then adds TNi and (TNi, $i) to lists C and B respectively
and finally returns τi.

3.2 Threat Model

The protocol RCT is modeled in terms of balance, anonymity and non-slanderability for security analysis
purposes, which are defined as follows.

Definition 6 (Balance). This property requires that any adversary cannot spend any account without
her control and cannot spend her own accounts with a larger output amount. This security property is
guaranteed if for all PPT adversaries A, it holds that:

Pr

[
A wins :

Pub-Params← LRCT.Setup(1λ);

({IW (k)
i }i∈[w],k∈[Nin], T )← AAddGen,ActGen,O-Spend,Corrupt(Pub-Params)

]
,

is negl(λ), where adversaries’ oracles are defined in Section 3.1. We have that IW
(k)
i =

{pk
(k)
(in),i, cn

(k)
(in),i}i∈[w],k∈[Nin] and T = (TX, sig, TN). These spends can be transferred to the challenger

with the account address pk(out) = {pk
(j)
(out)}j∈[Nout], where we assume not all of them are corrupted, and

at least one of them is honest. This pk(out) has been created by the AddGen oracle, so the challenger knows
all balances of the spent accounts and output accounts involved in the adversarial spends T . This means

that TX = (µ, IW,OW ) with OW = {OW (j)}j∈[Nout] = {pk
(j)
(out), cn

(j)
(out)}j∈[Nout] being the output wallet

corresponding to output account pk(out). The adversary A wins this experiment if her outputs satisfy the
following conditions:

1. RCT.Verify(TX, sig, TN) = 1.

2.
∑
k∈E(in)

$
(k)
(in),π <

∑
j∈G(out)

$
(j)
(out), where we let π ∈ [w] s.t. π′s row {pk

(1)
(in),π, . . . , pk

(Nin)
(in),π} are the

ones that have {TN (1)
π , . . . , TN

(Nin)
π } which are found in ActGen, E(in) are the corrupted inputs, and

G(out) are the not corrupted outputs in T . For each TN (k) let $
(k)
(in) be the amount queried to ActGen

at the index query i such TN ⊆ T N . $
(k)
(in) is also defined as equal to zero if IW

(k)
i is equal to some

input wallet IW queried to O-Spend, using same TN , which means that IW
(k)
i has been spent.

3. TN cannot be the output of previous queries to the O-Spend(·) (i.e. TN ∩ T N ∗ = ∅).
4. pkπ is queried to O-Spend oracle only once.

5. PK ⊆ PK, where PK , {pk
(k)
(in),i}i∈[w],k∈[Nin].

Our extended anonymity property captures two types of attacks (compared to one type in [33]) that
depend on the adversary’s choices for users π0, π1 ∈ [w] and output amounts $(out),0, $(out),1. It starts
with the user anonymity attack where the adversary selects π0 6= π1 with $(out),0 = $(out),1, while in the
amount privacy attack this adversary chooses π0 = π1 with $(out),0 6= $(out),1. We formally define this
property as:
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Definition 7 (Anonymity). This property requires that two proofs of knowledge with the same trans-
action string µ, input accounts IW , output addresses OA, distinct both output amounts ($(out),0, $(out),1)
and spent accounts IWπ0 , IWπ1 ∈ IW are indistinguishable, meaning that the spender’s accounts and
amounts are successfully hidden among all the honestly generated accounts. The protocol RCT is called
anonymous if for all PPT adversaries A = (A1,A2), it holds that:

∣∣∣∣∣∣∣∣∣∣
Pr

b′ = b :

Pub-Params← Setup(1λ);

(µ, IWπ0 , IWπ1 , IW,OA, $(out),0, $(out),1)← AAddGen,ActGen,O-Spend,Corrupt
1 (Pub-Params);

b← {0, 1};
(TX∗, sig∗b , TN

∗)← LRCT.Spend(µ,Kπb , IWπb , IW,OA, $(out),b,Pub-Params);

b′ ← AO-Spend,Corrupt
2 (Pub-Params, (TX∗, sig∗b , TN

∗))

− 1

2

∣∣∣∣∣∣∣∣∣∣
,

is negl(λ), where adversaries’ oracles are defined in Section 3.1. In addition, the following restrictions
should be satisfied:

1. For all b ∈ {0, 1}, any account in IWπi has not been corrupted.
2. Any query in the form of (·, IWπ, ·, ·), such that IWπ ∩ IWπi 6= ∅ has not been issued to O-Spend

oracle.

Definition 8 (Non-Slanderability). This property requires that a malicious user cannot slander any
honest user after observing an honestly generated spending. That is, it is infeasible for any malicious user
to produce a valid spending that shares at least one transaction/serial number with a previously generated
honest spending. The protocol RCT is non-slanderable if for all PPT adversaries A, it holds that:

Pr

[
A wins :

Pub-Params← LRCT.Setup(1λ);(
(TX, sig, TN), (TX∗, sig∗, TN∗)

)
← AAddGen,ActGen,O-Spend,Corrupt(Pub-Params)

]
,

is negl(λ), where adversaries’ oracles are defined in Section 3.1, and (TX, sig, TN) is one output of the
oracle O-Spend for some (µ, IWπ, IW,OA). We say A succeeds if the output satisfies:

1. RCT.Verify(TX∗, sig∗, TN∗) = 1,
2. (TX∗, sig∗, TN∗) /∈ T , and
3. TN ∩ C = ∅ but TN ∩ TN∗ 6= ∅.

4 Building Blocks Construction

In this section, we summarize the underlying lattice-based primitives that are used in the construction
of MIMO.LRCT. This includes a lattice-based homomorphic commitment scheme and a MIMO version of
L2RS signatures, specified in Appendix C.

4.1 Lattice-based Commitment Construction

The MIMO.LRCT protocol requires a non-interactive homomorphic commitment (Com) as an essential
primitive. We construct the three algorithms: (KeyGen, Com, Open), using the MIMO.L2RS scheme (Ap-
pendix C):

– A ← KeyGen(1λ): A PPT algorithm that produces a public commitment parameter A ∈ R2×(m−1)
q

after receiving the security parameter (λ). In doing so, we call the MIMO.L2RS.Setup (Appendix C)

to generate A ∈ R2×(m−1)
q .

– c← ComA(m, sk): A PPT algorithm that receives the public parameter A (from KeyGen), the random-
ness sk and the message formed as m = (0,m)T ∈ R1×2

q . This algorithm generates the commitment

c ∈ R2
q. The randomness sk ∈ Domsk ⊆ R(m−1)×1

q with every component chosen uniformly and inde-
pendently with coefficients in (−2γ , 2γ), is produced by calling the MIMO.L2RS.KeyGen (Algorithm
1) and the message m ∈ Domm = Rq, then the commitment c = ComA(m, sk) = A · sk + m ∈ R2

q.
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– m′ ← OpenA(c, sk): A PPT algorithm receiving commitment c and randomness sk, and it outputs m′.
A valid c is opened if (m′ = m). This algorithm computes m′ = (0,m′)T = OpenA(c, sk) = c−A · sk.

Remark 2. Domm is full and not a small subset Rq, whereas Domsk is only a small domain versus q.
These adjustments help us to obtain better parameters than SISO.LRCT and security against out-of-
range attacks.

This homomorphic commitment scheme performs the following operations:

ComA(m, sk) ± ComA(m′, sk′) , ComA(m, sk)± ComA(m′, sk′) mod q

, ComA(m±m′, sk± sk′) mod q. (1)

Theorem 1 (Hiding). If 1
2

√
q2n

2(γ+1)·(m−1)·n is negligible in security parameter λ, then the above Com is

information theoretically hiding.

Proof. Suppose that a PPT adversary A is given two messages (m,m′), the public parameter A ∈
R2×(m−1)
q and the randomness sk. A bit b is chosen uniformly at random from b = {0, 1}, and the

commitment is generated as cb ← ComA(mb, sk) = A · sk + mb. This adversary A outputs a guess
b′ ∈ {0, 1}, where A succeeds in breaking the hiding property when (b = b′). We now analyze the
generated commitment cb with a uniformly random element fromR2

q. We know that sk is chosen small with
coefficients in (−2γ , 2γ). By applying the Leftover Hash Lemma (Lemma 5), we argue that the statistical

distance between the distribution of c and the uniform distribution onR2
q is at most

(
1
2 ·
√

q2n

2(γ+1)·(m−1)·n

)
,

which is negligible in (λ). ut

Theorem 2 (β−Binding). The described Commitment Scheme is computationally β−binding if the
MSISKq,m,k,2β problem is hard.

Proof. Suppose that an adversary A generates (c, sk, sk′) such that m = OpenA(c, sk) and m′ =
OpenA(c, sk′) with m = (0,m)T ∈ R1×2

q and m′ = (0,m′)T ∈ R1×2
q being valid messages and m 6= m′.

Using the Open algorithm, we have A · (sk− sk′) = (m−m′) = (0,m−m′)T 6= 0, where we find a small

non-zero vector v =
(
sk− sk′

)T
with respect to the first row A1 of the public commitment parameter A,

such that A1 ·v = 0 mod q, with ‖v‖ ≤ 2β. Therefore, this vector v gives a solution to the MSISKq,m,k,2β
problem. ut

4.2 Multiple-Input Multiple-Output Wallets L2RS (MIMO.L2RS)

We adapt all the notations from [1] into our MIMO.L2RS. The MIMO.L2RS signs a signature for multiple
wallets, which means that it signs Nin L2RS signatures in parallel. This MIMO.L2RS is an extension
of the single-input and single-output proposal from [1]. In such extension, we needed to modify the
Lattice-based Linkable Ring Signature (L2RS) to be capable of signing multiple wallets. Precisely, we
adjusted the key generation, the signature generation and the verification algorithms to sign the total
number of input wallets that a user wants to transfer to some output wallets. We call these algorithms:
MIMO.L2RS.KeyGen, MIMO.L2RS.SigGen and MIMO.L2RS.SigVer, and we describe them in Algorithms 1
2 and 3, respectively.

Algorithm 1 MIMO.L2RS.KeyGen - Key-pair Generation (a,S)

Input: Pub-Param: A ∈ R2×(m−1)
q .

Output: (a,S), being the public-key and the private-key, respectively.
1: procedure MIMO.L2RS.KeyGen(A)

2: Let ST = (s1, . . . , sm−1) ∈ R1×(m−1)
q , where si ← (−2γ , 2γ)n, for 1 ≤ i ≤ m− 1

3: Compute a = (a1, a2)T = A · S mod q ∈ R2
q .

4: return (a,S).
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Algorithm 2 MIMO.L2RS.SigGen - MIMO Signature Generation σL′(µ)

Input: {S(k)

(in),π
}k∈[Nin+1], µ, L′ as in (4), and Pub-Params.

Output: σL′ (µ) =
(
c1,
{
t
(k)
1 , . . . , t(k)w

}
k∈[Nin+1]

,
{
h(k)

}
k∈[Nin]

)
1: procedure MIMO.L2RS.SigGen(S

(k)

(in),π
, µ, L′,Pub-Params)

2: for (1 ≤ k ≤ Nin + 1) do

3: Set H
(k)
2q =

(
2 ·H,−2 · h(k) + q

)
∈ R2×m

2q , where h(k) = H · S(k)

(in),π
∈ R2

q .

4: Call MIMO.L2RS.Lift(A, a
(k)

(in),π
) to obtain A

(k)
2q,π = (2 ·A,−2 · a(k)

(in),π
+ q) ∈ R2×m

2q .

5: Let u(k) = (u1, . . . , um)T , where ui ← Dnσ , for 1 ≤ i ≤ m.

6: Compute cπ+1 = H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,π · u

(k)
}
k∈[Nin+1]

,
{
H

(k)
2q · u

(k)
}
k∈[Nin+1]

)
.

7: for (i = π + 1, π + 2, . . . , w, 1, 2, . . . , π − 1) do
8: for (1 ≤ k ≤ Nin + 1) do

9: Call MIMO.L2RS.Lift(A, a
(k)

(in),i
) to obtain A

(k)
2q,i = (2 ·A,−2 · a(k)

(in),i
+ q) ∈ R2×m

2q .

10: Let t
(k)
i = (ti,1, . . . , ti,m)T , where ti,j ← Dnσ , for 1 ≤ j ≤ m.

11: Compute ci+1 = H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,i · t

(k)
i + q · ci

}
k∈[Nin+1]

,
{
H

(k)
2q · t

(k)
i + q · ci

}
k∈[Nin+1]

)
.

12: for (1 ≤ k ≤ Nin + 1) do

13: Choose b(k) ← {0, 1}.
14: Let t(k)π ← u(k) + S

(k)
2q,π · cπ · (−1)b

(k)
, where S

(k)
2q,π = [(S(k)

π )T , 1]T .

15: Continue with prob.

(
M exp

(
−
‖S(k)

2q,π · cπ‖
2

2σ2

)
cosh

( 〈t(k)π ,S
(k)
2q,π · cπ〉
σ2

))−1

otherwise Restart.

16: return σL′ (µ) =
(
c1,
{
t
(k)
1 , . . . , t(k)w

}
k∈[Nin+1]

,
{
h(k)

}
k∈[Nin]

)
.

Algorithm 3 MIMO.L2RS.SigVer - MIMO Signature Verification
Input: σL′ (µ) as in (7), L′ as in (4), µ, and Pub-Params.
Output: Accept or Reject
1: procedure MIMO.L2RS.SigVer(σL′ (µ), L′, Pub-Params)
2: for (1 ≤ k ≤ Nin + 1) do

3: if H
(k)
2q =

(
2 ·H,−2 · h(k) + q

)
∈ R2×m

2q then Continue

4: for (i = 1, . . . , w) do
5: for (1 ≤ k ≤ Nin + 1) do

6: Call MIMO.L2RS.Lift(A, a
(k)

(in),i
) to obtain A

(k)
2q,i = (2 ·A,−2 · a(k)

i + q) ∈ R2×m
2q .

7: if ci+1 = H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,i ·t

(k)
i +q ·ci

}
k∈[Nin+1]

,
{
H

(k)
2q ·t

(k)
i +q ·ci

}
k∈[Nin+1]

)
then Continue

8: else if ‖t(k)i ‖2 ≤ βv (the acceptance bound based on [13]) then Continue

9: else if ‖t(k)i ‖∞ < q/4 then Continue

10: if c1 = H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,w · t

(k)
i + q · cw

}
k∈[Nin+1]

,
{
h

(k)
2q · t

(k)
w + q · cw

}
k∈[Nin+1]

)
then Accept

11: else Reject

12: return Accept or Reject
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4.3 MIMO.L2RS security properties

The security properties of the MIMO.L2RS are inherited from the L2RS’ security analysis. By appropriately
modifying these analysis, we can obtain the same results for unforgeability, anonymity, linkability and non-
slanderability, which are shown in Theorems (2, 3, 4, 5 from [1]), respectively. The following proposition
summarises these inherited properties:

Proposition 1. If MSISKq,m,k,β problem (with β = 2βv) is hard and
√

q4n

2(γ+1)·(m−1)·n is negligible in n,

then the MIMO.L2RS achieves one-time unforgeability, anonymity, linkability and non-slanderability as
in Definitions (3, 4, 5, 6 from [1]).

We also use the MIMO.L2RS signature scheme as a Proof of Knowledge (PoK ) to accomplish, in part,
the MIMO.LRCT’s balance property. This proof is formalised, namely as:

Proposition 2. The MIMO.L2RS.SigGen and MIMO.L2RS.SigVer which are described in Algorithms 2
and 3, respectively, are a Fiat-Shamir Non-Interactive Proof of Knowledge in the Random Oracle Model
(Section 2.2) for the relations RPoK and R′PoK that we represent as:

RPoK ,

{
{a(k)

(in),i, cn
(k)
(in),i, cn

(j)
(out), µ}; {S

(k)
(in),i, ck

(k)
(in),i, ck

(j)
(out), $in, $out} :

∃i ∈ [w] s.t. a
(Nin+1)
(in),i = ComA(0,S

(Nin+1)
(in),i ); ‖S(Nin+1)

(in),i ‖ ≤ βwit

}

R′PoK ,


{a(k)

(in),i, cn
(k)
(in),i, cn

(j)
(out), µ

′}; {S(k)
(in),i, ck

(k)
(in),i, ck

(j)
(out), $in, $out} :

∃z ∈ [w] s.t. v
(Nin+1)
z = (v

(Nin+1)
z,(1) ,v

(Nin+1)
z,(2) )T ;

a
(Nin+1)
(in),z · vNin+1

z,(2) = ComA(0,v
(Nin+1)
z,(1) );

∥∥v(Nin+1)
z

∥∥ ≤ β′wit


where βwit = 3 · 2γ is said to be the honest prover’s witness norm and β′wit = 2 · βv being the extracted

malicious prover’s witness norm. βv is the acceptance bound of t from Algorithm 3 and a
(Nin+1)
(in),i is defined

in (5).

Proof.
Completeness: Since MIMO.L2RS runs parallel L2RS signatures, we said that the MIMO.L2RS’s correct-
ness (Appendix D.3) allows to achieve completeness in the MIMO.L2RS signature scheme.
Soundness: We show that for all PPT adversaries A of MIMO.L2RS, there is a PPT algorithm Ext, which
extracts a valid witness of MIMO.L2RS. We perform a first run (ci, . . . , cw)← Sn,κ where we assume that

ci = H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,i−1 · t

(k)
i−1 + q · ci−1

}
k∈[Nin+1]

,
{
H

(k)
2q · t

(k)
i−1 + q · ci−1

}
k∈[Nin+1]

)
was

a response to a random oracle H1 (collision resistance) query made by A. When A rewinds (second run)

by responding with ci 6= c′i, we obtain another proof (t
′(k)
1 , . . . , t

′(k)
w ) and the corresponding hash values

(c′i, . . . , c
′
w). Then, we verify around the ring signature loop (going backwards) to find a collision in the in-

put of H1, so for k = Nin+1, such that A
(Nin+1)
2q,i−1 ·t

(Nin+1)
i−1 +q·ci−1 = A

(Nin+1)
2q,i−1 ·t

′(Nin+1)
i−1 +q·c′i−1 mod 2q.

In each stage, we analyze two cases. If ci−1 6= c′i−1 (case 1), then we use this collision to ex-
tract a witness; otherwise, if ci−1 = c′i−1 (case 2) then we move backwards (-1) until the first case
holds. Once this condition is met, we set the index z = i − x where x is the number that de-
creases if case 2 holds. Subsequently, the following equality is built based on this collision, we said

that A
(Nin+1)
2q,z · t(Nin+1)

z + q · cz = A
(Nin+1)
2q,z · t′(Nin+1)

z + q · c′z mod 2q with cz+1 = c′z+1. We reor-

ganise this equality as A
(Nin+1)
2q,z · (t(Nin+1)

z − t
′(Nin+1)
z ) = q · (cz − c′z) mod 2q, when this is reduced

modq, we have A
(Nin+1)
2q,z · (t

(Nin+1)
z − t

′(Nin+1)
z ) = 0 mod q. Since cz − c′z 6= 0 mod 2, so we have

t
(Nin+1)
z − t

′(Nin+1)
z 6= 0 mod 2q where ‖t(Nin+1)

z − t
′(Nin+1)
z ‖∞ < q/2. By reducing modq, we find

a small non-zero vector v
(Nin+1)
z , t

(Nin+1)
z − t

′(Nin+1)
z 6= 0 mod q with ‖v(Nin+1)

z ‖ ≤ 2 · βwit. This

v
(Nin+1)
z will compute A

(Nin+1)
2q,z ·v(Nin+1)

z = 0 mod q. Since A
(Nin+1)
2q,z mod q = 2 · (A,−a) mod q, we have

2 · (A,−a
(Nin+1)
(in),z ) · v(Nin+1)

z = 0 mod q, this implies that (A,−a
(Nin+1)
(in),z ) · v(Nin+1)

z = 0 mod q, since q is

odd. Then, we consider v
(Nin+1)
z = (v

(Nin+1)
z,(1) ,v

(Nin+1)
z,(2) )T where a

(Nin+1)
(in),z ·v(Nin+1)

z,(2) = A ·v(Nin+1)
z,(1) mod q.
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Finally, we extract the witness as a
(Nin+1)
(in),z · v(Nin+1)

z,(2) = ComA

(
0,v

(Nin+1)
z,(1)

)
with (v

(Nin+1)
z,(1) ,v

(Nin+1)
z,(2) )T 6=

0 mod q.
HVZK: This property is guaranteed by the MIMO.L2RS’s anonymity (in Theorem 10) as well as the
hiding property of the homomorphic commitment scheme which was proved in Theorem 1. ut

5 MIMO Lattice-based RingCT Construction

In this section, we construct the MIMO Lattice-based RingCT (MIMO.LRCT) protocol (Table 1 shows
the MIMO.LRCT’s notations), where one is allowed to have multiple (IW ) and to spend them into
multiple (OW ). Furthermore, two sub-protocols are needed to support the MIMO.LRCT’s threat model,
which are: MIMO.L2RS security properties (subsection 4.3) and range preservation (subsection 5.1). The

Table 1: Notation of the Lattice RingCT v2.0

Notation Description

act Account or Wallet “Public part” =
(
pk, cn

)
∈ R2

q ×R2
q.

ask Account or Wallet “Private part” =
(
sk, ck

)
∈ R2

q ×R2
q.

Sn,κ Binary vectors of length n of weight κ.

$ Amount ∈ Sn,κ.

$(in) Group of input amounts $
(k)

(in) for k ∈ [Nin].

$(out) Group of output amounts $
(j)

(out) for j ∈ [Nout].

`$ The bit-length of $.

w Number of users in the ring.

Nin Number of input wallets of a user3.

IWi Input wallet of the i-th user acti =
{
pk

(k)

(in),i, cn
(k)

(in),i

}
k∈[Nin]

.

IW Set of input wallet = {IWi}i∈[w].

IWπ Input wallet of user π =
{
pk

(k)

(in),π, cn
(k)

(in),π

}
k∈[Nin]

.

Kπ User π’s private-keys = askπ =
{
sk

(k)

(in),π, ck
(k)

(in),π

}
k∈[Nin]

.

Nout Number of output wallets.

OW Set of output wallet = {OW (j)}j∈[Nout] = {pk(j)(out), cn
(j)

(out)}j∈[Nout].
OA Set of output addresses =

{
pk

(j)

(out)

}
j∈[Nout]

.

TX Transaction = (µ, IW,OW ).

TN Set of serial/transaction numbers (linking tag).

MIMO scheme works using a set of algorithms MIMO.LRCT = (MIMO.LRCT.Setup, MIMO.LRCT.KeyGen,
MIMO.LRCT.Mint, MIMO.LRCT.Spend, MIMO.LRCT.Verify) and they are listed as:

1. (Pub-Params) ← MIMO.LRCT.Setup(λ): On input the security parameter λ, this algorithm calls

MIMO.L2RS.Setup (Appendix C) and outputs the public parameters A ∈ R2×(m−1)
q and H ∈

R2×(m−1)
q .

2. (a,S) ← MIMO.LRCT.KeyGen(A): Given the public parameter A ∈ R2×(m−1)
q , it runs

MIMO.L2RS.KeyGen (Algorithm 1) and outputs a pair of keys, the public-key or one-time address pk

as a ∈ R2
q and the private-key sk as S ∈ R(m−1)×1

q . A homomorphic commitment is generated as

a = ComA(0,S) = A · S + 0 mod q ∈ R2
q.

3. (cn, ck) ← MIMO.LRCT.Mint(A, $): It receives the public parameter A and input amount $ ∈
[0, 2`$−1]. It computes a coin cn, by choosing a coin-key ck ∈ DomS, where every component of
ck is chosen uniformly and independently, then compute cn (as Algorithm 4) and this algorithm
returns (cn, ck).

3 In this work, we consider that all users have a fixed number of input wallets Nin.
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Algorithm 4 MIMO.LRCT.Mint

Input:
(
A ∈ R2×(m−1)

q , $ ∈ [0, 2`$−1]
)
, being the public parameter A and the amount $.

Output: (cn, ck), where they are the coin and the coin key, respectively.
1: procedure MIMO.LRCT.Mint(A, $)

2: Let ckT = (ck1, . . . , ckm−1) ∈ R1×(m−1)
q with cki ← (−2γ , 2γ)n, for 1 ≤ i ≤ m− 1

3: cn = ComA($, ck) = A · ck + $ mod q ∈ R2
q with $ = (0, $)T ∈ R1×2

q

4: return (cn, ck)

4. (TX, sig, TN) ← MIMO.LRCT.Spend(µ, IW, IWπ,Kπ, OA, $
(j)
(out),Pub-Params): This algorithm

spends/transfers amounts from the user π’s input wallets to some output wallets. We denote the
user π who successfully created its input wallets IWπ, based on determine amounts $(in). Note that
notation of these parameters are defined in Table 1, and this spend algorithm is briefly described in
Algorithm 5. Then, π selects the recipients’ valid public keys or output addresses OA where π wants
to spend his/her amount. To do so π performs the following steps:

(a) π receives {$(j)
(out)}j∈[Nout], with $

(j)
(out) ∈ [0, . . . , 2`$−1], such balance satisfies, we call this condition

amount preservation. This checks that input amounts are equal to output amounts, by checking
if the following equality holds:

Nin∑
k=1

$
(k)
(in),π =

Nout∑
j=1

$
(j)
(out). (2)

π then runs MIMO.LRCT.Mint(A, $
(j)
(out)) for j ∈ [Nout] and obtain (cn

(j)
(out), ck

(j)
(out))j∈[Nout], which

define the output wallets as

OW = {OW (j)}j∈[Nout] = {a(j)
(out), cn

(j)
(out)}j∈[Nout]. (3)

Then, the output coin-keys and amounts {ck(j)
(out), $

(j)
(out)}j∈[Nout] are securely sent to users with

valid OAj = {a(j)
(out)}j∈[Nout].

(b) User π selects (w − 1) input wallets from the blockchain which he/she uses to anonymously

transfer her/his input wallets {IW (k)
π }k∈[Nin]. Then, a preliminary ring signature list is built as

IW = {IWi}i∈[w] = {a(k)
(in),i, cn

(k)
(in),i}i∈[w],k∈[Nin].

(c) π adds a record to IWi in order to homomorphically compute and verify the amount preserva-
tion; this uses the homomorphic commitment scheme (defined in Section 4.1). The result of this
computation is a commitment to zero, where the user π is only able to obtain since he/she knows
both IWπ and OW . This new record is placed in the position (Nin + 1) and then a list L′ is
defined as:

L′ =
{

a
(k)
(in),i

}
i∈[w],k∈[Nin+1]

, (4)

with a
(Nin+1)
(in),i , ComA

(∑Nin
k=1 $

(k)
(in),i −

∑Nout
j=1 $

(j)
(out),S

(Nin+1)
(in),i

)
, where S

(Nin+1)
(in),i ,

∑Nin
k=1 S

(k)
(in),i +

ck
(k)
(in),i −

∑Nout
j=1 ck

(j)
(out) ∈ R

(m−1)×1
q . This implies that

a
(Nin+1)
(in),i =

Nin∑
k=1

a
(k)
(in),i + cn

(k)
(in),i −

Nout∑
j=1

cn
(j)
(out). (5)

Note that if the amount preservation conditions (2) and (6) (for every k ∈ [Nin]) are achieved,

then a
(Nin+1)
(in),i = ComA(0,S

(Nin+1)
(in),i ).

a
(k)
(in),i = ComA(0,S

(k)
(in),i) = A · S(k)

(in),i + 0 mod q ∈ R2
q. (6)
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(d) To sign the transaction, we use the π’s private-keys: {S(k)
(in),π}k∈[Nin+1], the list L′ and a transac-

tion string µ ∈ {0, 1}∗. Then, we run MIMO.L2RS.SigGen (Algorithm 2) which outputs:

σL′(µ) =
(
c1, {t(k)

1 , . . . , t(k)
w }k∈[Nin+1], {h(k)}k∈[Nin]

)
. (7)

(e) We show that the output amount $
(j)
(out) lies in a non-zero range value, by running our range

proof (Algorithm 8) ΠRange.PRange
({

cn
(j)
(out), ck

(j)
(out), $

(j)
(out),A

}
j∈[Nout]

)
. This proof outputs:{

PoK
(j)
Range

}
j∈[Nout]

.

(f) We set the transaction TX as (µ, IW,OW ) and TN = {h(k)}k∈[Nin]. This algorithm outputs TX,

TN , sigπ =
(
σL′(µ),

{
PoK

(j)
Range

}
j∈[Nout]

)
.

5. (Accept/Reject) ← MIMO.LRCT.Verify(TX, sigπ, TN): This algorithm calls
MIMO.L2RS.SigVer(sigπ,1, L

′,Pub-Params) (Algorithm 3) with sigπ,1 = σL′(µ), and on input sigπ,2 ={
PoK

(j)
Range

}
j∈[Nout]

, it runs (Algorithm 9) ΠRange.VRange
({
PoK

(j)
Range, cn

(j)
(out),A

}
j∈[Nout]

)
. This

MIMO.LRCT.Verify outputs Accept if both MIMO.L2RS.SigVer(·) and ΠRange.VRange(·) output
Accept, else it outputs Reject.

Algorithm 5 MIMO.LRCT.Spend

Input: (µ, IW, IWπ, Kπ, OA, $
(j)

(out)
,Pub-Params), being the message, the input wallets, π’s input wallet, π’s private keys, the

output addresses, the output amount and the public parameter, respectively.
Output:

(
TX, σL′ (µ), TN

)
1: procedure MIMO.LRCT.Spend(µ, IW, IWπ, Kπ, OA, $

(j)

(out)
,Pub-Params)

2: User π selects
{

$
(j)

(out)

}
j∈[Nout]

such that (2) is satisfied.

3: User π runs MIMO.LRCT.Mint
(
A, $

(j)

(out)

)
for j ∈ [Nout] to generate

(
cn

(j)

(out)
, ck

(j)

(out)

)
and sets OW as in (3).

4: User π sends securely coin-keys and amounts
{
ck

(j)

(out)
, $

(j)

(out)

}
j∈[Nout]

to user’s OAj = a
(j)

(out)
for j ∈ [Nout].

5: Create the list of input wallets IW =
{
IWi

}
i∈[w]

=
{
a
(k)

(in),i
, cn

(k)

(in),i

}
i∈[w],k∈[Nin]

.

6: Let L′ =
{
a
(k)

(in),i

}
i∈[w],k∈[Nin+1]

, where a
(k)

(in),i
are defined in (6) and (5) for 1 ≤ k ≤ Nin and k = Nin + 1, respectively.

7: Call MIMO.L2RS.SigGen
({

S
(k)

(in),π

}
k∈[Nin+1]

, L′, µ,Pub-Params
)

and obtain σL′ (µ) as in (7).

8: Run ΠRange.PRange
({

cn
(j)

(out)
, ck

(j)

(out)
, $

(j)

(out)
,A
}
j∈[Nout]

)
for j ∈ [Nout], it outputs

{
PoK

(j)
Range

}
j∈[Nout]

.

9: Set sigπ = (σL′ (µ),
{
PoK

(j)
Range

}
j∈[Nout]

).

10: Let TX = (µ, IW,OW ) and TN =
{
h(k)

}
k∈[Nin+1]

.

11: return
(
TX, sigπ, TN

)

5.1 Range Preservation

This section presents the techniques that we use to preserve the range preservation; that is, these tech-
niques prevent the negative output amount $(out) attack, also known as out-of-range attack. Since $(out)

is decomposed into binary representation such $(out) =
∑`$−1
i=0 2ibi, where bi ∈ {0, 1}, we start proving

that each bit bi is binary, using the OR-Proof technique from [12]. We adjust this OR-Proof technique to
our commitment scheme, which is constructed in Section 4.1. Thereafter, we use a range-proof technique
to show that this amount lies in a range of non-negative values, so we prove that each committed output
amount is within a range which cannot overflow (e.g. [0, 264)).

Binary Proof. We define a protocol for the OR-Proof for our homomorphic commitments as ΠOR with
the prover POR and the verifier VOR. This protocol is a zero knowledge proof where the commitment of
the bit cb opens to have a value b ∈ {0, 1}. The proof is approximate or relaxed by using a relaxation
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factor f . Meaning that this proof only proves knowledge of a randomness of the bit rb such that f · cb

opens to a message f · b with f ∈ Rq with respect to rb. We use the public parameter A ∈ R2×(m−1)
q to

define our two binary relations such ROR = R0 ∨R1:

R0 , {(cb, rb) ∈ R2
q ×R(m−1)×1

q , cb = ComA(0, rb) = A · rb + 0, ‖rb‖ ≤ BOR}

R1 , {(cb, rb) ∈ R2
q ×R(m−1)×1

q , cb = ComA(1, rb) = A · rb + 1, ‖rb‖ ≤ BOR}

Two relaxed binary relations (i.e. R′OR = R′0 ∨R′1) are also defined where a witness will be recovered by
the soundness extractor:

R′0 , {(cb, rb), 2 · cb = ComA(2 · 0, rb) = A · rb + 2 · 0, ‖rb‖ ≤ B′OR}
R′1 , {(cb, rb), 2 · cb = ComA(2 · 1, rb) = A · rb + 2 · 1, ‖rb‖ ≤ B′OR},where B′OR > BOR

We now define below a challenge set of monomials such that for any distinct pair of monomialsXi, Xj ∈ C0
with all the coefficients of 2 · (Xi − Xj)−1 are in {−1, 0, 1} according to Lemma 3. Since we are using
monomials, the relaxation factor is defined as f = 2.

C0 , {Xi ∈ Rq, i = 0, . . . , 2n− 1}

Remark 3. The main difference between our OR-proof and the OR-proof from [12] is the size of the
challenges. As we cannot achieve soundness of our range proof using the same challenge space as in [12],
we adapt their protocol to another challenge space which we call C0 (this space was introduced in [5]),
which consists of monomials in Rq. With this new space C0 we are now able to prove the soundness
of our relaxed proof to the relaxed relation R′OR with relaxation factor f = 2. However, because the
relatively small size of the challenge space C0 these relatively small challenges, ΠOR needs to repeat the
basic protocol θ times in parallel, where the rejection sampling (defined in Lemma 1) returns something
after θ− 1 repetitions. In practice, we only need a relatively small θ < 20, whereas previous lattice based
range proofs (i.e. [18]) need much larger θ > 100 for the same soundness level.

The challenge space P consists of the set of all permutations of dimension n, Perm(n), and a bit c ∈ {0, 1},
i.e. P , {p = (s, c) ∈ Perm(n)×{0, 1}}. Each p ∈ P permutes the exponent of a polynomial in C0 according
to the permutation s. Let f, g ∈ C0 be two monomials, if f = Xif , g = (−1)c ·Xig and s(if ) = ig, then
we define p(f) = g. It holds that Pr[p(f) = g] = 1/|C0| for a uniformly random p ∈ P, for any two fixed
elements f, g ∈ C0. σOR is defined to be a positive real parameter, whereas BOR is a positive real bound.
We also need a cryptographic hash function H modeled as random oracle, which maps arbitrary inputs
to the uniform distribution over the challenge space Pθ. Our OR-Proof protocol ΠOR is defined in two
algorithms (Alg. 6 and 7), for proving if one bit is binary.

Range Proof. We define a range proof Πrange, having two algorithms, one for the prover Prange,
and one for the verifier Vrange. Prange receives from MIMO.LRCT.Spend(·), Section 5, the parameters

{$(j)
(out), cn

(j)
(out), ck

(j)
(out)}j∈[Nout] ∈ [0, . . . , 2`$−1]×R2

q×R
(m−1)
q . We define the first relation Rrange for this

protocol:

Rrange ,

{
{cn

(j)
(out)}, {$

(j)
(out), ck

(j)
(out)} : ∀j , cn

(j)
(out) = ComA($

(j)
(out), ck

(j)
(out)) =

A ·ck
(j)
(out) + $

(j)

(out), ‖ck
(j)
(out)‖ ≤ 2β, $

(j)
(out) ∈ [0, . . . , 2`$−1]

}
A relaxed relation (R′range) is also defined by using f where the corresponding witness will be recovered
by its soundness extractor:

R′range ,

{
{cn

(j)
(out)}, {$

(j)
(out), ck

(j)
(out)} : ∀j s.t. f · cn

(j)
(out) = ComA(f · $(j)

(out), ck
(j)
(out)) =

A ·ck
(j)
(out) + f · $

(j)

(out), ‖ck
(j)
(out)‖ ≤ 2β, $

(j)
(out) ∈ [0, . . . , 2`$−1], f = 4

}
Prange and Vrange are described below in algorithms (8 and 9):
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Algorithm 6 OR-Proof Protocol ΠOR, prover’s algorithm POR
Input: (cb = A · rb + b,A, rb, b ∈ {0, 1})
Output:

{
f
(t)
0 , f

(t)
1 , r

(t)
0 , r

(t)
1

}θ
t=1

1: procedure ΠOR.POR(cb,A, rb, b)
2: for (1 ≤ t ≤ θ) do

3: Let f
(t)
1−b ← C0

4: Let u(t) ← Dn(m−1)
σOR

5: r
(t)
1−b ← Dn(m−1)

σOR

6: a
(t)
1−b := A · r(t)1−b + f

(t)
1−b · (1− b)− f

(t)
1−b · cb

7: a
(t)
b

:= A · u(t)

8: Concatenate (a1−b)|| :=
(
a
(1)
1−b, . . . , a

(θ)
1−b

)
9: Concatenate (ab)|| :=

(
a
(1)
b , . . . , a

(θ)
b

)
10: (p(1), . . . , p(θ)) := H

(
cb, (a

(t)
1−b)||, (a

(t)
b )||

)
← Pθ

11: for (1 ≤ t ≤ θ) do

12: f
(t)
b = (p(t))2b−1(f

(t)
1−b)

13: r
(t)
b = u(t) + f

(t)
b · rb

14: rb|| :=
(
r
(1)
b , . . . , r

(θ)
b

)
15: (fb · rb)|| :=

(
f
(1)
b · rb, . . . , f(θ)

b · rb
)

16: Continue with probability 1−min

 D
n(m−1)θ
σOR

(rb||)

3·Dn(m−1)θ
(fb·rb)||,σOR

(rb||)
, 1

 otherwise Restart

17: return PoKOR =
{
f
(t)
0 , f

(t)
1 , r

(t)
0 , r

(t)
1

}θ
t=1

Algorithm 7 OR-Proof Protocol ΠOR, verifier’s algorithm VOR
Input: (cb,A, PoKOR) with PoKOR =

{
f
(t)
0 , f

(t)
1 , r

(t)
0 , r

(t)
1

}θ
t=1

Output: Accept or Reject
1: procedure ΠOR.VOR(cb,A, PoKOR)
2: for (1 ≤ t ≤ θ) do

3: Let a
(t)
0 := A · r(t)0 − f

(t)
0 · cb

4: Let a
(t)
1 := A · r(t)1 + f

(t)
1 · 1− f(t)

1 · cb
5: Concatenate (a0)|| :=

(
a
(1)
0 , . . . , a

(θ)
0

)
6: Concatenate (a1)|| :=

(
a
(1)
1 , . . . , a

(θ)
1

)
7: (p(1), . . . , p(θ)) := H

(
cb, (a0)||, (a1)||

)
← Pθ

8: for (1 ≤ t ≤ θ) do

9: if ‖r(t)0 ‖ ≤ B
′
OR ∧ ‖r

(t)
1 ‖ ≤ B

′
OR then Continue; otherwise Reject

10: else if f
(t)
0 ∈ C0 ∧ f(t)

1 = p(t)(f
(t)
0 ) then Continue; otherwise Reject

11: return Accept
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Algorithm 8 Range-Proof Protocol ΠRange, prover’s algorithm PRange
Input:

({
cn

(j)

(out)
, ck

(j)

(out)
, $

(j)

(out)
,A
}
j∈[Nout]

)
Output:

{
PoK

(j)
Range

}
j∈[Nout]

1: procedure ΠRange.PRange(
{
cn

(j)

(out)
, ck

(j)

(out)
, $

(j)

(out)
,A
}
j∈[Nout]

)

2: for (1 ≤ j ≤ Nout) do

3: Decompose in binary $
(j)

(out)
=
{
b
(j)
i

}`$−1

i=0

4: Compute commitment to each bit cb
(j)
i = ComA(b

(j)
i , rb

(j)
i ) = A · rb(j)

i + b
(j)
i , as defined in Section 4.1

5: for (0 ≤ i ≤ `$ − 1) do

6: Calls binary proof PoK
(j)
OR,i = ΠOR.POR(cb

(j)
i ,A, rb

(j)
i , b

(j)
i )

7: Compute prck(j) =
∑`$−1

i=0 2irb
(j)
i − ck

(j)

(out)

8: Compute prcn(j) =
∑`$−1

i=0 2icb
(j)
i − cn

(j)

(out)
, it should be equal to ComA(0,prck(j))

9: y(j) ← Dn(m−1)
σRange

10: c(j) ← H(prcn(j) · y(j))

11: z(j) ← prck(j) · c(j) + y(j), this is a PoK of ComA(0,prck(j))

12: z|| = (z(1), . . . , z(Nout))

13: (prck · c)|| =
(
prck(1) · c(1), . . . ,prck(Nout) · c(Nout)

)
14: Continue with probability 1−min

 D
n(m−1)
σRange

(z||)

M·Dn(m−1)
(prck·c)||,σRange

(z||)
, 1

 otherwise Restart

15: return PoK
(j)
Range =

{
PoK

(j)
OR,i, cb

(j)
i , z(j), c(j)

}
i∈[0,`$−1],j∈[Nout]

Algorithm 9 Range-Proof Protocol ΠRange, verifier’s algorithm VRange
Input:

({
PoK

(j)
Range

}
j∈[Nout]

)
, where PoK

(j)
Range =

{
PoK

(j)
OR,i, cb

(j)
i , z(j), c(j)

}
i∈[0,`$−1],j∈[Nout]

.

Output: Accept or Reject

1: procedure ΠRange.VRange(
{
PoK

(j)
Range

}
j∈[Nout]

)

2: for (1 ≤ j ≤ Nout) do
3: for (0 ≤ i ≤ `$ − 1) do

4: Accept
?
= ΠOR.VOR(cb

(j)
i ,A, PoK

(j)
OR,i), this checks the binary proof for cb

(j)
i

5: Compute vrcn(j) =
∑`$−1

i=0 2icb
(j)
i − cn

(j)

(out)

6: Check c(j) ?
= H(A · z(j) − vrcn(j) · c(j)), otherwise Reject; this checks the range proof of zero commitment

7: return Accept or Reject



Lattice RingCT v2.0 with Multiple Input and Multiple Output Wallets 17

Theorem 3 (Binary Proof). If σOR ≥ 22
√
κBOR and B′OR ≥ 2

√
nσOR, then the protocol

ΠOR(POR,VOR) is a R′b-Protocol complete for relation ROR and sound for relation R′OR.

Proof. The proof of Theorem 3 is given in Appendix A. ut

Theorem 4 (Range Proof). The protocol described in Step 2 of the range proof is a proof of
knowledge (from [20]) complete for relation Rrange and sound for relation R′range with βrange =

2`$+2n
√
κn(m− 1)σOR + 22

√
nβv.

Proof. The proof Theorem 4 are given in Appendix A. ut

6 Security Analysis

Theorem 5 (Balance). If MIMO.L2RS with parameter βv is unforgeable, linkable
and ComA is β−binding with β = 4

√
κ(2βv)2 + κ(2βv)2n(m− 1)((2Nin +Nout)2γ)2 +

2βvNout(2
`$+2n

√
κn(m− 1)σOR + 22

√
nβv), then MIMO.LRCT satisfies balance.

Proof. The proof is given in Appendix B.1. ut

Corollary 1 (Balance). The Balance of MIMO.LRCT is satisfied if MSISKq,m,k,βBalance is hard where
βbalance = max(βcase1.1, βcase1.2, βcase2).

Proof. By combining Theorem 5 (Balance), along with Theorem 2 (β−Binding), Theorem 9
(MIMO.L2RS Unforgeability) and Theorem 11 (Linkability), this analysis concludes that the βbalance =
max(βcase1.1, βcase1.2, βcase2). βcase1.2 is seen as the maximum, then we said that βbalance =
4
√
κ(2βv)2 + κ(2βv)2n(m− 1)((2Nin +Nout)2γ)2 + 2βvNout(2

`$+2n
√
κn(m− 1)σOR + 22

√
nβv). ut

Remark 4. In the balance proof, we only need zero-time unforgeability, meaning that in the reduction the
attacker produces a forgery without seeing any signatures. Secondly, we do not need the message part of
the signature, and thus this is treated as a Proof of Knowledge.

Theorem 6 (LRCT-Anonymity). Suppose n · 1
2 ·
√

q4n

2(γ+1)·(m−1)·n and o · h · 2−n+1 are negligible in

n with an attack against the unconditional anonymity that makes h queries to the random oracle H1,
then the MIMO.LRCT scheme is unconditionally secure for anonymity and amount privacy as defined in
Def. 7.

Proof. The proof is given in Appendix B.2. ut

Theorem 7 (LRCT-Non-Slanderability). If MIMO.LRCT satisfies balance, then it satisfies non-
slanderability as in Def. 8. In addition, the non-slanderability of MIMO.LRCT can be reduced to the
non-slanderability of MIMO.L2RS.

7 Performance Analysis

In this section, we propose a set of parameters for the MIMO.LRCT scheme. This construction is secure
against direct lattice attacks in terms of the BKZ algorithm Hermite factor δ, using the value of δ = 1.007,
based on the BKZ 2.0 complexity estimates with pruning enumeration-based Shortest Vector Problem
(SVP) [10]. We let n = 1024, m = 132, log q = 196, κ = 14, η = 1.1, α = 0.5, σ = 22010, σOR = 277350
and `$ = 64 to achieve the security parameter λ = 100, with α being the rejection sampling parameter
determined in ([13] Section 3.2). Signature sizes of this analysis are illustrated in Table 2, where regular
numbers for Nin and Nout were taken from Monero blockchain network4.

Acknowledgement. This research project was supported by the Monash-HKPU(Hong Kong Polytechnic
University)-Collinstar Blockchain Research Lab, whereas the work of Ron Steinfeld and Amin Sakzad
was supported in part by ARC Discovery Project grant DP150100285. The work of Ron Steinfeld and
Joseph K. Liu were also supported in part by ARC Discovery Project grant DP180102199.

4 https://moneroblocks.info/
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Table 2: Size estimation for MIMO.LRCT

MIMO.LRCT (Nin, Nout) = (1, 2) (Nin, Nout) = (2, 2) (Nin, Nout) = (3, 2)

log(β) (Theorem 5) ≈ 126.3 ≈ 126.3 ≈ 126.3

Signature size (w = 1) ≈ 4.8 MB ≈ 5.1 MB ≈ 5.4 MB

Signature size (w = 5) ≈ 6.7 MB ≈ 8 MB ≈ 9.2 MB

Private-key size ≈ 49 KB ≈ 73 KB ≈ 98 KB

Public-key size ≈ 97 KB ≈ 146 KB ≈ 195 KB
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A Proofs of Range Proof

Proof of Theorem 3 (OR-Proof):

Proof.

Correctness We show that A · r(t)
0 − f

(t)
0 · cb = A · u(t) so:

a
(t)
0 = A · r(t)

0 − f
(t)
0 · cb ⇐⇒

= A · (u(t) + f
(t)
b · rb)− f (t)

0 · cb ⇐⇒

= A · u(t) + f
(t)
b · (A · rb− cb) ⇐⇒

= A · u(t) + f
(t)
b · (b) ⇐⇒

Since b = 0, then this condition holds.

In the case when b = 1, we refer to the line 12 of POR (Algorithm 6), we have f
(t)
1 = (p(t))1(f

(t)
0 ), then line

9 of VOR (Algorithm 7) is satisfied. When b = 0, we have f
(t)
0 = (p(t))−1(f

(t)
1 ) ⇐⇒ (p(t))f

(t)
0 = (f

(t)
1 ),

this also shown that the condition holds. We also check the bound of (r
(t)
0 , r

(t)
1 ), where the rejection

sampling lemma (to include the new lemma in the definition) is used to show that the distribution of

rb|| (from Algorithm 6, line 14) is statistically close to D
n(m−1)θ
σOR . Therefore, and each component r

(t)
b is

statistically close to D
n(m−1)
σOR . A condition is needed σOR ≥ ‖fb · rb)||‖. By the tail bound lemma (to be

included) ‖r(t)
b ‖2 ≤

√
n(m− 1) · σOR = B′OR, except with probability 2n(m−1).

Soundness Let (cn, rb) ∈ R0∨R1. Let POR be a deterministic prover, who queries H on the same input.
Therefore, her success probability depends on the output of H only. Let p0 = 1/|C0| + ε be the success
probability of the prover POR. We need to construct an extractor E to extract the values r′′b and f ′′b
while making poly(|(cn, rb)|)/ε times queries to H. It holds that (cn, r′′b , f

′′
b ) ∈ R′0 ∨R′1. Extractor E runs

POR(cn) on a challenge p← P and outputs a valid proof (cn, (r0, r1, f0, f1)). Then, E runs POR(cn) on
random challenges and outputs a proof (cn, (r′0, r

′
1, f
′
0, f
′
1)) such that f0 6= f ′0 or f1 6= f ′1. Let α ∈ {0, 1}

be a bit such that fα 6= f ′α. Let (cn,a0,a1) be the hash query by POR(cn). Since both proofs verify, we
have aα = A · rα + fαα− fα · cn and aα = A · r′α + f ′αα− f ′α · cn. Subtracting these two equations results
into:

(fα − f ′α) · cn = A · (rα − r′α) + α(fα − f ′α)
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Set r′′α = rα−r′α and f ′′α = fα−f ′α. It follows that (cn, r′′α, f
′′
α) ∈ R′0∨R′1. Finally, we show that POR(cn)

outputs a proof such that fα 6= f ′α with at least negligible probability ε.

Pr[POR succ. ∧(f0 = f ′0 ∨ f1 = f ′1)]

= Pr[POR succ.]− Pr[POR succ. ∧ (f0 = f ′0 ∧ f1 = f ′1)]

= p0 − Pr[POR succ. ∧ (f0 = f ′0 ∧ p(f0) = p(f ′0))]

≥ p0 − Pr[p(f0) = p(f ′0)] = ε. (8)

HVZK: To prove special honest-verifier zero-knowledgeness, we have to show that the honest-verifier
distribution and simulated distribution are identical. We show how to construct a simulator S. For
(cn, rb) ∈ R0 ∨R1 and a challenge p ∈ P the simulator S does the following:

1. f0 ← C0
2. f1 = p(f0)

3. For α ∈ {0, 1}, sample rα ← D
n(m−1)
σOR

4. For α ∈ {0, 1}, compute aα = A · rα + fα · α− fα · cn

5. Abort with probability 1− 1/M

6. Output (r0, r1, f0, f1)

Using the rejection sampling bounds, the distribution of the output of S is identical to the honest one. ut

Proof of Theorem 4 (Range-Proof):

Proof. We prove the three security of a zero-knowledge proof of knowledge as defined in Definition 2.2.

Completeness: If the prover follows the protocol, then the following equation holds:

H(Ar− f ′D,µ) = H
(
A · (f ′r + r0)− f ′D,µ

)
(9)

From (12) follows that f ′D = ComA(0, r) = A · r. Then, (9) is equivalent to:

H(Ar− f ′D,µ) = H
(
A · (f ′r + r0)− f ′D,µ

)
= H

(
f ′Ar + Ar0 − f ′A · r, µ

)
= H(Ar0, µ) = f ′,

where the last equation satisfies the verification. By the rejection sampling (Definition 1 the prover

responds with probability 1/M2. The distribution of r is statistically close to D
n(m−1)

12n
√
n(m−1)

since ‖f ′r‖ ≤

n
√
n(m− 1) within the statistical distance 2−100.

Soundness: To prove the soundness, we need to extract a witness (f, $, r) s.t. f · cn = ComA(f · $, r)
with $ ∈ [0, 2`$ − 1].

From the OR proof witness extraction in Theorem 3, we first extract (f ′′i , bi, ri) with bi ∈ {0, 1} such
that for all i ∈ [`$] the following relation holds:

f ′′i · cni = ComA(f ′′i · bi, ri). (10)

Let f ′′i = fi− f ′i bet the difference between two challenges fi and f ′i . According to Lemma 3 it holds that
f ′′ is invertible in Rq. Consequently we can multiply (10) by (f ′′i )−1 and get:

cni = ComA

(
bi, (f

′′
i )−1 · ri

)
, (11)



Lattice RingCT v2.0 with Multiple Input and Multiple Output Wallets 21

for all i ∈ [`$]. We now extract an opening (f ′, r̃) of a commitment to 0 in the last step of the range proof
protocol such that:

f ′ ·

(
`$−1∑
i=0

2i · cni − cn

)
= ComA(0, r) (12)

⇐⇒ f ′ ·
`$−1∑
i=0

2i · cni − f ′ · cn = ComA(0, r)

holds. Note that we use the PoK∗ protocol from [20] which we adapt to our setting using D :=(∑`$−1
i=0 2i · cni − cn

)
and present in the Table 3:

Table 3: ΠPoK∗ protocol [20]

PPoK(r, µ,D) VPoK(D)

Pick r0 ∈ Dm(n−1)
σ0

Compute U := A · r0
Set f ′ := H(Ar0, µ)
Compute r := f ′r + r0
Abort with prob. ρ0 from (13)

f ′, r
−−→

Check f ′ := H(Ar− f ′D,µ)

where

ρ0 := 1−min

 D
n(m−1)
σ0 (r)

M ·Dn(m−1)
(f ′·r),σ0

(r)
, 1

 (13)

and σ0 = 12n
√
n(m− 1). Using (11), it follows that:

f ′ ·
`$−1∑
i=0

2i · cni = f ′ · ComA

(
`$−1∑
i=0

2i · bi,
`$−1∑
i=0

2i(f ′′i )−1 · ri

)
. (14)

After inserting the definition of cn into (12), we obtain:

f ′ · cn = f ′ ·
`$−1∑
i=0

2i · cni − ComA(0, r) (15)

Next, we insert (14) into (15) to get:

f ′ · cn = f ′ · ComA

(
`$−1∑
i=0

2i · bi,
`$−1∑
i=0

2i(f ′′i )−1 · ri

)
− ComA(0, r)

= ComA

(
f ′ · $, f ′ ·

`$−1∑
i=0

2i(f ′′i )−1 · ri − r

)
, (16)

where we set $ =
∑
i 2ibi (note $ ∈ [0, 2`$ − 1]). Now, we would have liked to show that f · (f ′′i )−1 · ri is

‘small’, but it is not. Instead, assume, there is a small and invertible g ∈ Rq, such that g · (f ′′i )−1 = hi
is small. Since f ′′i is a non-zero difference of monomials from C0, by Lemma 3, we can take g = 2 as it is
small and invertible in Rq. Multiplying the right hand-side of (16) by g yields:

(g · f ′) · cn = ComA

(
g · f ′ · $, f ′ ·

`$−1∑
i=0

2ihi · ri − g · r

)
. (17)
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We get the desired ‘small’ range proof witness
(
f = g · f ′, $, r′ = f ′ ·

∑`$−1
i=0 2ihi · ri − g · r

)
, where

‖r′‖ ≤ βrange and using estimations from Lemma 4,

βrange =

∥∥∥∥∥f ·
`$−1∑
i=0

hi · ri − g · r

∥∥∥∥∥
2

≤

∥∥∥∥∥f ·
`$−1∑
i=0

hi · ri

∥∥∥∥∥
2

+ ‖g · r‖2

≤
√
n · ‖f‖∞ ·

∥∥∥∥∥
`$−1∑
i=0

2ihi · ri

∥∥∥∥∥
∞

+
√
n · ‖g‖∞ · ‖r‖∞

≤
√
n · 2
√
κ ·
√
n · 2`$ · 2

√
n(m− 1)σOR +

√
n · 2
√
κ · 2βv

≤ 2`$+2n
√
κn(m− 1)σOR + 22

√
nκβv. (18)

SHVZK: Here we have to show that our range proof from ?? satisfies the requirement of perfect
simulation. Since the underlying OR proof is perfectly simulatable as showed in the last proof of Theorem
3, we only need to show that the underlying proof of knowledge from Table 3 is simulatable too. Given
a challenge f ′, the simulator aborts with probability 1 − 1/M2. Otherwise, we have to show the PoK is

zero-knowledge. To do so the simulator picks r← D
n(m−1)

12n
√
n(m−1)

and computes A · r− f ′D to guarantee

that the verification equation f ′ = H(A ·r−f ′D) is satisfied. The simulator outputs simulated transcript
r, f ′, which is indistinguishable by rejection sampling (1) and by hiding property declared in Theorem 1
of our commitment scheme. ut

B LRCT - Proofs of the Security Analysis

B.1 LRCT - Balance (Theorem 5)

Proof. By definition of successful balance attack (Def. 6), ∃i ∈ [w] such that
∑
k∈Ei∗

(in)
$

(k)
(in),i∗ <∑

j∈Gi∗
(out)

$
(j)
(out),i∗ , being i∗ a dishonest transaction. For this analysis we consider three cases, case 1.1,

case 1.2 and case 2:

– Case 1 - TN ∈ T N from ActGen: we consider two sub-cases, the outsider and insider attacks which
are described as follows:

• Case 1.1 - The outsider attack: ∀i ∈ [w] ∃k∗ ∈ [Nin] such that IW
(k∗)
i is not corrupted,

this means that not all inputs to Ti∗ are corrupted. We show that given any PPT MIMO.LRCT
adversary, we can construct a MIMO.L2RS adversary, which has equal advantage. In doing this
reduction, we firstly define the entities interacting to prove LRCT-Unforgeability. We use a chal-
lenger, MIMO.L2RS.Challenger, and two adversaries MIMO.L2RS(B) and MIMO.LRCT(A). This
experiment begins with the challenger who generates the Pub-Params ← MIMO.L2RS.Setup(λ),
and these Pub-Params are given to the adversary B. This adversary then runs A, by simulating
A’s oracle answers (Def. 6). We assume that A makes at most qad, qac, qco and qspend queries to
AddGen, ActGen, Corrupt and O-Spend respectively. This simulation runs as follows:
∗ AddGen(i): on input a query number i, B forwards the query to its own JO and obtains the

public-key(s) pk
(k)
i . B returns these to A.

∗ ActGen(i, $i): on input address index i and an amount $i, B runs algorithm

MIMO.LRCT.Mint(Pub-Params, $i) and returns the account IWi =
(
pk

(k)
i , cn

(k)
i

)
and its cor-

responding ck
(k)
i to A.

∗ O-Spend(µ, IW, IWi, OA, $
(j)
(out),Pub-Params): on input the transaction strings µ, input wallet

IW containing IWi, output addresses OA, and Pub-Params, B creates a signature by calling

its signing oracle as: σL′(µ)i ← SO(w, IW, pk
(k)
i , µ), then B builds the MIMO.LRCT.Spend

output as (TXi, sigi, TNi), where TX = (µ, IW,OA), TNi is the linking tag, and sigi =

(σL′(µ)i, {σ(j)
range}j∈[Nout]). These outputs are returned to A.
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∗ Corrupt(i): on input query number i, B calls its corruption oracle to obtain the private key

sk
(k)
i ← CO(pk

(k)
i ). This private-key is returned to A.

A outputs a forgery transaction (TX∗, sig∗π, TN
∗) such MIMO.LRCT.Verify(TX∗, sig∗π, TN

∗) = 1

where sig∗π = (σL′(µ)∗π, {σ
(j)
range}∗j∈[Nout]

). B also outputs its forgery σL′(µ)∗π and IW ∗, where

IW ∗ is the input list in TX∗. We show that the advantage of MIMO.L2RS(B) adversary is equal
as the advantage of MIMO.LRCT(A) to break the unforgeability property. In this simulation, A’s
view is perfectly simulated by B as in the real balance game. Moreover, in the event where A
wins the game and case 1.1 occurs, then B also wins its game. This forgery meets the conditions
of both definitions, the MIMO.L2RS one-time unforgeability (Def. 9) and balance (Def. 6), which
we summarise below:

1. In both views MIMO.LRCT.Verify(·) = 1 (Def. 6 Cond. 1) and MIMO.L2RS.SigVer(·) = 1 (Def.
9, Cond. 1), transaction signatures must be valid.

2. The pk
(k)
i of the list accounts were generated during the simulation by AddGen oracle (Def. 6

Cond. 2) and this oracle forwarded queries to the MIMO.L2RS’s oracle JO(·) (Def. 9, Cond.
2).

3. The forgeries sig∗π and σL′(µ)∗π are not the output of the O-Spend(·) (Def. 6 Cond. 3) and
SO(·) (Def. 9, Cond. 3) oracles, respectively.

4. pk(k)
π was only queried to O-Spend(·) oracle once (Def. 6 Cond. 4), and thus only a query was

forwarded to SO(·) (Def. 9, Cond. 4).

5. The condition of this case 1.1 (∀i ∈ [w] ∃k∗ ∈ [Nin] such that IW
(k∗)
i ) implies that

∃k∗ s.t. pk(k∗)
i is not corrupted (Def. 9, Cond. 5). Therefore, this also meets the condition of

the MIMO.L2RS.

To sum up, if the outsider adversary breaks this case 1.1 attack, then we refer to the Theorem 9
(Unforgeability) where the security analysis reduces to the MSISKq,m,k,β problem with β = 2βv.
Thus we said that βcase1.1 = 2βv.

• Case 1.2 - The insider attack: ∃i ∈ [w] ∀k∗ ∈ [Nin] such that IW
(k∗)
i is corrupted, mean-

ing that all inputs to Ti∗ are corrupted. We start this case by running the extractor of the
MIMO.L2RS’s proof of knowledge (in Proposition 2) so we can extract the witness of this signa-

ture relation as a
(Nin+1)
(in),i∗ · v

(Nin+1)
i∗,(2) = ComA

(
0,v

(Nin+1)
i∗,(1)

)
with (v

(Nin+1)
i∗,(1) ,v

(Nin+1)
i∗,(2) )T 6= 0 mod q.

For simplicity, we define gL2RS , v
(Nin+1)
i∗,(2) and r , v

(Nin+1)
i∗,(1) . Then, we have a

(Nin+1)
(in),i∗ = g−1

L2RS ·
ComA

(
0, r
)

=
∑Nin
k=1 a

(k)
(in),i∗ + cn

(k)
(in),i∗ −

∑Nout
j=1 cn

(j)
(out),i∗ from definition of a

(Nin+1)
(in) in (5) [from

Section 5]. We said that
∑Nout
j=1 cn

(j)
(out),i∗ ,

∑
j∈Gi∗

(out)
cn

(j)
(out),i∗ +

∑
j∈Ei∗

(out)
cn

(j)
(out),i∗ where Gout

and Eout are Ti∗ ’s not corrupted and corrupted outputs, respectively. Then, replacing with this

definition, we have g−1
L2RS · ComA

(
0, r
)

= ComA

(∑Nin
k=1 $

(k)
(in),i∗ −

∑
j∈Gi∗

(out)
$

(j)
(out),i∗ ,S

(Nin+1)
(in),i∗

)
+∑

j∈Ei∗
(out)

cn
(j)
(out),i∗ . The latter equation is equivalent to

∑
j∈Ei∗

(out)
cn

(j)
(out),i∗ = g−1

L2RS ·

ComA

(∑Nin
k=1 $

(k)
(in),i∗ −

∑
j∈Gi∗

(out)
$

(j)
(out),i∗ , r− S

(Nin+1)
(in),i∗

)
. Afterwards, we multiply both sides by

gL2RS and it results in:

gL2RS ·
∑

j∈Ei∗
(out)

cn
(j)
(out),i∗ = ComA (gL2RS ·∆, r) , (19)

where r , gL2RS · (r − S
(Nin+1)
(in),i∗ ) and ∆ ,

∑Nin
k=1 $

(k)
(in),i∗ −

∑
j∈Gi∗

(out)
$

(j)
(out),i∗ . Since $

(k)
(in),i∗ ∈

[0, 2`$ − 1] and max(Nin, Nout) ≤ N , then
∑Nin
k=1 $

(k)
(in),i∗ ∈ [0, N · 2`$ − 1] and

∑
j∈Gi∗

(out)
$

(j)
(out),i∗ ∈

[0, N · 2`$ − 1] where Nin ≤ N and Nout ≤ N , respectively. We have,
∣∣∣$(k)

(in),i∗ − $
(j)
(out),i∗

∣∣∣ ≤
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N · (2`$ − 1) and $
(k)
(in),i∗ − $

(j)
(out),i∗ < 0, which is less than q/2 by the choice of q. Therefore,

∆ mod q = ∆ ∈ [−N · (2`$ − 1),−1]. We now run the proof of knowledge extractor of parallel

range proofs from Theorem 4, ∀j ∈ [Eout] cn
(j)
(out),i∗ . We then obtain:

gRange ·
∑

j∈Ei∗
(out)

cn
(j)
(out),i∗ = ComA

(
gRange · $, ck

)
, (20)

where gRange = f, $ ,
∑
j∈Ei∗

(out)
$

(j)

(out) and the randomness ck ,
∑
j∈Ei∗

(out)
ck

(j)

(out), as per

in (17). If we multiply and subtract both equations (19) and (20) by gRange and gL2RS , re-

spectively, it results to 0 = ComA

(
gRange · gL2RS · (∆− $),gRange · r− gL2RS · ck

)
. Assuming

that ‖gRange · gL2RS‖ < 1√
k
· q1/k where k denotes the number of irreducible factors modq of

xn + 1, then by [Corollary 1.2 from 2.[21]], gRange · gL2RS is invertible in Rq. This implies that

gRange · gL2RS · (∆ − $) 6= 0 mod q, using the fact that ∆ − $ 6= 0 mod q. Therefore, we obtain

a β−binding collision for ComA with β−binding =
∥∥∥gRange · r − gL2RS · ck

∥∥∥ ≤ βcase1.2. By

replacing this β−binding with the results of the witness extraction, it turns out that βcase2.2 ≥
4
√
κ(2βv)2 + κ(2βv)2n(m− 1)((2Nin +Nout)2γ)2 +2βvNout(2

`$+2n
√
κn(m− 1)σOR+22

√
nβv).

– Case 2 - TN /∈ T N from ActGen (Linkability Attack): ∃k∗ ∈ [Nin] s.t. IW k∗
i with i ∈ [w] was

queried to O-Spend, where k∗’th is the real input account in the forgery transaction with TN , and
TN 6⊆ T N .
In this proof, we show that any PPT MIMO.LRCT adversary has equal advantage to the corre-
sponding MIMO.L2RS adversary. In doing this reduction, we firstly define the entities interacting
to prove the LRCT-Linkability. We use a challenger, MIMO.L2RS.Challenger, and two adversaries
MIMO.L2RS(B) and MIMO.LRCT(A). This experiment begins with the challenger who generates the
Pub-Params ← MIMO.L2RS.Setup(λ), and these are given to the adversary B. This adversary then
runs A, by simulating A’s oracle answers (see Section 3.1). We assume that A makes at most qad, qac
queries to AddGen and ActGen respectively, then by querying the oracle O-Spend, it will generate a
signature or PoK. This simulation runs as follows:

• AddGen(i): on input a query number i, B forwards the query to its own JO and obtains the

public-key(s) pk
(k)
i . B returns these to A.

• ActGen(i, $i): on input address index i and an amount $i, B runs algorithm

LRCT.Mint(Pub-Params, $i) and returns the account IWi =
(
pk

(k)
i , cn

(k)
i

)
and its corresponding

ck
(k)
i to A.

• O-Spend(µ, IW, IWi, OA, $
(j)
(out),Pub-Params): on input the transaction strings µ, input wallet

IW containing IWi, output addresses OA, and Pub-Params, B creates a signature by calling

its signing oracle as: σL′(µ)i ← SO(w, IW, pk
(k)
i , µ), then B builds the MIMO.LRCT.Spend

output as (TXi, sigi, TNi), where TX = (µ, IW,OA), TNi is the linking tag, and sigi =

(σL′(µ)i, {σ(j)
range}j∈[Nout]). These outputs are returned to A.

• Corrupt(i): on input query number i, B calls its corruption oracle to obtain the private key

sk
(k)
i ← CO(pk

(k)
i ), and this private-key is returned to A.

A outputs two transaction forgeries (TX∗, sig∗π, TN
∗) and (TX ′,∗, sig′,∗π , TN

′,∗), whereas B out-
puts two signature forgeries σL∗(µ)∗π and σL∗(µ)′,∗π with their corresponding IW ∗ and IW ′,∗ which
were taken from TX∗ and TX ′,∗, respectively. These forgeries meet the conditions of the balance
MIMO.LRCT (Def. 6) and the MIMO.L2RS linkability definition (Def. 11), and we summarise these
as:

1. In both views MIMO.LRCT.Verify(·) = 1 (Def. 6 Cond. 1) and MIMO.L2RS.SigVer(·) = 1 (Def. 11,
Cond. 1), transaction signatures must be valid.
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2. The pk
(k)
i of the list accounts were generated during the simulation by AddGen oracle (Def. 6

Cond. 2) and this oracle forwarded queries to the MIMO.L2RS’s oracle JO(·) (Def. 11, Cond. 2).
3. Condition 3 of (Def. 6) implies MIMO.L2RS.SigLink(σL∗(µ)∗π, σL∗(µ)′,∗π ) = Unlinked (Def. 11,

Cond. 3).

We showed that the advantage of MIMO.L2RS(B) adversary is equal as MIMO.LRCT(A) to break
the linkability property. Then, we refer to the Theorem 11 (Linkability) where the security analysis
reduces to the MSISKq,m,k,β problem with β = 2βv. Thus we said that βcase2 = 2βv. ut

B.2 LRCT - Anonymity - Proof

Proof. We prove the anonymity of this scheme using the sequence-of-games approach. We begin our
analysis by:

Game 0 - Real Game : We firstly define the entities interacting to prove this LRCT-Anonymity
property. We use a challenger, MIMO.LTCR.Challenger, and two adversaries, MIMO.LRCT(A1) and
MIMO.LRCT(A2). This experiment begins with the challenger who generates the Pub-Params ←
MIMO.L2RS.Setup(λ), and this output is given to the adversary A1. Then, A1 runs the oracles, which
were defined in Def. 7. We assume that A1 makes at most qad, qac, and qco queries to AddGen, ActGen,
and Corrupt, respectively. This simulation runs as follows:

– AddGen(i): on input a query number i, it returns the public-key(s) pk
(k)
i .

– ActGen(i, $i): on input address index i and an amount $i, A1 runs algorithm

LRCT.Mint(Pub-Params, $i) and returns the account IWi =
(
pk

(k)
i , cn

(k)
i

)
and its correspond-

ing ck
(k)
i .

– O-Spend(µ, IW, IWi, OA, {$(j)
(out),i}j∈[Nout],Pub-Params), and it outputs (TX, sigi, TNi).

– Corrupt(i): on input query number i, it outputs (sk
(k)
i , ck

(k)
i ).

Now A1 construct IW with w accounts from the ActGen’s queries qac, then it selects two elements π0

and π1 from IW , such IWπ0 = {pk(k)
π,0, cn

(k)
π,0}k∈[Nin] and IWπ1 = {pk(k)

π,1, cn
(k)
π,1}k∈[Nin], with pk

(k)
π,0 =

ComA(0, sk
(k)
π,0), pk

(k)
π,1 = ComA(0, sk

(k)
π,1), cn

(k)
π,0 = ComA($

(k)
(in),0, ck

(k)
π,0) and cn

(k)
π,1 = ComA($

(k)
(in),1, ck

(k)
π,1).

After this A1 outputs (µ, IWπ0
, IWπ1

, IW,OA, $
(j)
(out),0, $

(j)
(out),1), where

∑Nin
k=1 $

(k)
(in),0 =

∑Nout
j=1 $

(j)
(out),0 and∑Nin

k=1 $
(k)
(in),1 =

∑Nout
j=1 $

(j)
(out),1. The MIMO.LRCT.Challenger picks at random b = {0, 1} and returns

(TX∗, sig∗b , TN
∗
b ) ← RCT.Spend(µ,Kπb , IWπb , IW,OA, $(out)bPub-Params) where IWπb = {pk(k)

πb
, cn

(k)
πb }

and cn
(k)
πb = ComA($

(k)
(in),πb

, ck(k)
πb

) to A2. The adversary A2 runs the oracles as (Def. 7):

– O-Spend(µ, IW ′, IW ′π, OA, $
(j)
(out),Pub-Params) with IW ′ 6= IW and IW ′π 6= Wπ0

,Wπ1
. This outputs

(TX∗′, sig∗b′
′
, TN∗b′

′), with TN∗b′
′ = ComH(0, sk

(k)
π,b′

′
)

– Corrupt(i): on input query number i, it returns (sk
(k)
i , ck

(k)
i ).

The adversary A2 outputs b′. If we define the S0 to be the event that b = b′, then the A2’s advantage is
|Pr[S0]− 1

2 |.

Game 1 - Signature : In this game, we perform changes in the signature sig∗b =

(σL′(µ)b, {σrange(j)
b }j∈[Nout]), in particular σL′(µ)b. Instead of generating this real signature with

MIMO.L2RS.SigGen (Algorithm 2), we use the hybrids MIMO.L2RS.Hybrid-1 and MIMO.L2RS.Hybrid-2,
Algorithms 11 and 12, respectively; based on our security analysis in Appendix (MIMO.L2RS unforgeabil-
ity). In the transition from the real signature to hybrid 1, the (cπ+1)b is chosen at random. This transition
concluded that the statistical distance between cπ+1 and Sn,κ ⊆ R2q will be at most εGame1 = o·h·2−n+1,
which is negligible (Based on [13], Lemma 3.4), where h and o are the number of queries to H1 and the
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hybrid 1, respectively. We now consider the transition from hybrid 1 to hybrid 2. The output of both
hybrids follows the same distribution due to the rejection sampling (Lemma 1). This means that choosing
tπ at random, will not have any effect in the output of both hybrids. Let S0 be the event that b = b′ in
Game 1. We claim that the view of the adversary in Game 0 and Game 1 is:

|Pr[S0]− Pr[S1]| ≤ εGame1. (21)

Game 2 - User Anonymity (π0 6= π1 with $(out),0 = $(out),1) : Changes in this game are made
to TN∗b and pkπb . TN

∗
b is now randomly chosen from R2

q. When b′ = 0, then pkπ0
← R2

q whereas
pkπ,1 = ComA(0, skπ,1). When b′ = 1 then pkπ1

← R2
q whereas pkπ,0 = ComA(0, skπ,0). When skπ,b

is multiplied by H and A respectively, it gives TN∗b and pkπb that are close to uniform over R2
q. By

applying the Leftover Hash Lemma (LHL) - Lemma 5, the statistical distance between the distribution of

(TN∗b mod q and pkπb mod q) and the uniform distribution onR2
q×R2

q is at most

(
n· 12 ·

√
q4n

2(γ+1)·(m−1)·n

)
,

which is negligible. Let S2 be the event that b = b′ in Game 2. We claim that

|Pr[S1]− Pr[S2]| ≤ εGame2. (22)

Game 3 - User Anonymity (π0 6= π1 with $(out),0 = $(out),1) : We now transform Game 1 into
Game 2, where we choose pkπ1−b

at random. This means that when b′ = 0, then pkπ1
← R2

q and when

b′ = 1 then pkπ0
← R2

q. We conclude that by applying the Leftover Hash Lemma (LHL) - Lemma 5,
the statistical distance between the distribution of (pkπb mod q) and the uniform distribution on R2

q is

at most

(
n · 1

2 ·
√

q2n

2(γ+1)·(m−1)·n

)
which is negligible. Let S3 be the event that b = b′ in Game 3. We claim

that
|Pr[S2]− Pr[S3]| ≤ εGame3. (23)

Game 4 - Amount Privacy (π0 = π1 with $(out),0 6= $(out),1) : In this transitional Game, we
choose cnπb at random, instead of computing cnπb = ComA($(out),πb , ckπb). We use the result of the
Theorem 1 (Homomorphic Commitment Hiding), to show that by applying the Leftover Hash Lemma
(Lemma 5), we argue that the statistical distance between the distribution of cnπb and the uniform

distribution on R2
q is at most

(
1
2 ·
√

q2n

2(γ+1)·(m−1)·n

)
which is negligible. Let S4 be the event that b = b′ in

Game 4, then we claim that
|Pr[S3]− Pr[S4]| ≤ εGame4. (24)

Combining (21), (22), (23) and (24), we obtain∣∣∣∣Pr[S0]− 1

2

∣∣∣∣ ≤ εGame1 + εGame2 + εGame3 + εGame4,

and this is negligible. ut

C MIMO.L2RS Security model

C.1 MIMO.L2RS Definitions

An MIMO.L2RS scheme has five PPT algorithms (MIMO.L2RS.Setup, MIMO.L2RS.KeyGen,
MIMO.L2RS.SigGen, MIMO.L2RS.SigVer, MIMO.L2RS.SigLink). In addition, the correctness of this
scheme is satisfied by the Signature correctness MIMO.L2RS.SigGen Correctness and the Linkability
correctness MIMO.L2RS.SigLink Correctness. These algorithms are defined as follows:

– MIMO.L2RS.Setup: a PPT algorithm that takes the security parameter λ and produces the Public
Parameters (Pub-Params).
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– MIMO.L2RS.KeyGen: a PPT algorithm that by taking the Pub-Params, it produces a pair of keys: the
public-key pk and the private-key sk.

– MIMO.L2RS.SigGen: a PPT algorithm that receives the Pub-Params, a singer π’s sk, a message µ and
the list L of users’ pk’s in the ring signature, and outputs a signature σL(µ). w is defined as the size
of the ring and Nin as the number of input wallets (used in the MIMO.LRCT protocol).

L ,
{
pk

(k)
i

}
i∈[w],k∈[Nin]

(25)

– MIMO.L2RS.SigVer: a PPT algorithm that takes Pub-Params, a signature σL(µ), a list L of pk’s and
the message µ, and it verifies if this signature was legitimately created, this algorithm outputs either:
Accept or Reject.

– MIMO.L2RS.SigLink: a PPT algorithm that inputs two valid signatures σL(µ1) and σL(µ2) and it
anonymously determines if these signatures were produced by same signer π. Thus, this algorithm
has a deterministic output: Linked or Unlinked.

Correctness Requirements:

– MIMO.L2RS.SigGen Correctness: this guarantees that valid signatures signed by honest signers will be
accepted by a verifier with overwhelming probability.

– MIMO.L2RS.SigLink Correctness: this ensures that if two signatures σL(µ1) and σL(µ2) are signed by
an honest signer π, SigLink will output Linked with overwhelming probability.

C.2 Oracles for adversaries

The following oracles are available to any adversary who tries to break the security of an MIMO.L2RS
scheme:

– pk
(k)
i ← JO(⊥). The Joining Oracle, on request, adds new user(s) to the system. It returns the

public-key(s) pk
(k)
i .

– sk
(k)
i ← CO(pk

(k)
i ). The Corruption Oracle, on input a pk

(k)
i that is a query output of JO, returns

the corresponding sk
(k)
i .

– σ′L(µ) ← SO(w,L, pk(k)
π , µ). The Signing Oracle, on input a group size w, a set L of w pk(k)’s, the

signer’s pk(k)
π , and a message µ, this oracle returns a valid signature σ′L(µ).

C.3 Threat Model for MIMO.L2RS

– One-time Unforgeability. One time unforgeability for the MIMO.L2RS scheme is defined in the
following game between a simulator S and an adversary A who has access to the oracles JO, CO,
SO and the random oracle:
• S generates and gives the list L of pk(k)’s to A.
• A may query the oracles according to any adaptive strategy.
• A gives S a ring signature size w, a set L of w pk(k)’s, a message µ and a signature σL(µ).

A wins the game if:
1. MIMO.L2RS.SigVer(σL(µ))=Accept.

2. pk(k)’s in the L are outputs from JO oracle.
3. σL(µ) is not an output of SO.

4. No signing key pk(k)
π was queried more than once to SO.

5. ∀i ∈ [w] ∃k ∈ [Nin] s.t. pk
(k)
i is not corrupted.

The advantage of the one-time unforgeability in the MIMO.L2RS scheme is denoted by

Advantageot−unfA (λ) = Pr[A wins the game ]

Definition 9 (One-Time Unforgeability). The MIMO.L2RS scheme is one-time unforgeable if for

all PPT adversary A, Advantageot−unfA (λ) is negligible.
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– Unconditional Anonymity. It should be infeasible for an adversary A to distinguish a signer’s
pk(k) with probability 1/2, even if the adversary has unlimited computing resources. This property
for MIMO.L2RS schemes is defined in the following game between a simulator S and an unbounded
adversary A.
• A may query JO according to any adaptive strategy.

• A gives S the L = {pk(k)
0 , pk

(k)
1 }k∈[Nin], which is the output of the JO, and a message µ.

• S flips a coin b = {0, 1}, then S computes the signature σb =

MIMO.L2RS.SigGen(L, sk
(k)
b , µ,Pub-Params). This signature is given to A.

• A outputs a bit b′.
• The output of this experiment is defined to be 1 if b = b′, or 0 “zero” otherwise.
A wins the game if:
1. pk

(k)
0 and pk

(k)
1 cannot be used by CO and SO.

2. Outputs 1, where b = b′, with Pr = 1/2.
The unconditional anonymity advantage of the MIMO.L2RS scheme is denoted by

AdvantageAnonA (λ) =
∣∣∣Pr[b = b′]− 1

2

∣∣∣.
Definition 10 (Unconditional Anonymity). The MIMO.L2RS scheme is unconditional anony-
mous if for any unbounded adversary A, AdvantageAnonA (λ) is zero.

– Linkability. It should be infeasible for an adversaryA to unlinked two valid MIMO.L2RS signatures
which were correctly generated with same skπ. To describe this, we use the interaction between a
simulator S and an adversary A:
• The A queries the JO multiple times.
• The A outputs two signatures σL(µ) and σ′L′(µ

′) and two lists L and L′ of pk(k)’s.

L′ ,
{
pk
′(k)
i

}
i∈[w],k∈[Nin]

(26)

A wins the game if:
1. By calling MIMO.L2RS.SigVer on input σL(µ) and σ′L′(µ

′), it outputs Accept on both inputs.

2. The pk(k)’s in L and L′ are outputs of JO.
3. Finally, it gets Unlinked, when calling MIMO.L2RS.SigLink on input σL(µ) and σ′L′(µ

′).
Thus the advantage of the linkability in the MIMO.L2RS scheme is denoted by

AdvantageLinkA (λ) = Pr[A wins the game].

Definition 11 (Linkability). The MIMO.L2RS scheme is linkable if for all PPT adversary A,
AdvantageLinkA is negligible.

– Non-slanderability. It should be infeasible for an adversary A to linked two valid MIMO.L2RS
signatures which were correctly generated with different sk(k)’s. This means that an adversary can
frame an honest user for signing a valid signature so the adversary can produce another valid signature
such that the MIMO.L2RS.SigLink algorithm outputs Linked. To describe this, we use the interaction
between a simulator S and an adversary A:
• The S generates and gives the list L of pk(k)’s to A.
• The A queries the JO and CO to obtain pk(k)

π and sk(k)
π , respectively.

• A gives the generated parameters to S.
• S uses the sk(k)

π and calls the SO to output a valid signature σL(µ), which is given to A.
• The A uses the remaining keys of the ring signature (w − 1) to create a second signature σ′L(µ)

by calling the SO algorithm.
A wins the game if:
1. The MIMO.L2RS.SigVer, on input σL(µ) and σ′L(µ), outputs Accept.

2. The keys pk(k)
π and sk(k)

π were not used to generated the second signature σ′L(µ).
3. When calling the MIMO.L2RS.SigLink on input σL(µ) and σ′L(µ), it outputs Linked.

Thus the advantage of the non-slanderability in the MIMO.L2RS scheme is denoted by

AdvantageNSA (λ) = Pr[A wins the game].

Definition 12 (Non-Slanderability). The MIMO.L2RS scheme is non-slanderable if for all PPT
adversary A, AdvantageNSA is negligible.
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D MIMO.L2RS Scheme construction

The scheme MIMO.L2RS = (MIMO.L2RS.Setup, MIMO.L2RS.KeyGen, MIMO.L2RS.SigGen,
MIMO.L2RS.SigVer, MIMO.L2RS.SigLink) works as follows.

D.1 MIMO.L2RS.Setup

By receiving the security parameter λ, this MIMO.L2RS.Setup algorithm randomly chooses A← R2×(m−1)
q

and H← R2×(m−1)
q . This outputs the public parameters (Pub-Params): A and H.

Remark 5. To prevent malicious attack, MIMO.L2RS.Setup incorporates a trapdoor in A or H, in practice
MIMO.L2RS.Setup would generate A and H based on the cryptographic Hash function H2 evaluated at
two distinct and fixed constants.

Definition 13 (Function MIMO.L2RS.Lift). This function maps R2
q to R2q with respect to a public

parameter A ∈ R2×(m−1)
q . Given a ∈ R2

q, we let MIMO.L2RS.Lift(A,a) , (2 ·A,−2 ·a+ q) ∈ R2×m
2q with

q = q · (1, 1)T .

D.2 Key Generation - MIMO.L2RS.KeyGen

This algorithm receives the public parameter Pub-Param: A ∈ R2×(m−1)
q , then it generates a key pair in

R2
q, we:

– Pick (s1, . . . , sm−1) with every component chosen uniformly and independently with coefficients in
(−2γ , 2γ).

– Define S = (s1, . . . , sm−1)T ∈ R1×(m−1)
q .

– Compute a = (a1,a2)T = A · S mod q ∈ R2
q. The a and S are the public-key pk and the private-key

sk, respectively.

This MIMO.L2RS.KeyGen algorithm is described in the following Algorithm 1.

D.3 Signature Generation - MIMO.L2RS.SigGen

The MIMO.L2RS.SigGen algorithm inputs the user’s private-key S
(k)
(in),π, the message µ, the list of user’s

public-keys L′ and the public parameters Pub-Params: H ∈ R1×(m−1)
q and A ∈ R1×(m−1)

q . This algorithm
outputs the signature σL′(µ). We call π the index in {1, . . . , w} of the user or signatory who wants to

sign a message µ. For a message µ ∈ {0, 1}∗, the fixed list of public-keys L = {a(k)
(in),1, . . . ,a

(k)
(in),w} and

the private-key S
(k)
(in),π which corresponds to a

(k)
(in),π with 1 ≤ π ≤ w and k ∈ [1, Nin + 1]; the following

computations are performed:

1. We define the linkability tag as H
(k)
2q =

(
2 ·H,−2 · h(k) + q

)
∈ R2×m

2q , where H is the fixed public

parameter for all users, and h(k) = H · S(k)
(in),π ∈ R

2
q. We consider S

(k),T
(in),π ∈ R

1×(m−1)
q as an element

in R2q and let S
(k),T
(in),2q,π =

(
S

(k),T
(in),π, 1

)
∈ R1×m

2q , such that H
(k)
2q · S

(k),T
(in),π = q ∈ R2q.

2. The π’s public-key is lifted from R1×m
q to R1×m

2q , so by calling the lift function

MIMO.L2RS.Lift(A,a
(k)
(in),π), we get A

(k)
2q,π = (2 ·A,−2 · a(k)

(in),π + q) ∈ R2×m
2q .

3. Note that A
(k)
2q,π · S

(k),T
(in),π = q ∈ R2q

4. By choosing a random vector u(k) = (u1, . . . , um)T , where ui ← Dn
σ , for 1 ≤ i ≤ m, we calculate

cπ+1 = H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,π · u(k)

}
k∈[Nin+1]

,
{
H

(k)
2q · u(k)

}
k∈[Nin+1]

)
.
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5. We choose random vector t
(k)
i = (ti,1, . . . , ti,m)T , where ti,j ← Dn

σ , for 1 ≤ j ≤ m, then for (i = π +

1, . . . , w, 1, 2, . . . , π−1), after lifting fromR1×m
q toR1×m

2q , using MIMO.L2RS.Lift(A,a
(k)
(in),i), we obtain

A
(k)
2q,i = (2 ·A,−2 ·a(k)

(in),i+q) ∈ R2×m
2q . Then, we compute ci+1 = H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,i ·

t
(k)
i + q · ci

}
k∈[Nin+1]

,
{
H

(k)
2q · t

(k)
i + q · ci

}
k∈[Nin+1]

)
.

6. Select a random bit b ∈ {0, 1} and finally compute t
(k)
π ← u(k) + S

(k)
2q,π · cπ · (−1)b

(k)

using rejection
sampling (Definition 1).

7. Output the signature σL′(µ) =
(
c1,
{
t
(k)
1 , . . . , t

(k)
w

}
k∈[Nin+1]

,
{
h(k)

}
k∈[Nin]

)
.

A formal description of this algorithm is shown in Algorithm 2.

Correctness of MIMO.L2RS.SigGen

Proof. Beyond the required conditions of MIMO.L2RS.SigVer, we claim that if σL′(µ) =(
c1,
{
t
(k)
1 , . . . , t

(k)
w

}
k∈[Nin+1]

,
{
h(k)

}
k∈[Nin]

)
is the output of the MIMO.L2RS.SigGen algorithm on in-

put (µ,L,Sπ,Pub-Params), then the output of MIMO.L2RS.SigVer on input (µ,L, σL(µ)) should be ac-

cepted. We need to show that when MIMO.L2RS.SigVer computes H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,i ·

t
(k)
i + q · ci

}
k∈[Nin+1]

,
{
H

(k)
2q · t

(k)
i + q · ci

}
k∈[Nin+1]

)
, the result is equal to c1. We also show that

this H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,i · t

(k)
i + q · ci

}
k∈[Nin+1]

,
{
H

(k)
2q · t

(k)
i + q · ci

}
k∈[Nin+1]

)
= ci+1 for

1 ≤ i ≤ w − 1 in MIMO.L2RS.SigVer. In this evaluation, we consider two scenarios, one when i 6= π and
i = π:

– For i 6= π, in MIMO.L2RS.SigGen we have ci+1 = H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,i · t

(k)
i +

q · ci
}
k∈[Nin+1]

,
{
H

(k)
2q · t

(k)
i + q · ci

}
k∈[Nin+1]

)
, while in MIMO.L2RS.SigVer we compute

ci+1 = H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,i ·t

(k)
i +q ·ci

}
k∈[Nin+1]

,
{
H

(k)
2q ·t

(k)
i +q ·ci

}
k∈[Nin+1]

)
. These

are equal since A
(k)
2q,i ·t

(k)
i +q ·ci (in MIMO.L2RS.SigGen) = A

(k)
2q,i ·t

(k)
i +q ·ci (in MIMO.L2RS.SigVer);

and H
(k)
2q · t

(k)
i + q · ci

}
k∈[Nin+1]

(in MIMO.L2RS.SigGen) = H
(k)
2q · t

(k)
i + q · ci

}
k∈[Nin+1]

(in

MIMO.L2RS.SigVer).

– For i = π, in MIMO.L2RS.SigGen we have cπ+1 = H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,π ·

u(k)
}
k∈[Nin+1]

,
{
H

(k)
2q · u(k)

}
k∈[Nin+1]

)
, whereas in MIMO.L2RS.SigVer we calculate cπ+1 =

H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,π · t

(k)
π + q · cπ

}
k∈[Nin+1]

,
{
H

(k)
2q · t

(k)
π + q · cπ

}
k∈[Nin+1]

)
. In this

case, we need to show that cπ+1 (in MIMO.L2RS.SigGen) = cπ+1 (in MIMO.L2RS.SigVer). In doing
so, the following equalities need to be proved:

1. A
(k)
2q,π · u(k) = A

(k)
2q,π · t

(k)
π + q · cπ, which is equivalent to A

(k)
2q,π · (u(k) − t

(k)
π ) = q · cπ. Here, we

replace t
(k)
π as defined in Algorithm 2, to obtain:

A
(k)
2q,π · (u(k) − u(k) + S

(k)
2q,π · cπ · (−1)b

(k)

) = q · cπ ⇐⇒

−A
(k)
2q,π · S

(k)
2q,π · cπ · (−1)b

(k)

= q · cπ ⇐⇒
−q · cπ · (−1)b = q · cπ

We distinguish two cases for b:

• When b = 0, we verify that -q · cπ = q · cπ mod 2q.
• When b = 1, we have q · cπ = q · cπ mod 2q.



Lattice RingCT v2.0 with Multiple Input and Multiple Output Wallets 31

2. H
(k)
2q · u(k) = H

(k)
2q · t

(k)
π + q · cπ, which means that:

H
(k)
2q · (u(k) − t(k)

π ) = q · cπ ⇐⇒

H
(k)
2q · (u(k) − u(k) + S

(k)
2q,π · cπ · (−1)b

(k)

) = q · cπ ⇐⇒

−H
(k)
2q · S

(k)
2q,π · cπ · (−1)b = q · cπ ⇐⇒
−q · cπ · (−1)b = q · cπ

We distinguish between two cases:
• When b = 0, it is verified that −q · cπ = q · cπ mod 2q.
• When b = 1, we have q · cπ = q · cπ mod 2q.

ut

D.4 Signature Verification - MIMO.L2RS.SigVer

This is described in Algorithm 3. Furthermore, in the following theorem, we show the bound of βv which
is used in this verification algorithm (MIMO.L2RS.SigVer).

Theorem 8. Let βv = ησ
√
nm and q/4 >

(√
2(λ+ 1) ln 2 + 2 ln (nm)

)
σ and σL′(µ) =(

c1,
{
t
(k)
1 , . . . , t

(k)
w

}
k∈[Nin+1]

,
{
h(k)

}
k∈[Nin]

)
be generated based on Algorithm 2. Then the output of Algo-

rithm 3 on input σL′(µ) is accepted with probability 1− 2−λ.

Proof. In this proof, we start mentioning that in BLISS [13], for a desired expected rejection and repetition

M , if we take the definition of α where M = e
1

2α2 , then t
(k)
π will be indistinguishable from Dσ if

σ ≥ α · ‖S(k)
2q,π · cπ‖ [Section 3.2 in [13]]. We also use [lemma 4.4, parts 1 and 3, in [20]]. The part 3 of

this lemma shows that the bound on Euclidean norm βv = ησ
√
nm, for a given η > 1, has a probability

Pr[‖t(k)
i ‖2 > ησ

√
nm] ≥ 1 − 2λ. In addition, the bound on infinity norm (‖ti‖∞ < q/4) is analysed

in part 1 of this lemma where its union bound is also considered. It turns out that η is required such
q/4 > ησ >

(√
2(λ+ 1) ln 2 + 2 ln (nm)

)
σ, except with probability of 2−λ. ut

D.5 Signature Linkability - MIMO.L2RS.SigLink

The MIMO.L2RS.SigLink algorithm, illustrated in Algorithm 10, takes two signatures as input:
σL(µ1) and σ′L′(µ2), and it outputs either Linked if these signatures were generated by same sig-
natory, or Unlinked, otherwise. Given public-keys’ lists L and L′, and two signatures: σL(µ1) and

σ′L′(µ2), which can be described as: σL(µ1) =
(
c1,µ1

,
{
t
(k)
1,µ1

, . . . , t
(k)
w,µ1

}
k∈[Nin+1]

,
{
h(k)
µ1

}
k∈[Nin]

)
and

σ′L′(µ2) =
(
c1,µ2

,
{
t
(k)
1,µ2

, . . . , t
(k)
w,µ2

}
k∈[Nin+1]

,
{
h(k)
µ2

}
k∈[Nin]

)
.

These two signatures must be successfully accepted by the MIMO.L2RS.SigVer algorithm, then one
can verify that the linkability property is achieved if the linkability tags (h(k)

µ1
and h(k)

µ2
) of the above

signatures σL(µ1) and σ′L′(µ2) are equal.

Algorithm 10 L2RS.SigLink - Signature Linkability

Input: σL(µ1) and σ′L′(µ2)
Output: Linked or Unlinked
1: procedure MIMO.L2RS.SigLink(σL(µ1), σ′L′(µ2))

2: if
(
MIMO.L2RS.SigVer(σL(µ1)) = Accept and MIMO.L2RS.SigVer(σ′L′(µ2)) = Accept

)
then Continue [

3: else if h
(k)
µ1 = h

(k)
µ2 then Linked

4: else Unlinked ]

5: return Linked or Unlinked
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Correctness of MIMO.L2RS.SigLink

Proof. We show that an honest user π who signs two messages µ1 and µ2 in the MIMO.L2RS scheme with
the list of public-keys L, obtains a Linked output from MIMO.L2RS.SigLink algorithm with overwhelming
probability. As shown in Algorithm 10, two signatures σL(µ1) and σL(µ2) were created, and then suc-

cessfully verified by MIMO.L2RS.SigVer. Therefore, the linkability tags h(k)
µ1

and h(k)
µ2

must be equal. To
prove this, we show that:

H
(k)
2q,µ1

=
(
2 ·H,−2 · h(k)

µ1
+ q

)
∈ R2×m

2q ,where

H = Pub-Param and h(k)
µ1

= (H · S(k)
(in),π + q) ∈ R2

q

H
(k)
2q,µ2

=
(
2 ·H,−2 · h(k)

µ2
+ q

)
∈ R2×m

2q ,where

H = Pub-Param and h(k)
µ2

= (H · S(k)
(in),π + q) ∈ R2

q

The first parts of the linkability tag in both MIMO.L2RS signatures have same equality with following
probability:

Pr
[
2 ·H = 2 ·H

]
= 1.

Ultimately, the second part uses the honest user’s private-key S
(k)
(in),π is used, so we conclude that:

Pr
[
− 2 · h(k)

µ1
+ q + 2 · h(k)

µ2
− q = 0

]
= 1.

ut

E MIMO.L2RS - Security Analysis

Theorem 9 (One-Time Unforgeability). Suppose
√

q4n

2(γ+1)·(m−1)·n is negligible in n, 1
|Sn,κ| is negligible

and y = h is polynomial in n, where h denotes the number of queries to the random oracle H1. If there
is a PPT algorithm against one-time unforgeability of MIMO.L2RS with non-negligible probability δ, then
there exist a PPT algorithm that can extract a solution to the MSISKq,m,k,β problem (with β = 2βv) with

non-negligible probability

(
δ − 1

|Sn,κ|

)
·
(
δ− 1
|Sn,κ|
y − 1

|Sn,κ|

)
−
√

q4n

2(γ+1)·(m−1)·n .

Proof. The proof is given in Appendix F. ut

Theorem 10 (Anonymity). Suppose
√

q4n

2(γ+1)·(m−1)·n is negligible in n with an attack against the un-

conditional anonymity that makes h queries to the random oracle H1, where h, w are polynomial in n,
then the MIMO.L2RS scheme is unconditionally secure for anonymity as defined in Def. 10.

Proof. The proof is given in AppendixG. ut

Theorem 11 (Linkability). The MIMO.L2RS scheme with parameter βv is linkable in the random oracle
model if the MSISKq,m,k,β problem (with β = 2βv) is hard.

Proof. The proof is given in Appendix H. ut

Theorem 12 (Non-Slanderability). For any linkable ring signature, if it satisfies unforgeability and
linkability, then it satisfies non-slanderability.

Proof. The proof is given in Appendix I. ut

Corollary 2 (Non-Slanderability). The MIMO.L2RS scheme is non-slanderable under the assump-
tions of Theorem 9 and Theorem 11.
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F MIMO.L2RS - Security Analysis - One-Time Unforgeability

Proof. As stated in [13], this MIMO.L2RS scheme relies on the MSISKq,m,k,β problem to be secure against
any existential forger. This means that a forgery algorithm succeeds with a negligible probability and
so we conclude that under this probability, the attacker will also find a solution to the MSISKq,m,k,β
problem. To prove this, we start replacing the MIMO.L2RS.SigGen algorithm with MIMO.L2RS.Hybrid-1
and MIMO.L2RS.Hybrid-2 algorithms that are used to simulate the creation of the signatures, until we
obtain an algorithm that breaks the MSISKq,m,k,β problem. These Hybrid algorithms are illustrated in
Algorithm 11 and Algorithm 12, respectively.

In MIMO.L2RS.Hybrid-1, the output of the random oracle H1 is chosen at random from Sn,κ ⊆ R2q

and then it is programmed, without checking the value of A
(k)
2q,π · u(k) and H

(k)
2q · u(k) being already set.

This equality can be described as:

H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,w · t

(k)
i + q · cw

}
k∈[Nin+1]

,{
h

(k)
2q · t(k)

w + q · cw
}
k∈[Nin+1]

)
=

H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,π · u(k)

}
k∈[Nin+1]

,
{
H

(k)
2q · u(k)

}
k∈[Nin+1]

)
Every time the MIMO.L2RS.Hybrid-1 is called, the probability of generating u, (such that A

(k)
2q,π · u(k)

and H
(k)
2q · u(k) are equal to one of the previous output that was queried), is at most 2−n+1. We define

that the probability of getting a collusion each time is at most h · 2−n+1, where “h” is the number of
calls to the random oracle H1, whereas the probability of occurring a collision after “o” queries to the
MIMO.L2RS.Hybrid-1 is at most o · h · 2−n+1, which is negligible (Based on [13], Lemma 3.4).

Algorithm 11 MIMO.L2RS.Hybrid-1

Input: {S(k)

(in),π
}k∈[Nin+1], µ, L′ as in (4), and Pub-Params.

Output: σL′ (µ) =
(
c1,
{
t
(k)
1 , . . . , t(k)w

}
k∈[Nin+1]

,
{
h(k)

}
k∈[Nin]

)
1: procedure MIMO.L2RS.Hybrid-1(S

(k)

(in),π
, µ, L′,Pub-Params)

2: for (1 ≤ k ≤ Nin + 1) do

3: Set H
(k)
2q =

(
2 ·H,−2 · h(k) + q

)
∈ R2×m

2q , where h(k) = H · S(k)

(in),π
∈ R2

q .

4: Call L2RS.Lift(A, a
(k)

(in),π
) to obtain A

(k)
2q,π = (2 ·A,−2 · a(k)

(in),π
+ q) ∈ R2×m

2q .

5: Let u(k) = (u1, . . . , um)T , where ui ← Dnσ , for 1 ≤ i ≤ m.

6: Choose at random cπ+1 ← Sn,κ
.

7: for (i = π + 1, π + 2, . . . , w, 1, 2, . . . , π − 1) do
8: for (1 ≤ k ≤ Nin + 1) do

9: Call L2RS.Lift(A, a
(k)

(in),i
) to obtain A

(k)
2q,i = (2 ·A,−2 · a(k)

(in),i
+ q) ∈ R2×m

2q .

10: Let t
(k)
i = (ti,1, . . . , ti,m)T , where ti,j ← Dnσ , for 1 ≤ j ≤ m.

11: Compute ci+1 = H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,i · t

(k)
i + q · ci

}
k∈[Nin+1]

,
{
H

(k)
2q · t

(k)
i + q · ci

}
k∈[Nin+1]

)
.

12: for (1 ≤ k ≤ Nin + 1) do

13: Choose b(k) ← {0, 1}.
14: Let t(k)π ← u(k) + S

(k)
2q,π · cπ · (−1)b

(k)
, where S

(k)
2q,π = [(S(k)

π )T , 1]T .

15: Continue with prob.

(
M exp

(
−
‖S(k)

2q,π · cπ‖
2

2σ2

)
cosh

( 〈t(k)π ,S
(k)
2q,π · cπ〉
σ2

))−1

otherwise Restart.

16: return σL′ (µ) =
(
c1,
{
t
(k)
1 , . . . , t(k)w

}
k∈[Nin+1]

,
{
h(k)

}
k∈[Nin]

)
.

After analyzing how c1 can be forged, we evaluate the t
(k)
1 , . . . , t

(k)
w of the MIMO.L2RS scheme. We

claim that these are forgeable when an attacker finds a PPT algorithm F to solve the MSISKq,m,k,β
problem. This attack can be simulated using the MIMO.L2RS.Hybrid-2 shown in Algorithm 12, where tπ
is directly chosen from the distribution Dn

σ (Based on [13], Lemma 3.5).
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The public-key A
(k)
2q,π ∈ R

2×m
2q is generated such A

(k)
2q,π · S

(k),T
(in),π = q ∈ R2

2q, so finding a vector v such

that A
(k)
2q,π · v = 0 mod q with 0 = (0, 0)T . We denote y = h where y is the number of times the random

oracle H1 is programmed during this attack. Then this attack is performed as follows:

1. Random coins are selected for the forger φ and signer ψ.
2. The random oracle H1 is called to generate the responses of the users in the L2RS scheme,

(c1, . . . , cw)← Sn,κ.

3. These create a SubRoutine that takes as input (A
(k)
2q,π, φ, ψ, c1, . . . , cw).

4. F is initialized and run by providing the A
(k)
2q,π and forger’s random coins φ.

5. The SubRoutine signs the message µ using the signer’s coins ψ in the MIMO.L2RS.Hybrid-2, this
produces a signature σL(µ).

6. During the signing process, F calls the oracle H1 and answers are placed in the list (c1, . . . , cw), the
queries are kept in a table in the event that same queries are used in this oracle.

7. F is stopped and it outputs a forgery that is the SubRoutine’s result

(c1,
{
t
(k)
1 , . . . , t

(k)
w

}
k∈[Nin+1]

,
{
h(k)

}
k∈[Nin]

), with negligible probability δ. This output has to

be successfully accepted by the MIMO.L2RS.SigVer algorithm.

If the random oracle was not called using some input
{
A

(k)
2q,i · t

(k)
i + q · ci

}
k∈[Nin+1]

,
{
H

(k)
2q ·

t
(k)
i + q · ci

}
k∈[Nin+1]

, then F has 1/|Sn,κ| chances of producing a c such that c =

H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q ·t(k) +q ·c

}
k∈[Nin+1]

,
{
H

(k)
2q ·t(k) +q ·c

}
k∈[Nin+1]

)
. This turns out that

δ − 1/|Sn,κ| be the probability that c = cj for some j.

Algorithm 12 MIMO.L2RS.Hybrid-2

Input: {S(k)

(in),π
}k∈[Nin+1], µ, L′ as in (4), and Pub-Params.

Output: σL′ (µ) =
(
c1,
{
t
(k)
1 , . . . , t(k)w

}
k∈[Nin+1]

,
{
h(k)

}
k∈[Nin]

)
1: procedure MIMO.L2RS.Hybrid-2(S

(k)

(in),π
, µ, L′,Pub-Params)

2: for (1 ≤ k ≤ Nin + 1) do

3: Set H
(k)
2q =

(
2 ·H,−2 · h(k) + q

)
∈ R2×m

2q , where h(k) = H · S(k)

(in),π
∈ R2

q .

4: Call L2RS.Lift(A, a
(k)

(in),π
) to obtain A

(k)
2q,π = (2 ·A,−2 · a(k)

(in),π
+ q) ∈ R2×m

2q .

5: Let u(k) = (u1, . . . , um)T , where ui ← Dnσ , for 1 ≤ i ≤ m.

6: Choose at random cπ+1 ← Sn,κ.
7: for (i = π + 1, π + 2, . . . , w, 1, 2, . . . , π − 1) do
8: for (1 ≤ k ≤ Nin + 1) do

9: Call L2RS.Lift(A, a
(k)

(in),i
) to obtain A

(k)
2q,i = (2 ·A,−2 · a(k)

(in),i
+ q) ∈ R2×m

2q .

10: Let t
(k)
i = (ti,1, . . . , ti,m)T , where ti,j ← Dnσ , for 1 ≤ j ≤ m.

11: Compute ci+1 = H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,i · t

(k)
i + q · ci

}
k∈[Nin+1]

,
{
H

(k)
2q · t

(k)
i + q · ci

}
k∈[Nin+1]

)
.

12: for (1 ≤ k ≤ Nin + 1) do

13: Choose b(k) ← {0, 1}.

14: Choose t(k)π ← Dn×mσ

15: Continue with probability
1

M
otherwise Restart.

16: return σL′ (µ) =
(
c1,
{
t
(k)
1 , . . . , t(k)w

}
k∈[Nin+1]

,
{
h(k)

}
k∈[Nin]

)
.

Forgery 1. Let’s consider the situation that cj+1 is the result after using F which is cj+1 =

H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ′,
{
A

(k)
2q · t′(k) + q · cj

}
k∈[Nin+1]

,
{
H

(k)
2q · t′(k) + q · cj

}
k∈[Nin+1]

)
. Then by com-

paring this with a legitimate signature, we have:

H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q · t(k) + q · cj

}
k∈[Nin+1]

,
{
H

(k)
2q · t(k) + q · cj

}
k∈[Nin+1]

)
=

H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ′,
{
A

(k)
2q · t′(k) + q · cj

}
k∈[Nin+1]

,
{
H

(k)
2q · t′(k) + q · cj

}
k∈[Nin+1]

)
F will find a preimage of cj if µ 6= µ′ or A

(k)
2q · t(k) + q · cj 6= A

(k)
2q · t′(k) + q · cj or

H
(k)
2q · t(k) + q · cj 6= H

(k)
2q · t′(k) + q · cj . Then, we have with overwhelming probability that µ = µ′ and
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A
(k)
2q · t(k) + q · cj = A

(k)
2q · t′(k) + q · cj and H

(k)
2q · t(k) + q · cj = H

(k)
2q · t′(k) + q · cj . These equalities will

result in: A
(k)
2q (t(k)− t′(k)) = 0 mod q and H

(k)
2q (t(k)− t′(k)) = 0 mod q. We assume that both t and t′ are

different and they met the MIMO.L2RS.SigVer conditions, so it yields t−t′ 6= 0 mod q, and ‖t−t′‖ ≤ 2βv.

Forgery 2. In this scenario, we assume that the MIMO.L2RS scheme can be forged by an attacker F as it
was presented in the Forgery 1 and obtain cj , then another attacker can generate (c′j , . . . , c

′
w)← Sn,κ

by replaying the first attack and using same message µ. We use the forking lemma [3] to show the
probability of cj = c′j and the forger uses an oracle response c′j is at least:

(
δ − 1

|Sn,κ|

)
·

(
δ− 1
|Sn,κ|
y − 1

|Sn,κ|

)
(27)

Therefore, with the probability (27), F creates a signature σL(µ) =(
c′1,
{
t
′(k)
1 , . . . , t

′(k)
w

}
k∈[Nin+1]

,
{
h(k)

}
k∈[Nin]

)
where A

(k)
2q · t(k) + q · cj = A

(k)
2q · t′(k) + q · cj and

H
(k)
2q · t(k) + q · cj = H

(k)
2q · t′(k) + q · cj . We now obtained: A

(k)
2q · (t(k) − t

′(k)) = q(cj − c′j) mod 2q

and H
(k)
2q · (t(k) − t

′(k)) = q(cj − c′j) mod 2q. Since cj − c′j 6= 0 mod 2, so in both equations, we

have t(k) − t
′(k) 6= 0 mod 2q where ‖t(k) − t

′(k)‖∞ < q/2. By applying modq reduction, we find a

small non-zero vector v(k) = t(k) − t
′(k) 6= 0 mod q. This v(k) will compute A

(k)
2q · v(k) = 0 mod q and

H
(k)
2q ·v(k) = 0 mod q with ‖v(k)‖ ≤ 2βv. Since v(k) is same for both A

(k)
2q and H

(k)
2q , we only use the former

to continue this analysis. We say that A
(k)
2q mod q = 2(A,−a(k)) mod q, then 2(A,−a(k))v(k) = 0 mod q,

this implies that (A,−a(k))v(k) = 0 mod q, since q is odd. The probability of success of an attacker in
MIMO.L2RS.Hydrid-3 differs by a negligible amount from the success probability in MIMO.L2RS.KeyGen
and is thus non-negligible. Therefore, this vector v will be a solution to the MSISKq,m,k,β problem,

where β = 2βv, with non-negligible probability and with respect to (A,−a(k)) over R2
q. Furthermore,

notice that MIMO.L2RS.Hybrid-2 shown in Algorithm 12 no longer uses the private-key S(k)
π , except

for generating A
(k)
2q,π and H

(k)
2q to obtain the final MSISKq,m,k,β solution. For A

(k)
2q,π, we modified the

MIMO.L2RS.KeyGen algorithm with the MIMO.L2RS.Hydrid-3 game shown in Algorithm 13, where the

public-key a(k) is uniformly and randomly taken as a(k) ← R2
q. On the other hand, for H

(k)
2q , we chose

the linking taq uniformly and randomly as h(k) ← R2
q. By the argument of the Leftover Hash Lemma

(LHL) - Lemma 5 and our assumption that
√

q4n

2(γ+1)·(m−1)·n is negligible in n.

Algorithm 13 MIMO.L2RS.Hybrid-3 (a,S)

Input: Pub-Param: A.
Output: (a,S), being the public-key and the private-key, respectively.
1: procedure MIMO.L2RS.hybrid-3(A)

2: Let ST = (s1, . . . , sm−1) ∈ R1×(m−1)
q , where si ← (−2γ , 2γ)n, for 1 ≤ i ≤ m− 1

3: Choose a←R2
q

4: return (a,S).

ut

G MIMO.L2RS - Security Analysis - Anonymity

Proof. We prove the anonymity of this scheme using the sequence-of-games approach [32] where we make
changes between successive games. In doing so, we use the “transition based on indistinguishability”. We
can start this analysis by:
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Game 0: Suppose that an attacker A is given the list of pk’s L = {a(k)
0 ,a

(k)
1 }k∈[Nin+1], the signature

σL(µ), message µ, and the random oracle model (H1). The key generation algorithm creates the pair of

users’ keys in this ring signature: Private-Keys← {S(k)
0 ,S

(k)
1 }k∈[Nin+1] and the Public-Keys← (a

(k)
0 ,a

(k)
1 );

a user b is chosen uniformly at random from the list L = {a(k)
0 ,a

(k)
1 }, then the signature σL(µ) =

MIMO.L2RS.SigGen(S
(k)
b , µ, L,Pub-Param) is generated. So in Game 0, a PPT adversary A outputs a

guess b′ ∈ {0, 1}; thus in the event Game 0, A succeeds in breaking ambiguity Game 0(b = b′) if
Pr[Game 0] ≤ 1

2 + non− negl(λ).

Game 1: Changes in this game are made to the user π in the second part of the linkability tag
h(k) = (H · S(k)) ∈ R2

q, in signature of user π, and public-key a(k) = (A · S(k)) ∈ R2
q in the

MIMO.L2RS.KeyGen algorithm. The h(k) and a(k) are now randomly chosen from R2
q. We claim that

|Pr[Game 0]− Pr[Game 1]| ≤ εLHLG1
.

Where εLHLG1
is the advantage of some efficient algorithm which is negligible. In both cases h(k) =

(H · S(k)) ∈ R2
q and a(k) = (A · S(k)) ∈ R2

q, we know that H and A are uniform and S(k) is chosen small

and with coefficients in (−2γ , 2γ). When S(k) is multiplied by H and A respectively, it gives h(k) and
a(k) that are close to uniform over R2

q . By applying the Leftover Hash Lemma (LHL) - Lemma 5, the

statistical distance between the distribution of (h(k) mod q and a(k) mod q) and the uniform distribution

on R2
q ×R2

q is at most n · 1
2 ·
√

q4n

2(γ+1)·(m−1)·n . We conclude that in Game 1:

|Pr[Game 0]− Pr[Game 1]| ≤ n · 1
2 ·
√

q4n

2(γ+1)·(m−1)·n . (28)

Game 2: This time a change is made in the second part of the remaining public-keys ai (1 ≤ i ≤ w, i 6= π)

which are in the ring signature list L. They are now randomly chosen as a
(k)
i ← R2

q. It turns out that
|Pr[Game 1]− Pr[Game 2]| ≤ εLHLG2

.
Where εLHLG2

is the advantage of some efficient algorithm which is negligible. We consider that for

(i = 1 to w where i 6= π), we know that a
(k)
i = (A · S(k)

i mod q) are uniform and all S
(k)
i ’s are chosen

small with coefficients in (−2γ , 2γ). When the S
(k)
i ’s are multiplied by Ai’s, it gives (a

(k)
i mod q)’s that

are close to uniform over R2
q. By applying the Leftover Hash Lemma (LHL) - Lemma 5, the statistical

distance between the distribution of the (A · S(k)
i mod q)’s and the uniform distribution on R2

q × R2
q is

at most n · 1
2 ·
√

q2n

2(γ+1)·(m−1)·n · (w − 1). So in Game 2, we conclude that:

|Pr[Game 1]− Pr[Game 2]| ≤ n · 1
2 ·
√

q2n

2(γ+1)·(m−1)·n · (w − 1). (29)

Game 3: At this time, we make a change in cπ+1. Instead of programming the ora-

cle as H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,π · u(k)

}
k∈[Nin+1]

,
{
H

(k)
2q · u(k)

}
k∈[Nin+1]

)
, it is now ran-

domly chosen cπ+1 ← Sn,κ. We have that |Pr[Game 2] − Pr[Game 3]| ≤ εG3 where
εG3 is the advantage of some efficient algorithm which is negligible. This scenario outputs

a signature σL′(µ) =
(
c1,
{
t
(k)
1 , . . . , t

(k)
w

}
k∈[Nin+1]

,
{
h(k)

}
k∈[Nin]

)
and programs the oracle as

H1

(
L′,
{
H

(k)
2q

}
k∈[Nin+1]

, µ,
{
A

(k)
2q,π · u(k)

}
k∈[Nin+1]

,
{
H

(k)
2q · u(k)

}
k∈[Nin+1]

)
= cπ+1. Then, the adversary

A makes h queries to H1; so the distinguishing advantage of the signing algorithm and the one in Game
2 is at most h · 2−n+1. We conclude that in Game 3:

|Pr[Game 2]− Pr[Game 3]| ≤ h · 2−n+1. (30)

Game 4: In this game a change is made in t
(k)
π . Namely, instead of computing it as u(k) + S

(k)
2q,π · cπ ·

(−1)bit, it is now directly chosen from the Gaussian distribution Dn
σ . It is argued that |Pr[Game 3] −

Pr[Game 4]| ≤ εRSG4
.
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Where εRSG4
is the advantage of some efficient algorithm which is negligible. In previous Games, t

(k)
π

is computed using rejection sampling - Lemma 1, thus it is always sample from the Gaussian distribution

Dn
σ . In this Game, however, t

(k)
π is directly chosen from Dn

σ , this means that the advantage εRSG4
will be

zero as in both Game 3 and Game 4, t
(k)
π is having same distribution. In Game 4, we have:

|Pr[Game 3]− Pr[Game 4]| = 0. (31)

Game 5: Finally, in the Game 5, a change is made in the index π. Namely, instead of choosing π + 1,
it will be randomly chosen (1, . . . , w). We claim that |Pr[Game 4] − Pr[Game 5]| ≤ εG5 where εG5 is
the advantage of some efficient algorithm which is negligible. In this Game 5, we consider that when π
is replaced by a fixed d, it might produce some collisions with previous queries to the oracle H1; saying
this, the adversary A may make h queries to H1; therefore, the distinguishing advantage of the signing
algorithm between Game 4 and this Game 5 is at most h · 2−n+1 · w. Finally, in Game 5 we have:

|Pr[Game 4]− Pr[Game 5]| ≤ h · 2−n+1 · w. (32)

We also conclude that in Game 5, the adversary’s view is statistical independent of π, thus Pr[Game 5] =
1
w .
Combining the probabilities of the above games (28), (29), (30), (31) and (32) we obtain:

|Pr[Game 5]− Pr[Game 0]| ≤ |Pr[Game 1]− Pr[Game 0]|+ |Pr[Game 2]−
Pr[Game 1]|+ |Pr[Game 3]− Pr[Game 2]|+ |Pr[Game 4]− Pr[Game 3]|+
|Pr[Game 5]− Pr[Game 4]|.

By replacing the resulting probabilities, we have:

|Pr[Game 5]− Pr[Game 0]| ≤ 1

w
− 1

2
+ ε, (33)

which means that |Pr[Game 5]− Pr[Game 0]| ≤ ε, which itself is smaller than

n · (w − 1)

2
·

(√
q4n

2(γ+1)·(m−1)·n +

√
q2n

2(γ+1)·(m−1)·n

)
+ h · 2−n+1 · (1 + w).

We notice that since h and w are polynomial in n, we get h ·2−n+1 · (1 +w) is negligible in n. In addition,

we can say that

(√
q4n

2(γ+1)·(m−1)·n +
√

q2n

2(γ+1)·(m−1)·n

)
≤ 2 ·

√
q4n

2(γ+1)·(m−1)·n , which is negligible by the

assumption that
√

q2n

2(γ+1)·(m−1)·n is also negligible. Hence we conclude that ε is negligible, meaning that

Pr[Game 0] ≤ 1
2 + ε. ut

H MIMO.L2RS - Security Analysis - Linkability

Proof. We construct the algorithm B for the MSISKq,m,k,β problem. This algorithm runs the linkability
attack game (Def. 11) as follows:

1. B generates using the MIMO.L2RS.KeyGen algorithm all private-keys S
(k)
i ’s with the corresponding

public-keys a
(k)
i ’s, then B gives S(k)

π to the attacker A as a response to the attacker’s CO query.
2. A outputs two signatures σL(µ1) and σ′L′(µ

′) along with their corresponding lists L and L′ such that
both signatures are successfully verified by MIMO.L2RS.SigVer, but the linkability tags are different

h(k)
µ1
6= h

(k)
µ′ with k ∈ [Nin].
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3. B computes h(k)
µπ = H · S(k)

π mod q, where π is the true signer’s π linkability tag. This h(k)
µπ tag can

then be compared with the linkability tags h(k)
µ1

and h
(k)
µ′ , output by A, in step 2, and one of them

will be different.
4. Without loss of generality, suppose h(k)

µ1
6= h(k)

µπ mod q. Using the forking lemma [3], B rewinds
the attacker A to the H1 query corresponding to the MIMO.L2RS.SigVer of the signature σL(µ1).
B reruns A with a different response of H1 and ultimately gets another signature: σL(µ2) =(
c1,µ2 ,

{
t
(k)
1,µ2

, . . . , t
(k)
w,µ2

}
k∈[Nin+1]

,
{
h(k)
µ2

}
k∈[Nin]

)
. This second signature is used to extract a solu-

tion to the MSISKq,m,k,β problem, in case the A finds an efficient way to unlink these signatures, as
shown in step 7.

5. The adversary A matches the challenge message of both signatures where H
(k)
2q,µ1

and A
(k)
2q,w,µ1

are
kept. Thus we have:

(a) A
(k)
2q,w,µ1

· t(k)
w,µ1 + q · cw,µ1

= A
(k)
2q,w,µ1

· t(k)
w,µ2 + q · cw,µ2

,

(b) H
(k)
2q,µ1

· t(k)
w,µ1 + q · cw,µ1 = H

(k)
2q,µ1

· t(k)
w,µ2 + q · cw,µ2 .

These expressions can be represented as:

(a) A
(k)
2q,w,µ1

· (t(k)
w,µ1 − t

(k)
w,µ2) = q · (cw,µ2

− cw,µ1
),

(b) H
(k)
2q,µ1

· (t(k)
w,µ1 − t

(k)
w,µ2) = q · (cw,µ2

− cw,µ1
).

Reducing them modq we have (if (cw,µ2 − cw,µ1) 6= 0 mod 2):

(a) A
(k)
2q,w,µ1

· (t(k)
w,µ1 − t

(k)
w,µ2) = 0 mod q,

(b) H
(k)
2q,µ1

· (t(k)
w,µ1 − t

(k)
w,µ2) = 0 mod q.

We denote by t
′(k)
w,µ1 , the first (m − 1) ring elements in t

(k)
w,µ1 and by t

′′(k)
w,µ1the m-th ring element in

t
(k)
w,µ1 , i.e. t

(k)
w,µ1 − t

(k)
w,µ2 =

(
t
′(k)
w,µ1 − t

′(k)
w,µ2

t
′′(k)
w,µ1 − t

′′(k)
w,µ2

)
∈ Rmq , and using the public-key and linkability parts, we

have:
(a) 2 ·A · (t′(k)

w,µ1 − t
′(k)
w,µ2) = −2 · a(k) · (t′′(k)

w,µ1 − t
′′(k)
w,µ2),

(b) 2 ·H · (t′(k)
w,µ1 − t

′(k)
w,µ2) = −2 · h(k)

µ1
· (t′′(k)

w,µ1 − t
′′(k)
w,µ2), where h(k)

µ1
, H · S(k)

π ∈ R2
q.

6. We let S̄
(k)

=
(t′(k)w,µ1

−t′(k)w,µ2
)

(t
′′(k)
w,µ1

−t′′(k)w,µ2
)

mod q where (t
′′(k)
w,µ1 − t

′′(k)
w,µ2) 6= 0 mod q. We distinguish two cases:

(a) If S̄
(k) 6= S(k)

π mod q, since we have A · S̄(k)
= A ·S(k)

π = a(k) mod q, then (S̄
(k) −S(k)) is a small

non-zero vector MSISKq,m,k,β solution for A ∈ R2×(m−1)
q .

(b) If S̄
(k)

= S(k)
π mod q, then h(k)

µ1
= H · S̄(k)

mod q = H · S(k)
π mod q. The target is to show that

h(k)
µ1

= h(k)
µπ mod 2 and h(k)

µ1
= h(k)

µπ mod q. If so, then we have h(k)
µ1

= h(k)
µπ mod 2q, which is a

contradiction with our assumption at step 4 of this proof. We now prove the first target:

h(k)
µ1

= −2 · h′(k)
µ1

+ q = 1 mod 2 = −2 ·H · S(k)
π + q = h(k)

µπ ,

where the first and the last equalities follow from definition of h(k) in second line of Algorithm 2.
To show the second target, we have

h(k)
µ1

= −2 · h(k)
µ1

+ q = −2 · h(k)
µ1

mod q

= −2 ·H · S̄(k)
mod q = −2 ·H · S(k)

π mod q = h(k)
µπ ,

where the first and the last equalities follow from definition of h(k) in second line of Algorithm 2
and the middle equality is true based on the argument at the beginning of step (6.b).

7. Since (cw,µ2 − cw,µ1) 6= 0 mod 2, we have (t
(k)
w,µ1 − t

(k)
w,µ2) 6= 0 mod 2q. In addition, we know that

‖t(k)
w,µ1 − t

(k)
w,µ2‖∞ < q/2, which implies that (t

(k)
w,µ1 − t

(k)
w,µ2) 6= 0 mod q. Ultimately, we have A ·

(t
(k)
w,µ1 − t

(k)
w,µ2) = 0 mod q and ‖(t(k)

w,µ1 − t
(k)
w,µ2) mod q‖ ≤ 2βv. Therefore, this small non-zero vector

(t
(k)
w,µ1 − t

(k)
w,µ2) is the output of the algorithm B, and this vector is a solution to the MSISKq,m,k,β

problem with β = 2βv for a(k) ∈ R2
q.

ut
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I MIMO.L2RS - Security Analysis - Non-Slanderability

Proof. Let’s suppose there is a non-slanderability adversary ASland who is given pki, ski, i 6= π, and i ∈
{1, . . . w}, and he produces a valid signature σ′L(µ) with linkability tag hσ′L(µ) which is equal to hσL(µ),
σL(µ) being the legitimate signature generated with respect to skπ. This means that ASland can create
a signature with the linkability tag hσL(µ) without knowing skπ. The adversary can also compute a valid
σ′′L(µ) with ski, i 6= π, and i ∈ {1, . . . w} for which hσ′′L(µ) 6= hσ′L(µ). We give (σ′′L(µ), σ′L(µ)) to the forger,

which can turn it to an MSISKq,m,k,β solution. In particular, it will be computationally secure when two
valid signatures created by different users are unlinked using the L2RS algorithms. An adversary A will
break these properties with negligible probability as demonstrated in Theorems (9 and 11), and with
these probabilities the A will find a MSISKq,m,k,β solution. Therefore, non-slanderability is implied by the
definitions of the unforgeability (Def. 9) and linkability (Def. 11), and security analysis, (Appendix F)
and (Appendix H), respectively. ut


