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Abstract. Unlike linear secret sharing, very little is known about abelian
secret sharing. In this paper, we present two results on abelian secret
sharing. First, we show that the information ratio of access structures
(or more generally access functions) remain invariant for the class of
abelian schemes with respect to duality. Then, we prove that abelian
secret sharing schemes are superior to the linear ones.
New techniques and insight are used to achieve both results. Our result
on abelian duality is proved using the notion of Pontryagin duality. The
intuition behind the usefulness of this tool is to work with an equivalent
definition of linear secret sharing, which is less prevalent in the literature,
to make it possible to extend the result on linear duality to abelian
duality.
We develop a new method for proving lower bound on the linear in-
formation ratio of access structures that can work not only for general
linear secret sharing but also for linear schemes on finite fields with a spe-
cific characteristic. Unlike the common lower bound techniques, which
are usually either based on rank/information inequalities or based on
counting/combinatorial-algebraic arguments, our method is linear alge-
braic in essence. We apply our method to the Fano and non-Fano access
structures for the characteristics on which they are not ideal.
We then show in a straightforward way that for their union—a well-
known 12-participant access structure—the abelian schemes are superior
to the linear ones.

Keywords: Secret sharing · Access structure · Duality · Characteristic-
dependent information ratio · Abelian secret sharing .

1 Introduction

A (total) secret sharing scheme [Sha79, Bla79, ISN89] is a method that allows
a dealer to share a secret among a set of participants such that only certain
qualified subsets of participants are able to reconstruct the secret. The secret
must remain information theoretically hidden from the remaining subsets, called
unqualified. The collection of all qualified subsets is called an access structure,
which is supposed to be monotone, i.e., closed under the superset operation.

The notion of access function [FHKP17]—a generalization of the definition of
an access structure—allows non-total reconstruction of secret by different subsets
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of participants. This concept has been matured by building on a sequence of
previous works [BM84,KOS`93,SRR02,SC02]. An access function is a monotone
real function that specifies the percentage of the information on the secret that
is obtained by each subset of participants. An access structure corresponds to a
total access function which allows all-or-nothing recovery of the secret. An access
function can be associated to a secret sharing scheme naturally.

The information ratio [BS92, BSSV92, Mar93] of a participant in a secret
sharing scheme is defined as the ratio of the size of his share and the size of
the secret. The information ratio of a secret sharing scheme is the maximum
(also sometimes defined as the average) of all participants’ information ratios.
The information ratio of an access structure is defined as the infimum of the
information ratios of all secret sharing schemes that realize it. When we restrict
to the class of linear/abelian schemes, we call it the linear/abelian information
ratio.

The dual of an access structure [JM94] is another access structure whose
qualified subsets corresponds to the complement of unqualified subsets of the
original access structure. The definition of duality can be extended to access
functions in a natural way [FHKP17]. The relation between the information ratio
of dual access structures is an open problem, even when the access structure is
assumed to be ideal (i.e., those realizable with information ratio one). But it is
known to coincide for the class of linear secret sharing schemes [JM94,FHKP17].

Computation of information ratio of access structures has turned out to be a
very difficult problem. Despite several important results (which will be discussed
next), we still lack powerful tools for proving close-to-optimal lower-bounds and
upper-bounds on the information ratio of access structures. As an examples, the
exact values of information ratios of several access structures on five [JM96] and
six [VD95] participants are still open and the computation of their optimal linear
information ratios have very recently been finalized [FKMP18,GK18].

It is simple to construct a secret sharing scheme realizing any access struc-
ture on n participants with information ratio 2n [ISN89], which can be improved
to 2n´opnq [BL88]. It is generally believed that the exponential upper bound is
tight for most access structures [Bei11]. This upper-bound has been recently re-
duced in [LV18a] to 2p1´εqn for some small constant ε ą 0, using a cryptographic
primitive called conditional disclosure of secrets (CDS) [GIKM00]. This primi-
tive has proved useful for constructing secret sharing schemes in several recent
works [BIKK14,BFMP17,LVW17,BKN18], in particular, for special classes of ac-
cess structures which are extensions of forbidden graph access structures [SS97].
Another method for finding an upper-bound on the information ratio of access
structures (especially those on a small number of participants) is the Stinson’s
decomposition method [Sti92] and its variants [vDKST06,SC02,GK18].

A review on known lower bound techniques. There are mainly two dif-
ferent approaches for determining a lower bound on the information ratio of an
access structure.

The first one is based on the properties of entropy of random variables. The
so-called Shannon-type information inequalities, were first used by Capocelli, De
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Santis, Gargano and Vaccaro [CSGV93] due to the connection between Shannon
entropies and polymatroids. The method was later refined by Csirmaz [Csi94],
using which he could prove his well-known Ωpn{ log nq lower bound on informa-
tion ratio. The method was further improved in [BLP08] by taking into account
the so-called non-Shannon-type information inequities [ZY97] for general secret
sharing or rank inequalities [Ing71,DFZ09] for linear secret sharing schemes. A
recent modification by Farràs, Kaced, Molleví and Padró [FKMP18] takes ad-
vantage of the non-Shannon-type information inequalities implicitly by using the
so-called Ahlswede-Körner [CK11] and common information [DFZ09] properties,
for deriving lower bounds on general and abelian secret sharing, respectively.

The second method is based on counting and combinatorial-algebraic argu-
ments, first introduced by Beimel, Gál and Paterson [BGP97], based on the
equivalence of secret sharing schemes and monotone span programs [KW93].
This method has been mainly applied to scaler-linear1 secret sharing (i.e., when
the secret is a single field element) and was refined in [BGK`96, BGW99].
The method was further improved by Gál in [Gál98], based on combinatorial-
algebraic ideas of Raz [Raz90], to prove a Ωpnlognq lower-bound. Building on
ideas from [GP03], Gál’s lower-bound was later shown in [BBPT14] to hold for
(multi-)linear secret sharing as well. An exponential lower bound on scaler-linear
secret sharing has been recently proved in [PR18] along the same lines. Lower
bounds, merely based on counting arguments, have also been applied to the
class of forbidden graph access structures [SS97] and their generalization known
as uniform access structures [AA18,BKN18,LV18b], respectively, in [BFMP17]
and [ABF`19].

We remark that the entropy method finds a lower bound for arbitrarily
long secrets but it fails to work for restricted situations (e.g., for a specific
secret space size or dimension). However, as discussed above, they have the
potential to be applied on linear and abelian schemes. On the other hand, all
combinatorial-algebraic (and counting) methods are used for scaler-linear secret
sharing schemes (with [BFMP17] being an exception).

1.1 Motivations and contributions

The motivation and contributions of this paper are threefold.

Duality. Duality is a fundamental concept in several mathematical and com-
puter science areas such as linear algebra, group theory, matroids and coding
theory. The duality notion for access structures was first introduced by Jack-
son and Martin in [JM94] and was later extended to access functions by Farràs,
Hansen, Kaced and Padró in [FHKP17]. For every linear secret sharing scheme
there exists a (dual) scheme with the same access function and information ra-
tio [FHKP17] (the case of access structures had already been settled in the initial

1 In this paper, we allow the secret in linear schemes to contain any arbitrary number
of field elements and simply call theme linear. When the secret is a single field
element, we call it scaler-linear.



4 A. Jafari and S. Khazaei

paper). A long standing open problem, with no progress, is if the duality invari-
ance holds for general secret sharing. This problem is even open for the class of
ideal access structures. In this paper, we put one step forward and prove that
the abelian information ratio of access functions remains invariant with respect
to duality.

Characteristic-specific lower bound. Beimel and Weinreb [BW05] have
shown that the choice of underlying finite field characteristic may affect the in-
formation ratio of an access structure. Their method is combinatorial-algebraic
and, in particular, they prove a super-polynomial separation between any two
fields with different characteristics for scaler-linear secret sharing2. Their result
justifies the existence of characteristic-dependent linear rank inequalities, but
explicit examples of such inequalities were later demonstrated by Blasiak, Klein-
berg and Lubetzky in [BKL11] (see [DFZ15] for a follow-up).

Some remarks follow that justifies our motivation for seeking a new tech-
nique. First, we were not able to find a non-trivial lower bound on the access
structures induced by Fano and non-Fano matroids—the smallest characteristic-
dependent access structures—by adding the characteristic-dependent rank in-
equalities from [BKL11] on seven variables to the corresponding linear pro-
gram [Met11, PVY13]. The reason for this failure is not surprising; the suc-
cess of direct use of non-Shannon information inequalities in improving lower
bounds has been quite limited [BLP08,Csi09,Met11, PVY13,Gha13]. As men-
tioned above, the implicit usage of the entropy inequalities has turned out to
be much more advantageous when used in improved linear programming tech-
niques [FKMP18]. Second, unfortunately, the existence of a notion similar to
the Ahlswede-Körner [CK11] or common information [DFZ09] for characteristic-
specific linear random variables is unclear. If such a notion is ever found, it can be
used similarly in an automated linear program. Third, the lower bound method
based on combinatorial-algebraic techniques are not suitable for finding lower
bound on a specific access structure, even those on a small number of partici-
pants.

We provide a new technique, essentially of linear-algebraic nature, which is
useful for finding a lower bound not only on the general linear information ratio
but also characteristic-specific linear information ratio. Our method is currently
useful to be applied to concrete small access structures and it can be easily au-
tomated. As an application, we apply our method to the Fano and non-Fano
access structures on linear schemes with odd and even characteristics, respec-
tively (they are ideal on the opposite characteristic).

To show the power of our method on general linear secret sharing, we also
apply our method to one of the five-participant access structures from [JM96]
which had remained open for a long time and was recently resolved using the
common information method in [FKMP18].

2 It is not clear to us if their result can be extended to hold for (multi-)linear secret
sharing schemes.
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Separation. The first indication of superiority of non-linear schemes (with
short secrets) to scaler-linear schemes was provided by Beimel and Ishai [BI01]
(see [VV15] for a follow-up) as their result was valid assuming some plausible
number-theoretic (or complexity-theoretic) assumption holds true. Later, Beimel
and Weinreb [BW05] proved separation between non-linear and scaler-linear se-
cret sharing without relying on any assumption. Recently, such separation has
been proved by Liu, Vaikuntanathan and Wee [LVW17], for the class of forbidden
graph access structures using their connection to the CDS primitive [GIKM00].

Simonis and Ashikhmin have shown that (multi-)linear secret sharing is more
powerful than the scaler-linear secret sharing [SA98] by studying the access struc-
ture induced by the Non-Pappus matroid (see [BBPT14] for stronger results).
Applebaum and Arkis [AA18] have further discussed the power of amortization
in secret sharing.

To the best of our knowledge, there is no result that shows non-linear secret
sharing schemes are more powerful than (multi-)linear ones; nor, any result com-
paring abelian schemes with linear or non-abelian ones. We prove that abelian
schemes outperform (multi-)linear schemes and provide some evidence that non-
abelian schemes are more powerful than abelian ones.

We study the F ` N access structure—a 12-participant access structure
which is the sum (union) of the Fano (F) and non-Fano (N ) access structures—
introduced independently by Matús [Mat07] and Beimel-Livne [BL08]. The in-
formation ratio of this access structure is 1, without addmiting an ideal scheme;
but, the exact value of its linear information ratio is unknown. We remark that
even though the earlier results show that this access structure does not admit an
ideal linear scheme, they do not refute that its linear information ratio might be
one. Our results on the characteristic-specific linear information ratio of the Fano
and non-Fano access structures readily determine the optimal linear information
ratio of F ` N (max“ 4{3 and average“ 41{36). Additionally, we provide an
upper bound on its abelian information ratio (maxď 7{6 and averageď 41{36),
proving separation between linear and abelian (and consequently non-linear)
secret sharing schemes.

Currently, the best known technique for finding a non-trivial lower bound
on the abelian information ratio of a given (small) access structure is to use
the common information property [FHKP17] in an automated linear program.
Unfortunately, computers are rather useless to work for F `N due to the huge
size of the linear program. Nevertheless, clever manual calculations my be a more
appropriate tool in this case. Therefore, it remains open if our abelian upper-
bound is tight. But we conjecture that the abelian information ratio of F `N is
strictly greater than one. If true, superiority of non-abelian schemes to abelian
ones is verified.

1.2 A technical overview on our approach

In this section, we provide an informal description of ideas used in this paper.
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Working with a convenient definition of linear schemes. A linear se-
cret sharing can equivalently be described in terms of linear maps over a fi-
nite field [Bri89, Kot84], linear codes [Mas93,MS81] or multi-target monotone
span programs [KW93,Bei11]. The latter one, essentially defines a secret shar-
ing scheme as a collection of vector spaces3. We find this simple definition a
convenient abstraction to work with for the same reason that vector spaces fur-
nish an abstract and coordinate-free way of dealing with different objects.

To summarize, we simply define a linear secret sharing on a set P of par-
ticipants as a collection pTiqiPt0uYP of subspaces of a vector space T of finite
dimension over some finite field, where T0 is the secret subspace and Ti is the
share subspace of participant i P P . We then explain how this spaces can be
used to introduce a secret sharing scheme, i.e., a vector of jointly distributed
random variables pSiqiPQ, where Q “ P Y t0u. Let T˚ denote the dual space of
T . The maps µi : T˚ Ñ T˚i defined by α Ñ α|Ti

and the uniform probability
distribution T ˚ on T˚ induce a random vector pSiqiPQ “

`

µipT
˚
q
˘

iPQ

The value of the access function of a secret sharing scheme on a subset
A Ď P , denoted by ΦpAq, is the normalized amount of information gained by
the participant set A about the secret. One can verify that for every A Ď P , we
have ΦpAq “ dimpTA X T0q{dimT0 where TA “

ř

iPA Ti. It is also easy to see
that the information ratio of participant i P P is dimpTiq{dimpT0q.

An alternative description of linear duality of [FHKP17]. The proof of
the duality of linear secret sharing schemes in [FHKP17] is based on the definition
of linear schemes as a collection of linear maps. In the following, we provide an
alternative description based on the definition as a collection of vector spaces in
a way that it can be easily extended to secret sharing based on abelian groups.
Consider the vector subspace C Ď

ś

iPQ Ti formed by the vectors pxiqiPQ P
ś

iPQ Ti satisfying
ř

iPQ xi “ 0. The uniform probability distribution on C and
the projections C Ñ Ti define a random vector pS˚i qiPQ. It is not difficult to
check that the linear secret sharing scheme determined by pS˚i qiPQ coincides
with the dual of the linear secret sharing scheme given by pSiqiPQ; that is, they
have the same information ratio and their access functions are dual of each other.
In particular, its access function is Φ˚pAq “ 1´ΦpP zAq, which is the definition
of the dual of an access function [FHKP17].

Abelian schemes, Pontryagin dual and Abelian duality. The definition
of a linear scheme as a collection of subspaces of some vector space may jus-
tify to define an abelian scheme as a collection of subgroups of some abelian
group. Using the notion of Pontryagin duality, we will show that this definition
is equivalent to a more natural definition based on group-characterizable random
variables [Cha07] whose main groups are abelian. See Section 3 for details.

The Pontryagin dual of an abelian group G, denoted by pG, is the group of
all homomorphism from G to C˚, the multiplicative group of non-zero complex
3 This has been explicitly mentioned in the introduction of [KW93], but another defi-
nition mentioned in the body of the paper has been exclusively used in the literature.
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numbers. This notion also plays a crucial role in extending the linear duality of
secret sharing schemes in a straightforward way.

A collection pGiqiPQ of subgroups of an abelian group G induces an (abelian)
secret sharing scheme just as in the linear case, except that the vector space
duality is replaced with Pontryagin duality. More precisely, the maps pG Ñ xGi
defined by α Ñ α|Gi

and the uniform probability distribution on pG define a
random vector pSiqiPQ. It is easy to show that the information ratio of participant
i P P and the value of access function on a subset A Ď P of participants are
log |Gi|{ log |G0| and ΦpAq “ log |GA X G0|{ log |G0|, respectively, where GA “
ř

iPAGi.
Consider now the subgroup C Ď

ś

iPQGi whose elements are the vectors
pxiqiPQ P

ś

iPQGi satisfying
ř

iPQ xi “ 0. As before, the uniform probability
distribution on C and the projections C Ñ Gi define a random vector pS˚i qiPQ.
Using the isomorphism theorems, one can prove that the secret sharing schemes
defined by those two random vectors are dual of each other; that is, they have
the same information ratio and their access functions are dual of each other.
Details are given in Section 4.

Our lower bound technique. Let pTiqiPQ be a linear secret sharing for a
given access structure. We show that for every minimal qualified subset A Ď

P , and every participant i P A, there is a subspace V Ai of Ti of dimension
equal to dimT0 (i.e., the secret dimension), such that it is a minimal subspace;
that is, no smaller subspace can recover the whole secret together with other
parities corresponding subspaces (i.e., tTiuiPA´tiu). Now if a participant i P P
belongs to several minimal qualified subsets, one has several such subspaces of
Ti. If one can show that the intersection of these subspaces is small, then it
is concluded that the subspace Ti must have a big dimension. Our idea is to
consider a collection of these intersections of subspaces associated to different
minimal qualified sets and to use certain notions from linear algebra to show
that the sum of dimensions of these intersections has a non-trivial upper bound.
To do this, often the characteristic of the underlying finite field plays a crucial
role. See Section 5 for details.

1.3 Paper organization

In Section 2, we present the required preliminaries and introduce our notation.
In Section 3, we study the group-characterizable secret sharing schemes and
their connection to the linear and abelian ones. Section 4 presents the duality of
abelian schemes. In Section 5, we introduce our new lower-bound technique and
apply it to three access structures. In Section 6, we discuss separation between
linear and abelian secret sharing. Finally, we conclude the paper in Section 7.

2 Secret sharing schemes

In this section, we provide the basic background along with some notations and
conventions. We refer the reader to Beimel’s survey [Bei11] on secret sharing.
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We assume that the reader is comfortable with basic concepts from group theory
and linear algebra.

General notations. We use random variables and distributions interchange-
ably and use boldface characters for them. All random variables are discrete in
this paper. The Shannon entropy of a random variable X is denoted by HpXq,
and the mutual information of random variables X,Y , denoted by IpX : Y q.
For a positive integer m, we use rms to represent the set t1, . . . ,mu. Throughout
the paper, P “ tp1, . . . , pnu stands for a finite set of participants. A distinguished
participant p0 R P is called dealer and we notate Q “ P Ytp0u. Unless otherwise
stated, we identify the participant pi with its index i; i.e., Q “ t0, 1, . . . , nu. The
set of positive integers and real numbers are respectively denoted by N and R.
All logarithms are to the base two. The closure of a topological set X is denoted
by X , defined as the union of X with all its limit points.

Definition 2.1 (Access structure) A non-empty subset Γ Ď 2P , withH R Γ ,
is called an access structure on P if it is monotone; that is, A Ď B Ď P and
A P Γ imply that that B P Γ .

A subset A Ď P is called qualified if A P Γ ; otherwise, it is called unqualified.
A qualified subset is called minimal if none of its proper subsets is qualified.

Definition 2.2 (Access function [FHKP17]) A mapping Φ : 2P Ñ r0, 1s
is called an access function if ΦpHq “ 0 and it is monotone; i.e., A Ď B Ď

P implies that ΦpAq ď ΦpBq. An access function is called rational if ΦpAq is
rational for every subset A and called total if ΦpAq P t0, 1u.

Definition 2.3 (Secret sharing scheme) A tuple Π “
`

Si
˘

iPQ
of jointly dis-

tributed random variables, with finite supports, is called a secret sharing scheme
on participant set P when HpS0q ą 0. The random variable S0 is called the
secret random variable and its support is called the secret space. The random
variable Si, for any participant i P P , is called the share random variable of the
participant i and its support is called his share space.

A secret sharing scheme is used as follows. A dealer samples a tuple
`

si
˘

iPQ

according to the distribution Π and keep s0 as the secret for himself. He then
privately passes each share si to participant i P P .

The most common definition of a linear scheme is based on linear maps, given
below. In Section 3.3, we provide an equivalent definition based on its connection
to group-characterizable and abelian schemes.

Definition 2.4 (Linear scheme) A secret sharing scheme Π “ pSiqiPQ is
said to be F-linear (or simply linear) if there are finite dimensional F-vector
spaces E and pEiqiPQ, and F-linear maps µi : E Ñ Ei, i P Q, such that
Si “ µipEq, where E is the uniform distribution on E. It is called p-linear
if the characteristic of F is p, a prime.
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Definition 2.5 (Total realization) We say that a secret sharing
`

Si
˘

iPQ
is a

(total) scheme for Γ , or it (totally) realizes Γ , if the following two hold:

(Correctness) HpS0|SAq “ 0 for every qualified set A P Γ and,
(Privacy) IpS0 : SBq “ 0 for every unqualified set B P Γ c,

where SA “ pSiqiPA for a subset A Ď P .

Definition 2.6 (Access function and convec of a scheme) The access func-
tion and the convec of a secret sharing scheme Π “

`

Si
˘

iPQ
are respectively

denoted by ΦΠ and cvpΠq and defined as follows:

ΦΠpAq “
IpS0 : SAq

HpS0q
, cvpΠq “

´HpSiq

HpS0q

¯

iPP
.

Information ratio and convec set. Convec is short for contribution vec-
tor [JM96] and a norm on it can be used as a measure of efficiency of a secret
sharing scheme. The convec set of an access structure can be defined with respect
to a class of secret sharing schemes (e.g., linear, group-characterizable, abelian,
etc).

Definition 2.7 (Convec set) The convec set of an access structure Γ , denoted
by ΣpΓ q, is defined as the set of all convecs of all secret sharing schemes that
realize Γ . When we restrict to the class C of secret sharing schemes, we use the
notation ΣCpΓ q.

The maximum and average information ratios of an access structure Γ on n
participants, with respect to the class C of schemes, are respectively defined as:

mintmaxpxq : x P ΣCpΓ qu and 1
n mint

řn
i“1 xi : px1, . . . , xnq P ΣCpΓ qu .

3 Secret sharing based on groups ad vector spaces

The notion of group-characterizable random variables was introduced by Chan
and Yeung in [CY02]. We believe that group-characterizable secret sharing schemes
provide an interesting playground for studying non-linear secret sharing schemes.
We refer to [?] and [KKP19] for some recent results on group-characterizable se-
cret sharing schemes. In this section, we draw a line between, linear, abelian and
group-characterizable secret sharing schemes.

3.1 Group-characterizable schemes

Definition 3.1 (Group-characterizable scheme [CY02]) Let G be a finite
group, called the main group, and G0, G1, . . . , Gn be subgroups of G. We refer to
the tuple pG : G0, G1, . . . , Gnq as a group-characterizable secret sharing scheme
if |G|{|G0| ě 2.
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For a group-characterizable scheme Π “ pG : G0, G1, . . . , Gnq, the uniform
probability distribution g on G and the quotient maps G Ñ G{Gi determine
a vector of jointly distributed random variables pSiqiPQ by letting Si “ gGi.
That is, the support of Si is the left cosets of Gi in G. More generally, it can be
shown that for every A Ď rns, the marginal random variable SA is uniform on
its support G{GA where GA “

Ş

iPAGi. It is then easy to verify that

ΦΠpAq “
log

`

|G|{|GA ˚G0|
˘

log
`

|G|{|G0|
˘ , cvpΠq “

´ log
`

|G|{|Gi|
˘

log
`

|G|{|G0|
˘

¯

iPrns
. (3.1)

3.2 Abelian schemes

A group-characterizable scheme is called abelian if its main group is abelian. In
this section, using the notion of Pontryagin duality, we prove that this definition
is equivalent to the following one, which we will work with in this paper.

Definition 3.2 (Abelian scheme) A tuple Π “ pG;G0, G1, . . . , Gnq is called
an abelian secret sharing scheme if G is a finite abelian group and Gi’s are
subgroups of G with |G0| ě 2. When there is no confusion, we simply write
Π “ pGiqiPQ.

As we will see, the access function and the convec of an abelian scheme
Π “ pG;G0, G1, . . . , Gnq, are computed as follows:

ΦΠpAq “
log |G0 XGA|

log |G0|
, cvpΠq “

´ log |Gi|

log |G0|

¯

iPrns
, (3.2)

where GA “
ř

iPAGi.
Before showing the equivalence of the two definitions, let us recall the defi-

nition of Pontryagin duality.

Definition 3.3 (Pontryagin dual) The Pontryagin dual of an abelian group
G, denoted by pG, is the group of all homomorphism from G to C˚, where C˚ is
the multiplicative group of non-zero complex numbers. In other words,

pG “ HompG,C˚q “ tα : GÑ C˚|αp0q “ 1, αpa` bq “ αpaqαpbqu .

It is well-known that | pG| “ |G| and in fact pG – G, i.e., pG and G are isomor-
phic.

Equivalence. Let Π “ pG;G0, G1, . . . , Gnq be an abelian scheme w.r.t. Defini-
tion 3.2 and define:

GKi “ tα P
pG : αpxq “ 1 for every x P Giu .
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That is, GKi is the kernel of the restriction map pGÑ xGi defined by αÑ α|Gi
.

Now, the uniform probability distribution pg on pG and the maps µi : pG Ñ
pG{GKi determine a joint distribution pSiqiPQ “

`

µippgq
˘

iPQ
, which we call the

secret sharing scheme induced by Π. Clearly, the group-characterizable scheme
pΠ “ p pG : GK0 , G

K
1 , . . . , G

K
n q is abelian w.r.t. Definition 3.1 and induces the same

distribution. Notice that the same transformation takes pΠ intoΠ isomorphically.
We now show the equivalence of relations (3.1) and (3.2). Since the onto

homomorphism pGÑ xGi defined by αÑ α|Gi has kernel GKi , we get an isomor-
phism

pG{GKi –
xGi – Gi .

Therefore, | pG{GKi | “ |Gi|, implying cvp pΠq “ cvpΠq.
To show the access function equality, we need to show that

pG

GKA `G
K
0

“ |GA XG0| ,

where GKA “
Ş

iPAG
K
i . By the following easy-to-prove lemma, the kernel of the

restriction map pGÑ {GA XG0 is GKA `G
K
0 . So

pG

GKA `G
K
0

– {GA XG0 – GA XG0 ,

which completes the proof.

Lemma 3.4 If H1, H2 are subgroups of an abelian finite group G, the kernel
of the restriction map pG Ñ {H1 XH2 is xH1 ` xH2 where xHi is the kernel of the
restriction map pGÑ xHi.

3.3 Linear schemes

In Section 2 (Definition 2.4), we provided a definition of linear schemes based
on linear maps. A linear scheme can be simply defined as an abelian scheme
whose main group is a vector space. Therefore, we have the following equivalent
definition. The group-characterizability of linear random variables has also been
mentioned in [Cha07].

Definition 3.5 (Linear scheme) A tuple Π “ pT ;T0, T1, . . . , Tnq is called a
linear secret sharing scheme if T is a finite dimensional vector space over some
finite field, Ti is a subspace of T , for each i P rns, and dimT0 ě 1. When there
is no confusion, we simply write Π “ pTiqiPQ.

By relation (3.2), the access function and convec of a linear scheme Π “

pTiqiPQ are as follows:

ΦΠpAq “
dimpT0 X TAq

dimT0
, cvpΠq “

´ dimTi
dimT0

¯

iPrns
,

where TA “
ř

iPA Ti.
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4 Abelian duality

In this section, we generalize the well-known result of [FHKP17] on duality of
linear schemes to the class of abelian schemes. The reader may recall definitions
of Pontryagin dual and abelian scheme given in Section 3.2.

Definition 4.1 (Dual of an access function) Let Φ be an access function on
participants set P with ΦpP q “ 1. The dual of Φ, denoted by Φ˚, is defined by
Φ˚pAq “ 1 ´ ΦpP zAq, for every A Ď P . The dual of an access structure Γ ,
denoted by Γ˚, is defined based on its induced total access function.

Proposition 4.2 (Abelian duality) Let Π “ pG;G0, G1, . . . , Gnq be an abelian
scheme that satisfies G0 Ď

řn
i“1Gi (so that ΦΠpP q “ 1). Then, there exists an

abelian scheme Π˚ such that ΦΠ˚ “ Φ˚Π and cvpΠ˚q “ cvpΠq.

Proof. We construct an abelian scheme Π˚ “ pG˚;G˚0 , G
˚
1 , . . . , G

˚
nq such that

1. |G˚0 | “ |G0|,
2. |G˚i | ď |Gi|, for every i P P ,
3. ΦΠ˚pAq “ 1´ ΦΠpP zAq, for every A Ď P .

Therefore, cvpΠ˚q ď cvpΠq. However, it is easy to tweak the scheme by
adding dummy shares (subgroups) so that the convec equality holds.

Consider the subgroup C Ď
ś

iPQGi whose elements are the vectors pxiqiPQ P
ś

iPQGi satisfying
ř

iPQ xi “ 0. For every i P P , let Ci be the subgroup of C
whose projection on the ith component is zero and define CA “

Ş

iPA Ci for
A Ď P .

To define our dual abelian scheme Π˚, we let G˚ “ pC and

G˚i “ tα P
pC|αpCiq “ t1uu .

It is clear that G˚i “
{

`

C{Ci
˘

since, in general, the subgroup of pG that vanishes

on a subgroup H ď G is isomorphic to {

`

G{H
˘

.
Note that the projection C Ñ Gi that sends pxiqiPQ to xi is onto for i “ 0

(since G0 Ď
řn
i“1Gi) and its kernel is C0. So G0 – C{C0. Therefore,

|G˚0 | “
ˇ

ˇ

{

`

C{C0

˘ˇ

ˇ “ |C{C0| “ |G0| ,

proving (1). Also the projection C Ñ Gi has kernel Ci so C{Ci is a subgroup of
Gi; hence,

|G˚i | “
ˇ

ˇ

{

`

C{Ci
˘
ˇ

ˇ “ |C{Ci| ď |Gi| ,

which proves (2).
We claim that

G˚A :“
ÿ

iPA

G˚i “ tα P
pC|αpCAq “ t1uu .
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Notice that CA Ď Ci for all i P A. Therefore, if αpCiq “ t1u then αpCAq “
t1u. So G˚i Ď tα P C

˚|αpCAq “ t1uu and hence
ř

iPAG
˚
i Ď tα P C

˚|αpCAq “

t1uu. Conversely, if α P pC and αpCAq “ t1u, then α, on input pxiqiPQ, de-
pends only on variables xi for i P A, i.e., αpx0, x1, . . . , xnq “ αpy0, y1, . . . , ynq,
where yi “ 0 for i R A and yi “ xi for i P A. Now we have αpy1, . . . , ynq “
ř

iPA αp0, . . . , 0, yi, 0, . . . , 0q and αp0, . . . , 0, yi, 0, . . . , 0q is an element of G˚i for
i P A. Therefore, α P

ř

iPAG
˚
i .

It is easy to see that

G˚0 XG
˚
A “ tα P

pC|αpC0 ` CAq “ t1uu –
{

´ C

C0 ` CA

¯

–
C

C0 ` CA
.

Let C0`CA Ñ G0 be the projection onto the 0-th component. Then its kernel
is C0 and its image is G0 X GP zA; because if pxiqiPA P CA, then

ř

iPA xi “ 0
and for every i P A, xi “ 0. Therefore x0 “ ´

ř

iPP zA xi and hence x0 P GP zA.
Therefore,

C0 ` CA
C0

– G0 XGP zA .

Finally, (3) is proved as follows:

ΦΠ˚pAq “
log |G˚0 XG

˚
A|

log |G˚0 |

“
log |C| ´ log

ˇ

ˇC0 ` CA
ˇ

ˇ

log |C| ´ log |C0|

“ 1´
log

ˇ

ˇC0 ` CA
ˇ

ˇ´ log |C0|

log |C| ´ log |C0|

“ 1´
log

ˇ

ˇ

C0`CA

C0

ˇ

ˇ

log |G0|

“ 1´
log

ˇ

ˇG0 XGP zA
ˇ

ˇ

log |G0|

“ 1´ ΦΠpP zAq
“ Φ˚ΠpAq .

[\

5 A new lower bound technique

In this section, we introduce our new technique for finding a lower bound on the
(characteristic-dependent) linear information ratio of an access structure. Two
linear algebraic lemmas, that we call the minimal subspace lamma and the kernel
lemma, in companion with other concepts from linear algebra lie at the hear of
our method.

We apply our method to determine the exact value of the maximum/average
linear information ratio of the Fano and non-Fano access structures on odd and
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even characteristics, respectively. For Fano, we even determine the corresponding
convec set precisely.

As another example, we apply our method to one of the five-participant
access structures from [JM96] which had remained open for a long time and
was recently resolved using the common information method in [FKMP18]. This
access structure in characteristic-independent [Bah19] (that is, for every prime
p, its p-linear convec set and linear convec set are the same).

5.1 Two useful lemmas

Lemma 5.1 (Minimal subspace lemma) Let Γ be an access structure on n
participants and A P Γ be a minimal qualified set. Let pT0, T1, . . . , Tnq be a linear
secret sharing scheme for Γ . Then, there exists a subspace collection tViuiPA,
where Vi Ď Ti for each i P A, such that:
(i) dimVi “ dimT0 for every i P A,
(ii) Vk X

ř

iPAztku Ti “ t0u for every k P A.
(iii) T0 Ď

À

iPA Vi (i.e., every s P T0 can be uniquely written as s “
ř

iPA ai
where ai P Vi),

(iv) the projection of T0 onto Vi is surjective and injective for every i P A.

Proof. Let e1, . . . , ez be a basis for T0. Since T0 Ď
ř

iPA Ti, one can write ej “
ř

iPA eij for eij P Ti. We define Vi as the linear span of ei1, . . . , eiz. These vectors
are independent because a linear relation

řz
j“1 λjeij “ 0 implies that

řz
j“1 λjej

is expressed inside
ř

kPAztiu Tk. But since Aztiu is unqualified, it must hold that
řz
j“1 λjej “ 0; i.e., λj ’s are all zero. Hence, dimVi “ dimT0 “ z that proves (i).

To prove (ii), let a P VkX
ř

iPAztku Ti. We show that a “ 0. Write a “
řz
j“1 λjekj

and notice that
řz
j“1 λjej “

řz
j“1

ř

iPA λjeij
“ a`

řz
j“1

ř

iPAztku λjeij
.

Since both a and
řz
j“1

ř

iPAztku λjeij belong to
ř

iPAztku Ti, so is
řz
j“1 λjej .

But Aztku is not qualified and hence
řz
j“1 λjej “ 0. So λj ’s are all zero and

hence a “ 0. To prove (iii), it is clear that T0 Ď
ř

iPA Vi. But this sum is indeed a
direct sum; i.e., VkX

ř

iPAztku Vi “ t0u for every k P A, since a stronger statement
was proved in (ii). To prove the last statement, since dimT0 “ dimVi, we only
need to prove that projecting T0 onto Vi is surjective. Suppose a P Vi and write
a “

řz
j“1 λjeij . Then, the Vi component of

řz
j“1 λjej is a, and therefore, its

projection onto Vi is a. [\

The following corollary can be proved using Shannon inequalities (e.g., refer
to [Csi97, Proposition 2.3 (i)]). Here, we present an alternative proof using the
minimal subspace lemma (MSL).

Corollary 5.2 Let Γ be an access structure on n participants and pT0, T1, . . . , Tnq
be a linear secret sharing scheme for Γ . Then, for every minimal qualified set
A P Γ and every participant k P A, the following inequality holds:

dimTk ě dimT0 ` dim
`

Tk X
ÿ

iPAztku

Ti
˘

.
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Proof. Let tViuiPA be a minimal subspace collection. Clearly, TkX
ř

iPAztku Ti is
a subspace of Tk and so is Vk by the lemma. By Lemma 5.1 (ii), these subspaces
are independent. It then follows that

dimTk ě dimVk ` dim
`

Tk X
ÿ

iPAztku

Ti
˘

.

This completes the proof since dimVk “ dimT0 by Lemma 5.1 (i). [\

Lemma 5.3 (Kernel lemma) Let pT0, T1, . . . , Tnq be a linear secret sharing
scheme for an access structure Γ on n participants. Let A P Γ be a minimal
qualified subset and for every participant i P A let Ai (not necessarily different
from A) be a minimal qualified subset that includes i. For the minimal qualified
subsets A and Ai, i P A, consider minimal subspace collections tVjujPA and
tV ij ujPAi

, respectively. Define the linear map

φ : T0 Ñ
à

iPA

Vi
Vi X V ii

,

by sending s P T0 to its projections on Vi and taking it modulo ViXV ii for i P A.
That is, if s “

ř

iPA ai for ai P Vi, we define

φpsq “
`

rais
˘

iPA
,

where r¨s stands for the class in the corresponding quotient space. Then,
ÿ

iPA

dimTi ě p|A| ` 1qdimT0 ´ dim kerφ .

Proof. The linear map φ induces a 1-1 linear map φ̄:

φ̄ :
T0

kerφ
Ñ

à

iPA

Vi
Vi X V ii

.

Hence,

ÿ

iPA

dim
Vi

Vi X V ii
ě dim

T0
kerφ

,

or equivalently,
ÿ

iPA

`

dimVi ´ dimpVi X V
i
i q
˘

ě dimT0 ´ dim kerφ .

Add
ř

iPA dimpV ii q “ |A|dimT0 —see Lemma 5.1 (i)— to the both sides and
simplify to get

ÿ

iPA

dimpVi ` V
i
i q ě p|A| ` 1qdimT0 ´ dim kerφ .

The claim then follows due to Vi ` V ii Ď Ti, which implies
ř

iPA dimTi ě
ř

iPA dimpVi ` V
i
i q. [\
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5.2 Application to Fano

The Fano access structure, denoted by F , is the port of the Fano matroid, with
the following minimal qualified subsets

minF “ tp1p4, p2p5, p3p6, p1p2p3, p1p5p6, p2p4p6, p3p4p5u.

It is ideal on finite fields with even characteristics but it does not admit an
ideal scheme if the secret space size is odd [Mat07]. In particular, its p-linear
information ratio is unknown for odd characteristics. We use our technique to
provide a lower bound on its p-linear convec set for odd p’s. Since our lower
bound matches the upper-bound found in [Bah19], the boundary of its p-linear
convec set is completely determined.

Proposition 5.4 (Fano with odd characteristics) Let p be an odd prime
and pT0, T1, . . . , T6q be a p-linear secret sharing scheme for the Fano access struc-
ture. Then,

(I) dimTi ě dimT0, for every i P t1, . . . , 6u,
(II) dimTi ` dimTj ` dimTk ě 4 dimT0, for every size-3 minimal qualified set

ti, j, ku.

Additionally, for any odd p, all extreme points of the polytope described by the
above 10 half-planes (after normalization to dimT0) is realizable by some p-linear
scheme. Consequently, the maximum and average p-linear information ratios are
both 4

3 .

Proof. The first inequality is trivial and follows by Corollary 5.2. To prove (II), by
symmetry, we only prove the inequality for the qualified set t1, 2, 3u. Let φ be the
linear map defined in Lemma 5.3 by the minimal qualified sets A “ t1, 2, 3u, A1 “

t1, 4u, A2 “ t2, 5u and A3 “ t3, 6u with the corresponding minimal subspace
collections tV1, V2, V3u, tV 11 , V 14u, tV 12 , V 15u and tV 13 , V 16u. The proposition is proved
by showing that kerφ is zero, since

dimT1 ` dimT2 ` dimT3 ě 4 dimT0 ´ dim kerφ .

Suppose s “ a1 ` a2 ` a3 P T0, where ai P Vi for i “ 1, 2, 3, maps to zero by
φ; i.e., φpsq “ pra1s, ra2s, ra3sq “ 0, or equivalently, ai P Vi X V 1i , for i “ 1, 2, 3.

There are a14 P V 14 , a15 P V 15 and a6 P V 16 such that a1 ` a14 P T0, a2 ` a15 P T0
and a3` a16 P T0. By subtracting each vector from s “ a1` a2` a3 P T0, it then
follows that a2` a3´ a14 P T0, a1` a3´ a15 P T0 and a1` a2´ a16 P T0. But since
t2, 3, 4u, t1, 3, 5u and t1, 2, 6u are unqualified sets, all these vectors must be zero;
i.e., a14 “ a2 ` a3, a15 “ a1 ` a3 and a16 “ a1 ` a2. Since the characteristic of
the underlying finite field is odd, we have s “ pa14 ` a15 ` a16q{2. Since t4, 5, 6u is
unqualified, it implies that s “ 0. This shows that kerφ “ t0u.

The additional claim follows form [Bah19]. [\
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5.3 Application to non-Fano

The non-Fano access structure, denoted by N , is the port of the non-Fano ma-
troid, with the following minimal qualified sets

minN “ tp1p4, p2p5, p3p6, p1p2p3, p1p5p6, p2p4p6, p3p4p5, p4p5p6u .

That is, minN “ minFYtp4p5p6u. It is ideal on finite fields with odd character-
istics but it does not admit an ideal scheme if the secret space size is even [Mat07].

We use our technique to find a lower bound on its linear convec set over finite
fields with even characteristic. Unlike, the case of Fano, our lower bound does
not match the upper-bound reported in [Bah19]. Nevertheless, the exact value
of the maximum and average 2-linear information ratios are determined.

Proposition 5.5 (Non-Fano with even characteristic) Let pT0, T1, . . . , T6q
be a linear secret sharing scheme for the non-Fano access structure on a finite
field with even characteristic. Then,

(I) dimTi ě dimT0, for every i P t1, . . . , 6u,
(II) dimT1 ` dimT2 ` dimT3 ` dimTi ě 5 dimT0, for every i “ 4, 5, 6,
(III) dimT4 ` dimT5 ` dimT6 ě 4 dimT0,
(IV) dimTi ` 2 dimTj ` dimTk ě 5 dimT0, for every triple pi, j, kq “ p1, 5, 6q,

p1, 6, 5q, p2, 4, 6q, p2, 6, 4q, p3, 4, 5q, p3, 5, 4q.

Additionally, the maximum and average 2-linear information ratios are 4
3 and

23
18 , respectively.

Proof. The first inequality is trivial and follows by Corollary 5.2. Proofs of (II)-
(IV) are based on the kernel lemma (Lemma 5.3).

Proof of (II). By symmetry, we prove the inequality for i “ 4. Let φ be
the linear map defined in Lemma 5.3 by the minimal qualified sets A “ t1, 2, 3u,
A1 “ t1, 4u, A2 “ t2, 5u and A3 “ t3, 6u with the corresponding subspace
collections tV1, V2, V3u, tV 11 , V 14u, tV 12 , V 15u and tV 13 , V 16u. Since we have,

dimT1 ` dimT2 ` dimT3 ě 4 dimT0 ´ dim kerφ ,

it is enough to show that

dimT4 ě dimT0 ` dim kerφ .

By Corollary 5.2, for the minimal qualified set t4, 5, 6u, we have

dimT4 ě dimT0 ` dimpT4 X pT5 ` T6qq .

Therefore, it is enough to construct a 1-1 map from kerφ into T4 X pT5 ` T6q.
This implies that dimpT4 X pT5 ` T6q ě dim kerφ, which completes the proof.
We construct the 1-1 map from kerφ into T4XpT5`T6q by associating a unique
a14 P T4 X pT5 ` T6q to every s P kerφ. Suppose s “ a1 ` a2 ` a3 P T0, where
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ai P Vi for i “ 1, 2, 3, maps to zero by φ; i.e.; ai P Vi X V 1i for i “ 1, 2, 3.
Therefore, one can find a14 P V

1
4 , a15 P V 15 and a16 P V

1
6 such that a1 ` a14 P T0,

a2 ` a15 P T0 and a3 ` a16 P T0. If we add each of these three vectors separately
to s “ a1 ` a2 ` a3 P T0, we get a2 ` a3 ` a14 P T0, a1 ` a3 ` a15 P T0 and
a1`a2`a

1
6 P T0 (recall the characteristic is even). Now all these vectors need to be

zero since t2, 3, 4u, t1, 3, 5u and t1, 2, 6u are unqualified sets; hence, a14 “ a2`a3,
a15 “ a1`a3 and a16 “ a1`a2. It follows that a14 “ a15`a

1
6 and, hence, it belongs

to T4XpT5`T6q. So we have defined a 1-1 map from kerφ into T4XpT5`T6q by
sending s to a14. The 1-1 ness of this map follows from the uniqueness of a14 P V 14
such that a1 ` a14 P T0; see Lemma 5.1 (iv).

Proof of (III). The proof is similar to that of Proposition 5.4. Let φ be
the linear map defined in Lemma 5.3 by the minimal qualified sets A “ t4, 5, 6u,
A4 “ t1, 4u, A5 “ t2, 5u and A6 “ t3, 6u with the corresponding subspace
collections tV4, V5, V6u, tV 11 , V 14u, tV 12 , V 15u and tV 13 , V 16u. It is enough to show
that kerφ is zero because

dimT3 ` dimT4 ` dimT5 ě 4 dimT0 ´ dim kerφ .

Suppose s “ a4` a5` a6 P T0, where ai P Vi for i “ 4, 5, 6, is in the kernel of
φ; i.e.; ai P Vi X V 1i for i “ 4, 5, 6. We can find a1i P V 1i , for i “ 1, 2, 3, such that
a11 ` a4 P T0, a12 ` a5 P T0 and a13 ` a6 P T0. By adding the sum of the first two
vectors to s “ a4 ` a5 ` a6 P T0, it follows that a11 ` a12 ` a6 P T0 (characteristic
is even). But since t1, 2, 6u is unqualified, the resulting vector must be zero; i.e.,
a6 “ a11`a

1
2. Similarly, a4 “ a12`a

1
3 and a5 “ a11`a

1
3. Hence s “ a4`a5`a6 “ 0.

This shows that kerφ “ t0u.
Proof of (IV). By symmetry, we prove the inequality only for the triple

pi, j, kq “ p1, 5, 6q. Let φ be the linear map defined in Lemma 5.3 by the minimal
qualified sets A “ t1, 5, 6u, A1 “ t1, 4u, A5 “ t2, 5u and A6 “ t3, 6u with the
corresponding minimal subspace collections tV1, V5, V6u, tV 11 , V 14u, tV 12 , V 15u and
tV 13 , V

1
6u. The proof continues similar to that of (I). It is enough to show that

dimT5 ě dimT0 ` dim kerφ ,

because
dimT1 ` dimT5 ` dimT6 ě 4 dimT0 ´ dim kerφ .

Since t4, 5, 6u is a minimal qualified set, by Corollary 5.2, we have

dimT5 ě dimT0 ` dimpT5 X pT4 ` T6qq .

Therefore, to complete the proof, it is enough to construct a 1-1 map from kerφ
into T5 X pT4 ` T6q. Suppose s “ a1 ` a5 ` a6 P T0 for i “ 1, 5, 6, where ai P Vi,
maps to zero by φ; i.e.; ai P Vi X V 1i for i “ 1, 5, 6. Our map sends s to a5.
The uniqueness of this choice follows from Lemma 5.1 (iv). It remains to prove
that a5 P T5 X pT4 ` T6q. It is enough to show that a5 P T4 ` T6 since clearly
a5 P T5. Find a1i P V

1
i , for i “ 2, 3, 4 such that a1 ` a14 P T0, a12 ` a5 P T0 and

a13`a6 P T0. By adding the second vector, the third one and the sum of the three
vectors to s “ a1 ` a5 ` a6 P T0, it respectively follows that a1 ` a12 ` a6 P T0,
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a1 ` a13 ` a5 P T0 and a12 ` a13 ` a14 P T0 (characteristic is even). But all these
vectors must be zero since t1, 2, 6u, t1, 3, 5u and t2, 3, 4u are unqualified sets.
Hence a5 “ a1 ` a

1
3 “ pa

1
2 ` a6q ` pa

1
2 ` a

1
4q “ a14 ` a6 P T4 ` T6.

The claim on the information ratio follows by [Bah19]; see Remark 5.6. [\

Remark 5.6 (Tightness) It is easy to verify that the polytope described by the
16 half-planes mentioned in Proposition 5.5 has 13 extreme points in total which
are symmetries of p2, 1, 1, 2, 1, 1q, p1, 1, 1, 2, 2, 2q, p2, 1, 1, 1, 2, 2q, p 32 , 1, 1,

3
2 ,

3
2 ,

3
2 q,

p 53 , 1, 1,
4
3 ,

4
3 ,

4
3 q (a normalization to dimT0 is considered). All except the last one

have been realized in [Bah19]. Even though this is enough to determine the exact
value of the maximum and average information ratios, the 2-linear convec set
remains unknown. If one proves the following additional inequalities, it shows
that the upper-bound reported in [Bah19] is tight:

dimTi ` dimTj ` dimTk ` dimT` ě 5 dimT0 ,

pi, j, k, `q P
 

p1, 5, 6, 2q, p1, 5, 6, 3q, p2, 4, 6, 1q,
p2, 4, 6, 3q, p3, 4, 5, 1q, p3, 4, 5, 2q

(

.

(5.1)

5.4 Application to a five-participant access structure

To show the power of our method for the case of characteristic-independent infor-
mation ratio, we apply it to the access structures Γ73 [JM96] on five-participants,
with the following minimal qualified sets

minΓ73 “ tp1p2, p1p3, p2p4, p3p5, p1p4p5u .

The information ratio of this access structure is still unknown. Its linear
information ratio was also open for a long time, but it has been recently com-
puted using the common information method in [FKMP18], for which a matching
upper-bound was also provided. We determine the linear convec set (closure) of
this access structure completely.

Its linear convec set is independent of characteristic and is given by the
following set of inequalities:

(I) dimTi ě dimT0, for every i P t1, . . . , 5u,
(II) dimTi ` dimTj ě 3 dimT0, for every pi, jq P tp1, 2q, p1, 3q, p2, 4q, p3, 5qu,
(III) dimT1 ` dimT4 ` dimT5 ě 4 dimT0,
(IV) dimT1 ` dimTi ` dimT4 ` dimT5 ě 6 dimT0, for i “ 2, 3,
(V) dimT1 ` dimT2 ` dimT3 ě 5 dimT0,

In [Bah19], it has been shown that all extreme points (convecs) of the poly-
tope specified by the above 13 half-planes are realizable by some linear scheme
for every arbitrary (non-zero) field characteristic.

Inequalities (I)-(IV) can be derived using Shanon-type information inequali-
ties. The first two can also be derived using our MSL (minimum subspace lemma)
technique, but we were not able to derive (IV). Inequality (V) can be derived
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using the common information method of [FKMP18]. Below, we derive it using
the MSL method. First, we present two lemmas. The first one is easily proved
by induction. We only prove the second one.

Lemma 5.7 (Intersection lemma) Given subspaces T1, . . . , Tm of T , we have

pm´ 1qdimT ě
m
ÿ

i“1

dimTi ´ dim
m
č

i“1

Ti .

Notation. Use a compact notation for set union, that is, AB stands for AYB
and iA for tiu Y A. For a minimal qualified set A, denote a minimal subspace
collection by tV Ai uiPA. For a subset B Ď P , notate V AB “

ř

iPB V
A
i .

Lemma 5.8 (Embedding lemma) Let Γ be an access structure. For every
i “ 1, . . . ,m, assume that aAi is a minimal qualified subset of Γ but A1Ai is not
qualified. Then we have a 1-1 mapping:

V aA1
a X . . .X V aAm

a ãÑ V aA1

A1
X . . .X V aAm

Am
.

Proof. If x P V aA1
a X . . .X V aAm

a there are x1 P V aA1

A1
, . . . , xm P V

aAm

A1
such that

x` x1, . . . , x` xm P T0. Therefore, xi ´ x1 P T0 for for every i “ 1, . . . ,m. But
by assumption, A1Ai is not qualified, so xi “ x1 for all i “ 1, . . . ,m. Therefore,
we have a 1-1 map from the left side to the right side. [\

Proof of (V). By Lemma 5.7, we have

dimT2 ě 2 dimT0 ´ d2, where d2 “ dim
`

V 21
2 X V 24

2

˘

, (5.2)

and

dimT3 ě 2 dimT0 ´ d3, where d3 “ dim
`

V 31
3 X V 35

3

˘

. (5.3)

Since 14 and 15 are not qualified, by Lemma 5.8, we have the following
embeddings:

V 21
2 X V 24

2 ãÑ V 21
1 X V 24

4 ,

V 31
3 X V 35

3 ãÑ V 31
1 X V 35

5 .

If we show that the following three subspaces are independent,

V 21
1 X V 24

4 , V 31
1 X V 35

5 , V 145
1

then we have

dimT1 ě dimT0 ` d2 ` d3 . (5.4)

By adding (5.2), (5.3) and (5.4), Inequality (V) is proved.
If x P V 21

1 X V 24
4 X V 31

1 X V 35
5 , then there is y P V 24

2 such that x ` y P T0.
But x P V 35

5 and 25 is not qualified, so x “ 0. Now assume that
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x P
´

`

V 21
1 X V 24

4

˘

`
`

V 31
1 X V 35

5

˘

¯

X V 145
1 .

Then x P pT4 ` T5q X V 145
1 . So there are y P V 145

4 and z P V 145
5 such that

x`y`z P T0. But x P T4`T5 and 45 is not qualified, so x “ 0 (also y “ z “ 0).

6 Separation

In this section, we prove that abelian secret sharing schemes are more power-
ful than the linear schemes. To this end, we determine the exact value of the
maximum/average linear information ratio of the access structure F ` N , a
well-known 12-participant access structure which is the union of Fano and non-
Fano access structures [BL08,Mat07]. We also compute an upper-bound on its
abelian information ratio. This access structure is known to be nearly ideal but
non-ideal [BL08,Mat07]; i.e., 1 P ΣpF `N q) but 1 R ΣpF `N q).

Let us use the notation ΣLpΓ q, ΣppΓ q and ΣAblpΓ q, respectively, for the
linear, p-linear, and abelian convec set of an access structure Γ .

Similar to the Σ-set, the Σp-set and ΣAbl-set of every access structure can
be shown to be a set with convex closure. The ΣL-sets of most access structures
have convex closures too. Our results of Section 5 shows that the closure of the
linear convec set of F `N is not convex, but union of two convex sets, since in
general we have:

ΣLpΓ q “
ď

p:prime

ΣppΓ q .

Notice that the p-linear convec set of F `N is

ΣppF `N q “
´

ΣppFq ‘ r1,8q
¯

Y

´

r1,8q ‘ΣppN q
¯

,

where, for X Ď Rn and Y Ď Rm, the set X ‘ Y Ď Rm`n is defined as follows

X ‘ Y “ tpx, yq | x P X ^ y P Yu .

The results of previous section (Proposition 5.4 and Proposition 5.5) deter-
mine a lower and upperbound for the linear convec set of F `N . However, the
optimal values of the maximum and average linear information ratios are deter-
mined (max=4{3 and average“ 41{36). The following proposition, which is easy
to prove, provides an upper-bound on the abelian information ratio of F ` N
(max=7{6 and average“ 41{36). Refer to Table 1 for a summary of our results.

Proposition 6.1 (Linear convex-hull inclusion) The closure of the abelian
convec set of every access structure includes the closure of the convex hull of its
linear convec set.

We wonder if there exists an access structure for which the convex-hull inclu-
sion is proper. If there is no such an access structure, our upper-bounds on the
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maximum and average abelian information ratios are exact, showing superiority
of non-abelian schemes to the abelian ones.

Separation between non-abelian and abelian secret sharing may also be proved
by finding a nontrivial lower bound on the abelian information ratio of F `N ,
which we conjecture to be strictly greater than one. Currently, the best known
technique for computing a non-trivial lower bound on the abelian information
ratio is to solve a linear program based on the common information prop-
erty [FHKP17] by a computer. Unfortunately, computers can not help in the
case of F `N due to the huge size of the linear program (the variant discussed
in the conclusion of [FHKP17] based on a feasible solution of the dual linear
program is not applicable either). Nevertheless, clever manual calculations may
be a more appropriate tool in this case.

information ratio
access structure class max average

F linear (odd) 4{3 4{3

N linear (even) 4{3 23{18

F `N linear 4{3 41{36
abelian ď 7{6 ď 41{36

Table 1: Upper and lower bounds on the information ratios of the Fano (F),
non-Fano (N ) and their union (F`N ) access structure, with respect to different
classes of schemes.

7 Conclusion

We introduced a new technique which is useful for finding a lower bound not
only on the (general) linear information ratio but also characteristic-specific
linear information ratio of access structures. Our method is currently useful to
be applied to concrete small access structure and it can be easily automated.

We applied our method to the Fano and non-Fano access structures whose
information ratios depend on the characteristic of the underlying finite filed,
and also on a five participant access structure whose linear information ratio is
characteristic-independent.

We then used our result in a straightforward way to prove superiority of
abelian schemes to the linear ones. Additionally, we proved that a well-known
result about the duality of linear schemes can be extended to the abelian ones.

It is an interesting question to study separation and duality with respect
to other classes of group-characterizable-based secret sharing schemes. Unfortu-
nately, very little is known about such schemes and they have not taken that
much attention from the crypto community. We refer to [JK19] and [KKP19] for
some recent results.

Below, we suggest some problems for future.
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Q1. Prove or refute the following statement: the closure of the abelian convec
set of every access structure is the same as the closure of the convex hull of
its linear convec set.
Q2. Determine a non-trivial lower bound on the abelian information ratio of
F `N (see Section 6).
Q3. Prove or refute Inequality (5.1) for the non-Fano access structure.
Q4. Prove Inequality (IV) for Γ73 using the MSL method (see Section 5.4).

Probably, the best way to handle Q2 is to apply the common information
method [FKMP18] manually on F`N in a clever way. Here is another direction
for tackling the problem. The common information method does not take the size
of subgroups into account. What we need is a technique for finding a lower bound
on the abelian information ratio of an access structure (e.g., the Fano or non-
Fano), for the case where the order of secret subgroup is even or odd. Indeed, this
would be a generalization of our characteristic-dependent lower bound method.
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