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Abstract. Since the seminal work of Frankel, Desmedt and Burmester
[Eurocrypt’92 & Crypto’92] there has been almost no result on the al-
gebraic structure of homomorphic secret sharing schemes. In this paper,
we revisit group-homomorphic schemes— those whose secret and share
spaces are groups—via their connection to group-characterizable random
variables [Chan and Yeung 2002].

A group-characterizable random variable is induced by a joint distribu-
tion on the (left) cosets of some subgroups of a main group. It is easy to
see that a group-characterizable secret sharing with normal subgroups
in the main group is group-homomorphic. In this paper, we show that
the converse holds true as well.

To achieve the above claim, we present a necessary and sufficient condi-
tion for a joint distribution to be inherently group-characterizable (i.e.,
up to a relabeling of the elements of the support). Then, we show that
group-homomorphic secret sharing schemes satisfy the sufficient condi-
tion and, consequently, they are inherently group-characterizable. We
strengthen our result by showing that they indeed have a group charac-
terization with normal subgroups in the main group.

Group-characterizable random variables are known to be quasi-uniform
(namely, all marginal distributions are uniform). As an additional contri-
bution, we present an example of a quasi-uniform random variable which
is not inherently group-characterizable.

Key words: homomorphic secret sharing schemes, group-characterizable
distribution, quasi-uniform distribution

1 Introduction

Secret sharing schemes were introduced for the case of threshold access structures
by Shamir and Blakley [Sha79, Bla79]. Ito et al. [ISN89] extended the notion
for general access structures. A total secret sharing scheme is a method that
allows a dealer to share a secret among some participants in such a way that
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only some certain authorized subsets of participants can reconstruct the secret;
additionally, the non-authorized subsets must learn no information about the
secret. A secret sharing scheme is formally defined as a joint distribution of
the secret and shares which might not necessary be total to realize an access
structure; that is, different subsets may gain different amount of information
about the secret [OKT93,SRR02,FHKP17].

In a homomorphic secret sharing scheme, first introduced by Benaloh [Ben86],
the secret and shares are algebraic structures—such as magma, quasi-group,
semi-group, group, etc.— such that the product of the shares of a participant
produces a share for the product of their corresponding secrets. Homomorphic
schemes have found numerous applications in cryptographic protocols such as
secure multi-party computation [BGW88].

Very little is known about homomorphic secret sharing schemes and, in par-
ticular, two classes have been studied earlier. The first one considers the secret
and share spaces as magmas (hence we call them magma-homomorphic), and
the second one assumes that they have group structures (hence termed as group-
homomorphic). Frankel, Desmedt and Burmester [FDB92] have proved that in
total group-homomorphic secret sharing schemes, the secret space is an abelian
group. In a subsequent work, Frankel and Desmedt [FD92] have shown that,
when the scheme is ideal, the share spaces are all isomorphic to the secret space,
and hence abelian too. Additionally, they have proved that there exist infinitely
many abelian groups over which there does not exist an ideal homomorphic
scheme.

Group-characterizable random variables were introduced by Chan and Yeung
in [CY02]. A group-characterizable random variable is induced by a finite group,
called the main group, and some of its subgroups, along with a probability dis-
tribution on the main group1. A distribution g on G defines the joint random
variable pgG1, . . . ,gGnq on the left cosets of its subgroups. Surprisingly, Chan
and Yeung [CY02] have shown that the closure of the set of entropic points,
known as the entropy region [ZY97], is equal to the convex closure of the group-
characterizable entropic points with uniform distribution on the main group.

We call a secret sharing scheme group-characterizable if, as a random variable
it is group-characterizable. As a consequence of Chan and Yeung’s result, group-
characterizable secret sharing schemes are “complete” [Kha19, Proposition C.6]
for a non-total security notion called quasi-total [Kac11] (i.e., the information
ratio of an access structure remains invariant when we restrict to the class of
group-characterizable schemes).

For a group-characterizable scheme, if all the subgroups are normal in the
main group, it is easy to check that the scheme is group-homomorphic. In this
paper, we show that the converse is almost true as well. More precisely, we
show that all group-homomorphic schemes are inherently group-characterizable

1 This definition is a generalization of the usual definition of group-characterizable
random variables in which the distribution on the main group is considered to be
uniform.
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with normal subgroups. That is, by relabeling the secret and shares, we get a
group-characterizable scheme with the same joint distribution.

A discrete joint random variable with finite support can be represented by a
matrix. Its rows are the elements of the support of the random variable and a dis-
tribution on the rows are sufficient to fully describe the random variable. The ba-
sic tool of this paper is to associate a group to a matrix, called the isomorphisms
group of that matrix. By using this group and a set of well chosen subgroups, we
are able to provide a group description for an inherently group-characterizable
random variable. In fact, we present an easy-to-check necessary and sufficient
condition for a random variable to be inherently group-characterizable based on
its matrix representation.

As an additional contribution, we prove that the quasi-uniform random
variables [CY99] are not necessarily inherently group-characterizable. A quasi-
uniform random variable is a joint random variable such that all marginal dis-
tributions are uniform on their supports [CY02]. It is known that every group-
characterizable random variable, with uniform distribution on its main group,
is quasi-uniform. However, the converse is not known to be true. Using our nec-
essary condition for group-characterizability of random variables, we present an
example of a quasi-uniform random variable which is not group-characterizable.

Paper organization. Preliminaries are presented in Section 2. In Section 3,
we discuss matrix representation of random variables and the concept of inher-
ent group-characterizability. The notion of automorphisms group of a matrix is
introduced in Section 4. A necessary and sufficient condition for inherent group-
characterizability of random variables is introduced in Section 5. In this sec-
tion, we also present our counterexample for a non-group-characterizable quasi-
uniform random variable. The main result of the paper on homomorphic secret
sharing is presented in Section 6.

2 Preliminaries and notation

In this section, we introduce our notation and basic concepts.

Notation. We use boldface letters for random variables. For a positive integer
n, rns stands for the set t1, 2, . . . , nu. All random variables considered in this
paper are discrete with finite support. The support and Shannon entropy of a
random variable x are denoted by supp pxq and H pxq, respectively. For a joint
distribution x “ px1,x2, . . . ,xnq and a subset A Ď rns, xA “ pxiqiPA denotes
the marginal distribution of x on coordinates with elements in A. A permutation
on a set E is a bijection on E. The set of all permutations on rns is denoted by
Sn. The j’th column of a matrix M is denoted by M j .

2.1 Group action

We assume that the reader is comfortable with the basics of finite groups. We
recall the notion of group action for readers who are less familiar with the subject.
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Definition 2.1 (Group action) (Left) action of the group G on the set X is
a function ¨ : G ˆ X Ñ X with the following properties

1. For all x P X and for the identity element e P G, we have e ¨ x “ x.
2. For all x P X and g, g1 P G, we have g1 ¨ pg ¨ xq “ pg1gq ¨ x.

An action of group G on X is transitive if for all x, y P X there exists some
g P G for which g ¨ x “ y.

Notice that if a group G acts on a set X, then each subgroup of G acts on
X naturally.

Example 2.2 Here are some examples of group actions:

‚ Each subgroup of a group naturally acts on the group. The action is simply
the group operation, which is not necessarily transitive. In particular, each
group acts on itself transitively.

‚ Let G be a group, H be a subgroup of G and G{H be the set of left cosets of
H in G. For g P G and xH P G{H, g ¨ pxHq “ pgxqH is a transitive action;
because for x, y P G if g “ yx´1 then g ¨ pxHq “ yH.

‚ Let X be an arbitrary set. Any collection of functions on X, specially the set
of all permutation on X denoted by SX , acts on X. The action of a function
f on an element x P X is simply f ¨x “ f pxq. This action is not necessarily
transitive but it is so for SX .

2.2 Group-characterizable and quasi-uniform random variables

In this paper, we may use random variable (r.v.) and distribution interchange-
ably.

Definition 2.3 (Group-characterizable r.v.) Let G be a finite group, called
the main group, and G1, . . . , Gn be some subgroups of G. Let g be a random
variable with supp pgq “ G and define xi “ gGi for all i in rns; that is, the
support of xi is the left cosets of Gi in G. The joint random variable pxiqiPrns

is said to be group-characterizable, induced by pG;G1, ¨ ¨ ¨ , Gnq and g. Also,
pG;G1, ¨ ¨ ¨ , Gnq is said to be a group-characterization for pxiqiPrns.

For a group-characterizable random variable x, induced by pG;G1, ¨ ¨ ¨ , Gnq

and g, and for a subset A Ď rns, the support of xA is tpgGiqiPA : g P Gu,
which is a subset of the Cartesian product

ś

iPA

`

G{Gi

˘

. Equivalently, it can be
viewed as the induced random variable f pgq, where f : G Ñ

śn
i“1 Gi is defined

by g ÞÑ pgG1, gG2, . . . , gGnq. It is easy to see that |supppxAq| “ |G{GA|, where
GA “

Ş

iPA Gi.
For more information on group-characterizable random variables and their

properties refer to [Cha07, CY02]. We remark that in the original definition
[CY02] the distribution on the main group was assumed to be uniform.
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Definition 2.4 (Quasi-uniform r.v.) A jointly distributed random variable
pxiqiPrns is said to be quasi-uniform if, for all A Ď rns, the marginal distribution

xA on supp pxAq is uniform. In other words,

Pr pxA “ xAq “

"

1{|supp pxAq | xA P supp pxAq

0 otherwise
.

It is easy to see that a group-characterizable random variable with uniform
distribution on the main group is quasi-uniform.

2.3 Secret sharing schemes

A secret sharing scheme is a method that allows a dear to share a secret amongst
a set of participants. It is formally defined as a joint distribution of the secret
and shares. We refer to [Bei11] for a survey on secret sharing schemes.

Definition 2.5 (Secret sharing) Let n be a positive integer. A secret sharing
scheme, on participants set rns, is a joint distribution x “ pxiqiPt0uYrns of n ` 1

random variables, where x0 is the secret random variable with H px0q ą 0 and
xi is the share random variable of participant i P rns.

The dealer samples pxiqiPt0uYrns according to the joint distribution x and
keeps x0 as the secret for himself. He then privately sends the share xi to par-
ticipant i. In a total secret sharing scheme the secret can be reconstructed only
by a certain subset of participants, called qualified subsets. The remaining sub-
sets, called unqualified, are required to gain no information on the secret. That
is, for all A Ď rns either H px0|xAq “ 0 or H px0|xAq “ H px0q. Non-total
schemes [FHKP17] allow any subset to gain any (monotone) amount of informa-
tion on the secret.

A secret sharing scheme is said to be group-characterizable if, as a joint
distribution, it is group-characterizable.

3 Inherently group-characterizable random variables

In this section, we introduce the notion of inherently group-characterizable ran-
dom variables. We will work with matrix representation of random variables and
introduce the concept of relabeling that allows us to define a notion of isomor-
phism for matrices.

A joint distribution of random variables can be represented in several ways.
For example its support’s elements can be viewed as the rows of a matrix, to-
gether with a non-zero probability assigned to each row. We are not usually
concerned about the distribution on rows and mostly focus on the matrix itself.
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Example 3.1 The matrix representation of a group-characterizable random vari-
able, induced by a tuple π “ pG;G1, ¨ ¨ ¨ , Gnq is of the form

Mpπq “

»

—

—

—

–

g1G1 g1G2 ¨ ¨ ¨ g1Gn

g2G1 g2G2 ¨ ¨ ¨ g2Gn

...
...

...
gmG1 gmG2 ¨ ¨ ¨ gmGn

fi

ffi

ffi

ffi

fl

,

where all the rows are distinct and tg1, g2, . . . , gmu is some (possibly proper)

subset of G, because it is easy to show that m “
|G|

|
Şn

i“1 Gi|
.

We do not distinguish between two jointly distributed random variables
whose marginal distributions are identical up to a relabeling of the elements
of their supports. To capture this notion, we propose the following definition.

Definition 3.2 (Relabeling) Let M “ rmijsmˆn be a matrix. A relabeling for
M is a tuple f “

`

f1, f2, . . . , fn
˘

such that f j, j P rns, is an injection from the
set of distinct elements of M j, the jth column of M , to an arbitrary set. The
action f ¨ M is defined by

f ¨ M “ rf1 ¨ M1|f2 ¨ M2| ¨ ¨ ¨ |fn ¨ Mns ,

where f j acts on the j’th column as

f j ¨ M j “ rf j pmijqsmˆ1.

Example 3.3 The following matrices are relabellings of each other:

M “

»

—

—

–

a b a
a a b
b b b
b a a

fi

ffi

ffi

fl

, M 1 “

»

—

—

–

# % $
# ˚ &
˚ % &
˚ ˚ $

fi

ffi

ffi

fl

.

Definition 3.4 (Inherently group-characterizable r.v.) A jointly distributed
random variable x is said to be inherently group-characterizable if there exists a
group-characterizable random variable y whose matrix representation is a rela-
beling of that of x.

Note that the inherent group-characterizability of a random variable is merely
defined based on its matrix representation without taking the probability density
itself into account. Therefore, we may also call a matrix group-characterizable.

4 Automorphisms group of a matrix

Our main tool for distinguishing an inherently group-characterizable matrix and
finding a group characterization for it, if it is group-characterizable, is the notion
of automorphism for a matrix.
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4.1 Definition

To define the notion of automorphism of a matrix, we first need to introduce
two actions on matrices.

Definition 4.1 (Permutation action) Let M be a matrix with m rows and
σ P Sm. The action σ ¨M is defined to be a matrix with the same number of rows
whose i’th row is the σ piq’th row of M .

Definition 4.2 (Reordering action) A relabeling
`

f1, f2, . . . , fn
˘

of a ma-
trix M is called a reordering when each f j is a permutation on the set of distinct
elements of M j.

Therefore a reordering of a matrix does not introduce new entries and only
exchanges entries of each collumn. Sometimes reordering behaves the same way
as permuting the rows. This is a motivation for the following definition.

Definition 4.3 (Automorphisms group of a matrix) Let M be a matrix
with m rows. The set of all automorphisms of M is defined as follows,

AutpMq “ tσ P Sm : σ ¨ M “ f ¨ M, for some reordering f of Mu.

Each element of AutpMq is called an automorphism.

One can easily show that AutpMq is a subgroup of Sm (see Proposition 4.5
parts 3 and 4). It is also easy to verify that the labeling (reordering) that cor-
responds to an automorphism σ is unique, which we denote by fσ. Conversely,
the automorphism that corresponds to a reordering is unique if the matrix does
not have duplicate rows.

Example 4.4 All automorphisms of the matrix

M “

»

—

—

–

a b a
a a b
b b b
b a a

fi

ffi

ffi

fl

,

are given below along with their corresponding labellings (e is the identity per-
mutation):

σ1 “ e , fσ1 “ pe, e, eq

σ2 “ p1 2qp3 4q , fσ2 “ pe, pa bq, pa bqq

σ3 “ p1 3qp2 4q , fσ3 “ ppa bq, e, pa bqq

σ4 “ p1 4qp2 3q , fσ4 “ ppa bq, pa bq, eq .
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4.2 Properties

Below we present some properties of automorphisms and relabellings. The proofs
are easy and left to the reader.

Proposition 4.5 The following statements are true for a matrix M :

1. σ ¨ M and f ¨ M are group action2.
2. For all permutations σ and relabellings f , f ¨ pσ ¨ Mq “ σ ¨ pf ¨ Mq.
3. For σ, τ P AutpMq, with labellings fσ and fτ , we have σ ˝ τ P AutpMq with

labeling fτ ˝ fσ. In other words fσ˝τ “ fτ ˝ fσ.
4. If fσ is the labeling of σ P AutpMq, then σ´1 P AutpMq with the labeling

f´1
σ . In other words fσ´1 “ f´1

σ .

Proposition 4.6 The following statements are true for an m ˆ n matrix M :

1. AutpMq is a subgroup of Sm.
2. For every relabeling f , Aut pf ¨ Mq “ AutpMq.
3. For every τ P Sm, Aut pτ ¨ Mq “ τ ˝ AutpMq ˝ τ´1.
4. For every A Ď rns, AutpMq “ Aut

`

MA
˘

X Aut
`

M rnszA
˘

, where MA is the
sub-matrix with columns indexed by elements in A.

Proof. All statements are easy to prove. For example we prove (3).

σ P Aut pτ ¨ Mq ðñ Df s.t. σ ¨ pτ ¨ Mq “ f ¨ pτ ¨ Mq

ðñ Df s.t. pσ ˝ τq ¨ M “ τ ¨ pf ¨ Mq

ðñ Df s.t.
`

τ´1 ˝ σ ˝ τ
˘

¨ M “ f ¨ M

ðñ τ´1 ˝ σ ˝ τ P AutpMq

ðñ σ P τ ˝ AutpMq ˝ τ´1

[\

5 A necessary and sufficient condition for inherent
group-characterizability

In this section, we provide a necessary and sufficient condition for a matrix to be
inherently group-characterizable. The sufficiency proof is constructive and, as a
result, we give a method for constructing a main group and some subgroups for
an inherently group-characterizable matrix. Moreover, the necessary condition
helps us to give an example of a quasi-uniform random variable which is not
inherently group-characterizable.

2 The set X and the group G are clear in both cases (see Definition 2.1). For example,
in σ ¨M , the set X is the set of all row-permutations of M and G is the permutation
group Sm, where m is the number of rows of M .
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Theorem 5.1 (Inherent group-characterizability) A matrix M is inher-
ently group-characterizable if and only if AutpMq acts transitively on rms, where
m is the number of rows of M .

Proof. (Only-if part) First assume that the matrix M “ rmijsmˆn itself is
group-characterizable and induced by a tuple pG;G1, ¨ ¨ ¨ , Gnq. We show that
for every i, j P rms, there exist a σ P AutpMq such that σpiq “ j.

Observe that for a given g P G, the (left) multiplication of g by entries of M ,
i.e., rgmijs, is a row-permutation of M . Denote its corresponding permutation by
σg P Sm. Therefore, σg ¨ M “ rgmijs. On the other hand, rgmijs is a relabeling
of M for fg “ pf1

g , . . . , f
n
g q, where f j

g : G{Gj Ñ G{Gj sends xGj to gxGj .
Therefore, fg ¨ M “ rgmijs and hence σg P AutpMq.

Let pxiG1, . . . , xiGnq and pxjG1, . . . , xjGnq be the i-th and j-th rows of M ,
respectively. Let g “ xjx

´1
i and σ “ σg. Since σ ¨ M “ σg ¨ M “ rgmijs,

the i-th row of σ ¨ M is the j-th row of M . That is, σpiq “ j. Now let M be
an inherently group-characterizable matrix. There exist a group-characterizable
matrix M 1 and a relabeling f such that M “ f ¨ M 1. By Proposition 4.6 (part
2), AutpMq “ AutpM 1q, from which the claim follows.

(If part) Let M “ rmijsmˆn and H “ AutpMq act transitively on rms. For
every j P rms, let

Hj “ tσ P H : f j
σ pm1jq “ m1ju ,

where fσ “
`

f1
σ , f

2
σ , . . . , f

n
σ

˘

is the corresponding reordering of σ. Let MH be
the matrix representation of pH;H1, ¨ ¨ ¨ ,Hnq. It is enough to show that M is
a relabeling of MH and, therefore, M it inherently group-characterizable. For
every j P rns, define F j from the set of elements of M j

H to the set of elements
of M j by F j pσHjq “ mσp1qj . We claim that F “ pF 1, . . . , Fnq is a relabeling.
First notice that F j , j P rms, is well-defined and one-to-one; because:

σHj “ τHj ðñ τ´1 ˝ σ P Hj

ðñ f j
τ´1˝σ

pm1jq “ m1j

ðñ

´

`

f j
τ

˘´1
˝ f j

σ

¯

pm1jq “ m1j

ðñ f j
σ pm1jq “ f j

τ pm1jq

ðñ mσp1qj “ mτp1qj

ðñ F jpσHjq “ F jpτHjq.

It remains to show that F j ’s are onto. Let mij be an arbitrary element of M j .
Since the action of H on rms is transitive, for all i P rms, there is a σ P H such
that σ p1q “ i. Therefore, F jpσHjq “ mσp1qj “ mij . [\

The proof of above theorem provides a systematic way for finding a group
characterization for an inherently group-characterizable matrix M . We remark
that if M itself is group-characterizable, the constructed group characterization
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might differ from the original one. For completeness and ease of reference, below
we present a proposition which can be proved similar to the proof of the if-part
of the theorem.

Proposition 5.2 Let M “ rmi,jsmˆn be a matrix and H be a subgroup of
AutpMq that acts transitively on rms. Then, the tuple pH;H1, ¨ ¨ ¨ ,Hnq is a
group-characterization of M , where

Hj “ tσ P H : f j
σ pm1jq “ m1ju ,

and
`

f1
σ , f

2
σ , . . . , f

n
σ

˘

is the reordering that corresponds to σ.

Corollary 5.3 For an inherently group-characterizable matrix M with m rows,
it holds that m

ˇ

ˇ |AutpMq|.

Proof. Let H “ AutpMq and H1, . . . , Hn be as in Proposition 5.2. Since M is in-
herently group-characterizable, the matrix representation of π “ pH;H1, . . . ,Hnq

is a relabeling of M . By definition, Mpπq has m “
|H|

|
Şn

i“1 Hi|
rows. On the other

hand, M is a relabeling of Mpπq and hence they have the same number of rows.
Therefore, m

ˇ

ˇ |AutpMq|. [\

As we mentioned earlier, group-characterizable random variables are quasi-
uniform. However, the converse is not known to be true. In the following, we
demonstrate that there exist a quasi-uniform random variable which is not group-
characterizable. Consider the following matrix with six rows and uniform distri-
bution on each row:

M “

»

—

—

—

—

—

—

–

1 1 1
1 2 2
2 3 3
2 1 2
3 2 3
3 3 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Obviously, the corresponding joint random variable is quasi-uniform. On the
other hand, AutpMq “ te, p1 6qp2 5qp3 4qu. By Corollary 5.3, the distribution is
not inherently group-characterizable, becausem “ 6 does not divide |AutpMq| “

2.

Theorem 5.4 The class of inherently group-characterizable random variables
is a proper subclass of quasi-uniform random variables.

We remark that it remains open if the set of quasi-uniform entropic points
is larger than the set of group-characterizable entropic point. We recall that
a point

`

hA

˘

AĎrns
P R2n is said to be (group-characterizable/quasi-uniform)

entropic if there exists a (group-characterizable/quasi-uniform) random variable
x “ pxiqiPrns such that hA “ HpxAq for every A Ď rns.
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6 Group-characterizability of homomorphic secret
sharing schemes

In this section, we will prove that group-homomorphic secret sharing schemes
are inherently group-characterizable with normal subgroups in the main group.
For group-characterizability, it is enough to show that the automorphisms group
of the matrix representation of a group-homomorphic scheme satisfies the suffi-
cient condition in Theorem 5.1. For proof of normality, we introduce the notion
of inner automorphisms group of a group-homomorphic matrix (to be defined
below) as a subgroup of its automorphisms group and then use Proposition 5.2,
which as we will see works fine.

Note. We call group-homomorphic schemes simply homomorphic in this section.

6.1 Homomorphic secret sharing scheme

A homomorphic secret sharing scheme is a secret sharing scheme with the follow-
ing properties. First, the set of secrets and the set of shares of each participant
are groups. Second, the product of shares of two secrets are shares of the product
of their corresponding secrets. Here is a formal definition.

Definition 6.1 (Homomorphic secret sharing scheme/matrix) Let Mmˆn

be a matrix representation of a secret sharing scheme. For every j P rns, denote
the set of all distinct entries of the j’th columns of M by Mj. We call the
scheme/matrix homomorphic if:

– each Mj is equipped with a binary operation that makes Mj a group and,
– the set of rows of M is a subgroup of the product group

śn
j“1 Mj.

This definition shows that the product of two rows α “ pα1, . . . , αmq and
β “ pβ1, . . . , βmq of a homomorphic matrix, that is, αβ “ pα1β1, . . . , αmβmq, is
also a row of the matrix.

6.2 Main result

Consider a group-characterizable secret sharing scheme which is induced by a
tuple pG;G0, G1, . . . , Gnq and assume that each subgroup Gi is normal in G.
Consequently, each quotient G{Gi is a group and it is easy to see that the
scheme is homomorphic.

Proposition 6.2 Every group-characterizable secret sharing scheme with nor-
mal subgroups is homomorphic.

We prove that the converse of the above proposition is “almost” true.

Theorem 6.3 (Main theorem) Every homomorphic secret sharing scheme is
inherently group-characterizable with normal subgroups.
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We will show in Section 6.3 that homomorphic schemes satisfy the sufficient
condition of Theorem 5.1. Therefore, the existence of a group-characterization is
guaranteed. However, the subgroups might not necessarily be normal. Motivated
by Proposition 5.2, we will work with another group-characterization to ensure
normality. This will be discussed in Section 6.4.

6.3 A group-characterization

Let M be a homomorphic matrix with m rows and β be a row of M . It is easy
to see that the mapping α ÞÝÑ βα, on the set of rows of M , is a permutation.
Let σβ P Sm denote the corresponding permutation. We show that σβ is an
automorphism ofM . That is, there exists a reordering f such that f ¨M “ σβ ¨M .
Let β “ pβ1, β2, . . . , βnq and M “ rmijsmˆn. Since βj and mij are elements of
the same group, their product is well-defined. Let

f j
β pmijq “ βjmij , (6.1)

which is obviously a permutation. Therefore, f “

´

f1
β , f

2
β , . . . , f

n
β

¯

is a reordering

that satisfies σβ ¨ M “ rβjmijs “ f ¨ M . Therefore, σβ P AutpMq.
Now, let αi and αj be the i’th and j’th rows of M , respectively, and β “

αjα
´1
i . It is clear that σβ piq “ j. Thus, AutpMq acts transitively on rms. There-

fore, by Theorem 5.1, M is inherently group-characterizable.

6.4 A group-characterization with normal subgroups

In order to show that homomorphic schemes are group-characterizable with nor-
mal subgroups, we need to introduce the notion of inner automorphisms group
of a homomorphic matrix.

Definition 6.4 (Inner automorphisms group) Let M be a homomorphic ma-
trix with m rows and β be a row of M . Let σβ P Sm correspond to the permuta-
tion α ÞÝÑ βα, on the set of rows of M (see Section 6.3). We call σβ an inner
automorphism of M and define the set of inner automorphisms of M as

InnpMq “ tσβ : β is a row of Mu .

Clearly, H “ InnpMq is a subgroup of AutpMq. Also, based on our dis-
cussion in Section 6.3, InnpMq acts transitively on rms. By, Proposition 5.2,
pH,H1, . . . ,Hnq is a group-characterization for M , where

Hj “ tσ P H : f j
σ pm1jq “ m1ju

where fσ “
`

f1
σ , f

2
σ , . . . , f

n
σ

˘

is the reordering that corresponds to the permuta-
tion σ P H and pm11, . . . ,m1nq is the first row of M .

We show that Hj , j P rms, is normal in H “ InnpMq. By notation of Sec-
tion 6.3 and relation (6.1), we have:
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Hj “ tσβ : β is a row of M and βj “ eu ,

where β “ pβ1, . . . , βnq.
We need to show that for every σα P InnpMq and σβ P Hj , we have σα ˝σβ ˝

σ´1
α P Hj . It is clear that σα ˝ σβ ˝ σ´1

α “ σα ˝ σβ ˝ σα´1 “ σαβα´1 . The claim
then follows because αβα´1 is a rows of M and its j’th element is identity (since
βj “ e).

7 Conclusion

In this paper, we presented a necessary and sufficient condition for a given joint
random variable to be inherently group-characterizable. It then allowed us to
show that group-homomorphic secret sharing schemes are inherently group-
characterizable with normal subgroups, which was not clear beforehand. Al-
though every group-characterizable random variable, with uniform distribution
on its main group, is quasi-uniform (namely, all marginal distributions are uni-
form on their supports), by proposing a concrete counterexample, we showed
that the converse is not necessarily true. However, it remains an open question
if every quasi-uniform entropic point is group-characterizable. In this paper,
our focus was on the group-homomorphic secret sharing schemes. Homomorphic
schemes with simpler structures, such as magma-homomorphic schemes, and
their relation to group-homomorphic ones are not well understood and, hence,
left for future. Our result may be useful to achieve new findings about secret shar-
ing schemes. For example, by using the sufficient condition of being inherently
group-characterizable, one may be able to show that certain classes of secret
sharing schemes (such as the ideal ones) are inherently group-characterizable.
As another problem, we propose to find a necessary and sufficient condition for
a given random variable to be inherently linear or abelian.
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