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Abstract. This paper proposes pairing-based simulation-extractable zero-
knowledge succinct non-interactive arguments of knowledge (SE-SNARK)
schemes for QAP (Quadratic Arithmetic Program). In the proposed
schemes, the proof size is 3 group elements for a QAP (Quadratic Arith-
metic Program) circuit in asymmetric groups (Type III pairing), and
2 group elements for an SAP (Square Arithmetic Program) circuit in
symmetric groups (Type I pairing), respectively. Moreover, the proposed
schemes have only a single verification equation, while all existing SE-
SNARK schemes have two verification equations. Compared with the
existing state-of-the-art SE-SNARK schemes, the proof size and the
number of verification equations are minimal in the proposed scheme.
The soundness of the proposed scheme is proven under subversion al-
gebraic knowledge assumptions. Furthermore, we extend the proposed
SE-SNARK to support a two-round updatable CRS in which the CRS
size remains linear to the circuit size.

Keywords: zk-SNARK, simulation-extractability, quadratic arithmetic program,
square arithmetic program, updatable CRS

1 Introduction

As digital privacy becomes more sensitive, the conflict between privacy and legit-
imacy often sets a barrier for recent real-life applications. One notable example
is privacy-preserving blockchain systems. Since the blockchain is well-known to
provide robust integrity due to consensus and distribution, it is often considered
as an ideal platform for various attestation-required applications such as digital
currencies, smart contract, healthcare, supply chains, voting systems, etc. The
blockchain integrity provided by finalizing contents and distributing them to all
participants, however, raises a privacy issue for the plain data. Alternatively,
if the data is encrypted in a block, then it is hard to know whether the data
provider is an authorized candidate or whether the data itself was created in
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a legitimate way. The contradiction between privacy vs. legitimacy leads the
privacy-aware blockchain applications to a dead-end3.

A zero-knowledge proof system acts as a problem-solver to resolve the legit-
imacy problem of the private data. If the data provider includes a proof related
to the legitimacy of the data, the public can verify it without knowing the data.
In practice, anonymous blockchain cryptocurrencies such as Zcash [BCG+14],
already deploy the zero-knowledge proof system in their applications. The main
concern is practicality: the proof generation needs to be non-interactive when
the applications target the unlimited, non-specific, public verification and the
proof size/verification time is desired to be scalable regardless of the complexity
of the legitimacy.

In the recent history of zero-knowledge proofs, zk-SNARK (zero-knowledge
succinct non-interactive arguments of knowledge) have drawn significant atten-
tion for its efficiency and theoretical advances. They enable a prover to generate
a proof for any NP statements in a manner where the proof is zero-knowledge
about its witness and the proof size and the verification cost are succinct.
For succinctness, it is often accepted if the size and the verifying computation
are logarithmic to the circuit size. Thus the zk-SNARK terminology embraces
various types of zero-knowledge proof systems, such as ZKBoo [GMO16] and
vRAM [ZGK+18] which are an advanced from of traditional interaction-based
proof systems with Fiat-Shamir transformation [FS86].

However, when applied to a massive public infrastructure such as blockchain,
a logarithmic (sublinear) size might not be enough for succinctness. For exam-
ple in zerocash [BCG+14], the membership test circuit has 64 hash functions
(approximately 29,000 lines for each hash) which leads to a single proof size of
5MB by rough estimation in ZKBoo [GMO16]4. Considering that innumerable
transactions, each including a proof are distributed to the participants, a proof
size of 5MB seems inadmissible as practical.

Therefore, for scalability, it is desirable to adopt zk-SNARK with a constant
size proof and verification, which is constructed in the paring-based elliptic curve
group and Quadratic Arithmetic Program (QAP) [GGPR13]. In the QAP-based
SNARKs such as [Gro16], by utilizing polynomial relations, a proof contains
3 group elements and the verification requires 3 pairings regardless of the cir-
cuit size. When this scheme is applied to the Zcash, the proof size becomes
60 bytes and verification takes 100ms. Consequently, we focus on the literature
of QAP-based (and pairing-based) zk-SNARKs with a constant-sized proof and
verification for the rest of the paper. Hereafter, we often use the term zk-SNARK
or SNARK mixed with the ”QAP-based (and pairing-based) zk-SNARK”.

3 There still are alternative solutions, such as setting a trusted manager or delicately
narrowing down the blockchain data contents. However it is often complicated and
does not solve the fundamental controversy.

4 In ZKBoo, the experiment results show that the proof size is 835.91KB for a SHA-
256 hash function. We multiply it by 6 (=log(64)) to estimate the 64 sequential
executions of hash functions.
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Despite the practical functionality, a weakness of zk-SNARK is that they
are susceptible to man-in-the-middle attacks. Namely, an adversary who obtains
valid proofs could forge a new valid proof without knowing the witness. In conse-
quence, the zk-SNARK’s implementation often requires an additional protection
method against its malleability. The zerocash [BCG+14], for example, combines
one-time signatures within the zk-SNARK circuit.

Groth and Maller [GM17] tackle the malleability problem of existing SNARKs,
define the notion of simulation-extractable-SNARK (SE-SNARK) which indi-
cates non-malleable zk-SNARK, and propose the corresponding scheme called
SE-SNARK. SE-SNARK [GM17] resolves the malleability issue by adopting
SAP (Square Arithmetic Program) instead of more general QAP and applying
an additional verification equation to existing the state-of-art SNARK [Gro16].
[GM17] also proves that any SE-SNARK scheme in the NILP frame [BCI+13]
necessarily requires at least 3 elements in a proof and 2 equations in the verifi-
cation [GM17]. In this sense, the pairing-based SE-SNARK scheme in [GM17]
is optimal in the proof size and the number of verification equations: 3 elements
for a proof and 2 equations for verification, however, by sacrificing the circuit
representation from the QAP to the SAP.

In this paper, we take the approach to employ the hash function and achieve
better results of 3 proof elements and a single verification equation. While 3
elements in a proof and 2 verification equations are optimally required at least
in a pairing-based SE-SNARK in the NILP frame, it is not known whether
further optimization is possible in the non-NILP frame. In fact, the use of a
hash function that deviates from the NILP frame to bind elements offers new
possibilities to break the existing boundaries. Moreover, the resulting scheme
works on the efficient QAP circuit.

Another crucial property for the SNARK is trustable CRS construction. In
the SNARK, unless CRS is generated in a trusted way, the trapdoor using in
CRS can generate fake proofs for false instances. To solve the trusted setup
problem, Zcash [BGG18] builds CRS using secure multi-party computation to
distribute the trapdoor information. [GKM+18] introduces the updatable CRS
model, in which any user can update CRS at any point. However the CRS size
is quadratic to the relation size. To make the size of updatable CRS to linear to
the relation size, [MBKM19] proposes a linear size universal and updatable CRS
SNARK scheme with sacrificing the proof size and the performance. To support
updatable CRS in SNARK, this paper adopts a two round update framework in
which universal CRS is updated at the first round and circuit dependent CRS
is updated at the second round after building the circuit dependent CRS from
a given relation using the universal CRS. The proposed framework is applicable
to many existing SNARK schemes. Especially, this paper extends the proposed
SE-SNARK to support the two round CRS update approach. In the proposed
updatable CRS SE-SNARK, the CRS size is still linear to the relation size with-
out increasing the proof size and the proof time.
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Our contributions. In this paper, we first construct a QAP-based SE-SNARK
scheme with a single verifying equation in an asymmetric group (Type III pair-
ing). Given three groups with a bilinear map e : G1 × G2 → GT , our proofs
consists of only 3 group elements from the source groups: two from G1 and one
from G2. Additionally, we also propose a SAP-based SE-SNARK with 2 ele-
ments for a proof and a single verifying equation, in a symmetric group (Type
I pairing). Finally we extend the proposed QAP-based SE-SNARK to support
updatable CRS. We summarize our contributions as follows:

– QAP-based SE-SNARK with 3 elements (Type III)
We propose a first pairing-based SE-SNARK that utilizes QAP circuits, in-
stead of SAP, while maintaining 3 elements for a proof. Note that the SAP
circuit size is theoretically double of the QAP circuit size.

– SAP-based SE-SNARK with 2 elements (Type I)
We show that our construction can reduce the number of proof elements to
2 (with utilizing SAP) in symmetric pairing (Type I). Note that this result
surpasses the theoretical boundary for SE-SNARKs proven in [GM17].

– Single verifying equation
Our SE-SNARK construction verifies the proof with a single verifying equa-
tion. By utilizing the hash function to bind the unique proof tuple (A,B,C),
we eliminate the additional equation for the malleability check.

– Updatable CRS
Our SE-SNARK schemes are extended to support updatable CRS. The CRS
updation is performed in two rounds. At the first round, circuit independent
CRS is updated. A circuit dependent CRS for a given relation is constructed
from the circuit independent CRS updated. At the second round, the circuit
dependent CRS is updated. In the two-round update framework, the CRS
size still remains linearly to the circuit size, and the proof size and the
performance do not increase.

Related work. In the history of proof systems and verifiable computations,
there are various NIZK arguments with different types which do not leverage
QSP (Quadratic Span Program) or QAP (Quadratic Arithmetic Program) cir-
cuits [GKR08,CMT12,WJB+17,WTTW18,BBB+18,ZGK+18,BSCTV14]. A well-
known branch comes from the sum-check protocol [GKR08], which gains a sub-
linear proof from the fiat-shamir transform [FS86]. Nonetheless, they do not
support the constant time verification; the verification time is sublinear to the
size of the circuits.

Since Gennaro et al. [GGPR13] introduced the Quadratic Span Program(QSP)
and Quadratic Arithmetic Program(QAP), zk-SNARK gained a constant proof
size and verification. In 2013, Parno et al. [PHGR13] proposed a zk-SNARK
scheme called Pinocchio and provided a first practical implementation of zk-
SNARK. After Pinocchio, many works added and enhanced some functional-
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ities, such as multiple-function control, additional anonymity for the I/O, or
proof scalability [CFH+15,DLFKP16,KPP+14,FFG+16,BBFR15,BSCTV17].

Later, Groth [Gro16] proposed a more efficient zk-SNARK scheme. Compared
with Pinocchio [PHGR13], the proof size was reduced from 8 group elements to
3 group elements. Also the number of pairing operations required to verify the
proof was reduced from 11 to 3. Recently these SNARK protocols are imple-
mented as an open source [KPS18,BSCG+13] to be used in real applications.
By exploiting the short proof sizes and the short verification times, zk-SNARK
can be used as a key component in various cryptographic applications such as
anonymous cryptocurrencies [BCG+14,KMS+16,GGM16].

Zerocash [BCG+14], one of the anonymous cryptocurrencies based on blockchain
technology, utilized a zk-SNARK to hide transaction information and to provide
an efficient verification process. However, since zk-SNARKs [Gro16,PHGR13] do
not provide simulation-extractability, zerocash has to add extra cryptographic
primitives such as one-time signatures to avoid malleability attacks.

The SE-SNARK scheme [GM17] defines and provides the simulation-extractable
SNARK (SE-SNARK), with a similar notion to the Signatures of knowledge [CL06].
While maintaining an efficient proof size of [Gro16], it can prevent the malleabil-
ity attacks due to the simulation-extractability.

Recently, Bowe and Gabizon [BG18] put an effort to make Groth’s scheme [Gro16]
simulation-extractable by utilizing random oracle model, with additional hash
in proofs and verification. However, the proof size and verification equations
in their scheme is 5 group elements and 2 equations which is inefficient com-
pared to [GM17]. And the security is proven in random oracle model. Lipmaa
proposes a simulation-extractable SNARK scheme without using random oracle
model [Lip19]. The security of the proposed scheme is proven under a new se-
curity assumption called subversion algebraic knowledge (SAK) assumption in
which if an adversary A outputs a group element then A should know each ex-
ponent of known group elements or randomly generated group elements to build
the group element. In the proposed scheme, the proof size is reduced to 4 group
elements and 2 verification equations are required while QAP is supported.

Table 1 summarizes and compares the overall size and performance of our
QAP-based SE-SNARK with the state-of-the-art zk-SNARK [Gro16] and SE-
SNARK schemes [GM17,BG18,Lip19].

Orthogonal to the simulation-extractability, a zk-SNARK with updatable
CRS solves the trust issue of CRS by letting the users independently update
the CRS [GKM+18,MBKM19]. The traditional limitation of SNARKs is that
they all require trusted CRS generation. Through the updating approach, users
who distrust a current CRS can rely on self-updating. Although two approaches
proposed in [GKM+18,MBKM19] allow a single round update, the CRS size is
quadratic to the circuit size [GKM+18] or the proof size increases to 5G + 7F
or 20G + 16F where G and F denote the group elements and the field elements,
respectively.

In this paper, we focus on the simulation-extractable SNARKs, specifically
pairing-based SE-SNARKs. Similarly to [Lip19], our scheme is secure under SAK
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Table 1: Comparison for arithmetic circuit satisfiability with l element instance, m
wires, n multiplication gates. Since SAP uses squaring gates, 2n squaring gates and
2m wires are considered instead of n multiplication gates and m wires; Units: G stands
for group elements, E stands for exponentiations and P stands for pairings.

Circuit |CRS| |π| P time V time Eqs. Security

[Gro16] QAP
(m+ 2n)G1 +

nG2
2G1 + G2 (m+3n)E1 +nE2 lE1 + 3P 1 GGM

[GM17] SAP
(2m+ 4n)G1 +

2nG2
2G1 + G2

(2m+ 4n)E1 +
2nE2

lE1 + 5P 2 XPKE

[BG18] QAP (m+5n)G1+nG2 3G1 + 2G2 (m+3n)E1 +nE2 lE1 + 5P 2 ROM

[Lip19] QAP (m+3n)G1+nG2 3G1 + G2 (m+4n)E1 +nE2 lE1 + 5P 2 SAK

Ours QAP (m+3n)G1+nG2 2G1 + G2 (m+4n)E1 +nE2 lE1 + 3P 1 SAK

Ours SAP (2m+ 6n)G 2G (2m+ 6n)E lE1 + 3P 1 SAK

assumption and collision resistant hash, and the proof size is further reduced to
3 group elements and a single verification is required which are equal to [Gro16].
Moreover, we extend the proposed schemes to support updatable CRS.

The rest of the paper proceeds as follows: Section 2 provides some necessary
notions and backgrounds; Section 3 defines a bilinear group and assumptions; in
Section 4, we present our QAP-based SE-SNARK with a single verification; in
Section 5, we propose a symmetric SAP-based SE-SNARK with 2 proof elements;
Section 6 extends the schemes to support updatable CRS. Section 7 draws a
conclusion.

2 Preliminaries

2.1 Notation

We denote the security parameter with λ ∈ N. For functions f, g : N → [0; 1]
we write f(λ) ≈ g(λ) if |f(λ) − g(λ)| = λ−ω(1). A function f is negligible if
f(λ) ≈ 0. We implicitly assume that the security parameter is available to all

participants and the adversary. If S is a set, x
$← S denotes the process of

selecting x uniformly at random in S. If A is a probabilistic algorithm, x← A(·)
denotes the process of running A on some proper input and returning output x.

We define that transA includes all of A’s inputs and outputs, including ran-
dom coins for an algorithm A. We use games in security definitions and proofs.
A game G has a main procedure whose output is the output of the game. The
notation Pr[G] denotes the probability that the output is 1.

2.2 Relations

Given a security parameter 1λ, a relation generator R returns a polynomial time
decidable relation R← R(1λ). For (φ,w) ∈ R we say that w is a witness to the
instance φ being in the relation. We denote with Rλ the set of possible relations
that R(1λ) might output.
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2.3 Zero-Knowledge Succinct Non-interactive Arguments of
Knowledge

Definition 1. A zero-knowledge succinct non-interactive arguments of knowl-
edge (zk-SNARK) for R is a set of four algorithms Arg = (Setup,Prove,Vfy,SimProve)
working as follows:

– (crs, τ )← Setup(R): the setup algorithm is a PPT algorithm which receives
a relation R ∈ Rλ as input and outputs a common reference string crs and
a simulation trapdoor τ .

– π ← Prove(crs,φ,w): the prover algorithm is a PPT algorithm which re-
ceives a common reference string crs as input for a relation R and (φ,w) ∈
R and outputs a proof π.

– 0/1 ← Vfy(crs,φ,π): the verifier algorithm is a deterministic polynomial
time algorithm which receives a common reference string crs, an instance φ
and a proof π as input and outputs 0 (reject) or 1 (accept).

– π ← SimProve(crs, τ ,φ): the simulator is a PPT algorithm which receives
a common reference string crs, a simulation trapdoor τ and an instance φ
as input and outputs a proof π.

It satisfies completeness, knowledge soundness, zero-knowledge, and succinctness
as following:

Perfect Completeness: Perfect completeness states that a prover with a wit-
ness can convince the verifier for a given true instance. For all λ ∈ N, for all
R ∈ Rλ and for all (φ,w) ∈ R : Pr[(crs, τ )← Setup(R);π ← Prove(crs,φ,w) :
Vfy(crs,φ,π) = 1] = 1.

Computational Knowledge Soundness: Computational knowledge sound-
ness says that the prover must know a witness and the witness can be efficiently
extracted from the prover by a knowledge extractor. Proof of knowledge requires
that there must exist an extract χA given the same input of A outputs a valid
witness for every adversarial prover A generating an accepting proof. Formally,
we define AdvsoundArg,A,χA(λ) = Pr[GsoundArg,A,χA(λ)] where the game GsoundArg,A,χA is
defined as follows.

MAIN GsoundArg,A,χA(λ)

R← R(1λ)

(crs, τ)← Setup(R)

(φ, π)← A(crs)

ω ← χA(transA)

assert (φ, ω) /∈ R
return Vfy(crs, φ, π)

An argument system Arg is computationally considered as knowledge sound if
there exists a PPT extractor χA for any PPT adversaryA, such that AdvsoundArg,A,χA(λ) ≈
0.
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Perfect Zero-Knowledge: Perfect zero-knowledge states that the system does
not reveal any information except the truth of the instance. This is modelled
by a simulator which can generate simulated proofs using some trapdoor in-
formation without knowing the witness. Formally, we define AdvzkArg,A(λ) =

2Pr[GzkArg,A(λ)]− 1 where the game GzkArg,A is defined as follows:

MAIN GzkArg,A(λ)

R← R(1λ)

(crs, τ)← Setup(R)

b← {0, 1}

b′ ← AP
b
crs,τ (crs)

return 1 if b = b′ and

return 0 otherwise

P bcrs,τ (φi, wi)

assert(φi, wi) ∈ R
πi ← Prove(crs, φ, w) if b = 0

πi ← SimProve(crs, τ, φ) if b = 1

return πi

The argument system is perfectly zero knowledge if for all PPT adversaries A,
AdvzkArg,A(λ) = 0.

Succinctness: Succinctness states that the argument generates the proof of
which size is polynomial in the security parameter, and of which the verifier’s
computation time is polynomial in the security parameter and in the instance
size.

Definition 2. A simulation-extractable SNARK system (SE-SNARK) for R is
a zk-SNARK system (Setup, Prove, Vfy, SimProve) with simulation-extractability
as following:

Simulation-Extractability [GM17]: Simulation-extractability states that for
any adversaryA that sees a simulated proof for a false instance cannot modify the
proof into another proof for a false instance. Non-malleability of proofs prevents
cheating in the presence of simulated proofs. Formally, we define Advproof−extArg,A,χA (λ) =

Pr[Gproof−extArg,A,χA (λ)] where the game Gproof−extArg,A,χA is defined as follows:

MAIN Gproof−extArg,A,χA (λ)

R← R(1λ);Q = ∅
(crs, τ)← Setup(R)

(φ, π)← ASimProvecrs,τ (crs)

ω ← χA(transA)

assert (φ, π) /∈ Q
assert (φ, ω) /∈ R
return Vfy(crs, φ, π)

SimProvecrs,τ (φi)

πi ← SimProve(crs, τ, φi)

Q = Q ∪ {(φi, πi)}
return πi

An argument is simulation-extractable if for any PPT adversary A, there exists
a PPT extractor χA such that Advproof−extArg,A,χA (λ) ≈ 0.
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We note that simulation-extractability implies knowledge soundness, since
simulation-extractability corresponds to knowledge soundness where the adver-
sary is allowed to use the simulation oracle SimProve.

When knowledge soundness and simulation-extractability are applied for a
succinct argument, extractors are inherently non-black-box. As in [GM17] we
assume the relationship generator is benign5, such that the relation (including
the potential auxiliary inputs) is distributed in such a way that the SNARK can
be simulation-extractable.

2.4 Updating common reference strings

We define a two-round updatable CRS scheme consisting of nine PPT algorithms
Setup, Updatex, VerifyCRSx, Derive, UpdateR, VerifyCRSR, Prove, Vfy, SimProve.
Three algorithms of Prove, Vfy, SimProve are equivalent to the components in
zk-SNARK Arg.

– (τx, crsx, ρ1) ← Setup(1λ) receives the security parameter as input and re-
turns a simulation trapdoor, a relation independent CRS and a proof of
correctness.

– (τ ′x, crs
′
x, ρk+1) ← Updatex(1λ, crsx, {ρj}kj=1) receives relation independent

CRS and a list of update proofs as input and returns an updated simulation
trapdoor, an updated CRS and a proof of the correctness of the update.

– VerifyCRSx(1λ, crsx, {ρj}n1
j=1) receives the security parameter, relation inde-

pendent CRS and a list of update proofs and returns whether it accepts or
not.

– (τR, crsR, φ1)← Derive(1λ, crsx, R) receives the security parameter, relation
independent CRS and relation as input and returns a simulation trapdoor,
a relation dependent CRS and a proof of correctness.

– (τ ′R, crs
′
R, φk+1) ← UpdateR(1λ, crsR, {φ}ki=1) receives the security parame-

ter, relation dependent CRS and a list of update proofs as input and returns
an updated simulation trapdoor, an updated CRS and a proof of the cor-
rectness of the update.

– VerifyCRSR(1λ, crsR, {φj}n2
j=1) receives the security parameter, relation de-

pendent CRS and a list of update proofs and returns whether it accepts or
not.

5 The non-falsifiable knowledge of exponent assumption is a necessary ingre-
dient in building a SNARK with witness extraction. In Bitansky’s analy-
sis [BCI+13,BCPR16], there are some counter examples and observations; auxiliary
inputs may affect the extraction of the witness in extractable one-way functions.
However they also observe that the extractability still holds with respect to common
auxiliary input that is taken from specific distributions that may be conjectured to
be “benign”, e.g. the uniform distribution.
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Definition 3. An updatable CRS scheme is perfectly correct if

Pr[(crsx, ρ)← Setup(1λ) : VerifyCRSx(1λ, crsx, ρ) = 1] = 1;

Pr

[
(crs′x, ρk+1)← Updatex(1λ, crsx, {ρi}ki=1) :

VerifyCRSx(1λ, crsx, {ρi}ki=1) = 1 ∧ VerifyCRSx(1λ, crs′x, {ρi}k+1
i=1 ) = 1

]
= 1;

Pr[(crsR, φ)← Derive(1λ, crsx, R) : VerifyCRSR(1λ, crsR, φ) = 1] = 1;

Pr

[
(crs′R, φk+1)← UpdateR(1λ, crsR, {φi}ki=1) :

VerifyCRSR(1λ, crsR, {φi}ki=1) = 1 ∧ VerifyCRSR(1λ, crs′R, {φi}k+1
i=1 ) = 1

]
= 1

3 Bilinear Groups and Assumptions

A bilinear group generator BG receives a security parameter as input and outputs
a bilinear group (p,G1,G2,GT , e,G,H). G1, G2, GT are groups of prime order p
with generator G ∈ G1, H ∈ G2, and a bilinear map e : G1×G2 → GT is a non-
degenerative bilinear map (i.e. e(Ga, Hb) = e(G,H)ab and e(G,H) generates
GT ).

3.1 Power Knowledge of Exponent Assumption

We define q-power knowledge of exponent assumption for updatable CRS SE-
SNARK schemes. Using this assumption, we will show that trapdoors are ex-
tractable in the proposed scheme.

Definition 4 (q-PKE assumption). [Gro10] The q-power knowledge of ex-
ponent assumption holds for G1, G2 if for all A there exists a non-uniform PPT
extractor χA such that

Pr


(p,G1,G2,GT , e,G,H)← BG(1λ);x

$← Zp;
σ ← (p,G1,G2,GT , e,G, {Gx

i}qi=1, H, {Hxi}qi=1);
(Ga, Hb)← A(σ); (a0, . . . , aq)← χA(transA) :

a = b ∧ b 6=
∑q
i=0 aix

i

 ≈ 0.

3.2 Subversion Algebraic Knowledge Assumption

Lipmaa proposes a new knowledge assumption called subversion algebraic knowl-
edge (SAK) assumption [Lip19]. In algebraic knowledge assumption, one as-
sumes that each PPT algorithm is algebraic in the following sense. Assume that
there are unknown exponents. Let xi be a polynomial using the unknown ex-
ponents. Let Gx be a vector of Gxi . Similarly, let Gy be a vector of Gyi where
yi is a polynomial using the unknown exponents. If the adversary A’s input
includes Gx and no other elements from the group G1 and A outputs group
elements Gy, then A knows matrices N , such that Gy = GNx. Formally, a
PPT algorithm A is algebraic (in G1) if there exists an efficient extractor χA,
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such that for any PPT sampleable distribution D, AdvakG1,D,A(λ) ≈ 0, where

AdvakG1,D,A(λ) := Pr[Gx $← D;Gy ← A(Gx); N ← χA(transA) : y 6= Nx]. A
group G1 is algebraic if every PPT algorithm A that obtains inputs from G1

and outputs elements in G1 is algebraic.
Furthermore, Lipmaa pointed out that the restriction that adversaries are

algebraic is not valid in situations where the adversary can create new random
group elements by say using elliptic curve hashing [Ica09]. So he models this
capability by allowing the adversary to create additional group elements Gq for
which she does not know discrete logarithms of exponent qi or vector q. It is re-
quired that Gq (but not necessarily q) can be extracted from the adversary, such

that y = N ·
(

x
q

)
. In addition, Gq must be sampled from a public distribution

D′.
A PPT algorithm A is called as subversion-algebraic (in G1) if there ex-

ists a PPT extractor χA, s.t. for any PPT sampleable distribution D and any
distribution D′ with min-entropy ω(log λ), AdvsakG1,D,D′,A(λ) :=

Pr

 Gx $← D;Gy ← A(Gx);

(N, Gq)← χA(transA) : y 6= N

(
x
q

)
∧ (Gq ∼ D′)

 ≈ 0.

Finally, we define the following D − SAK assumption in G1:

Definition 5 (D − SAK assumption in G1 [Lip19]). For each PPT A that
obtains inputs, distributed according to the distribution D, there exists an extrac-
tor that outputs Gq and N such that Gq ∼ D′ for some distribution D′ of high
min-entropy. More precisely, AdvsakGι,D,D′,A(λ) ≈ 0 for each PPT adversary A
and each distribution D′ of min-entropy ω(log λ).

3.3 Linear Collision Resistant Hash Function

The second intractable assumption is the extended collision resistant hash func-
tion. The conventional collision resistant hash function is defined as following:

Definition 6 (Collision resistance). H : X → Y is a collision resistant hash
function if for all PPT adversary A, AdvCRH (A) :=

Pr[(x, x′)← A(X ,H) : (x 6= x′) ∧ (H(x) = H(x′))] ≈ 0

Furthermore, it is difficult to find any collision for various equations in many
collision resistant hash functions like SHA. Hence, specifically for our purpose,
we define an extended collision resistant hash function called linear collision
resistant (linear CR) hash function. It is assumed that the proposed hash receives
a group element as input. In the proposed hash function, it is hard to find non-
trivial a, a′ ∈ Zp and x, x′ ∈ G where G is a cyclic group of prime order p such

that H(xax′a
′
) = a+ a′H(x′). Formally, it is defined as follows:
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Definition 7 (Linear collision resistance). H : G→ Zp is a linear collision

resistant hash function if for all PPT adversary A, AdvLCRH (A) :=

Pr

[
(x, x′, a, a′)← A(G,H) :

(a 6= 0) ∧ (a′ 6= 1) ∧ (x 6= 1G) ∧ (H(xax′a
′
) = a+ a′H(x′))

]
≈ 0

Note that 1G denotes the identity in G. Although H receives a group element
as input and outputs an element in Zp, H can receive input and output elements
as strings if the output string is remapped in Zp. Hence, many cryptographical
hash functions such as SHA, and Ajtai hash [Ajt96] which are used as collision
resistant hash can be also adopted as a linear collision resistant hash.

4 QAP-based SE-SNARK Scheme

4.1 Main Idea

As an example of how standard zk-SNARK can be modified, suppose for an
instance φ that (A,B,C) (= (Ga, Hb, Gc)) are three group elements in a proof
that satisfies the verification equations of Groth’s zk-SNARK in [Gro16]. Then

e(A,B) = e(Gα, Hβ)e(G
f(φ)
γ , Hγ)e(C,Hδ) (1)

for a known polynomial f in φ and some secret α, β, γ, δ.
There are two methods to generically randomize a proof A,B,C that satisfies

(1). An adversary can set either

A′ = Ar;B′ = B
1
r ;C ′ = C (2)

or
A′ = A;B′ = BHrδ;C ′ = ArC. (3)

In the proposed approach, we devise a new way to neutralize the two attacks
using the hash of A and B in C. The verification equation is required to detect
the changes of A and B. We insert multiplications of a and hash of A, and b and
hash of B in c. Hence, an adversary should know a and b to change A and B in
the revised proof.

The left pairing function in (1) changes to e(AGH(A), BHδH(B)), and C is
revised to satisfy (1) as following:

C ′ = C ·G
aH(B)
δ +bH(A)+H(A)H(B)

where A = Ga, B = Hb, and H is a linear collision resistant hash function like
SHA.

According to the revised C ′, the verification is revised by adding proper
additional terms to A and B as follows:

e(A ·GδH(A), B ·HH(B)) = e(Gα, Hβ)e(G
f(φ)
γ , Hγ)e(C ′, Hδ)
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If A,B change to A′, B′ then C ′ should be revised to

C ′ ·G
a(H(B′)−H(B))

δ +b(H(A′)−H(A))+H(A′)H(B′)−H(A)H(B). However, since only Ga

and Hb are available in the original proof, and G
a
δ and Gb are only computable

if a witness is known, an adversary cannot forge the proof.

4.2 Quadratic Arithmetic Programs

In our SE-SNARK, we will formally adopt the quadratic arithmetic programs
(QAP) [GGPR13,Gro16] in a relation R, which is as follows:

R = (p,G1,G2,GT , e, l, {ui(X), vi(X), wi(X)}mi=0, t(X))

The bilinear group (p,G1,G2,GT , e) defines the finite field Zp, 1 ≤ l ≤ m,
and the polynomials ui(X), vi(X), wi(X) represent each linearly independent
polynomial set in the QAP with the definition below:

m∑
i=0

siui(X) ·
m∑
i=0

sivi(X) ≡
m∑
i=0

siwi(X) + h(X)t(X)

where ui(X), vi(X), wi(X) have a strictly lower degree than n, which is the
degree of t(X). By defining s0 as 1, the following definition describes the relation
R.

R =


(φ,w)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ = (s1, · · · , sl) ∈ Zlp
w = (sl+1, · · · , sm) ∈ Zm−lp

∃h(X) ∈ Zp[X], deg(h) ≤ n− 2 :
m∑
i=0

siui(X) ·
m∑
i=0

sivi(X) ≡
m∑
i=0

siwi(X) + h(X)t(X)


We say R is a relation generator for the QAP, given the relation R with field

size larger than 2λ−1.

4.3 Construction

– (crs, τ) ← Setup(R): Select generators G
$← G1, H

$← G2, hash function

H : {0, 1}∗ → Zp and parameters α, β, γ, δ, x
$← Zp, such that t(x) 6= 0, and

set

τ = (G,H,α, β, γ, δ, x)

crs =


R,H1, H2, G,G

α, Gβ , Gδ, Gαδ, H,Hβ , Hδ

{Gγx
i

, Hγxi , Gγ
2t(x)xi , Gγδx

i

}n−1i=0 , {G
γwi(x)+βui(x)+αvi(x)}li=0,

{Gγ
2wi(x)+βγui(x)+αγvi(x)}mi=l+1





14 Jihye Kim, Jiwon Lee, and Hyunok Oh

– π ← Prove(crs, φ, w) : Set s0 = 1 and parse φ as (s1, . . . , sl) ∈ Zlp and w

as (sl+1, . . . , sm) ∈ Zm−lp . Use the witness to compute h(X) from the QAP,

choose r, s
$← Zp and compute π = (A,B,C) = (Ga, Hb, Gc) such that

a =α+ γ

m∑
i=0

siui(x) + r

b =β + γ

m∑
i=0

sivi(x) + s

c =

m∑
i=l+1

si(γ
2wi(x) + βγui(x) + αγvi(x)) + γ2t(x)h(x) + sa+ rb− rs

+ δaH(B) + bH(A) + δH(A)H(B)

.
– 0/1 ← Vfy(crs, φ, π) : Parse φ as (s1, . . . , sl) ∈ Zlp and π as (A,B,C) ∈

G1 × G2 × G1. Set s0 = 1 and accept the proof if and only if the following
equation is satisfied:

e(AGH(A), BHδH(B)) = e(Gα, Hβ)e(G
∑l
i=0 si(γwi(x)+βui(x)+αvi(x)), Hγ)e(C,H)

.
– π ← SimProve(crs, τ, φ) : Choose µ, ν ← Zp and compute π = (A,B,C)

such that

A = Gµ, B = Hν ,

C = Gµν−αβ+h2δµ+h1ν+h1h2δ−γ
∑l
i=0 si(γwi(x)+βui(x)+αvi(x))

(4)

where h1 = H(A) and h2 = H(B).

4.4 Security Proof

Theorem 1. The protocol given above is a non-interactive zero-knowledge ar-
gument of knowledge with perfect completeness and perfect zero-knowledge. It
is simulation-extractable (implying it also has knowledge soundness) provided
that the SAK (subversion algebraic knowledge) assumption holds, and a linear
collision resistant hash exists.

Proof. Perfect Completeness:
We demonstrate that the prover can compute the proof (A,B,C) as described

from the common reference string. Let h1 = H(A) and h2 = H(B). The prover
can compute the coefficients of

h(X) =
(
∑m
i=0 siui(X))(

∑m
i=0 sivi(X))− (

∑m
i=0 siwi(X))

t(X)
=

n−2∑
j=0

hjX
j .
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Now, the proof elements can be computed as follows:

A = Gα
n−1∏
j=0

(Gγx
j

)uj ·Gr

B = Hβ
n−1∏
j=0

(Hγxj ) ·Hs

C =

m∏
i=l+1

Gsi(γ
2wi(x)+βγui(x)+αγvi(x)) ·AsA′h2B′(r+h1) ·G−rs ·Gδh1h2 ·

n−1∏
j=0

(Gγ
2t(x)xj )hj

where A′ = Aδ = Gαδ
∏n−1
j=0 (Gδγx

j

)uj ·Gδr and B′ = Gβ
∏n−1
j=0 (Gγx

j

)vj ·Gs.
This computation provides us the proof elements specified in the construction

A = Gα+γ
∑m
i=0 siui(x)+r

B = Hβ+γ
∑m
i=0 sivi(x)+s

C = G
∑m
i=l+1 si(γ

2wi(x)+βγui(x)+αγvi(x))+γ
2t(x)h(x)+sa+rb−rs+δah2+bh1+δh1h2 .

Here we show that the verification equation holds.

e(AGh1 , BHδh2) = e(Gα, Hβ)e(G
∑l
i=0 si(γwi(x)+βui(x)+αvi(x)), Hγ)e(C,H)

Taking discrete logarithms, checking the verification equation is equivalent to
showing that

(a+h1) · (b+ δh2)

=(α+ γ

m∑
i=0

siui(x) + r) · (β + γ

m∑
i=0

sivi(x) + s) + δah2 + bh1 + δh1h2

=αβ + γ2(

m∑
i=0

siui(x))(

m∑
i=0

sivi(x)) +

m∑
i=0

si(βγui(x) + αγvi(x))

+ rb+ sa− rs+ δah2 + bh1 + δh1h2

=αβ +

m∑
i=0

si(γ
2wi(x) + βγui(x) + αγvi(x)) + γ2t(x)h(x)

+ rb+ sa− rs+ δah2 + bh1 + δh1h2

=αβ + γ

l∑
i=0

si(γwi(x) + βui(x) + αvi(x)) +

m∑
i=l+1

si(γ
2wi(x) + βγui(x) + αγvi(x))

+ γ2t(x)h(x) + rb+ sa− rs+ δah2 + bh1 + δh1h2

=αβ + γ

l∑
i=0

si(γwi(x) + βui(x) + αvi(x)) + c

where A = Ga, B = Hb and C = Gc.
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Note that since the vector (sl+1, . . . , sm) is a valid witness for the instance
(s1, . . . , sl), (

∑m
i=0 siui(X))(

∑m
i=0 sivi(X)) =

∑m
i=0 siwi(X) + h(X)t(X) for all

X ∈ Zp.

Zero Knowledge:

For the zero knowledge, notice that the construction already provides the
simulation SimProve which always produces verifying proofs. It can be observed
that we obtain the same distribution over the real proof and the simulated proof,
with the choice of random r, s in real proofs and the choice of random µ, ν in
simulated proofs.

simulation-extractability: Assume that adversary A succeeds to forge a
proof (A,B,C).

Our common reference string consists of group generators G, H raised to
exponents that are polynomials in Xα, Xβ , Xγ , Xδ, Xx evaluated on secret
values α, β, γ, δ, x. Moreover, whenever A queries the simulation oracle, it gets
back a simulated proof of (Ai, Bi, Ci)

q
i=1, which is a set of three group elements

that can be computed by raising G,H to polynomials in indeterminates Xα,
Xβ , Xγ , Xδ, Xx, Xµ1

, Xν1 , . . . , Xµq , Xνq where we plug in randomly generated
µ1, ν1, . . . , µq, νq for the latter ones.

By D − SAK, given a proof π = (Ga, Hb, Hc), we can extract a(X), b(X),
and c(X) where X is an indeterminates vector. Note that Xλj (Xρj ) denotes an
indeterminate to obtain Gλj (Hρj ) which is a randomly created group element by
an adversary in G1 (G2) where λj (ρj) is unknown. Then the possible a(X), b(X),
and c(X) are as follows:

a(X) = a0 + aαXα + aβXβ + aδXδ + aαδXαXδ +
∑n−1

i=0
aγxiXγX

i
x

+
∑n−1

i=0
aγ2txiX

2
γt(Xx)Xi

x +
n−1∑
i=0

aγδxiXγXδX
i
x

+

l∑
i=0

asi(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx))

+

m∑
i=l+1

asi(X
2
γwi(Xx) +XβXγui(Xx) +XαXγvi(Xx)) +

qQ1∑
j=1

aλjXλj +

q∑
j=1

aAjXµj

+

q∑
j=1

aCj (XµjXνj −XαXβ −Xγ

l∑
i=0

sj,i(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx))

+ h2XδXµj + h1Xν1 + h1h2Xδ)
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b(X) = b0 + bβXβ + bδXδ +
∑n−1

i=0
bγxiXγX

i
x +

qQ2∑
j=1

bρjXρj +

q∑
j=1

bBjXνj

c(X) = c0 + cαXα + cβXβ + cδXδ + cαδXαXδ +
∑n−1

i=0
cγxiXγX

i
x

+
∑n−1

i=0
cγ2txiX

2
γt(Xx)Xi

x +

n−1∑
i=0

cγδxiXγXδX
i
x

+

l∑
i=0

csi(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx))

+

m∑
i=l+1

csi(X
2
γwi(Xx) +XβXγui(Xx) +XαXγvi(Xx)) +

qQ1∑
j=1

cλjXλj +

q∑
j=1

cAjXµj

+

q∑
j=1

cCj (XµjXνj −XαXβ −Xγ

l∑
i=0

sj,i(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx))

+ h2XδXµj + h1Xνj + h1h2Xδ)

a(X), b(X), and c(X) should satisfy the following verification equation.

(a(X) + h1)(b(X) + h2Xδ)

= XαXβ +Xγ

l∑
i=0

asi(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx)) + c(X)
(5)

We will now show that in order to satisfy the formal polynomials equations
above, either the adversary must recycle an instance and a proof, or alternatively
χA manages to extract a witness.

First, suppose we have some aAk 6= 0. Since there is no XβXµk in the right
form, bβ = 0. Moreover, since there is no XγXµk or XρjXµk in the right form,
bγxi = 0 and bρj = 0. Consequently, b(X) = b0 + bδXδ + bBkXvk . If bBk=0 then
cCk = 0 due to no XµkXν , and there is XαXβ in the right form. However since
there is no XαXβ in the left form, bBk 6= 0.

Since there is no XαXνk in the right form, aα = 0. Since there are only
XαXνk , Xνk , and XµkXνk related with Xνk in the right form, a(X) = a0 +
aAkXµk .

Plugging this into (5) gives us,

(a0 + aAkXµk + h′1)(b0 + bδXδ + bBkXvk + h′2Xδ)

= XαXβ +Xγ

l∑
i=0

asi(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx)) + c(X)

where h′1 = H(Ga0+aAkµk) = H(Ga0A
aAk
k ) and h′2 = H(Hb0+bδδ+bBkνk) =

H(Hb0HδbδB
bBk
k ).
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The only way this is possible is by setting

c(X) = c0 + cAkXµk + cCk(XµkXνk −XαXβ + h2XδXµk + h1Xνk + h1h2Xδ

−Xγ

l∑
i=0

sk,i(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx))

Since there is no XαXβ in the left form, cCk = 1.

Finally, we obtain the following equation.

(a0 + aµkXµk + h′1)(b0 + bδXδ + bνkXνk + h′2Xδ)

= c0 + cAkXµk +XµkXνk + h2XδXµk + h1Xνk + h1h2Xδ

−Xγ

l∑
i=0

sk,i(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx))

Since aµkbνk = 1, there is (a0+h′1)bνkXνk in the left form, and there is h1Xνk

in the right form, (a0 + h′1)bνk = h1, h′1 = −a0 + aµkh1, and H(G−(−a0)A
aµk
k )

= −a0 + aµkH(Ak). Since H is linear collision resistant, it is hard to find
non trivial −a0 and aµk . Hence a0 = 0, and aµk = 1. Similarly, Since there
is (bδ + h′2)aµkXδXµk in the left form, and there is h2XδXµk in the right

form, (bδ + h′2)aµk = h2, h′2 = −bδ + bνkh2, and H(Hb0H−(−bδ)B
bνk
k ) = −bδ +

bνkH(Bk). Since H is collision resistant, it is hard to find non trivial b0 such

that H(Hb0HbδB
bνk
k ) = H(HbδB

bνk
k ). Hence b0 = 0. In addition, since H is

linear collision resistant, it is hard to find non trivial −bδ and bνk satisfying

H(H−(−bδ)B
bνk
k ) = −bδ + bνkH(Bk). Hence bδ = 0, and bνk = 1.

Consequently, a(X) = Xµk and b(X) = Xνk . Since ui(Xx)
l
i=1 are linearly

independent, we see for i = 1, . . . , l that si = sk,i. In other words, the adversary
has recycled the k-th instance π = πk and the proof (A,B,C) = (Ak, Bk, Ck).
The same conclusion is obtained if bBk 6= 0.

Next, suppose for all j = 1, . . . , q that aAj = bBj = 0. Since there is XαXβ

in the right form, aαbβ = 1.

In the right form of (5), there are only Xβ , XβXγ , XβXα, and Xβui(Xx)

related with Xβ , a(X) = a0 + aαXα +
∑n−1
i=0 aγxiXγX

i
x. b(X) = b0 + bβXβ +

bδXδ +
∑n−1
i=0 bγxiXγX

i
x since there is no XαXρj in the right form. We are now

left with
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c(X) = c0 + cαXα + cβXβ + cδXδ + cαδXαXδ +

n−1∑
i=0

cγxiXγX
i
x

+

n−1∑
i=0

cγ2txiX
2
γt(Xx)Xi

x +

n−1∑
i=0

cγδxiXγXδX
i
x

+

l∑
i=0

csi(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx))

+

m∑
i=l+1

csi(X
2
γwi(Xx) +XβXγui(Xx) +XαXγvi(Xx))

In (5),

(aαXα + a0 +

n−1∑
i=0

aγxiXγX
i
x + h′1)(bβXβ + b0 +

n−1∑
i=0

bγxiXγX
i
x + (bδ + h′2)Xδ)

= XαXβ +Xγ

l∑
i=0

asi(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx))

+ c0 + cαXα + cβXβ + cδXδ + cαδXαXδ +

n−1∑
i=0

cγxiXγX
i
x

+

n−1∑
i=0

cγ2txiX
2
γt(Xx)Xi

x +

n−1∑
i=0

cγδxiXγXδX
i
x

+

l∑
i=0

csi(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx))

+

m∑
i=l+1

csi(X
2
γwi(Xx) +XβXγui(Xx) +XαXγvi(Xx))

Define for i = l + 1, . . . ,m that si = csi . The terms involving XβXγX
i
x now

give us bβ
∑n−1
i=0 aγxiX

i
x =

∑m
i=0 siui(Xx) in the left form. In addition, the terms

involving XαXγX
i
x provide aα

∑n−1
i=0 bγxiX

i
x =

∑m
i=0 sivi(Xx) in the left form.

The terms involving X2
γ produce

Xγ

m∑
i=0

siui(Xx) ·Xγ

m∑
i=0

sivi(Xx) = X2
γaαbβ(

n−1∑
i=0

aγxiX
i
x)(

n−1∑
i=0

bγxiX
i
x)

= X2
γ(

m∑
i=0

siwi(Xx) + t(Xx)

n−1∑
i=0

cγ2txiX
i
x)

Defining h(Xx) =
∑n−1
i=0 cγ2txiX

i
x we see that this means (sl+1, . . . , sm) is a

witness for the instance (s1, . . . , sl) (the extracted witness may be one of many
possible valid witnesses).
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5 SAP-based SE-SNARK Scheme

5.1 Two Group Elements SE-SNARK

In the previous section, we propose an efficient SE-SNARK scheme with three
group elements as a proof. Now it is interesting to observe whether it is possible
to build a similar SE-SNARK scheme with two group elements if adopting Type
I pairing instead of Type III pairing. Since each multiplication gate a · b = c can
be transformed to (a+b)2−(a−b)2 = 4c as a square arithmetic program (SAP),
it is possible to get a 2-element for boolean circuit satisfiability by changing a
multiplication gate to two squaring gates.

5.2 Square Arithmetic Programs

In the SE-SNARK with two group elements, we will work with square arithmetic
programs (SAP) R, with the definitions adopted from [GM17].

R = (p,G,GT , e, l, {ui(X), wi(X)}mi=0, t(X))

The bilinear group (p,G,GT , e) defines the finite field Zp, 1 ≤ l ≤ m, and the
polynomials ui(X), wi(X) represent each linearly independent polynomial set in
the SAP with the definition below:

(

m∑
i=0

siui(X))2 ≡
m∑
i=0

siwi(X) + h(X)t(X)

where ui(X), wi(X) have a strictly lower degree than n, which is the degree
of t(X). By defining s0 as 1, the following definition describes the relation R.

R =


(φ,w)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ = (s1, · · · , sl) ∈ Zlp
w = (sl+1, · · · , sm) ∈ Zm−lp

∃h(X) ∈ Zp[X], deg(h) ≤ n− 2 :

(

m∑
i=0

siui(X))2 ≡
m∑
i=0

siwi(X) + h(X)t(X)


We say R is a relation generator for the SAP, given the relation R with a

field size larger than 2λ−1.

5.3 Construction

In this section, we propose a scheme with two group elements as a proof in a
symmetric group using SAP.
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– (crs, τ)← Setup(R): Select a generatorG
$← G, hash functionsH : {0, 1}∗ → Zp,

and parameters α, γ, δ, x
$← Zp, such that t(x) 6= 0, and set

τ = (G,α, γ, δ, x)

crs =


R,H,G,Gα, Gδ, Gαδ,

{Gγx
i

, Gγ
2t(x)xi , Gγδx

i

}n−1i=0 , {G
γwi(x)+2αui(x)}li=0,

{Gγ
2wi(x)+2αγui(x)}mi=l+1


– π ← Prove(crs, φ, w) : Set s0 = 1 and parse φ as (s1, . . . , sl) ∈ Zlp and w

as (sl+1, . . . , sm) ∈ Zm−lp . Use the witness to compute h(X) from the SAP,

pick r
$← Zp and compute π = (A,C) = (Ga, Gc) such that

a =α+ γ

m∑
i=0

siui(x) + r

c =

m∑
i=l+1

si(γ
2wi(x) + 2αγui(x)) + γ2t(x)h(x) + 2ra− r2 + δaH(A)

– 0/1 ← Vfy(crs, φ, π) : Parse φ as (s1, . . . , sl) ∈ Zlp and π as (A,C) ∈ G×G.
Set s0 = 1 and check that

e(AGδH(A), A) = e(Gα, Gα)e(G
∑l
i=0 si(γwi(x)+2αui(x)), Gγ)e(C,G)

Accept the proof if and only if the test passes.
– π ← SimProve(crs, τ, φ) : Pick µ← Zp and compute π = (A,C) such that

A = Gµ, C = Gµ
2−α2+δµH(A)−γ

∑l
i=0 si(γwi(x)+2αui(x))

Theorem 2. The protocol given above is a non-interactive zero-knowledge ar-
gument of knowledge with perfect completeness and perfect zero-knowledge. It is
simulation-extractable (implying it also has knowledge soundness) provided that
the D − SAK assumption holds and a collision resistant hash function exists.

6 Extension to updatable CRS SE-SNARK

In this section, we extend the proposed SE-SNARK schemes to updatable com-
mon reference string simulation-extractable subversion-resistant SNARK schemes.
In the proposed scheme, the CRS size is linear to the relation size and the proof
size is 3 group elements. The proposed approach devises the two-round CRS up-
date. In the two-round CRS update, universal CRS which consists of monomials
of xi is updated in the first round. And then relation dependent CRSR for re-
lation R is generated. In the second update round, the other trapdoor variables
except x are updated in CRSR. For every update, a update proof is generated to
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ensure the CRS update with a new trapdoor. In security analysis, we prove that
our approach can extract all trapdoor contributions from update proofs, even if
CRS size changes after updating, which has not been considered in the existing
updatable CRS scheme [GKM+18]. We describe the updatable CRS scheme by
extending the QAP SE-SNARK scheme in section 4. Note that the proposed
framework can be easily applied to the SAP SE-SNARK in section 5 although
it is omitted.

6.1 Construction

– (τx, crsx, ρ1) ← Setup(1λ): Select generators G, Ĝ ← G1, H ← G2, and
parameter x ∈ Zp and set

τx = (x)

crsx =
(
G,H, {Gx

i

, Hxi}n−1i=0

)
ρ1 = (Ĝx, Ĝx, Hx)

– (τ ′x, crs
′
x, ρk+1) ← Updatex(1λ, crsx, {ρj}kj=1): Select x′ ∈ Zp randomly and

compute

τ ′x = (xx′)

crs′x =
(
G,H, {(Gx

i

)x
′i
, (Hxi)x

′i
}n−1i=0

)
ρk+1 = (Ĝxx

′
, Ĝx

′
, Hx′)

– VerifyCRSx(1λ, crsx, {ρj}n1
j=1): Parse

crsx =
(
G,H, {Gx

i

}2n−1i=1 , {Hxi}n−1i=1

)
and parse {ρj}n1

j=1 = {(Ḡj , Ĝj , Hj)}n1
j=1.

Assert the proofs are correct for 1 ≤ j ≤ n1:

e(Ĝj , H) = e(Ĝ,Hj)

e(Ḡj , H) = e(Ḡj−1, Hj)

where Ḡ0 = G. Assert the proofs are correct:

e(Ĝ,Hx) = e(Ḡn1 , H)

{e(Gx
i

, H) = e(Gx
i−1

, Hx)}2n−1i=2

{e(G,Hxi) = e(Gx
i

, H)}n−1i=1

– (τR, crsR, φ1)← Derive(1λ, crsx, R): Choose randomly parameters α, β, γ, δ ∈
Zp where t(x) 6= 0, and set
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τR = (α, β, γ, δ, x)

crsR =


R,G,Gα, Gβ , Gαδ, H,Hβ , Hδ

{Gx
i

, Gγx
i

, Gγ
2t(x)xi , Gγδx

i

, Gδx
i

, Hxi , Hγxi}n−1i=0 ,

{Gγwi(x)+βui(x)+αvi(x)}li=0,

{Gγ
2wi(x)+βγui(x)+αγvi(x), Gβui(x), Gαvi(x)}mi=l+1


φ1 = (Gα, Gβ , Gγ , Gδ, Ĝα, Ĝβ , Ĝγ , Ĝδ,

Ĝα, Ĝβ , Ĝγ , Ĝδ, Hα, Hβ , Hγ , Hδ)

– (τ ′R, crs
′
R, φk+1) ← UpdateR(1λ, crsR, {φ}ki=1): Select α′, β′, γ′, δ′ ∈ Zp ran-

domly and compute

τ ′R = (α+ α′, β + β′, γ + γ′, δ + δ′, x)

crs′R =



R,G,GαGα
′
, GβGβ

′
, GαδGαδ

′
Gδα

′
Gα
′δ′ , H,HβHβ′ , HδHδ′

{Gx
i

, Gγx
i

Gx
iγ′ , Gγ

2t(x)xiGγt(x)x
i2γ′Gt(x)x

iγ′2

Gγδx
i

Gδx
iγ′Gγx

iδ′Gx
iγ′δ′ , Gδx

i

Gx
iδ′ , Hxi , HγxiHxiγ′}n−1i=0 ,

{Gγwi(x)+βui(x)+αvi(x)Gwi(x)γ
′
Gui(x)β

′
Gvi(x)α

′
}li=0,

{Gγ
2wi(x)+βγui(x)+αγvi(x)G2wi(x)γγ

′
Gwi(x)γ

′2

Gγui(x)β
′
Gβui(x)γ

′
Gui(x)β

′γ′Gγvi(x)α
′
Gαvi(x)γ

′
Gvi(x)α

′γ′ ,

Gβui(x)Gui(x)β
′
, Gαvi(x)Gvi(x)α

′
}mi=l+1


φk+1 =(Gα+α

′
, Gβ+β

′
, Gγ+γ

′
, Gδ+δ

′
, Ĝαα

′
, Ĝββ

′
, Ĝγγ

′
, Ĝδδ

′
,

Ĝα
′
, Ĝβ

′
, Ĝγ

′
, Ĝδ

′
, Hα′ , Hβ′ , Hγ′ , Hδ′)

Note that α, β, γ, δ are updated as α+ α′, β + β′, γ + γ′, δ + δ′ by the above
update.

– VerifyCRSR(1λ, crsR, {φj}n2
j=1): Let Y = {α, β, γ, δ}. Parse crsR and parse

φj = ({Gy,j}y∈Y , {Ḡy,j}y∈Y , {Ĝy,j}y∈Y , {Hy,j}y∈Y ).

Let Ḡy,0 = 1 for y ∈ Y . Assert the proofs are correct for 1 ≤ j ≤ n2, y ∈ Y :

e(Gy,j/Gy,j−1, H) = e(G,Hy,j)

e(Ḡy,j , H) = e(Ḡy,j−1, Hy,j)

e(Ĝy,j , H) = e(Ĝ,Hy,j)
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Let {Gy = Gy,n2
}y∈Y . Assert the proofs are correct for 1 ≤ i ≤ n:

e(Gβ , H) = e(G,Hβ)

e(Gδ, H) = e(G,Hδ)

e(Gαδ, H) = e(Gα, Hδ)

e(Gγx
i

, H) = e(G,Hγxi) = e(Gγ , Hxi)

e(Gγ
2t(x)xi , H) = e(Gγ , Hγt(x)xi)

e(Gγδx
i

, H) = e(Gδ, Hγxi)

e(Gδx
i

, H) = e(Gδ, Hxi)

Assert the proofs are correct for 0 ≤ i ≤ l

e(Gγwi(x)+βui(x)+αvi(x), H) = e(Gγ , Hwi(x))e(Gβ , Hui(x)), e(Gα, Hvi(x))

Assert the proofs are correct for l + 1 ≤ i ≤ m

e(Gγ
2wi(x)+βγui(x)+αγvi(x), H) = e(Gγ , Hγwi(x))e(Gβ , Hγui(x))e(Gα, Hγvi(x))

e(Gβui(x), H) = e(Gβ , Hui(x))

e(Gαvi(x), H) = e(Gα, Hvi(x))

– π ← Prove(crsR, φ, w) : Set s0 = 1 and parse φ as (s1, . . . , sl) ∈ Zlp and w

as (sl+1, . . . , sm) ∈ Zm−lp . Use the witness to compute h(X) from the QAP,

choose r, s
$← Zp and compute π = (A,B,C) = (Ga, Hb, Gc) such that

a =α+ γ

m∑
i=0

siui(x) + r

b =β + γ

m∑
i=0

sivi(x) + s

c =

m∑
i=l+1

si(γ
2wi(x) + βγui(x) + αγvi(x)) + γ2t(x)h(x) + sa+ rb− rs

+ δah2 + bh1 + δh1h2

where h1 = H(A) and h2 = H(B).

– 0/1 ← Vfy(crsR, φ, π) : Parse φ as (s1, . . . , sl) ∈ Zlp and π as (A,B,C) ∈
G1 × G2 × G1. Set s0 = 1 and accept the proof if and only if the following
equation is satisfied:

e(AGH(A), BHδH(B)) = e(Gα, Hβ)e(G
∑l
i=0 si(γwi(x)+βui(x)+αvi(x)), Hγ)e(C,H)
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– π ← SimProve(crsR, τR, φ) : Choose µ, ν ← Zp and compute π = (A,B,C)
such that

A = Gµ, B = Hν , C = Gµν−αβ−γ
∑l
i=0 si(γwi(x)+βui(x)+αvi(x))+δµh2+νh1+δh1h2

where h1 = H(A) and h2 = H(B).

Note that Prove, Vfy, SimProve are equivalent to the QAP SE-SNARK scheme
in section 4.

6.2 Security Proof

Lemma 1 (Correctness of the CRS generation). The scheme is perfectly
correct in the sense that

Pr[(crsx, ρ)← Setup(1λ) : VerifyCRSx(1λ, crsx, ρ) = 1] = 1;

Pr

[
(crs′x, ρk+1)← Updatex(1λ, crsx, {ρi}ki=1) :

VerifyCRSx(1λ, crsx, {ρi}ki=1) = 1 ∧ VerifyCRSx(1λ, crs′x, {ρi}k+1
i=1 ) = 1

]
= 1

Pr[(crsR, φ)← Derive(1λ, crsx, R) : VerifyCRSR(1λ, crsR, φ) = 1] = 1;

Pr

[
(crs′R, φk+1)← UpdateR(1λ, crsR, {φi}ki=1) :

VerifyCRSR(1λ, crsR, {φi}ki=1) = 1 ∧ VerifyCRSR(1λ, crs′R, {φi}k+1
i=1 ) = 1

]
= 1

Proof. The correctness is trivial for crsx since Ḡ = Gx in ρ where x is the
multiplication of all trapdoors. For crsR, the correctness is also trivial. In φk =
(Gα, . . . ), α is the sum of all trapdoors related with α. Hence e(Gα,j/Gα,j−1, H)
= e(Gα,j−1G

αj/Gα,j−1, H) = e(Gαj , H) = e(G,Hαj ) = e(G,Hα,j). e(Ḡα,j , H)
= e(Ḡ

αj
α,j−1, H) = e(Ḡα,j−1, H

αj ). Similarly, we can check the correctness for
β, γ, δ.

In the proof ρ of CRS update, Ĝ which is not used in CRS is essential
to extract trapdoor parameters when CRS size changes after updating. For
instance, assume that proof ρi is constructed using G rather than Ĝ. Given
crsi = (Gx, Gx

2

, Gx
3

, Hx, Hx2

, Hx3

, . . . ), suppose that a new trapdoor is x′ =

(η0 + η1x
2) and updated CRS crsi+1 = (Gx(η0+η1x

2), Hx(η0+η1x
2), . . . ), in which

the size of crsi+1 is smaller than that of crsi. For given CRS update proofs
ρi = (Gx, Gx, Hx) and ρi+1 = (Gxx

′
, Gx

′
, Hx′), an extractor can extract x′ if

Gx
2

and Hx2

are given when x′ = (η0 + η1x
2). However, since Gx

2

and Hx2

are
not available in CRSi+1 any more, the extractor cannot extract x′. If proof ρ is
constructed based on Ĝ then x′ does not include x2. Hence we can prevent the
above case.

Lemma 2 (Trapdoor extraction of x in crsx). Suppose that there exists a
PPT adversary A such that given {(crsx,j , ρj)}i−1j=1, A outputs a ρi where crsx,j

is the j−th crsx, and ρj = (Ĝx1···xj , Ĝxj , Hxj ). Then by PKE assumption, there
exists a PPT extractor χ that, given the random tape of A as input, outputs xi.
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Proof. First, consider i = 1 which is Setup(1λ;x1). Since ρ1 = (Ĝx1 , Ĝx1 , Hx1)
for a common exponent x1. Since only Ĝ,H are given, it is obvious that there
exists a PPT extractor χ outputting x1 by PKE assumption.

Second, consider a case that i = k + 1. Assume that there exists a PPT ex-
tractor χ outputting x1, . . . , xk from a given {ρj}kj=1 where ρj = (Ḡj , Ĝj , Hj) =

(Ĝx1...xj , Ĝxj , Hxj ). ρk+1 = (Ḡk+1, Ĝk+1, Hk+1) where e(Ĝk+1, H) = e(Ĝ,Hk+1)
and e(Ḡk+1, H) = e(Ḡk, Hk+1). From e(Ĝk+1, H) = e(Ĝ,Hk+1), there exists
a common exponent xk+1 such that Ĝk+1 = Ĝxk+1 and Hk+1 = Hxk+1 . As-
sume that G = Ĝg for unknown g. By PKE assumption, η ← χA such that
xk+1 = η0 +

∑
hi∈Q∪{Qg∩Qh} ηihi where Q = {

∏i
j=1Xj}ki=1, Qg = {g · pi(X)},

and Qh = {qi(X)}. Since {Qg ∩ Qh} = ∅, xk+1 = η0 +
∑
hi∈Q ηihi. Note that

set Q denotes polynomials appearing in proof ρ’s, and pi(X) and qi represent
exponent polynomials for G and H in {crsx,j}kj=1, respectively. If ηi 6= 0 for

hi ∈ Q then Ḡk+1 = Ĝx1···xk+1 = Ĝx1···xk+1 = Ĝx
2
j .... However, since x2j 6∈ Q,

A cannot compute Ḡk+1. Therefore, xk+1 = η0 and Ḡk+1 = Ḡ
xk+1

k = Ḡη0k ,

Ĝk+1 = Ĝxk+1 = Ĝη0 and Ĥk+1 = Hxk+1 = Hη0 .

Lemma 3 (Trapdoor extraction of α, β, γ, δ in crsR). Let Yj = {αj , βj , γj , δj}.
Suppose that there exists a PPT adversary A such that given {(crsR,j , φj)}i−1j=1, A
outputs a φi where crsR,j denotes j−th crsR, and φj = ({Gyj}yj∈Yj , {Ḡyj}yj∈Yj ,
{Ĝyj}yj∈Yj , {Ĥyj}yj∈Yj ). Then by PKE assumption, there exists a PPT extrac-
tor χ that, given the random tape of A as input, outputs Yi.

Proof. First, consider that i = 1 which is Derive(1λ, crsx, R;α1, β1, γ1, δ1). Since
φ1 = ({Gy1}y1∈Y1

, {Ĝy1}y1∈Y1
, {Ĝy1}y1∈Y1

, {Hy1}y1∈Y1
). Since only Ĝ, Ĥ are

given, it is obvious that there exists a PPT extractor χ outputting {y1}y∈Y by
PKE assumption.

Second, consider a case that i = k+1. Assume that there exists a PPT extrac-
tor χ outputting Zk from a given {φj}kj=1 where Zk = ∪kj=1Yj , φj = ({Gyj}yj∈Yj ,
{Ḡyj}yj∈Yj , {Ĝyj}yj∈Yj , {Ĥyj}yj∈Yj ) = ({G

∑j
i=1 yi}yj∈Yj , {Ĝ

∏j
i=1 yi}yj∈Yj , {Ĝyj}yj∈Yj ,

{Hyj}yj∈Yj ). φk+1 = ({Gyk+1
}yk+1∈Yk+1

, {Ḡyk+1
}yk+1∈Yk+1

, {Ĝyk+1
}yk+1∈Yk+1

,

{Ĥyk+1
}yk+1∈Yk+1

). From e(Ĝyk+1
, H) = e(Ĝ, Ĥyk+1), there exists a common ex-

ponent yk+1 such that Ĝyk+1
= Ĝyk+1 and Ĥyk+1

= Hyk+1 . Assume that G = Ĝg

for unknown g.
By PKE assumption, η ← χA such that yk+1 = η0 +

∑
hi∈Q∪{Qg∩Qh} ηihi

where Q = {
∏
yi∈Zk y

bi
i }, Qg = {g ·pi(Zk)}, and Qh = {qi(Zk)}. Note that Zk =

{α1, · · · , δk}, bi = {0, 1}. Since {Qg∩Qh} = ∅, xk+1 = η0+
∑
hi∈Q ηihi. If ηi 6= 0

then Ḡyk+1
= (Ĝy

′
1···y

′
k·yk+1 = Ĝy

′
1···y

′
k·yk+1 = Ĝy

′
j
2.... Since y′j

2 6∈ Q, yk+1 = η0

and Ḡyk+1
= Ḡ

yk+1
yk = Ḡη0yk , Ĝyk+1

= Ĝyk+1 = Ĝη0 and Hyk+1
= Hyk+1 = Hη0 .

Theorem 3. The protocol given above is a non-interactive zero-knowledge ar-
gument of knowledge with perfect completeness and perfect zero-knowledge. It
is simulation-extractable (implying it also has knowledge soundness) provided
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that the SAK (subversion algebraic knowledge) assumption holds, and a linear
collision resistant hash exists.

Proof. Since the updatable CRS scheme does not change Prove, Vfy, SimProve,
the perfect completeness and the zero-knowledge are proven by the proof in the
base scheme. Since more terms are added in CRS, the simulation extractabil-
ity is needed to be proved with more terms. For instance, additional terms of
Gγx

i

, Gδx
i

, . . . are included in CRS for updating. In a similar way as the proof
in section 4, we can prove the simulation extractability which is available in
Appendix B.

7 Conclusion

In this paper, we propose the efficient quadratic arithmetic program based
simulation-extractable succinct non-interactive arguments of knowledge (QAP-
based SE-SNARK) with 3 group elements, which requires a single equation for
verification. The soundness of the proposed scheme is proven under subversion
algebraic knowledge assumption and linear collision resistance, even with lever-
aging QAP. We also propose an SE-SNARK scheme with 2 elements as proof
with the SAP representation in a symmetric group, although it is difficult to
construct a scheme with 2 elements as proof from existing SE-SNARK. Further-
more, we propose an updatable CRS QAP SE-SNARK scheme with two-round
update, which generates the minimal proof size (3 group elements) with a linear
size CRS to the relation size.
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Appendix

A Security Proof for SAP-based SE-SNARK

We show the security proof of our proposed SE-SNARKs with two group ele-
ments in section 5.3.

Theorem 2. The protocol given above is a non-interactive zero-knowledge ar-
gument of knowledge with perfect completeness and perfect zero-knowledge. It is
simulation-extractable (implying it also has knowledge soundness) provided that
the D − SAK assumption holds and a collision resistant hash function exists.

Proof. Perfect Completeness:

First, we state that the prover can compute the proof (A,C) as described
from the common reference string. The prover can compute the coefficients of

h(X) =
(
∑m
i=0 siui(X))2 − (

∑m
i=0 siwi(X))

t(X)
=

n−2∑
j=0

hjX
j .

It can now compute the proof elements as

A = Gα
n−1∏
j=0

(Gγx
j

)uj ·Gr

C =

m∏
i=l+1

Gsi(γ
2wi(x)+2αγui(x)) ·A′H(A) ·G−r

2

·
n−1∏
j=0

(Gγ
2t(x)xj )hj

where let A′ = GαδAδ = Gαδ
∏n−1
j=0 (Gδγx

j

)uj ·Gδr.
This computation provides us the proof elements specified in the construction

A = Gα+γ
∑m
i=0 siui(x)+r

C = G
∑m
i=l+1 si(γ

2wi(x)+2αγui(x))+γ
2t(x)h(x)+2ra−r2+δaH(A)

Here we show that the verification equation holds.

e(AGδH(A), A) = e(Gα, Gα)e(G
∑l
i=0 si(γwi(x)+2αui(x)), Gγ)e(C,G)
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Taking discrete logarithms, this is equivalent to showing that

(a+δH(A)) · a = a2 + δaH(A)

=(α+ γ

m∑
i=0

siui(x) + r)2 + δaH(A)

=α2 + γ2(

m∑
i=0

siui(x))2 + 2αγ

m∑
i=0

siui(x) + 2ra− r2 + δaH(A)

=α2 +

m∑
i=0

si(γ
2wi(x) + 2αγui(x)) + γ2t(x)h(x) + 2ra− r2 + δaH(A)

=α2 + γ

l∑
i=0

si(γwi(x) + 2αui(x))

+

m∑
i=l+1

si(γ
2wi(x) + 2αγui(x)) + γ2t(x)h(x) + 2ra− r2 + δaH(A)

=α2 + γ

l∑
i=0

si(γwi(x) + 2αui(x)) + c

where A = Ga, and C = Gc.

Note that since the vector (sl+1, . . . , sm) is a valid witness for the instance
(s1, . . . , sl), (

∑m
i=0 siui(X))2 =

∑m
i=0 siwi(X) + h(X)t(X) for all X ∈ Zp.

simulation-extractability:
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By D − SAK assumption, there is an extractor and a(X), and c(X) are
extracted as following:

a(X) = a0 + aαXα + aδXδ + aαδXαXδ +
∑n−1

i=0
aγxiXγX

i
x

+
∑n−1

i=0
aγ2txiX

2
γt(Xx)Xi

x +

n−1∑
i=0

aγδxiXγXδX
i
x

+

l∑
i=0

asi(Xγwi(Xx) + 2Xαui(Xx)) +

m∑
i=l+1

asi(X
2
γwi(Xx) + 2XαXγui(Xx))

+

qQ1∑
j=1

aλjXλj +

q∑
j=0

aAjXµj

+

q∑
j=0

aCj (X
2
µj −X

2
α +XδXµjH(Aj)−Xγ

l∑
i=0

sj,i(Xγwi(Xx) + 2Xαui(Xx)))

c(X) = c0 + cαXα + cδXδ + cαδXαXδ +
∑n−1

i=0
cγxiXγX

i
x

+
∑n−1

i=0
cγ2txiX

2
γt(Xx)Xi

x +

n−1∑
i=0

cγδxiXγXδX
i
x

+

l∑
i=0

csi(Xγwi(Xx) + 2Xαui(Xx)) +

m∑
i=l+1

csi(X
2
γwi(Xx) + 2XαXγui(Xx))

+

qQ1∑
j=1

cλjXλj +

q∑
j=0

cAjXµj

+

q∑
j=0

cCj (X
2
µj −X

2
α +XδXµjH(Aj)−Xγ

l∑
i=0

sj,i(Xγwi(Xx) + 2Xαui(Xx)))

Then by the verification equation, the following equation should hold.

(a(X)+δH(A)) · a(X) = X2
α +Xγ

l∑
i=0

si(Xγwi(Xx) + 2Xαui(Xx)) + c(X)

(6)
We will now show that in order to satisfy the formal polynomials equations

above, either the adversary must recycle an instance and a proof, or alternatively
a witness is extracted. First, suppose we have some aAk 6= 0. Since there are only
Xµk , XµkXδ, and X2

µk
related with Xµk and there is no X2

δ in the right form,
a(X) = a0 + aAkXµk . Plugging this into (6) gives us,

(a0 + aAkXµk +XδH(A))(a0 + aAkXµk)

= X2
α +Xγ

l∑
i=0

asi(Xγwi(Xx) + 2Xαui(Xx)) + c(X)



34 Jihye Kim, Jiwon Lee, and Hyunok Oh

The only way this is possible is by setting

c(X) = c0 + cδXδ + cAkXµk + cCk(X2
µk
−X2

α+

XδXµkH(Ak)−Xγ

l∑
i=0

sk,i(Xγwi(Xx) + 2Xαui(Xx)))

Since there is no XαXβ in the left form, cCk = 1. In addition, since there is
a2AkX

2
µk

in the left form, a2Ak = cCk = 1. If we considerXδXµk then aAkH(A)XδXµk

= H(Ak)XδXµk . Hence aAkH(A) = H(Ak), and aAkH(Ga0A
aAk
k ) = aAkH(Ak).

Since H is collision resistant, it is hard to find Ga0A
aAk
k and A

aAk
k such that

H(Ga0A
aAk
k ) = H(A

aAk
k ) and Ga0 6= 1. Therefore Ga0 = 1 and a0 = 0. Further-

more, since H is linear collision resistant, it is hard to find non trivial aAk such

that H(A
aAk
k ) = aAkH(Ak). So aAk = 1. Since ui(Xx)

l
i=1 are linearly indepen-

dent, we see for i = 1, . . . , l that si = sk,i. In other words, the adversary has
recycled the k-th instance π = πk and proof (A,C) = (Ak, Ck).

Next, suppose for all j = 1, . . . , q that aAj = 0. Since there is X2
α in the right

forms, a2α = 1. In the right form, there are only Xα, X2
α, XαXγ , XαXδ, and

Xαui(Xx) related with Xα and there is no X2
δ , a(X) = a0 +

∑n−1
i=0 aγxiXγX

i
x.

We are now left with

c(X) = c0 + cαXα + cδXδ + cαδXαXδ

+

n−1∑
i=0

cγxiXγX
i
x +

n−1∑
i=0

cγ2txiX
2
γt(Xx)Xi

x +

n−1∑
i=0

cγδxiXγXδX
i
x

+

l∑
i=0

csi(Xγwi(Xx) + 2Xαui(Xx)) +

m∑
i=l+1

csi(X
2
γwi(Xx) + 2XαXγui(Xx))

In (6),

(aαXα + a0 +
∑n−1

i=0
aγxiXγX

i
x +H(A)Xδ)(aαXα + a0 +

∑n−1

i=0
aγxiXγX

i
x)

= X2
α +Xγ

l∑
i=0

asi(Xγwi(Xx) + 2Xαui(Xx))

+ c0 + cαXα + cδXδ + cαδXαXδ

+

n−1∑
i=0

cγxiXγX
i
x +

n−1∑
i=0

cγ2txiX
2
γt(Xx)Xi

x +

n−1∑
i=0

cγδxiXγXδX
i
x

+

l∑
i=0

csi(Xγwi(Xx) + 2Xαui(Xx)) +

m∑
i=l+1

csi(X
2
γwi(Xx) + 2XαXγui(Xx))

Define for i = l + 1, . . . ,m that si = csi . The terms involving XαXγX
i
x

now give us aα
∑n−1
i=0 aγxiX

i
x =

∑m
i=0 siui(Xx). Finally, the terms involving X2

γ
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produce

(Xγ

m∑
i=0

siui(Xx))2 = X2
γ(

n−1∑
i=0

aγxiX
i
x)2 = X2

γa
2
α(

m∑
i=0

siwi(Xx) + t(Xx)

n−1∑
i=0

cγ2txiX
i
x)

Defining h(Xx) =
∑n−1
i=0 cγ2txiX

i
x we see that this means that (sl+1, . . . , sm)

is a witness for the instance (s1, . . . , sl) (the extracted witness may be one of
many possible valid witnesses).

B Security Proof for CRS updatable QAP-based
SE-SNARK

Theorem 3. The protocol given above is a non-interactive zero-knowledge ar-
gument of knowledge with perfect completeness and perfect zero-knowledge. It
is simulation-extractable (implying it also has knowledge soundness) provided
that the SAK (subversion algebraic knowledge) assumption holds, and a linear
collision resistant hash exists.

Proof. simulation-extractability: Assume that adversary A succeeds to
forge a proof (A,B,C).

Our common reference string consists of group generators G, H raised to
exponents that are polynomials in Xα, Xβ , Xγ , Xδ, Xx evaluated on secret
values α, β, γ, δ, x. Moreover, whenever A queries the simulation oracle, it gets
back a simulated proof of (Ai, Bi, Ci)

q
i=1, which is a set of three group elements

that can be computed by raising G,H to polynomials in indeterminates Xα,
Xβ , Xγ , Xδ, Xx, Xµ1

, Xν1 , . . . , Xµq , Xνq where we plug in randomly generated
µ1, ν1, . . . , µq, νq for the latter ones.

By D − SAK, given a proof π = (Ga, Hb, Hc), we can extract a(X), b(X),
and c(X) where X is an indeterminates vector. Note that Xλj (Xρj ) denotes an
indeterminate to obtain Gλj (Hρj ) which is a randomly created group element by
an adversary in G1 (G2) where λj (ρj) is unknown. Then the possible a(X), b(X),
and c(X) are as follows:
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a(X) = aαXα + aβXβ + aαδXαXδ +
∑n−1

i=0
aγxiXγX

i
x +

∑n−1

i=0
axiX

i
x

+
∑n−1

i=0
aγ2txiX

2
γt(Xx)Xi

x +

n−1∑
i=0

aγδxiXγXδX
i
x +

n−1∑
i=0

aδxiXδX
i
x

+

l∑
i=0

asi(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx))

+

m∑
i=l+1

asi(X
2
γwi(Xx) +XβXγui(Xx) +XαXγvi(Xx)) +

qQ1∑
j=1

aλjXλj

+

m∑
i=l+1

aβuiXβui(Xx) +

m∑
i=l+1

aαviXαvi(Xx) +

q∑
j=0

aAjXµj

+

q∑
j=1

aCj (XµjXνj −XαXβ −Xγ

l∑
i=0

sj,i(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx))

+ h2XδXµj + h1Xν1 + h1h2Xδ)

b(X) = bβXβ + bδXδ +
∑n−1

i=0
bγxiXγX

i
x +

∑n−1

i=0
bxiX

i
x +

qQ2∑
j=1

bρjXρj +

q∑
j=1

bBjXνj

c(X) = cαXα + cβXβ + cαδXαXδ +
∑n−1

i=0
cγxiXγX

i
x +

∑n−1

i=0
cxiX

i
x

+

n−1∑
i=0

cγxiXγX
i
x +

∑n−1

i=0
cγ2txiX

2
γt(Xx)Xi

x +

n−1∑
i=0

cγδxiXγXδX
i
x

+

n−1∑
i=0

cδxiXδX
i
x +

l∑
i=0

csi(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx))

+

m∑
i=l+1

csi(X
2
γwi(Xx) +XβXγui(Xx) +XαXγvi(Xx)) +

qQ1∑
j=1

cλjXλj

+

m∑
i=l+1

cβuiXβui(Xx) +

m∑
i=l+1

cαviXαvi(Xx) +

q∑
j=1

cAjXµj

+

q∑
j=1

cCj (XµjXνj −XαXβ −Xγ

l∑
i=0

sj,i(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx))

+ h2XδXµj + h1Xνj + h1h2Xδ)
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a(X), b(X), and c(X) should satisfy the following verification equation.

(a(X) + h1)(b(X) + h2Xδ)

= XαXβ +Xγ

l∑
i=0

asi(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx)) + c(X)
(7)

We will now show that in order to satisfy the formal polynomials equations
above, either the adversary must recycle an instance and a proof, or alternatively
χA manages to extract a witness.

First, suppose we have some aAk 6= 0. Since there is no XβXµk in the right
form, bβ = 0. Moreover, since there is no XγXµk , XxXµk or XρjXµk in the right
form, bγxi = 0 and bρj = 0. Consequently, b(X) = b0 + bδXδ + bBkXvk . If bBk=0
then cCk = 0 due to no XµkXν in the left form, and there is XαXβ in the right
form. However since there is no XαXβ in the left form, bBk 6= 0.

Since there is no XαXνk in the right form, aα = 0. Since there are only
XαXνk , Xνk , and XµkXνk related with Xνk in the right form, a(X) = a0 +
aAkXµk .

Plugging this into (7) gives us,

(a0 + aAkXµk + h′1)(b0 + bδXδ + bBkXvk + h′2Xδ)

= XαXβ +Xγ

l∑
i=0

asi(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx)) + c(X)

where h′1 = H(Ga0+aAkµk) = H(Ga0A
aAk
k ) and h′2 = H(Hb0+bδδ+bBkνk) =

H(Hb0HδbδB
bBk
k ).

The only way this is possible is by setting

c(X) = c0 + cAkXµk + cCk(XµkXνk −XαXβ + h2XδXµk + h1Xνk + h1h2Xδ

−Xγ

l∑
i=0

sk,i(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx))

Since there is no XαXβ in the left form, cCk = 1.
Finally, we obtain the following equation.

(a0 + aµkXµk + h′1)(b0 + bδXδ + bνkXνk + h′2Xδ)

= c0 + cAkXµk +XµkXνk + h2XδXµk + h1Xνk + h1h2Xδ

−Xγ

l∑
i=0

sk,i(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx))

Since aµkbνk = 1, there is (a0+h′1)bνkXνk in the left form, and there is h1Xνk

in the right form, (a0 + h′1)bνk = h1, h′1 = −a0 + aµkh1, and H(G−(−a0)A
aµk
k )

= −a0 + aµkH(Ak). Since H is linear collision resistant, it is hard to find
non trivial −a0 and aµk . Hence a0 = 0, and aµk = 1. Similarly, Since there
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is (bδ + h′2)aµkXδXµk in the left form, and there is h2XδXµk in the right

form, (bδ + h′2)aµk = h2, h′2 = −bδ + bνkh2, and H(Hb0H−(−bδ)B
bνk
k ) = −bδ +

bνkH(Bk). Since H is collision resistant, it is hard to find non trivial b0 such

that H(Hb0HbδB
bνk
k ) = H(HbδB

bνk
k ). Hence b0 = 0. In addition, since H is

linear collision resistant, it is hard to find non trivial −bδ and bνk satisfying

H(H−(−bδ)B
bνk
k ) = −bδ + bνkH(Bk). Hence bδ = 0, and bνk = 1.

Consequently, a(X) = Xµk and b(X) = Xνk . Since ui(Xx)
l
i=1 are linearly

independent, we see for i = 1, . . . , l that si = sk,i. In other words, the adversary
has recycled the k-th instance π = πk and the proof (A,B,C) = (Ak, Bk, Ck).
The same conclusion is obtained if bBk 6= 0.

Next, suppose for all j = 1, . . . , q that aAj = bBj = 0. Since there is XαXβ

in the right form, aαbβ = 1.

In the right form of (7), there are only Xβ , XβXγ , XβXα, and Xβui(Xx)

related with Xβ , a(X) = a0 + aαXα +
∑n−1
i=0 aγxiXγX

i
x. b(X) = b0 + bβXβ +

bδXδ +
∑n−1
i=0 bγxiXγX

i
x since there is no XαXρj in the right form. We are now

left with

c(X) = c0 + cαXα + cβXβ + cδXδ + cαδXαXδ +

n−1∑
i=0

cγxiXγX
i
x

+

n−1∑
i=0

cγ2txiX
2
γt(Xx)Xi

x +

n−1∑
i=0

cγδxiXγXδX
i
x

+

l∑
i=0

csi(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx))

+

m∑
i=l+1

csi(X
2
γwi(Xx) +XβXγui(Xx) +XαXγvi(Xx))
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In (7),

(aαXα + a0 +

n−1∑
i=0

aγxiXγX
i
x + h′1)(bβXβ + b0 +

n−1∑
i=0

bγxiXγX
i
x + (bδ + h′2)Xδ)

= XαXβ +Xγ

l∑
i=0

asi(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx))

+ c0 + cαXα + cβXβ + cδXδ + cαδXαXδ +

n−1∑
i=0

cγxiXγX
i
x

+

n−1∑
i=0

cγ2txiX
2
γt(Xx)Xi

x +

n−1∑
i=0

cγδxiXγXδX
i
x

+

l∑
i=0

csi(Xγwi(Xx) +Xβui(Xx) +Xαvi(Xx))

+

m∑
i=l+1

csi(X
2
γwi(Xx) +XβXγui(Xx) +XαXγvi(Xx))

Define for i = l + 1, . . . ,m that si = csi . The terms involving XβXγX
i
x now

give us bβ
∑n−1
i=0 aγxiX

i
x =

∑m
i=0 siui(Xx) in the left form. In addition, the terms

involving XαXγX
i
x provide aα

∑n−1
i=0 bγxiX

i
x =

∑m
i=0 sivi(Xx) in the left form.

The terms involving X2
γ produce

Xγ

m∑
i=0

siui(Xx) ·Xγ

m∑
i=0

sivi(Xx) = X2
γaαbβ(

n−1∑
i=0

aγxiX
i
x)(

n−1∑
i=0

bγxiX
i
x)

= X2
γ(

m∑
i=0

siwi(Xx) + t(Xx)

n−1∑
i=0

cγ2txiX
i
x)

Defining h(Xx) =
∑n−1
i=0 cγ2txiX

i
x we see that this means (sl+1, . . . , sm) is a

witness for the instance (s1, . . . , sl) (the extracted witness may be one of many
possible valid witnesses).


