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Abstract—Payment channel hubs (PCHs) constitute a promis-
ing solution to the inherent scalability problems of blockchain
technologies, allowing for off-chain payments between sender
and receiver through an intermediary, called the tumbler. While
state-of-the-art PCHs provide security and privacy guarantees
against a malicious tumbler, they fall short of other fundamental
properties, such as interoperability, fungibility, and efficiency.

In this work, we present A2L, the first PCH to achieve all
aforementioned properties. A2L builds on a novel cryptographic
primitive that realizes a three-party protocol for conditional
transactions, where the intermediary pays the receiver only if the
latter solves a cryptographic challenge with the help of the sender.
We prove the security and privacy guarantees of A2L in the
Universal Composability framework and present two provably
secure instantiations based on Schnorr and ECDSA signatures.

We implemented A2L and compared it to TumbleBit, the
state-of-the-art Bitcoin-compatible PCH. Asymptotically, A2L has
a communication and computation complexity that is linear, as
opposed to binomial, in the security parameter. In practice, our
ECDSA-based construction is 5x faster and requires 65x less
bandwidth, while our Schnorr-based construction is 8x faster
and requires 95x less bandwidth.

I. INTRODUCTION

The increasing adoption of cryptocurrencies has raised
scalability issues [11] that go beyond the rapidly growing
blockchain size. For instance, the permissionless nature of
the consensus algorithm underlying widely deployed cryp-
tocurrencies such as Bitcoin and Ethereum strictly limits their
transaction throughput to tens of transactions per second at
best [11], which contrasts with the throughput of centralized
payment networks such as Visa that supports peaks of up to
47,000 transactions per second [48].

Among the several efforts to mitigate these scalability
issues [28], [29], [42], payment channels have emerged as
the most widely deployed solution in practice. The core idea
of payment channels is to let users lock a certain amount of
coins (called collateral) in a multisig address1 (called channel)
controlled by them, storing the corresponding transaction on-
chain. From that moment on, these two users can pay each
other by simply agreeing on a new distribution of the coins
locked in the channel: the corresponding transactions are stored
locally, that is, off-chain. When the two users disagree on the
current redistribution or simply terminate their economical re-
lation, they submit an on-chain transaction that sends back the

1A multisig address requires all address owners to agree on the usage
of the coins stored therein, which is achieved by signing the corresponding
transaction.

coins to their owners according to the last agreed distribution
of coins, thereby closing the channel. Thus, payment channels
require only two on-chain transactions (i.e., open and close
channel), yet supporting arbitrarily many off-chain payments,
which significantly enhances the scalability of the underlying
blockchain.

The problem with this simple construction is that in order
to pay different people, a user should establish a channel
with each of them, which is computationally and financially
prohibitive, as this party would have to lock an amount of coins
proportional to the number of users she wants to transact with.

A. Payment Channel Hubs (PCHs)

PCHs offer a solution to the aforementioned problem. The
idea is to let each user open a channel with a central party,
called the tumbler, which is in charge of mediating payments
between each pair of users. In particular, if the sender wants
to transfer x coins to the receiver, the sender pays x + fee
to the tumbler, which then forwards x coins to the receiver,
where fee denotes a fee charged by the tumbler to conduct
the transaction. Such a naïve construction, despite being still
deployed in many gateways, suffers from obvious security and
privacy issues: the tumbler could steal coins [5], [49] from
honest users (e.g., by simply not forwarding a payment) as
well as identify who is paying to whom [1], [5].

Security can be seen in terms of transaction atomicity and
should protect the two participants who are sending coins.
Atomicity is thus two-fold: (i) the tumbler should receive the
money from the sender only if the tumbler has forwarded
the corresponding amount to the receiver; (ii) the receiver
should receive money from the tumbler only if the sender has
paid the corresponding amount to the tumbler. Privacy covers
unlinkability (the tumbler should not able to link the sender and
receiver of a given payment) and value privacy (the tumbler
should not learn the transaction value). As these properties
seem contradictory (i.e., how can the tumbler ensure atomicity
without knowing who pays to whom?), designing a secure and
privacy-preserving PCH is a technical challenge.

Besides security and privacy, another fundamental property
is interoperability: the tumbler should be able to mediate pay-
ments in different cryptocurrencies (e.g., the sender transfering
bitcoins and the receiver getting ethers), thereby enabling
cross-chain applications like exchanges and cross-currency
mixing.

Finally, a desirable property in any currency is fungibility,
which means that all coins should be indistinguishable from



Atomicity Unlinkability Value Privacy Fungibility Interoperability (Required functionality)
BOLT [21]      (Zcash)
Perun [16]   1   (Ethereum)
NOCUST [27]   1   (Ethereum)
Teechain [30]     2 (Trusted Execution Environment)
TumbleBit [22]   1  3 (HTLC-based currencies)
A2L   1   (Digital signature verification and time locks)

1 The tumbler learns the payment values; 2 Every user must run a TEE; 3 Not supported by scriptless cryptocurrencies (e.g., Monero).

TABLE I: Comparison among state-of-the-art PCH.

each other: in the specific case of PCHs, payments performed
through the tumbler should look the same as standard pay-
ments, as otherwise, e.g., coins produced by a tumbler might
be considered tainted and not accepted by certain users.

B. State-of-the-art in PCH

BOLT [21] is an off-chain cryptographic protocol for PCHs
that provides strong anonymity and value privacy guarantees
by leveraging the zero-knowledge proofs of the underlying
Zcash cryptocurrency. BOLT also inherits the fungibility guar-
antees provided by Zcash.2 BOLT, however, is only compatible
with ZCash since it requires zero-knowledge proofs.

Perun [16] is an off-chain channel system that relies on
Turing-complete smart contracts to support payment channels.
Moreover, Perun builds the PCH upon virtual channels, a
smart contract-based construction that intuitively allows to fold
two channels (e.g., Alice → Tumbler → Bob) into a single
channel (Alice → Bob). This technique, however, inherently
leaks the sender-receiver relation between Alice and Bob to the
tumbler. Perun achieves a weak value privacy property, since
the value of the individual transactions between Alice and Bob
is hidden, but the aggregated value (over the lifespan of the
channel) is revealed. Additionally, Perun lacks fungibility, as
transactions encode a logic that makes them distinguishable
from transactions performed by other contracts, as well as
interoperability, as it works only in Ethereum.

NOCUST [27], is an off-chain payment protocol that relies
on an untrusted operator to manage the off-chain payments
among users. The operator periodically includes a summary
on-chain that includes the balances and the transactions for
public verifiability. As Perun, NOCUST does not provide
unlinkability against a malicious intermediate (i.e., operator)
who also learns the transacted values. NOCUST also lacks
fungibility and interoperability for the same reasons as already
mentioned for PERUN.

TeeChain [31] is a payment channel protocol that leverages
trusted execution environments (e.g., Intel SGX) to manage
off-chain payments and the handling of disputes. Thus, users
are required to run a TEE, which hinders the widespread
deployment of this approach.

TumbleBit [22] is a cryptographic protocol for PCHs that
makes transactions unlinkable (i.e., the tumbler does not learn
who is paying whom). By fixing the same value for all
transactions, TumbleBit achieves a value privacy property that
is weaker than the one provided by Bolt, called privacy of the
compatible interaction graph: the tumbler learns how many

2Here we consider only coins held at shielded addresses that have not been
tainted by combining them with unshielded addresses [25].

coins each party sends and receives in aggregated form, but
not how much is sent in each transaction. However, due to
the underlying cut-and-choose technique, TumbleBit requires
computation and communication costs that grow binomially
in the security parameter. For instance, enforcing only 80 bits
of security requires messages of size between 250 and 400
KB for a single payment, which implies running times of up
to 10 seconds. Moreover, TumbleBit relies on the hash-time
lock contract (HTLC), a Bitcoin script-based construction that
allows for payments conditioned on solving a cryptographic
challenge, that is, obtaining the preimage of a hash function.
This, however, limits the deployment of TumbleBit to those
cryptocurrencies supporting HTLC, ruling out scriptless ones
such as Ripple, Stellar or Monero. Furthermore, it hinders
fungibility as multisig HTLC-based payments are clearly dis-
tinguishable from standard payments.

We summarize the properties achieved by each PCH con-
struction in Table I. Most notably, all state-of-the-art PCHs
fail to achieve at least one of the aforementioned properties
and, in particular, all of them fall short of interoperability:
while BOLT PERUN and NOCUST totally lack it, Teechain
achieves it at the cost of adding a new trust assumption (TEE)
whereas TumbleBit is restricted to blockchains supporting
HTLC contracts, further suffering from a high communication
and computation complexity.

This state of affairs leads to the following question: Is
it possible to have a PCH interoperable with virtually all
cryptocurrencies that is practical and achieves the security
and privacy notions of interest?

C. Our Contributions

This work answers the previous question in the affirmative
and presents the first secure, privacy-preserving, interoperable,
and fungibility-preserving PCH cryptographic construction,
whose communication and computational complexity is just
linear in the security parameter. Specifically,

• We introduce a novel cryptographic primitive called
anonymous atomic locks (A2L), which intuitively realizes
a three-party protocol for conditional transactions, where
the intermediary pays the receiver only if the latter solves
a cryptographic challenge with the help of the sender.
We model A2L as well as its security and anonymity
properties (namely, atomicity and unlinkability) in the
Universal Composability (UC) framework [7]. We lever-
age the resulting composability guarantees to show how
A2L can be employed as cornerstone in the design of a
fully-fledged PCH.

• We give two concrete instantiations, one based on Schnorr
and another one based on the ECDSA signature scheme.
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While Schnorr provides the most efficient protocol in
terms of communication and computation overhead,
ECDSA is arguably the most widely deployed signature
scheme in practice, thereby achieving a high degree of
interoperability (e.g., we can realize a tumbler receiving
bitcoins and forwarding ethers). Notice also that it is
possible to combine Schnorr and ECDSA-based construc-
tions if they are instantiated over the same group [36].
By dispensing from HTLCs, our instantiation offers the
highest degree of interoperability among the state-of-the-
art PCHs: e.g., Ripple and Stellar support ECDSA and
Schnorr but not HTLCs, and we further show how to inte-
grate A2L in a scriptless cryptocurrency such as DLSAG-
based Monero [38], a variant of Monero proposed to add
support for payment channels that is being considered as
a hard fork in the Monero community [40].

• Our A2L instantiations incur communication and compu-
tation costs that are linear in the security parameter. Addi-
tionally, we implemented both of them, showing that they
require a running time of less than 300ms for ECDSA
and 80ms for Schnorr. Furthermore, they require 21.3KB
for ECDSA and less than 15.3KB for Schnorr. When
compared to TumbleBit, the most interoperable PCH prior
to this work, which requires binomial communication
and computation complexity, ECDSA-based A2L is 3x
faster and requires 15x less bandwidth while Schnorr-
based A2L is 8x faster and requires 21x less bandwidth.
These results demonstrate that A2L is the most efficient
Bitcoin-compatible PCH. Furthermore, A2L transactions
are indistinguishable from standard transactions in that
they rely on neither multisigs nor HTLCs, thereby offer-
ing fungibility guarantees.

II. PROBLEM DEFINITION

In this section, we introduce and formalize the notion of
anonymous atomic lock (A2L)..

Key Ideas. An A2L is a three-party cryptographic primitive
composed of five protocols: KGen,Promise,Pay,Open, and
Verify. Their behaviour is illustrated in Figure 1. KGen realizes
the opening of a payment channel between a user and the
tumbler. This (on-chain) protocol is carried out once to open
the channel while the rest of the protocols can be carried
arbitrary many times (off-chain) while the channel is open.

The overall process starts with the execution of the promise
protocol between the tumbler and the receiver. This protocol
is crucial for atomicity as it allows the tumbler to commit
to a payment (i.e., promise Π) to the receiver that is only
enforceable if the receiver solves a cryptographic challenge ℓ
(e.g., obtaining the discrete logarithm of an element), which
we call lock in this paper. The tumbler is the only one knowing
the solution of this lock ℓ at this point. At the same time, this
protocol also ensures that as soon as the receiver knows the
solution of the lock, the promise can be fulfilled and he can
get the coins, incentivizing thereby the receiver to enter in the
next phase, which is triggered by sending the lock ℓ to the
sender.

At this point, the sender can perform the pay operation
with the tumbler to obtain the solution of the lock. However,
note that if the sender naively inputs ℓ into the pay operation,

Sender Tumbler Receiver

promise

pay

KeyGen KeyGen

 

Fig. 1: Example of usage of the API provided by A2L.

the tumbler trivially learns the link between the sender and the
receiver. Thus, the sender randomizes ℓ into ℓ′ before engaging
into the pay protocol. The pay protocol ensures that the tumbler
gets a payment from the sender only if the tumbler reveals
′ to the sender, which encodes the (blinded) solution to the
cryptographic challenge encoded in ℓ. This invariant is crucial
for atomicity, as the tumbler could otherwise get the coins
from the sender and release an invalid solution.

Finally, the sender sends the randomized solution ′ to the
receiver. Upon reception, the receiver unblinds ′, extracts the
promise fullfillment Θ and uses it to finalize Π, that is, the
initially committed payment promise from the tumbler (i.e.,
the receiver used Θ to get the money from the tumbler).
We remark that here we use blind and unblind operations to
highlight the key ideas about how privacy is preserved, but in
the definition and instantiation of A2L, we let the blind and
unblind operations be internally done by the Promise and Pay
protocols, since unlinkability is an inherent goal of A2L.

Formal definition. Formally, A2L is defined with respect
to an intermediary Pt (the tumbler) and two parties Ps and Pr

(the sender and the receiver) from a universe P.

Definition 1 (Anonymous Atomic Lock (A2L)). An A2L L =
(KGen,Promise,Pay,Open,Verify) consists of the following
protocols (for an intermediary Pt and two parties Ps, Pr ∈ P):

• {(skt, pki,t), (ski, pki,t)} ← 〈KGenPt(1
λ),KGenPi(1

λ)〉:
On input the security parameter 1λ, the key generation
protocol returns a shared public key pki,t and a secret
key skt (ski, respectively) to Pt (resp. Pi).

• {·, (Π, ℓ)} ← 〈PromisePt(skt, pkr,t),PromisePr (skr, pkr,t)〉:
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On input two secret keys skt, skr, and a public key pkr,t,
the promise protocol is executed between two parties
(namely, Pt and Pr), and it returns a promise Π and a
lock ℓ to Pr.

• {, ·} ← 〈PayPs
(sks, pks,t, ℓ),PayPt

(skt, pks,t)〉: On in-
put two secret keys sks and skt, a public key pks,t, and
a lock ℓ, the payment protocol is executed between two
parties (namely, Ps and Pt) and it returns the solution 
of the lock ℓ to Ps.

• Θ ← Open(Π, ): On input a promise Π and a solution
, the opening algorithm returns the promise fullfillment
Θ.

• {0, 1} ← Verify(Π,Θ): On input a promise Π and a
promise fullfillment Θ, the verification algorithm returns
a bit b ∈ {0, 1}.

Correctness. Intuitively, A2L is correct if the receiver
gets the money paid by the sender through the tumbler with
overwhelming probability. For a more detailed and formal
correctness definition, we refer the reader to Appendix A.

III. SECURITY MODEL

In this section, we formalize the security and privacy
notions of interest for A2L in the universal composability
framework [7] in order to account for concurrent executions
and allow thereby for the composition of A2L with other
blockchain protocols.

A. Attacker Model

We model parties as interactive Turing machines (ITMs),
which communicate with a trusted functionality F via secure
and authenticated communication channels. We model the
adversary A as a PPT machine. The adversary can corrupt
a party P through an interface corrupt(·) that takes as input a
party identifier Pi and provides the attacker with the internal
state of P . Furthermore, all subsequent incoming and outgoing
communication of P is routed through A. As commonly
done in the literature [15], [23], [35], [36], we consider the
static corruption model, that is, the adversary commits to the
identifiers of the users he wishes to corrupt ahead of time.

B. Ideal Functionality

We formalize below the ideal functionality FA2L of our
anonymous atomic lock construction.

Communication Model. Communication happens through
the secure transmission functionality Fsmt, as defined in [7],
which informs the adversary whenever a communication be-
tween any two parties happens, and allows the adversary to
delay the delivery of the messages arbitrarily. However, the
adversary cannot read nor change the content of the messages.

Additionally, we assume existence of an anonymous com-
munication channel as defined in [6], which we denote here
as Fanon. In the ideal functionality we use the interfaces
sendsmt and receivesmt to exchange messages through the
Fsmt functionality, and interfaces sendanon and receiveanon to
exchange messages via Fanon.

We consider a synchronous communication network, where
communication proceeds in discrete rounds, as defined in [26]
and denoted here as Fsyn. The parties are always aware of the
current round, and if a party P sends a message in round r,
the recipient party receives the message in the beginning of
round r+1. The adversary can change the order of messages,
but we assume that the order of messages between honest
parties cannot be changed (which can easily be realized using
message counters). For simplicity, we assume that computation
is instantaneous.

Our Model. As previously described, we use Fanon,
Fsmt and Fsyn, thus, our functionality is defined in the
(Fanon,Fsmt,Fsyn)-hybrid model.

FA2L works in interaction with a universe of parties P.
However, since we model interactions among three parties, we
use individual symbols for readability, namely Ps (sender), Pr

(receiver) and Pt (tumbler). Additionally, FA2L manages a list
P (initially set to P := ∅), to keep track of each promise and
its corresponding promise fullfillment. The entries in the list
have the format (Π, ℓ,Θ, , Pi), where Π is a promise, ℓ is a
lock, Θ is a promise fullfillment,  is the solution for the lock,
and Pi is the party involved in the promise with the tumbler
(intermediary) Pt. Additionally, for clarity of exposition, we
denote by rand(·) and derand(·) the randomization and the
corresponding de-randomization functions, which given as in-
put a (possibly randomized) value, return the (de-)randomized
version of it. These functions are used inside the Promise and
Pay interfaces as defined in Figure 2.

FA2L provides five interfaces, which are depicted in Figure
2. The KGen interface allows the tumbler and the other party
to establish a link between themselves. The Promise interface
allows a party to obtain a promise and a lock from the tumbler.
The Pay interface allows a party to acquire the solution of
a given lock. The Open interface allows a party to fulfill a
promise. Finally, the Verify interface verifies that the promise
and the promise fullfillment match each other.

1) Alternative Approaches: Naturally, there exist alterna-
tive approaches to model anonymous atomic locks. A first
possibility would be to define two separate ideal function-
alities, one for the promise phase and the other one for the
payment phase, similar to the model in [22]. However, the ideal
functionalities in [22] by themselves only satisfy a property
that they call fairness, which is analogous to our atomicity
notion (defined in Section III-C). In order to achieve any mean-
ingful privacy notion they have to assume that the puzzle input
given to their payment functionality is blinded beforehand.
In contrast, our ideal functionality achieves unlinkability by
design, as a lock gets randomized inside the ideal functionality
itself (see Section III-C for more details).

Another possible approach is to construct a single 2-of-2
signature ideal functionality, and then instantiate it with dif-
ferent signatures that satisfy the desired properties. However,
it is harder to fit this approach into our setting, as our primary
property is unlinkability, hence, we need a way to correlate the
signature from the promise protocol with the signature from
the payment protocol in an unlinkable fashion. It is not obvious
how to do this with a 2-of-2 signature functionality.
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KGen(sid)

Upon invocation by Pi, where Pi ∈ {Ps, Pr}:
sendsmt (sid, Pi) to Pt

receivesmt (sid, b) from Pt

if b = ⊥ then send (sid,⊥) to Pi and abort
else sendsmt (sid, Pi, Pt) to Pi

Open(sid,Π, ′)

Upon invocation by Pr:
if Π = ⊥ or ′ = ⊥ then abort
set  ← derand(′)

if ∃(Π∗,−,Θ∗, ∗, P ∗
i ) ∈ P such that Π∗ = Π

and ∗ =  and P ∗
i = Pr , then send (sid,Θ∗)

to Pr

else send (sid,⊥) to Pr and abort

Promise(sid, Ps)

Upon invocation by Pr:
sendsmt (sid, Pr) to Pt

receivesmt (sid,Π, ℓ, ,Θ) from Pt

if Π = ⊥ or ℓ = ⊥ or  = ⊥ or Θ = ⊥
then abort
insert (Π, ℓ,Θ, , Pr) into P
sendsmt (sid,Π, ℓ) to Pr

sendanon (sid, ℓ, Pr) to Ps

Pay(sid, ℓ, Pr)

Upon invocation by Ps:

if ℓ = ⊥ then abort
set ℓ′ ← rand(ℓ)

sendsmt (sid, ℓ
′) to Pt

receivesmt (sid, 
′) from Pt

if ′ = ⊥ or ∕ ∃(−, ℓ∗,−, ∗, P ∗) ∈ P such that
ℓ∗ = ℓ and ∗ = derand(′) and P ∗ = Pr then
sendsmt (sid,⊥) to Ps and abort
else sendsmt (sid, 

′) to Ps

and sendanon (sid, ′) to Pr

Verify(sid,Π,Θ)

Upon invocation by Pr:

if Π = ⊥ or Θ = ⊥ then abort
if ∃(Π∗,−,Θ∗, ∗, P ∗

i ) ∈ P such that Π∗ = Π
and Θ∗ = Θ and P ∗

i = Pr , then send (sid,⊤)
to Pr

else send (sid,⊥) to Pr

Fig. 2: Ideal functionality for FA2L construction.

C. Discussion

We define the security and privacy notions of interest for
our FA2L functionality.

Atomicity. Loosely speaking, the system should ensure that
a lock can only be opened if there has been a payment for it
before. This protects the tumbler from a malicious receiver.
This is enforced by FA2L because it keeps track of each
promise along with the solution of the lock and the promise
fullfillment. FA2L checks whether the solution given to the
Open interface corresponds to one of the existing entries in
the list P . Since, a party obtains a solution only from a call to
the Pay interface and FA2L is trusted, this ensures that Pay has
to be instantiated before Open in order for Open to succeed.

Additionally, the system should ensure that if a payment
can be received by the tumbler then the receiver can fulfill
a matching promise previously issued by the tumbler. This
protects the sender from a malicious tumbler. Assume that the
Pay interface is invoked on a lock ℓ previously issued by a
Promise. If FA2L does not abort, then FA2L ensures that it
returns the correct solution  matching the promise Π. In other
words, if Open is invoked on input Π and , FA2L ensures the
existence of an entry in P containing both.

Unlinkability. Intuitively, unlinkability means that the tum-
bler does not learn information that allows it to associate the
sender and the receiver of a payment. This property is enforced
by FA2L since the lock ℓ that is created by the tumbler in the
Promise interface gets randomized by FA2L within the Pay
interface before it is sent back to the tumbler.

Additionally, since we assume existence of anonymous
communication channel between parties (i.e., the Fanon func-
tionality), the intermediary cannot use the network information
to correlate between sender and receiver. We remark that this
assumption is indispensable for unlinkability and is commonly
adopted in the PCH-related literature [21], [22].

Ideal functionality for PCH. In Appendix C we show
how to define a fully-fledged PCH ideal functionality based
on FA2L. This can be realized by interfacing FA2L with the
already existing ideal functionality for blockchains [15] and
the logic for payments [35], which in turn amounts to the
management of balances and timeouts.

D. Universal Composability

We now review the notion of secure realization in the UC
framework [7]. Intuitively, a protocol realizes an ideal func-
tionality if the adversary has no way to distinguish between
the ideal functionality and the real-world protocol, where a
simulator is in charge of translating the messages produced
by the ideal functionality for the computational adversary.
Here EXECπ,A,E denotes the ensemble of the outputs of the
environment E when interacting with the adversary A and
users running protocol π.

Definition 2 (Universal Composability). A protocol π UC-
realizes an ideal functionality F if for any PPT adversary A
there exists a simulator S , such that for any environment E , the
ensembles EXECπ,A,E and EXECF,S,E are computationally
indistinguishable.

IV. OUR PROTOCOLS

In this section, we present our A2L instantiations. In
particular, we give an overall intuition in Section IV-A, we
discuss the building blocks in Section IV-B, we detail the
Schnorr-based instantiation in Section IV-C and the ECDSA-
based instantiation in Section IV-D. Due to the lack of space,
we defer our Monero-based instantiation to Appendix E.

A. Intuition

We have divided our construction into two main protocols,
promise and payment. The promise protocol is executed be-
tween Tumbler and Bob to create a promise (e.g., a transaction
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that sends coins from Tumbler to Bob) and a two-party
signature for such promise that is “almost valid” meaning
that Bob can finish it only if he gets to know a value α.
Additionally, Tumbler sends Bob the value α in a ciphertext
encrypted with Tumbler’s public key. It is important to note
that at this point, Bob cannot yet complete the signature as
he can neither forge the signature nor he can decrypt the
ciphertext because he does not know the Tumbler’s decryption
key. Instead, Bob re-randomizes the ciphertext (and hence the
encrypted value), and sends it to Alice.

This is where the payment protocol comes into play, which
is executed between Alice and Tumbler. Before the start of the
payment protocol, Alice also randomizes the ciphertext on her
side and sends this to Tumbler. If we do not also randomize
at Alice’s side, then Tumbler colluding with Bob can learn
the true identity of Alice. This attack simply requires Bob
revealing his randomized data to Tumbler. We note that this
attack only makes sense in a scenario where Alice wants to
pay without revealing her true identity (e.g., if Alice is a Tor
user).

Once Tumbler receives the re-randomized ciphertext, it de-
crypts the ciphertext to obtain the doubly randomized version
of the value α (i.e., the value required by Bob to compute the
remaining part of the signature of the promise transaction).

In a nutshell, Alice then uses the payment protocol to buy
the aforementioned randomized secret value from the Tumbler.
In a bit more detail, Tumbler and Alice create a new message
(e.g., a transaction that sends coins from Alice to Tumbler)
and compute a two-party signature protocol modified in such
a manner that Tumbler can obtain the signature (and thus the
coins) only if it reveals the randomized secret value to Alice.
After this protocol is finished, Alice can remove her part of the
randomness from the secret, and send it to Bob, who can also
remove his part of the randomness, getting thereby the value
α and completing the signature for the promise transaction.

B. Cryptographic Building Blocks

We denote by 1λ, for λ ∈ N+, the security parameter. We
assume that the security parameter is given as an implicit input
to every function. We review here the cryptographic primitives
used in our protocols.

Commitment Scheme. A commitment scheme COM
consists of a commitment algorithm (com, decom) ←
Commit(m), and a verification algorithm {0, 1} ←
VCOM(com, decom,m). The commitment algorithm allows a
prover to commit to a message m without revealing it. The
verification algorithm allows a prover to convince a verifier by
confirming that the message m was committed previously by
revealing the decommitment information decom. The security
of a COM scheme is modeled by the ideal functionality FCOM

[7].

Non-Interactive Zero-Knowledge. Let R be an NP rela-
tion, and let L be a set of positive instances corresponding to
the relation R (i.e., L = {x | ∃w s.t. R(x,w) = 1}). A non-
interactive zero-knowledge proof scheme NIZK [4] consists
of a prover algorithm π ← PNIZK(x,w) and a verification
algorithm {0, 1} ← VNIZK(x,π). A NIZK scheme allows a
prover to convince a verifier about the existence of a witness w

for a statement x without revealing any information apart from
the fact that it actually knows the witness w. We can model the
security of a NIZK scheme using the following simple ideal
functionality FNIZK: on input (sid, x, w) by the prover, check
if R(x,w) = 1, and if this is the case send (sid, proof, x) to
the verifier.

Homomorphic Encryption. An additive homomorphic
encryption scheme HE is composed of the algorithms
(KGenHE,EncHE, DecHE), where (sk, pk) ← KGenHE(), c ←
EncHE(pk,m), and m ← DecHE(sk, c). In our construction,
we rely on Paillier homomorphic encryption scheme [41]. It
supports homomorphic operations over the ciphertexts of the
form EncHE(pk,m1) · EncHE(pk,m2) = EncHE(pk,m1 +m2)
and EncHE(pk,m1)

m2 = EncHE(pk,m1 ·m2). For our Schnorr-
based construction we use the assumption that Paillier is
IND-CPA, whereas for our ECDSA-based construction we
have to assume that Paillier is ecCPA as done in [33]. The
reason for this distinction is that for the ECDSA case we
rely on Lindell’s two-party ECDSA protocol (as explained
in the next paragraph), and that protocol requires the ecCPA
assumption.

ECDSA Signature. Let G be an elliptic curve group of
order q with a base point g, and let H : {0, 1}∗ → Zq be
a collision resistant hash function. The ECDSA signature is
composed of the algorithms (KGenECDSA, SigECDSA,VfECDSA),
and is defined as follows (using the multiplicative notation):
(sk, pk) ← KGenECDSA() samples a private key sk = x and
computes the corresponding public key as pk = Q = gx. The
signing algorithm (r, s) ← SigECDSA(sk,m) samples a random
k ←$Zq and computes e = H(m). Let (rx, ry) := R ← gk,
then the signing algorithm computes the signature as r ←
rx mod q and s ← k−1(e+rx) mod q. Lindell [33] proposed
an interactive and efficient two-party protocol ΠECDSA

KGen , which
performs distributed key generation for ECDSA. One party
receives (x1, Q, sk), where sk is the Paillier secret key and
Q = gx1·x2 . The other party receives (x2, Q,EncHE(pk, x1)),
where pk is the corresponding Paillier public key. An ideal
functionality FECDSA

KGen that securely computes the tuples for
both parties is given in Appendix B. After the distributed key
generation is performed, the parties can go on to perform
the distributed ECDSA signing, which is again detailed in
Lindell’s work [33]. A comparison of different threshold
ECDSA schemes can be seen in Section VII.

Schnorr Signature. Let G be a group of prime order q
with a generator g, and let H : {0, 1}∗ → Zq be a collision
resistant hash function. The Schnorr signature is defined using
the algorithms (KGenSchnorr, SigSchnorr,VfSchnorr) as follows:
(sk, pk) ← KGenSchnorr() samples a private key sk = x and
computes the corresponding public key as pk = Q = gx.
The signing algorithm (e, s) ← SigSchnorr(sk,m), samples
a random k ←$Zq and computes e ← H(RQm), where
R ← gk, and s ← k − x · e mod q. Unlike ECDSA,
Schnorr has a linear structure, hence, it is easier to produce a
two-party protocol ΠSchnorr

KGen , which performs distributed key
generation. One party receives (x1, Q) and the other party
receives (x2, Q), where Q = gx1+x2 . An ideal functionality
FSchnorr

KGen that securely computes the tuples for both parties is
given in Appendix B. Due to its linear structure, it is obvious
to see that one can also perform the distributed signing using
the Schnorr signature.
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C. Schnorr-based Construction

Let G be a group of prime order q with a generator g.
and let H : {0, 1}∗ → Zq be a collision resistant hash
function. Additionally, let COM,NIZK and HE be a com-
mitment scheme, a non-interactive zero-knowledge scheme,
and a Paillier homomorphic encryption scheme, respectively,
as defined in Section IV-B. The Schnorr-based promise and
payment protocols are shown in Figure 3 and 4, respectively.

Each pair of parties (P1, P2) generates a shared Schnorr
public key pk = gx1+x2 via the FSchnorr

KGen ideal functionality,
where we assume that P2 = Tumbler in both protocols, and
P1 = Bob in the promise protocol whereas P1 = Alice
in the payment protocol. The Schnorr-based distributed key
generation functionality FSchnorr

KGen is described in Appendix B.

The promise protocol is run between two parties (P1, P2)
(Bob and Tumbler, respectively). They initially agree on a
message which corresponds to a transaction that is supposed
to transfer coins from Tumbler to Bob. Additionally, Tumbler
chooses a secret value α, encrypts it under its own public
key using Paillier homomorphic encryption, and sends the
ciphertext to Bob. The parties then execute a coin tossing
protocol to agree on a randomness R′ = k′1+k′2+α, where α is
unknown to Bob. The randomness here is composed additively
due to the linear structure of Schnorr. The randomness R′ is
computed by parties exchanging gk

′
1 and gk

′
2 , and additionally

Tumbler embedding α in the computed randomness. The
computation of R′ together with the corresponding consistency
proof is piggybacked in the coin tossing. At this point, Tumbler
computes its side of the two-party Schnorr signature, but does
not include the secret α into the signature. Now, Bob is
able to validate this partial signature that he receives from
Tumbler, and also to compute an "almost valid" signature by
performing his part of the two-party signature. This means that
Bob computes a tuple (e′, s′ := k′1+k′2−e′·(x′

1+x′
2)), and that

the complete signature is of the form (e′, s′ + α). However,
Bob does not have α, so he cannot complete the signature.
Nevertheless, Bob receives ca = EncHE(pkT ,α) and A = gα

from Tumbler at the beginning of the promise protocol, and at
the end of the promise protocol Bob chooses a random value
β, and re-randomizes the values as ca′ = ca ·EncHE(pkT ,β) =
EncHE(pkT ,α + β) and A′ = A · gβ = gα+β using β. This
is possible due to the homomorphic properties of Paillier.
The promise protocol finishes with Bob sending these re-
randomized values to Alice.

The payment protocol is executed between two parties
(P1, P2) (Alice and Tumbler, respectively). At the beginning
of the protocol, Alice chooses a random value τ , and re-
randomizes the values she received from Bob, as ca′′ = ca′ ·
EncHE(pkT , τ) = EncHE(pkT ,α+ β + τ) and A′′ = A′ · gτ =
gα+β+τ . Once this is done, Alice and Tumbler perform a coin
tossing protocol similar to the one performed between Bob and
Tumbler in the promise protocol, but additionally Alice sends
ca′′ to Tumbler. At this point, Tumbler decrypts ca′′ to obtain
the value γ = α + β + τ . The rest of the protocol continues
similar to the promise protocol, where Tumbler and Alice
compute a common randomness, and then perform a two-party
Schnorr signature. This time, however, Tumbler incorporates
the decrypted value γ as part of the randomness. After the two-
party Schnorr signature completes and Tumbler publishes it
(allowing Tumbler to receive the payment from Alice), Alice is

able to extract the γ from the published signature. She removes
her part of the re-randomization from γ as ᾱ = γ − τ , and
sends this value to Bob, who can also remove his side of the
re-randomization and obtain the initial α = ᾱ− β. Once Bob
obtains α, he can use it to complete the "almost" signature that
he computed at the end of the promise protocol, which allows
him to claim the coins that were promised to him by Tumbler.

Security Analysis. The security of the Schnorr-based
construction is established by the following theorem, which
we formally prove in Appendix B.

Theorem 1. Let COM be a secure commitment scheme and
let NIZK be a non-interactive zero-knowledge scheme. If
Schnorr signature is strongly existentially unforgeable and
Paillier encryption is IND-CPA secure, then the construction
in Figures 3, 4 and 5, UC-realizes the ideal functionality FA2L

in the (FSchnorr
KGen ,Fanon,Fsmt,Fsyn)-hybrid model.

D. ECDSA-based Construction

While the Schnorr-based construction can exploit the linear
structure that the signature offers, this linearity is not present
in ECDSA, which makes the design of our protocol more
challenging.

Let G be an elliptic curve group of order q with a base
point g, and let H : {0, 1}∗ → Zq be a collision resistant hash
function. Additionally, let COM,NIZK, and HE be a com-
mitment scheme, a non-interactive zero-knowledge scheme,
and a Paillier homomorphic encryption scheme, respectively,
as defined in Section IV-B. The ECDSA-based promise and
payment protocols are shown in Figure 6 and 7, respectively.

Our ECDSA-based instantiation shares similar ideas with
our Schnorr-based instantiation. Hence, we only describe the
differences compared to the Schnorr variant here. Each pair
of parties (P1, P2) generates a shared ECDSA public key
pk = gx1·x2 via the FECDSA

KGen ideal functionality, where, as
before, P2 = Tumbler in both protocols, whereas P1 = Bob in
the promise protocol and P1 = Alice in the payment protocol.
Because ECDSA does not have the linear structure of Schnorr,
the distributed key generation is also more complicated, and
it requires additionally exchanging a Paillier encrypted secret
key. More precisely, P1 receives a Paillier secret key sk
and its share x1, whereas P2 receives its share x2 and the
Paillier encryption c of x1. The ECDSA-based distributed
key generation functionality FECDSA

KGen is described in the full
version [18].

The promise protocol runs similarly to the Schnorr-based
promise protocol, expect that the randomness is composed
multiplicatively due to the structure of ECDSA. More pre-
cisely, the parties agree on a randomness R′ = k′1 ·k′2 ·α, where
α is unknown to Bob. Once the randomness is computed, Tum-
bler performs its side of the two-party ECDSA signature using
c′key (the encryption of x′

1) and the homomorphic properties
of Paillier. However, Tumbler does not include the inverse of
α into the signature. Now, Bob is able to compute an "almost
valid" signature by decrypting the ciphertext that it received
from Tumbler and performing his part of the signature. This
means that Bob computes a tuple (r′, s′ :=

r′·x′
1·x

′
2+H(m′)

k′
1·k′

2
),

and that the complete signature is of the form (r′, s′ · α−1).
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Public parameters: G, g, q, message m′, public key Q′ := gx
′
1+x′

2 , and proof πT that proves validity of (n, g)

PromiseT (skT := x′
2, pk := Q′) PromiseB(skB := x′

1, pk := Q′)
α, k′

2 ←$Zq

ca ← EncHE(pkT ,α);A ← gα

πa ← PNIZK({∃α | A = gα},α)
R′

2 ← gk
′
2 ;π′

2 ← PNIZK({∃k′
2 | R′

2 = gk
′
2}, k′

2)

(com, decom) ← PCOM((R
′
2,π

′
2))

com, A,πa, ca

If VNIZK(πa, A) ∕= 1 then abort

k′
1 ←$Zq;R

′
1 ← gk

′
1

π′
1 ← PNIZK({∃k′

1 | R′
1 = gk

′
1}, k′

1)

R′
1,π

′
1

If VNIZK(π
′
1, R

′
1) ∕= 1 then abort

R′ ← R′
1 ·R′

2 ·A; e′ ← H(R′Q′m′)

s′2 ← k′
2 − x′

2 · e′ mod q

(decom, R′
2,π

′
2), s

′
2

If VCOM(com, decom, (R′
2,π

′
2)) ∕= 1 then abort

If VNIZK(π
′
2, R

′
2) ∕= 1 then abort

R′ ← R′
1 ·R′

2 ·A; e′ ← H(R′Q′m′)

If gs
′
2 ∕= R′

2 · (Q′/gx
′
1)−e′ then abort

s′1 ← k′
1 − x′

1 · e′ mod q

s′ ← s′1 + s′2 mod q

β ←$Zq;A
′ ← A · gβ

ca′ ← ca · EncHE(pkT ,β)

s′

If gs
′
∕= R′

1 ·R′
2 ·Q−e′ then abort Send ℓ := (A′, ca′) to Alice

return σ := (R′, s′ + α) return (Π := (β, (pk,m′,σ′ := (R′, s′))), ℓ)

Fig. 3: Promise protocol of Schnorr-based construction

Since Bob does not have α, he cannot complete the signa-
ture. However, similar to the Schnorr-based construction, Bob
receives ca = EncHE(pkT ,α) and A = gα from Tumbler at
the beginning of the promise protocol, and at the end of the
protocol Bob chooses a random value β and re-randomizes
the values as ca′ = cβa and A′ = Aβ using β. The promise
protocol finishes with Bob sending these re-randomized values
to Alice.

At the beginning of the payment protocol, Alice chooses
a random value τ and re-randomizes the values she received
from Bob, as ca′′ = cτa′ and A′′ = (A′)τ . The rest of the
payment protocol continues similar to Schnorr-based payment
protocol, though with Alice and Tumbler computing a two-
party ECDSA signature. When Tumbler completes the signa-
ture and publishes it, Alice extracts the γ from the published
signature. She removes her part of the re-randomization from
γ as ᾱ = γ · (τ)−1, and shares this value with Bob, who can
also remove his side of the re-randomization and obtain the
initial secret as α = ᾱ · (β)−1. All that is left for Bob to claim

the promised coins from Tumbler, is to invert α and use it to
complete the "almost" signature that he computed at the end
of the promise protocol.

Security Analysis. The security of the ECDSA-based con-
struction is based on the ecCPA assumption and is established
by Theorem 2, which we formally prove in Appendix B.

ecCPA Assumption and its Consequences. Our ECDSA-
based construction relies on Lindell’s two-party ECDSA proto-
col [33], whose security proof is based on the ecCPA assump-
tion. Therefore, the security of our ECDSA-based construction
is (partially) based on this assumption too. However, Lindell’s
original published work at CRYPTO 2017 included a minor
flaw, and a revised version was later published on ePrint [33].
As a consequence of this revision, the oracle provided in the
paper needs to stop working if there is an abort in the signing
protocol. This implies that every time an abort occurs in the
signing procedure between Tumbler and a party P , a new
key between them need to be established to maintain security.
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Public parameters: G, g, q, message m, public key Q := gx1+x2 , and proof πT that proves validity of (n, g)

PayA(skA := x1, pk := Q, ℓ := (A′, ca′)) PayT (skT := x2, pk := Q)

k2 ←$Zq;R2 ← gk2

π2 ← PNIZK({∃k2 | R2 = gk2}, k2)
(com, decom) ← PCOM((R2,π2))

com

τ, k1 ←$Zq; ca′′ ← ca′ · EncHE(pkT , τ)

R1 ← gk1 ;π1 ← PNIZK({∃k1 | R1 = gk1}, k1)
ca′′ , R1,π1

If VNIZK(π1, R1) ∕= 1 then abort
γ ← DecHE(ca′′);A′′ ← gγ

R ← R1 ·R2 ·A′′; e ← H(RQm)

s2 ← k2 − x2 · e mod q

(decom, R2,π2), s2, A
′′

If VCOM(com, decom, (R2,π2)) ∕= 1 then abort
If VNIZK(π2, R2) ∕= 1 then abort
If A′ · gτ ∕= A′′ then abort
R ← R1 ·R2 ·A′′; e ← H(RQm)

If gs2 ∕= R2 · (Q/gx1)−e then abort
s1 ← k1 − x1 · e mod q

s̄ ← s1 + s2 mod q

s̄

s ← s̄+ γ

If verification of (e, s) fails then abort
Else publish signature (e, s)

γ ← s− s̄

ᾱ ← γ − τ

Send ᾱ to Bob
return ᾱ return ⊤

Fig. 4: Payment protocol of Schnorr-based construction

Open(Π, ᾱ)

Parse Π as (β, (pk,m′,σ′ :=
(R′, s′)))

Set α ← ᾱ− β

Set s ← s′ + α

return (R′, s)

Verify(Π,σ)

Parse Π as (β, (pk,m′,σ′))

return VerifySchnorr(pk,m
′,σ)

Fig. 5: Open and verify algorithms of Schnorr-based construc-
tion.

Although this weakens the practicality of our ECDSA-based
construction, we note that an abort only affects the parties
involved in a channel where the abort occurred, and the rest
of the parties in the system are not affected, hence, they do
not require to re-generate the keys or their payment channels.
Furthermore, such an abort can only happen when there is a

misbehavior by one of the parties in a payment channel, and
as such, the desired thing to do is to close the current channel
with the gateway and possibly open a new one. A possible
mitigation to this is to replace Lindell’s two-party ECDSA
protocol in our construction with one of the various existing
threshold ECDSA protocols that support 2-of-2 signing, such
as [34], [13], or [14]. We note that the drawback described
here does not apply to our Schnorr-based construction as it
uses the standard IND-CPA assumption for Paillier.

Theorem 2. Let COM be a secure commitment scheme and let
NIZK be a non-interactive zero-knowledge scheme. If ECDSA
signature is strongly existentially unforgeable and Paillier
encryption is ecCPA secure, then the construction in Figures
6, 7 and 8, UC-realizes the ideal functionality FA2L in the
(FECDSA

KGen ,Fanon,Fsmt,Fsyn)-hybrid model.
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Public parameters: G, g, q, message m′, public key Q′ := gx
′
1·x

′
2 , and proof πT that proves validity of (n, g)

PromiseT (skT := x′
2, pk := Q′, c′key = EncHE(pkB , x

′
1)) PromiseB(skB := x′

1, pk := Q′)
α, k′

2 ←$Zq; ca ← EncHE(pkT ,α);A ← gα

πa ← PNIZK({∃α | A = gα},α)
R′

2 ← gk
′
2 ;π′

2 ← PNIZK({∃k′
2 | R′

2 = gk
′
2}, k′

2)

(com, decom) ← PCOM((R
′
2,π

′
2))

com, A,πa, ca

If VNIZK(πa, A) ∕= 1 then abort
k′
1 ← Zq

R′
1 ← gk

′
1 ;π′

1 ← PNIZK({∃k′
1 | R′

1 = gk
′
1}, k′

1)

R′
1,π

′
1

If VNIZK(π
′
1, R

′
1) ∕= 1 then abort

R′
c ← (R′

2)
α

π′
c ← PNIZK({∃α | Rc = (R′

2)
α},α)

π′
a ← PNIZK({∃α | A = gα ∧Rc = (R′

2)
α},α)

R′ ← (R′
1)

k′
2·α;R′ := (r′x, r

′
y); Set r′ ← r′x mod q

m := (k′
2)

−1 · r′ · x′
1 · x′

2 + (k′
2)

−1 ·H(m′) + ρq

c′ ← EncHE(pkB ,m)

(decom, R′
2,π

′
2), c

′, R′
c,π

′
c,π

′
a

If VCOM(com, decom, (R′
2,π

′
2)) ∕= 1 then abort

If VNIZK(π
′
2, R

′
2) ∕= 1 ∨ VNIZK(π

′
c, R

′
c) ∕= 1

∨ VNIZK(π
′
a, (A,R′

c)) ∕= 1 then abort

R′ ← (R′
c)

k′
1 ;R′ := (r′x, r

′
y)

Set r′ ← r′x mod q

s′2 ← DecHE(skB , c
′)

If (R′
2)

s′2 mod q ∕= (Q′)r
′
· gH(m′) then abort

s′ ← s′2 · (k′
1)

−1 mod q;β ←$Zq

A′ ← Aβ ; ca′ ← (ca)
β

s′

If (R′
1)

k′
2·s

′
∕= (Q′)r

′
· gH(m′) then abort Send ℓ := (A′, ca′) to Alice

return σ := (r′, s′ · α−1) return (Π := (β, (pk,m′,σ′ := (r′, s′))), ℓ)

Fig. 6: Promise protocol of ECDSA-based construction

V. PERFORMANCE ANALYSIS

A. Implementation Details

We implemented our protocols and evaluated their perfor-
mance. The implementation is done in C and it relies on the
RELIC library [2] for the cryptographic operations. Both the
ECDSA-based and Schnorr-based variants have been instanti-
ated over the elliptic curve secp256k1, which is also used in
Bitcoin. Paillier encryption is instantiated with a RSA group
for 128-bit security level. Zero-knowledge proofs for discrete
logarithm and Diffie-Hellman tuple have been implemented
using Σ-protocols [12] and made non-interactive using the
Fiat-Shamir heuristic [17]. Lastly, we have instantiated the
commitment scheme using the hash function SHA-256.

We did not implement the distributed key generation and
instead assigned random keys to every party. Key generation is
usually carried out only once at setup time (e.g., opening a pay-
ment channel). We refer the interested reader to [33] and [19]
for a detailed performance evaluation of distributed ECDSA
and Schnorr key generation, respectively. In the following, we
focus in the rest of operations as they are the ones defined for
the first time in this work.

B. Evaluation

Testbed. We used three EC2 instances from Amazon AWS,
where Tumbler was a m5a.2xlarge instance (2.50GHz AMD
EPYC 7571 processor with 8 cores, 32GB RAM) located in
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Public parameters: G, g, q, message m, public key Q := gx1·x2 , and proof πT that proves validity of (n, g)

PayA(skA := x1, pk := Q, ℓ := (A′, ca′)) PayT (skT := x2, pk := Q, ckey = EncHE(pkA, x1))
k2 ←$Zq;R2 ← gk2

π2 ← PNIZK({∃k2 | R2 = gk2}, k2)
(com, decom) ← PCOM((R2,π2))

com

τ, k1 ←$Zq; ca′′ ← (ca′)τ ;R1 ← gk1

π1 ← PNIZK({∃k1 | R1 = gk1}, k1)
ca′′ , R1,π1

If VNIZK(π1, R1) ∕= 1 then abort
γ ← DecHE(skT , ca′′);A′′ ← gγ ;Rc ← (R2)

γ

πc ← PNIZK({∃γ | Rc = (R2)
γ}, γ)

πγ ← PNIZK({∃γ | A′′ = gγ ∧Rc = (R2)
γ}, γ)

R ← (R1)
k2·γ ;R := (rx, ry); Set r ← rx mod q

m := (k2)
−1 · r · x2 · x1 + (k2)

−1 ·H(m) + ρq

c ← EncHE(pkA,m)

(decom, R2,π2), c, A
′′, Rc,πc,πγ

If VCOM(com, decom, (R2,π2)) ∕= 1 then abort
If VNIZK(πc, Rc) ∕= 1 then abort
If VNIZK(πγ , (A

′′, Rc)) ∕= 1 then abort
If (A′)τ ∕= A′′ then abort

R ← (Rc)
k1 ;R := (rx, ry); Set r ← rx mod q

s2 ← DecHE(skA, c)

If (R2)
s2 mod q ∕= Qr · gH(m) then abort

s̄ ← s2 · (k1)−1 mod q

s̄

s ← (γ)−1 · s̄
If verification of (r, s) fails then abort
Else publish signature (r, s)

γ ← (s · (s̄)−1)−1; ᾱ ← γ · (τ)−1

Send ᾱ to Bob
return ᾱ return ⊤

Fig. 7: Payment protocol of ECDSA-based construction

Open(Π, ᾱ)

Parse Π as (β, (pk,m′,σ′ :=
(r′, s′)))

Set α ← ᾱ · β−1

Set s ← s′ · α−1

return (r′, s)

Verify(Π,σ)

Parse Π as (β, (pk,m′,σ′))

return VerifyECDSA(pk,m
′,σ)

Fig. 8: Open and verify algorithms of ECDSA-based construc-
tion.

Frankfurt, whereas Alice and Bob were m5a.large instances
(2.50GHz AMD EPYC 7571 processor with 2 cores, 8GB
RAM) located in Singapore and Oregon, respectively. In order
to show that network latency is the biggest bottleneck in
running times, we also measured performance in a LAN
network. The benchmarks for a LAN network were taken on
a machine with 2.80GHz Intel Xeon E3-1505M v5 processor
with 8 cores, and 32GB RAM. All the machines were running
Ubuntu 18.04 LTS.

We measured the average runtimes over 100 runs each. The
results of our performance evaluation are reported in Table II,
where time is given in seconds.
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TABLE II: Performance of ECDSA- and Schnorr-based construction. Time is shown in seconds.

Payment Hub
(Singapore-Frankfurt-

Oregon)
LAN Bandwidth

Schnorr ECDSA Schnorr ECDSA Schnorr ECDSA
Promise 0.948 1.017 0.022 0.049 1.66KB 2.43KB
Payment 1.120 1.144 0.036 0.050 1.62KB 2.40KB
Open 1.136 1.139 0.010 0.010 0.16KB 0.16KB
Total 3.204 3.300 0.068 0.109 3.44KB 4.99KB

Computation Time. All our protocols complete in < 4
seconds, where the running time is dominated by network la-
tency. The impact of network latency is obvious when we look
at the running time for LAN setting. In that case our ECDSA-
based construction finishes in ∼ 110 milliseconds, whereas
our Schnorr-based construction takes ∼ 70 milliseconds. From
these results we can observe that Schnorr-based construction is
performing better than ECDSA-based construction. The reason
for this is that ECDSA-based two-party signing has a more
complex structure, requiring additional Paillier encryptions.

Next, we compare our constructions with the state-of-the-
art payment hub TumbleBit [22]. In order to have more precise
results, we performed the comparison in a LAN setting without
any network latency. TumbleBit requires ∼ 0.6 seconds to
complete, hence, our ECDSA-based construction is more than
5x faster, whereas our Schnorr-based construction is more than
8x faster.

Communication Overhead. We measured the communi-
cation overhead as the amount of information that parties need
to exchange during the execution of the protocols. Hence, the
bandwidth column in our table corresponds to the combined
total amount of messages exchanged for the specific proto-
col. ECDSA-based construction has a higher communication
overhead compared to the Schnorr-based construction. This is
due to the fact that ECDSA-based two-party signing requires
a Paillier ciphertext. Since we perform two-party ECDSA
signing in both promise and payment protocols, this explains
the additional bandwidth requirements of ECDSA-based con-
struction.

TumbleBit requires 326KB of bandwidth, hence, our
ECDSA-based and Schnorr-based constructions incur 65x and
95x less communication overhead, respectively.

In summary, we highlight two points. First, our construc-
tions highly reduce both the communication and computation
complexity compared to TumbleBit. Interestingly, while results
in TumbleBit are shown for a security level of 80 bits, we run
our experiments with a security parameter that provides 128
bits of security. Thus, our construction is more efficient even
when providing a higher level of security.

Second, the reduction in computation and communication
overhead is not due to a more efficient implementation, but
because A2L is asymptotically more efficient. In a bit more
detail, TumbleBit relies on the cut-and-choose technique and
that implies that parties need to compute and exchange mes-
sages composed of


m+n
m


elements, where m and n are the

parameters for the cut-and-choose game. For instance, authors
of TumbleBit used m = 15 and n = 285 to achieve 80 bits
of security. Instead, A2L requires to compute and exchange
messages composed of constant number of elements.

VI. PAYMENT CHANNEL HUB CONSTRUCTION

We detail here how A2L in combination with a blockchain
B can be used to seamlessly realize a fully-fledged payment
channel hub (PCH).

Assume that users have already carried out the key genera-
tion algorithm and set up the payment channels with Tumbler.
Then, Alice can perform a payment to Bob through the
Tumbler as follows.

First, Tumbler and Bob execute the Promise protocol and
establish the following A2L contract:

A2L-Promise (Tumbler, Bob, Π, x, t):

1) If Bob produces the promise fullfillment data Θ in such
a manner that Verify(Π,Θ) = 1 before time t expires,
Tumbler pays Bob x coins.

2) If timeout t expires, Tumbler gets back x coins.

Here, Π is the output (along with ℓ) of the Promise
protocol in A2L where the message is set as a transaction
that sends x coins from Tumbler to Bob. t is an expiration
time (validity period) of the promise, which is properly set
to give Bob the time he needs to reveal the solution . In
case this does not happen, then Tumbler gets back the money,
thereby avoiding an indefinite locking of money in the channel.
Notice that we require that B supports the Verify algorithm
and time management in its scripting language. This is the
case in practice as Verify is implemented as the unmodified
verification algorithm from either Schnorr or ECDSA digital
signature scheme, and virtually all cryptocurrencies natively
implement a time management system where time is measured
as the number of blocks included in the blockchain.

Second, Bob sends the lock l (as output by the Promise
protocol) to Alice. Then, Alice and Tumbler execute the Pay
protocol and establish the following A2L contract:

A2L-Pay (Alice, Tumbler, ℓ, x):

1) If Tumbler sends Alice the solution  to the cryptographic
challenge encoded in ℓ, then Alice pays Tumbler x coins.

2) Otherwise, Alice gets back x coins.

Finally, Alice gets the solution  to the cryptographic
challenge encoded in the lock ℓ. Alice then sends  to Bob
who can then complete the A2L-Promise contract with the
promise fullfillment data Θ := Open(Π, ).
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VII. RELATED WORK

On-Chain Tumblers. Several prior works exist where
a centralized tumbler assists users to mix their coins [1],
[3], [5], [24], [37], [39], [44]–[47], [49], [50]. However, all
these constructions heavily rely on on-chain transactions to
operate, hindering thus the scalability of cryptocurrencies. A2L
instead is by definition operating with off-chain payments,
aiding thus to the scalability of current blockchains. Moreover,
while mentioned systems are restricted to one (or few) cryp-
tocurrencies, A2L rely only on widely deployed cryptographic
primitives such as digital signatures schemes, paving the way
to interoperable cross-chain applications.

Payment-Channel Networks. A scalability approach
based on payment channels is payment-channel networks [42],
where users performs payments through a path of opened
channels between sender and receiver. Few research works
have studied their security, privacy, and concurrency guaran-
tees [35], [36]. Although interesting, we consider this research
line orthogonal to our work. It is worth noting that Malavolta
et al. [36] propose anonymous multi-hop locks (AMHL), a
cryptographic construction to ensure the security and privacy
of multi-hop locks also based on scriptless payments (i.e.,
payments where conditions are embedded in the signature
itself). While interesting, this work is orthogonal to A2L: A
multi-hop payment inherenty requires to reveal the predecessor
and successor nodes in the path to intermediaries, which
is exactly the privacy notion in a PCH, where only one
intermediary (tumbler) exists.

Threshold ECDSA Protocols. Subsequent to Lindell’s
work [33], Doerner et. al [13], [14] and Lindell et. al [34]
provided a threshold variant of ECDSA signing, which can also
be used in 2-of-2 signature setting that we require. However,
[34] performs worse with respect to both communication and
computation in 2-of-2 setting. On the other hand, although [13]
and [14] perform better with respect to computation in 2-of-
2 setting, they require more communication. Since we are in
the Internet setting we want to minimize the communication,
hence, they are not suitable for our scenario. Furthermore,
since all these protocols target the threshold setting, they are
more convoluted than Lindell’s two-party ECDSA protocol.
However, on a positive side, all these follow-up works remove
the ad-hoc ecCPA assumption that Lindell’s two-party ECDSA
protocol introduced. Recently, Castagnos et. al. [10] proposed
a generalized approach to Lindell’s two-part ECDSA protocol
[33] using hash proof systems, more precisely, homomorphi-
cally extended projective hash family. Their approach removes
Lindell’s ecCPA assumption, and additionally requires less
communication compared to Lindell’s protocol. Though, their
computation requirements are higher. Nevertheless, this work
is the closest direct replacement to Lindell’s original two-party
ECDSA protocol, hence, our approach works directly there
without any modifications. This means that one can use [10]
as a drop-in replacement to Lindell’s two-party ECDSA in our
ECDSA-based A2L construction.

VIII. CONCLUSION

This paper presents A2L, a new cryptographic primitive
for realizing secure, privacy-preserving, interoperable, and
fungibility-preserving PCHs. We develop two instantiations,

based on ECDSA and Schnorr signatures, which makes our
constructions compatible with the vast majority of today’s
cryptocurrencies. We defined and proved security and privacy
for A2L in the UC framework. We further demonstrated that
A2L is the most efficient Bitc oin-compatible PCH, showing
that our ECDSA instantiation is 5x faster and requires 65x less
bandwidth than the state-of-the-art TumbleBit protocol, even
when providing a higher level of security.

As a future work, it would also be interesting to generalize
our construction to multi-hop payment hubs and, ultimately,
to interface PCHs with payment channel networks. Finally,
we intend to explore techniques to achieve stronger value pri-
vacy guarantees and, possibly, the inherent trade-offs between
interoperability and value privacy.
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APPENDIX

A. A2L Correctness

In this section, we define the notion of correctness for
A2Ls.

Definition 3 (Correctness of A2Ls). Let L be an A2L, λ ∈ N+

and n ∈ poly(λ). Let Pt be the intermediary, (P1, . . . , Pn) ∈
Pn be a vector of parties, (sk1, . . . , skn, skt) be a vector of
secret keys, and (pk1,t, . . . , pkn,t) be a vector of public keys,
such that for all 1 ≤ i ≤ n, it holds that

{(ski, pki,t), (skt, pki,t)} ← 〈KGenPi(1
λ),KGenPt(1

λ)〉.

Furthermore, let (Π1, . . . ,Πn) be a vector of promises,
(ℓ1, . . . , ℓn) be a vector of locks, and (1, . . . , n) be a vector
of opening information, such that for all 1 ≤ i, j ≤ n, it holds
that

{·, (Πi, ℓi)} ← 〈PromisePt(skt, pki,t),PromisePi(ski, pki,t)〉

and

{i, ·} ← 〈PayPj
(skj , pkj,t, ℓi),PayPt

(skt, pkj,t)〉.

We say that L is correct if there exists a negligible function
negl, such that for all 1 ≤ i ≤ n, the following holds

Pr[Verify(Πi,Open(Πi, i)) = 1] ≥ 1− negl(λ) .

B. Security Analysis

Throughout this section we denote by poly(λ) any function
that is bounded by a polynomial in λ, where λ is the security
parameter. We denote any function that is negligible in the
security parameter by negl(λ). We say an algorithm is PPT if
it is modeled as a probabilistic Turing machine whose running
time is bounded by some function poly(λ).

We prove security according to the UC framework [7],
and in the presence of malicious adversaries with static
corruptions. Since both our promise and payment protocols
are two party protocols, we are in the setting of no honest
majority. As is standard in this setting, we consider security
with abort, meaning that a corrupted party can learn output
while the honest party does not.

Proof of Knowledge for Factoring. In our protocols we
assume existence of a proof πT , which is a non-interactive
zero-knowledge proof that Paillier parameters (n, g) are valid,
and a proof of knowledge of the associated Paillier secret
key. This zero-knowledge proof of knowledge can be realized
using the Poupard-Stern protocol [43] that proves knowledge
of the factorization of the modulus n. Another alternative
is to use the proof of [20], which certifies that RSA is a
permutation by proving that gcd(N,φ(N)) = 1. This proof
can be adapted to fit our needs, and this adaptation is explained
in [34, Section 6.2.3].

Key Generation Functionalities. Our protocols build on
key generation funtionalities for both Schnorr and ECDSA.
The key generation functionalities below are taken from
[35]. Ideal functionality for key generation of Schnorr
signature FSchnorr

KGen is defined below (it models a distributed
key generation for discrete logarithm-based schemes).

KeyGen(G, g, q)

Upon invocation by both P1 and P2 on input (G, g, q) :

sample x ←$Zq and compute Q = gx

set skP1,P2 = x

sample x1, x2 ←$Zq and a hash function H : {0, 1}∗ → Zq

send (x1, Q,H) to P1 and (x2, Q,H) to P2

ignore future calls by (P1, P2)

The ideal functionality for key generation of ECDSA
signature FECDSA

KGen is defined as follows:

KeyGen(G, g, q)

Upon invocation by both P1 and P2 on input (G, g, q) :

sample x ←$Zq and compute Q = gx

sample x1, x2 ←$Zq and a hash function H : {0, 1}∗ → Zq

sample a key pair (skP1,P2 , pkP1,P2
) ← KGenHE()

compute c ← EncHE(pk, r̄) for a random r̄

send (x1, Q,H, sk) to P1 and (x2, Q,H, c) to P2

ignore future calls by (P1, P2)

We stress that the copies of these functionalities that are
invoked as subroutines are fresh independent instances, and
hence, the composition theorem [7] directly applies to our
settings.

Schnorr-based Construction. Here we prove Theorem 1.

Proof: The proof is composed of a series of hybrids,
where we gradually modify the initial experiment.

H0: Is identical to the construction as described in Section
IV-C.

H1: All the calls to the commitment scheme COM are
replaced with calls to the ideal functionality FCOM−ZK. which
is defined for a relation R as described in [33].

Commit(sid, x, w)

Upon invocation by Pi, where i ∈ {1, 2}, on input (x,w) :

if some (sid, ·, ·) is already recorded or (x,w) ∕∈ R

then ignore the message
else record (sid, i, x) and send (com, sid) to P3−i

Decommit(sid)

Upon invocation by Pi, where i ∈ {1, 2} :

if (sid, i, x) is recorded, then send (decom, sid, x) to P3−i

else ignore the message

We have to use the FCOM−ZK functionality, while in our
protocol the parties send commitments to non-interactive zero-
knowledge proofs. This functionality is securely realized by
having the prover commit to a non-interactive zero-knowledge
proof using an ideal commitment functionality FCOM, such
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as the one from [32]. Instead of calling the commitment
algorithm COM with (x,w), the parties send a message of the
form Commit(sid, x, w) to the ideal functionality FCOM−ZK.
Similarly, the decommitment is replaced with a message of
the form Decommit(sid). The verifying party records the
messages from FCOM−ZK.

H2: All the calls to the non-interactive zero-knowledge
scheme NIZK are replaced with calls to the ideal functionality
FNIZK, which works with a relation R and is defined as
follows.

Prove(sid, x, w)

Upon invocation by Pi, where i ∈ {1, 2}, on input (x,w) :

if (x,w) ∕∈ R, then send (proof, sid, x) to P3−i

else ignore the message

Instead of calling the non-interactive zero-knowledge
scheme NIZK with input (x,w), the proving party queries the
ideal functionality FNIZK with message Prove(sid, x, w). The
verifier records the messages from FNIZK.

H3: Consider the following ensemble of variables in the
interaction with A: key pairs (skA, pkA,T ) and (skB , pkB,T ),
a pair (ᾱ, (Π, ℓ)) such that

{·, (Π := (β, ·), ℓ)} ←
〈PromiseB(skB , pkB,T ),PromiseT (skT , pkB,T )〉

and

{ᾱ, ·} ← 〈PayA(skA, pkA,T , ℓ),PayT (skT , pkA,T )〉.

If for any set of these variables, the adversary returns
some σ := (R, s), such that Verify(Π,σ) = 1, but
s ∕= Open(Π, ᾱ)[s], then the experiment aborts.

H4: Consider the following ensemble of variables in the
interaction with A: key pairs (skA, pkA,T ) and (skB , pkB,T ),
a pair (ᾱ, (Π, ℓ)) such that

{·, (Π, ℓ)} ← 〈PromiseB(skB , pkB,T ),PromiseT (skT , pkB,T )〉

and

{ᾱ, ·} ← 〈PayA(skA, pkA,T , ℓ),PayT (skT , pkA,T )〉.

If for any set of these variables, the adversary returns some
σ := (R, s), such that Verify(Π,σ) = 1, before Alice outputs
ᾱ, such that Verify(Π,Open(Π, ᾱ)) = 1 then the experiment
aborts.

S : The actions of the simulator S are dictated by
interacting with F . If A interacts with an honest user, then
the simulator queries the corresponding interface of F . More
precisely, it is queried by F on the following set of inputs:

• Promise: The simulator initiates the promise procedure
with the adversary and replies with ⊥ if the execution is
not successful, otherwise replies with a valid promise and
lock.

• Pay: The simulator initiates the pay procedure with the
adversary and replies with ⊥ and if the execution is not
successful, otherwise it releases the opening information
of the corresponding lock.

• Open: The simulator returns the opened lock data.

Additionally, S obtains the pair (n, g), (λ, µ), by extracting
them from the proof πT , where (n, g) is the Paillier public
key of Tumbler, and (λ, µ) is the corresponding secret key of
Tumbler.

Next, we prove the indistinguishability of the neighboring
experiments for the environment E .

Lemma 1. For all PPT distinguisher E it holds that

EXECH0,A,E ≈ EXECH1,A,E .

Proof: The proof follows directly from the security of the
commitment scheme COM.

Lemma 2. For all PPT distinguisher E it holds that

EXECH1,A,E ≈ EXECH2,A,E .

Proof: The proof follows directly from the security of the
non-interactive zero-knowledge scheme NIZK.

Lemma 3. For all PPT distinguisher E it holds that

EXECH2,A,E ≈ EXECH3,A,E .

Proof: In order to show this claim, we introduce two
intermediate hybrids.

H∗
2: All the calls to the promise protocol are replaced

with calls to the FPromise ideal functionality, which is defined
as follows.

PromiseSign(sid,m,α)

Upon invocation by Tumbler and Bob on input (sid, pk,m,α) :

if some (sid, ·, ·, ·) is already recorded, then ignore the message
else record (sid, pk,m,α)

compute (R, s) ← SigSchnorr(skB,T ,m)

return (R, s− α)

We note that the key skB,T refers to the previously estab-
lished key between Bob and Tumbler in the call to the FSchnorr

KGen .

Lemma 4. For all PPT distinguisher E it holds that

EXECH2,A,E ≈ EXECH∗
2 ,A,E .

Proof: The proof consists of the description of the sim-
ulator for the interactive promise protocol. Since the promise
protocol is executed between Tumbler and Bob, we describe
two simulators depending on whether the adversary is playing
the role of Tumbler or Bob.

1) Bob corrupted: After agreeing on a message m, the
simulator S samples a random α∗ ←$Zq , and queries
PromiseSign on input (sid,m,α∗), for a random sid, and
obtains σ′ := (R′, s′). S computes A∗ = gα

∗
and c∗ =
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EncHE(pkT ,m), where pkT is the Paillier public key of
Tumbler. S sends ((com, sid), A∗, c∗, (proof, sid, {∃α∗ |
A∗ = gα

∗})) to A. At some point of the execution A
sends (R′

1, (prove, {∃k′1 | R′
1 = gk

′
1}, k′1)). S verifies that

R′
1 = gk

′
1 , and if this is not the case S simulates Tumbler

aborting. S replies with



decom, sid,




R∗ = R′/(R′

1 ·A∗),
proof, sid,
{∃k∗ | R∗ = gk

∗}



 ,

(s′ − k′1 + e · x′
1)





where e = H(pkR∗m), and x′
1 is the value returned

by the key generation to A. The rest of the execution is
unchanged.
The distribution induced by simulator is identical to the
real execution except for the way c∗ is computed (which
corresponds to c in the real protocol). However, α is sam-
ple uniformly randomly from Zq both in the real execu-
tion and the simulation. Hence, by the indistinguishability
of Paillier the distributions are indistinguishable.

2) Tumbler corrupted: After agreeing on a message m, the
simulator S is given



com, sid,


R′

2,
prove, sid,

{∃k′2 | R′
2 = gk

′
2}, k′2


,


A,

prove, sid,
{∃α | A = gα},α


, c





by A. S verifies that R′
2 = gk

′
2 and A = gα. If the

verification fails, S simulates Bob aborting. S queries
PromiseSign on input (sid,m,α), and obtains σ′ :=
(R′, s′). S sends (R∗ = R′/(R′

2 · A), (proof, sid, {∃k∗ |
R∗ = gk

∗})) to A, and receives ((decom, sid), s′2 =
k′2 − e′ · x′

2), where e′ = H(pkR∗m), and x′
2 is the

value returned by the key generation to A. The rest of
the execution is unchanged.
Simulator is efficient and the distribution induced by the
simulated view is identical to the one of the original
protocol.

Next, we define the second intermediate hybrid.

H†
2: All the calls to the payment protocol are replaced

with calls to the FPay ideal functionality, which is defined as
follows.

PaymentSign(sid,m, γ)

Upon invocation by Tumbler and Alice on input (sid,m, γ) :

if some (sid, ·, ·) is already recorded, then ignore the message
else record (sid,m, γ)

and compute (R, s) ← SigSchnorr(skA,T ,m)

return (R, s− γ)

We note that skA,T refers to the previously established key
between Alice and Tumbler in the call to the FSchnorr

KGen .

Lemma 5. For all PPT distinguisher E it holds that

EXECH∗
2 ,A,E ≈ EXECH†

2,A,E .

Proof: Similar to the proof of Lemma 4, we define two
simulators. The payment protocol is run between Tumbler and
Alice, hence, we define simulators for when one or the other
is corrupted.

1) Alice corrupted: Prior to the interaction the simulator S
is given πT . After agreeing on a message m, S sends
(com, sid) to A, for a random sid. At some point of the ex-
ecution A sends (c′′, R1, (prove, {∃k1 | R1 = gk1}, k1)).
If R1 ∕= gk1 , then S simulates Tumbler aborting. S
extracts the Paillier secret key skT of Tumbler from πT ,
decrypts c′′ to obtain γ ← DecHE(skT , c

′′), and computes
A∗ = gγ . S queries PaymentSign on input (sid,m, γ),
and receives σ := (R, s). S sends




decom, sid,




R∗ = R/(R1 ·A∗),
proof, sid,
{∃k∗ | R∗ = gk

∗}



 ,

(s− k1 + e · x1), A
∗





to A, where e = H(pkR∗m), and x1 is the value
returned by the key generation to A. The rest of the
execution is unchanged.
Simulator is efficient and the distribution induced by the
simulated view is identical to the one of the original
protocol.

2) Tumbler corrupted: After agreeing on a message m, the
simulator S is given


com, sid,


R2,

prove, sid,
{∃k2 | R2 = gk2}, k2



by A. If R2 ∕= gk2 , then S simulates Bob aborting. S
samples γ∗ ←$Zq , computes A∗ = gγ

∗
, encrypts γ∗ as

c∗ = EncHE(pkT , γ
∗), and it queries PaymentSign on

input (sid,m, γ∗). The simulator receives σ := (R, s),
and sends (c∗, R∗ = R/(R2 · A∗), (proof, sid, {∃k∗ |
R∗ = gk

∗})) to A. S receives ((decom, sid), s2 =
k2 − e · x2, A

∗), where e′ = H(pkR∗m), and x2 is
the value returned by the key generation to A. S replies
with s. The rest of the execution is unchanged.
The distribution induced by simulator is identical to the
real execution except for the way c∗ is computed (which
corresponds to c in the real protocol). However, the same
argument about the indistinguishability from Lemma 4
applies here.

Both simulators are efficient and the distributions induced
by the simulated views are identical to the ones of the original
protocol.

Next, we continue with the proof of Lemma 3. Let cheat
be the event that triggers an abort of the experiment in H3.
Assume towards contradiction that Pr[cheat | H†

2] ≥ 1
poly(λ) ,

then we can construct the following reduction against the
strong existential unforgeability of Schnorr signature. The
reduction receives as input a public key pk, and samples an
index j ∈ [1, q], where q ∈ poly(λ) is a bound on the total
number of interactions. Let Q be the key generated in the j-
th interaction, the reduction sets Q = pk. All the calls to the
signing algorithm are redirected to the signing oracle. If the
event cheat happens, the reduction returns the corresponding
(pk∗,m∗,σ∗ := (R∗, s∗)), otherwise it aborts.
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The reduction is clearly efficient. Assume that j is the index
of the interaction where cheat happens. Note that in the case
the guess of the reduction is correct we have that pk∗ = pkB,T .
Since cheat happens we have that VerifySchnorr(pk

∗,m∗,σ∗) =
1, but s∗ ∕= Open(Π, ᾱ)[s], where Π and ᾱ are returned from
the promise and pay protocols, respectively. Recall that ᾱ =
α+ β and Open parses Π as (R′, s′), where s′ = sj − α, for
some α ∈ Zq , where sj is the answer of the oracle on the j-th
session on input mj . Substituting we get

s∗ ∕= Open(Π, ᾱ)[s]

∕= s′ + (ᾱ− β)

∕= sj − α+ α+ β − β

∕= sj

as expected. Since each message uniquely identifies a session,
this implies that (pk∗,m∗,σ∗) is a valid forgery. By assump-
tion this happens with probability at least 1

q·poly(λ) , which is a
contradiction and proves that Pr[cheat | H†

2] ≤ negl(λ).

Lemma 6. For all PPT distinguisher E it holds that

EXECH3,A,E ≈ EXECH4,A,E .

Proof: Let q ∈ poly(λ) be a bound on the total number of
interactions. Let cheat denote an event that triggers an abort in
H4, but not in H3. We prove the indistinguishability of H3 and
H4 by showing that Pr[cheat | H3] ≤ negl(λ). Assume that
the converse is true, then we can construct the following re-
duction against the discrete logarithm problem: On input some
A∗ ∈ G and a public key pk, the reduction guesses a session
j ∈ [1, q]. The reduction replaces A from the first message
of the promise protocol with A∗. If Alice is requested to call
the payment protocol, the reduction aborts. At some point of
the execution A outputs some (pk∗,m∗,σ∗ := (R∗, s∗)). The
reduction returns gs

∗−s′ , where s′ is part of the output of the
promise protocol.

The reduction is clearly efficient, and whenever j is
guessed correctly, the reduction does not abort, and we also
have that pk∗ = pkB,T . The event cheat happens only in
the case where VerifySchnorr(pk

∗,m∗,σ∗) = 1, but payment
protocol has not been executed. Recall that s′ = sj − α and
A = gα, for some α ∈ Zq , where sj is the answer of the oracle
on the j-th session on input mj . We note that we replaced A
with the input A∗ of the reduction, hence A = A∗ in this case.
As argued in the proof of Lemma 3, if s∗ ∕= sj , then we have
an attacker against the strong unforgeability of the signature
scheme. Hence, it follows that s∗ = sj with all but negligible
probability. Substituting we have

gs
∗−s′ = gs

∗−(sj−α)

= gα

= A

as expected. Since, by assumption this happens with probabil-
ity at least 1

q·n·poly(λ) , we have a successful attacker against
the discrete logarithm problem. This proves our lemma.

This concludes the proof.

ECDSA-based Construction. Here we prove Theorem 2.
Proof: The sequence of hybrids that we need are identical

to the ones used in the proof of the Schnorr-based construction.

Hence, here we only prove the indistinguishability of the
neighboring experiments which require modifications in the
argument. If the argument is the same, then the proof is
omitted.

Next, we prove the indistinguishability of the neighboring
hybrids.

Lemma 7. For all PPT distinguisher E it holds that

EXECH2,A,E ≈ EXECH3,A,E .

Proof: Similar to the proof of the Schnorr-based
construction, we defined two intermediate hybrids.

H∗
2: The promise protocol is substituted with the FPromise

ideal functionality, defined as follows.

PromiseSign(sid,m,α)

Upon invocation by Tumbler and Bob on input (sid, pk,m,α) :

if some (sid, ·, ·, ·) is already recorded, then ignore the message
else record (sid, pk,m,α)

compute (r, s) ← SigECDSA(skB,T ,m)

return (r,min(s · α,−s · α))

Recall that the key skB,T refers to the key established be-
tween Bob and Tumbler in the call to the FECDSA

KGen functionality.

Lemma 8. For all PPT distinguisher E it holds that

EXECH2,A,E ≈ EXECH∗
2 ,A,E .

Proof: We define two simulators since the promise pro-
tocol is executed between two parties (namely, Tumbler and
Bob).

1) Bob corrupted: After agreeing on a message m, the
simulator S samples a random α∗ ←$Zq , and queries
PromiseSign on input (sid,m,α∗), for a random sid, ob-
tains σ′ := (r′, s′) and sets R′ = gH(m)·(s′)−1 ·Qr′·(s′)−1

.
S computes A∗ = gα

∗
and c∗ = EncHE(pkT ,m),

where pkT is the Paillier public key of Tumbler.
S sends ((com, sid), A∗, c∗, (proof, sid, {∃α | A∗ =
gα

∗})) to A. At some point of the execution A sends
(R′

1, (prove, {∃k′1 | R′
1 = gk

′
1}, k′1)). S verifies that

R′
1 = gk

′
1 , and if this is not the case S simulates Tumbler

aborting. S samples a random ρ←$Zq2 and computes
c′ ← EncHE(pkT , k

′
1 · s′ + ρq). S provides the attacker

with




decom, sid,





R∗ = (R′)(k
′
1)

−1

,

R2 = (R∗)(α
∗)−1

,
(proof, sid,
{∃k∗ | R2 = gk

∗}),
(proof, sid,
{∃α∗ | R∗ = (R2)

α∗}),
(proof, sid,
{∃α∗ | A∗ = gα

∗∧
R∗ = (R2)

α∗})





, c′





.
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The rest of the execution is unchanged.

The distribution induced by the simulator is identical to
the real execution except for the way c∗ and c′ are computed.
The same argument from the proof of Lemma 4 apply about
the distribution of c∗. Whereas, for the distribution of c′ we
can prove the statistical proximity using the following lemma
(proved in [33]):

Lemma 9. [33] For all (k, s, t) ∈ Zq and for a random
ρ ∈ Zq2 , the distributions EncHE(pk, k · s mod q + tq + ρq)
and EncHE(pk, k · s mod q + ρq) are statistically close.

In the real world c′ is computed as EncHE(pk, k ·s mod q+
tq+ρq), for some t that is bound by q. The reason t is bound
between 0 and q is that the only operations performed without
modular reduction are one multiplication and one addition,
which cannot increase the result more than q2. Since the
distributions are identical, the indistinguishability follows.

2) Tumbler corrupted: After agreeing on a message m, the
simulator S is given



com, sid,


R′

2,
prove, sid,

{∃k′2 | R′
2 = gk

′
2}, k′2


,


A,

prove, sid,
{∃α | A = gα},α


, c





by A. S verifies that R′
2 = gk

′
2 and A = gα. If the

verification fails, S simulates Bob aborting. S queries
PromiseSign on input (sid,m,α), obtains σ′ := (r′, s′)
and sets R′ = gH(m)·(s′)−1 · Qr′·(s′)−1

. S sends (R∗ =
(R′)(k

′
2)

−1·α−1

, (proof, sid,
{∃k∗ | R∗ = gk

∗})) to A, and receives




decom, sid,


R′

c,
prove, sid,
{∃α | R′

c = (R′
2)

α},α


,


A,R′

c,
prove, sid,
{∃α | A = gα∧
R′

c = (R′
2)

α},α


,

c′




.

S verifies that R′
c = (R′

2)
α and A = gα. If the verification

fails S simulates Bob aborting. S checks

DecHE(sk, c
′) = r̄ · r′ · (k′2)−1 +H(m) · (k′2)−1 mod q,

where r̄ was sampled in the key generation algorithm. If
the check holds, then the rest of the execution proceeds
unchanged, else S simulates Bob aborting.

The distribution induced by the simulator is identical
to the real execution except for the way c′ is computed.
However, we can show indistinguishability using the a
modified simulator, which is given the oracle O(c′, a, b) as
is defined in the following security experiment of the Paillier
encryption scheme [33]:

Exp−ecCPAA
HE(λ)

(sk, pk) ← KGenHE(1
λ)

(w0, w1) ←$Zq

Q = gw0

b ←$ {0, 1}
c ← EncHE(pk, wb)

b′ ← A(pk, c, Q)O(·,·,·)

where O

c′, a, b


returns 1 iff DecHE(sk, c

′) = a+ b · wb mod q

and O halts after the first time it returns 0
return 1 iff b = b′

The modified simulator queries the oracle on input (c′, a =
H(m) · (k′2)−1, b = r′ · (k′2)−1). It is apparent that the mod-
ified simulator accepts only if the original simulator accepts.
Assume towards contradiction that the modified simulator can
be efficiently distinguished form the real world experiment.
Then, we can give the following reduction to the security of
Paillier encryption scheme: On input (pk, c, Q), the reduction
simulates the inputs of A as described in the modified simula-
tor using the input pk, Q, and c as the corresponding variables.
The reduction is clearly efficient. We note that if b = 0,
then c = EncHE(pk, w0) and Q = gw0 , which is identical
to the real world execution by setting w0 = x1. In contrast, if
b = 1, then we have that c = EncHE(pk, w1) and Q = gw0 ,
where w1 is uniformly distributed in Zq , which is identical
to the modified simulated experiment. This means that the
modified simulation is computationally indistinguishable from
the real world experiment. This concludes the proof of Lemma
8, while the modified simulation and the original simulation
are identical to the eyes of the adversary.

Next, we define the second intermediate hybrid.

H†
2: The payment protocol is substituted with the FPay

ideal functionality, which is defined as follows.

PaymentSign(sid,m, γ)

Upon invocation by Tumbler and Alice on input (sid,m, γ) :

if some (sid, ·, ·) is already recorded, then ignore the message
else record (sid,m, γ)

and compute (R, s) ← SigECDSA(skA,T ,m)

return (r,min(s · γ,−s · γ))

We note that skA,T refers to the previously established key
between Alice and Tumbler in the call to the FSchnorr

KGen .

Lemma 10. For all PPT distinguisher E it holds that

EXECH∗
2 ,A,E ≈ EXECH†

2,A,E .

Proof: We define two simulators, one when Alice is
corrupted, and the other one when Tumbler is corrupted.

1) Alice corrupted: Prior to the interaction the simulator S
is given πT . After agreeing on a message m, S sends
(com, sid) to A, for a random sid. At some point of
the execution A sends (c′′, R1, (prove, {∃k1 | R1 =
gk1}, k1)). If R1 ∕= gk1 , then S simulates Tumbler
aborting. S extracts the Paillier secret key skT of Tumbler
from πT , decrypts c′′ to obtain γ ← DecHE(skT , c

′′),
and computes A∗ = gγ . S queries PaymentSign on
input (sid,m, γ), receives σ := (r, s), and sets R =
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gH(m)·s−1 ·Qr·s−1

. S samples a random ρ←$Zq2 , com-
putes c ← EncHE(pkT , k1 · s+ ρq), and sends





decom, sid,





Rc = R(k1)
−1

,

R2 = (Rc)
α−1

,
(proof, sid,
{∃k∗ | R2 = gk

∗}),
(proof, sid,
{∃α | Rc = (R2)

α}),
(proof, sid,
{∃α | A = gα∧
Rc = (R2)

α})





, c





.

to A. The rest of the execution is unchanged.

The distribution induced by the simulator is identical to the
real execution except for the way c is computed. However, the
same argument about the statistical proximity as is given in
Lemma 9 applies here too.

2) Tumbler corrupted: After agreeing on a message m, the
simulator S is given


com, sid,


R2,

prove, sid,
{∃k2 | R2 = gk2}, k2



by A. If R2 ∕= gk2 , then S simulates Bob aborting.
S samples γ∗ ←$Zq , computes A∗ = gγ

∗
, encrypts γ∗

as c∗ = EncHE(pkT , γ
∗), and it queries PaymentSign

on input (sid,m, γ∗). S receives σ := (r, s), and
sets R = gH(m)·s−1 · Qr·s−1

. S sends (c∗, R∗ =
R(k2)

−1·(γ∗)−1

, (proof, sid, {∃k∗ | R∗ = gk
∗})) to A. S

receives




decom, sid,


Rc,

prove, sid,
{∃γ | Rc = (R2)

γ∗}, γ∗


,



A∗, Rc,
prove, sid,
{∃γ∗ | A∗ = gγ∧
Rc = (R2)

γ∗}, γ∗



 ,

c




.

The rest of the execution is unchanged.

The distribution induced by the simulator is identical to
the real execution except for the way c and c∗ are computed.
However, the indistinguishability argument from the proof of
Lemma 8 applies here for c, and the argument from the proof
of Lemma 5 applies for c∗. This concludes the proof of Lemma
10.

Next, we continue with the proof of Lemma 7. Let cheat
be the event that triggers an abort of the experiment in H3.
Assume towards contradiction that Pr[cheat | H†

2] ≥ 1
poly(λ) ,

then we can construct the following reduction against the
strong existential unforgeability of ECDSA signature. The
reduction receives as input a public key pk, and samples an
index j ∈ [1, q], where q ∈ poly(λ) is a bound on the total
number of interactions. Let Q be the key generated in the j-
th interaction, the reduction sets Q = pk. All the calls to the
signing algorithm are redirected to the signing oracle. If the
event cheat happens, the reduction returns the corresponding
(pk∗,m∗,σ∗ := (r∗, s∗)), otherwise it aborts.

The reduction is clearly runs in polynomial time. Assume
that j is the index of the interaction where cheat happens.

Note that in the case the guess of the reduction is correct
we have that pk∗ = pkB,T . Since cheat happens we have that
VerifyECDSA(pk

∗,m∗,σ∗) = 1, but s∗ ∕= Open(Π, ᾱ)[s], where
Π and ᾱ are returned from the promise and pay protocols,
respectively. Recall that ᾱ = α · β and Open parses Π as
(r′, s′), where s′ = sj · α, for some α ∈ Zq , where sj is the
answer of the oracle on the j-th session on input mj .

Substituting we get

s∗ ∕= Open(Π, ᾱ)[s]

∕= s′ · (ᾱ · β−1)−1

∕= sj · α · (α · β · β−1)−1

∕= sj · α · α−1 · β−1 · β
∕= sj

as expected. Since each message uniquely identifies a session,
this implies that (pk∗,m∗,σ∗) is a valid forgery. By assump-
tion this happens with probability at least 1

q·poly(λ) , which is a
contradiction and proves that Pr[cheat | H†

2] ≤ negl(λ).

Lemma 11. For all PPT distinguisher E it holds that

EXECH3,A,E ≈ EXECH4,A,E .

Proof: Let q ∈ poly(λ) be a bound on the total number of
interactions. Let cheat denote an event that triggers an abort in
H4, but not in H3. We prove the indistinguishability of H3 and
H4 by showing that Pr[cheat | H3] ≤ negl(λ). Assume that
the converse is true, then we can construct the following re-
duction against the discrete logarithm problem: On input some
A∗ ∈ G and a public key pk, the reduction guesses a session
j ∈ [1, q]. The reduction replaces A from the first message
of the promise protocol with A∗. If Alice is requested to call
the payment protocol, the reduction aborts. At some point of
the execution A outputs some (pk∗,m∗,σ∗ := (R∗, s∗)). The
reduction returns g(s

∗)−1·s′ , where s′ is part of the output of
the promise protocol.

The reduction is clearly efficient, and whenever j is
guessed correctly, the reduction does not abort, and we also
have that pk∗ = pkB,T . The event cheat happens only in
the case where VerifyECDSA(pk

∗,m∗,σ∗) = 1, but payment
protocol has not been executed. Recall that s′ = sj · α and
A = gα, for some α ∈ Zq , where sj is the answer of the oracle
on the j-th session on input mj . We note that we replaced A
with the input A∗ of the reduction, hence A = A∗ in this case.
As argued in the proof of Lemma 7, if s∗ ∕= sj , then we have
an attacker against the strong unforgeability of the signature
scheme. Hence, it follows that s∗ = sj with all but negligible
probability. Substituting we have

gs
∗−s′ = g(s

∗)−1·(sj ·α)

= gα

= A

as expected. Since, by assumption this happens with probabil-
ity at least 1

q·n·poly(λ) , we have a successful attacker against
the discrete logarithm problem. This proves our lemma.

This concludes the proof.
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C. PCH from Anonymous Atomic Locks

In this section, we show that A2L are sufficient to construct
a fully-fledged PCH. In order to do that, we first define
the ideal functionality for PCH. We then detail the PCH
construction sketched in Section VI. Finally, we analyze the
security of the PCH construction.

1) Ideal Functionalities: We require the ideal functionality
for anonymous atomic locks FA2L as described in Figure 2.
That is, all parties have oracle access to FA2L through the
specified interfaces.

Furthermore, we require the existence of a blockchain B
modeled as a trusted append-only bulletin board. The corre-
sponding ideal functionality FB, as defined in [15], is used to
store and update the balance of every party. It is defined in
the global UC (GUC) model [8], since it provides values that
should be globally accessible, and it can be updated by mul-
tiple instances of our ideal functionality or by other protocols
simultaneously. In order to update the balance of a party P , FB

processes the messages (add, P, x) and (remove, P, x), which
allow to add/remove x coins to/from a party P ’s account,
respectively. For readability we write the balance of a party
P in B as B[P ]. The state of FB is available to all parties,
that is, at any point in the execution, a party P can send a
distinguished message read to FB, which sends the whole
transcript of B to P . Moreover, we denote the number of
entries in B as |B|, and we model time as the number of
entries of the blockchain B (i.e., time ∆ = |B|). Note that it is
possible to elapse time by adding dummy entries to B and that
the time is available to all parties by simply reading B. Lastly,
for readability, we assume that users can specify arbitrary
contracts, that is, validity of transactions from users can be
associated with arbitrary conditions that must be satisfied in
order to make the transaction effective. FB is then assumed to
enforce that contract clauses are fulfilled before the transaction
is added to B.

As defined in Section III, here we assume synchronous
communication between users, modeled by the functionality
Fsyn, and secure message transmission channels between users,
modeled by Fsmt.

Multi-session Extension. Composition theorem requires
that each call of every ideal functionality spawns an inde-
pendent instance of the corresponding functionality. However,
our FA2L functionality formally requires a joint state between
sessions. More precisely, the KGen protocols that are used
for establishing pairwise links are shared between multiple
promise/payment instances, which might potentially result in
shared keys between the different instances of A2L that realize
payment channels. Therefore, we need to rely on composition
with joint state (as discussed in [9]), where the authors state
a stronger version of the composition theorem, called JUC,
which accounts for joint state and randomness across protocol
sessions.

In order to satisfy the conditions for the JUC theorem to
apply, we must first argue that our protocol realizes a stronger
ideal functionality F̃A2L, that makes only independent calls to
the underlying interfaces. More precisely, we need to argue
for each of the previously presented concrete realizations of
FA2L that a parallel composition of those protocols realizes the
functionality F̃A2L (with all instances of the protocols sharing

the same KGen, but running independently otherwise). We
show this in the following lemmas.

Lemma 12. Let COM be a secure commitment scheme, let
NIZK be a non-interactive zero-knowledge scheme, and let
LSchnorr

KGen
be the multi-session extension of the protocol

described in Figures 3, 4 and 5, using a shared KGen algo-
rithm that realizes FSchnorr

KGen . If Schnorr signatures are strongly
existentially unforgeable and Paillier encryption is IND-CPA

secure, then LSchnorr

KGen
, UC-realizes the ideal functionality

F̃A2L in the (FSchnorr
KGen ,Fanon,Fsmt,Fsyn)-hybrid model.

Proof: It is trivial to see that the FSchnorr
KGen functionality

itself is stateless, and therefore, consecutive invocations of
FSchnorr

KGen are indistinguishable from the invocations of fresh
instances of the functionality. Thus, for multiple protocols, it
is identical to query the same FSchnorr

KGen instance or to work
on independent copies (note that the same property carries
over to protocols realizing this functionality). Consequently,
LSchnorr

KGen
is indistinguishable from the multi-session exten-

sion of LSchnorr using independent KGen copies that realize
FSchnorr

KGen . Hence, the claim follows from the composition
theorem [7] and Theorem 1.

Lemma 13. Let COM be a secure commitment scheme, let
NIZK be a non-interactive zero-knowledge scheme, and let
LECDSA

KGen
be the multi-session extension of the protocol

described in Figures 6, 7 and 8, using a shared KGen algo-
rithm that realizes FECDSA

KGen . If ECDSA signatures are strongly
existentially unforgeable and Paillier encryption is ecCPA

secure, then LECDSA

KGen
, UC-realizes the ideal functionality

F̃A2L in the (FECDSA
KGen ,Fanon,Fsmt,Fsyn)-hybrid model.

Proof: FECDSA
KGen satisfies the same independence properties

as FSchnorr
KGen , hence, the same argument as for Lemma 12

applies.

2) PCH Ideal Functionality: Next, we define an ideal
functionality for a PCH, called FPCH, which can be seen in
Figure 9. For simplicity, we do not consider any transaction
fees, however, our construction can be trivially extended to
include fees.

Data Structures. In order to simplify the exposition,
we define a few data structures. Additionally, to ease the
notation, we use attributes to access the values of tuples. For
example, γ.cid denotes the cid attribute of the tuple γ. The
data structures that we require are the following:

• List of promises P , which keeps track of the currently
existing promises. The entries in the list have the format
(pid, lid,
cid, ν, Pi), where pid is a promise identifier, lid is a lock
identifier, cid is the channel identifier, ν is a validity
period (expiration time) of the promise, and Pi is the
party to whom the promise and lock are given. We note
that pid and lid are unique identifiers, and each promise
has a validity period defined as ν = ∆+υ for a constant
value υ.

• List of open channels C, which keeps track of the cur-
rently open channels. A channel ς is a tuple defined as
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(cid, P1, P2), where cid is the channel identifier, and P1

and P2 are the parties between whom the channel is
established. We consider bidirectional payment channels
and, for simplicity, we assume that at any moment there
can only be a single open channel between the two parties
P1 and P2, and one of these parties is always the Tumbler.
Hence, we do not consider the payment channels for
which Tumbler is not one of the parties involved. This
is a natural assumption as PCH involves an intermediary.
Apart from the actual tuple values, the channel addi-
tionally has the following attributes (as defined in [15]):
ς.parties = {ς.P1, ς.P2}, which defines the two endpoints
(parties) of the channel, ς.balance : ς.parties → R≥0,
which returns the balance of the specified party within
the channel, and ς.other−party : ς.parties → ς.parties,
which is defined as ς.other−party(ς.P1) = ς.P2 and
ς.other−party(ς.P2) = ς.P1.

3) Discussion: We define here the security and privacy
notions of interest for payment hubs.

Balance Security. The system should not be exploited to
print new money or steal existing money, even when parties
collude. This property was defined in [22]. FPCH provides
balance security as the only place where the balances are
updated is inside the payment operation, and it makes sure
that either all the balances are updated or none. Additionally,
it assures that the balances are updated only if the correct
opening information for a lock is provided by the Tumbler.
The atomicity and correctness properties are enough to ensure
balance security.

Unlinkability. The intermediary should not learn informa-
tion that allows it to associate the sender and the receiver
of a payment. This is the same property that was previously
defined in Section III-C. FPCH achieves unlinkability while it
uses constant amounts and random but unique identifiers locks,
which gets rerandomized before reaching the Tumbler.

D. Trilero: Our System

In the following, we describe the four operations (open
channel, close channel, promise and payment) that constitute
the core of our system for PCH, which can be seen in Figure
10. Although, we describe open channel and close channel
operations here, we do not formally call them in Figure 10,
and instead assume that the parties have already established
payment channels between themselves before the start of the
protocol

Open Channel. The open channel operation generates a
new payment channel between the Tumbler and another party
P (in our case P is either Alice or Bob). The parties create an
initial blockchain deposit with the amount they want to invest
for the channel. If the parties have sufficient balance in the
blockchain, and the channel opening is mutually authorized,
then the operation successfully creates a new payment channel,
adds it to a list of open channels, and returns the channel
information ς to both parties. Otherwise, it returns ⊥.

Close Channel. The close channel operation is run by
parties that share an open payment channel. The operation
checks whether the specified channel is still open, and whether
there are still unexpired promises tied to this channel. In case

such promises exist, it removes them from the list of currently
valid promises. Next, it updates the blockchain balance of each
party according to their channel balance, and sends ⊤ to both
parties.

Promise. The promise operation returns a promise Π from
Tumbler to Bob, conditioned that Tumbler and Bob share an
open payment channel, and Tumbler has sufficient balance to
fulfill the promise. If the conditions are not satisfied it returns
⊥.

Payment. The payment operation transfers amt coins from
Tumbler to Bob, and from a party Alice to Tumbler. The
operation makes sure that the promise has not expired, the
parties have enough balance to fulfill the transactions, and that
Tumbler provides a valid opening to the lock corresponding to
the given promise. If all these conditions are satisfied, then it
updates the balances of the parties, and returns ⊤. Otherwise,
the balances are not modified, and it returns ⊥.

1) Security Analysis: In the following we argue that the
system as described in Figure 10, UC-realizes the functionality
FPCH as defined in Figure 9.

Theorem 3. The system described in Figure 10, UC-realizes
FPCH (as defined in Figure 9) in the (FA2L,FB,Fsmt,Fsyn)-
hybrid model.

Proof: The proof consists of the observation that the ideal
functionality FA2L enforces balance security and unlinkability
properties of a PCH (as defined in Section C3). Balance
security is guaranteed due to the atomicity of FA2L, meaning
either all the balances are updated or none of them. This
ensures that no party loses or gains more than it should. As
was discussed in Section III-C, FA2L satisfies the unlinkability
property, hence, the same argument for unlinkability applies
here too. Also, note that the only information that is sent
outside of FA2L consists of amounts and timeouts, and these
values are chosen exactly as described in FPCH. Furthermore,
it is sufficient to argue about the individual copies of FA2L in
isolation by the JUC theorem [9]. As was shown in Lemmas 12
and 13, the multi-session extended ideal functionality F̃A2L is
realized by our instantiations, and therefore, the JUC theorem
allows us to complete the analysis assuming independent
copies of FA2L running in parallel.

E. A2L for Monero

In the following, we present how to construct A2L for
Monero. Our construction makes use of the recent ring signa-
ture scheme, called DLSAG, introduced by Moreno-Sanchez
et al. [38]. The promise and payment protocols can be seen in
Figure 11 and Figure 12. The values inside brackets denote the
shares. For instance, [s′0]B and [s′0]T denote the share of Alice
and Tumbler, respectively, for the value s0. We consider two
hash functions: (i) Hs takes as input a bitstring and outputs
a scalar (i.e., Hs : {0, 1}∗ → Zq); (ii) Hp takes as input a
bitstring and outputs an element of G (i.e., Hp : {0, 1}∗ → G).
k and k′ are bitstrings chosen uniformly at random from
{0, 1}λ. Q and Q′ denote parts of the dual key created
when opening payment channels between Bob/Tumbler and
Alice/Tumbler, respectively. For more information about how
to open payment channels and make conditional payments in
Monero we refer the reader to [38].
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For brevity we write F for FPCH, and denote Tumbler as T. We assume that the channel and promise identifiers are unique and
generated at random by the ideal functionality. Additionally, there exists a lock randomizer function rand, and all the promises
use a constant amount (amt).

Open Channel: On input (pc−open, sid, ς), from a party P with ς.balance(P ) coins, where ς is the channel, P ∈ {A,B},
P ∈ ς.parties, and ς.other−party(P ) = T , F checks whether (sid, ς) is present in C. If it is present, then F sends
(pc−exists, sid,⊥) to P , otherwise it sends (pc−request, sid, ς) to T , who can either abort or authorize the operation.
In the latter case, F receives (pc−open, sid, ς ′) from T with ς ′.balance(T ) coins, and checks whether ς = ς ′, and
∀P ′ ∈ ς.parties, such that B[P ′] ≥ ς.balance(P ′) using FB. If the checks pass, F sends (remove, ς.P1, ς.balance(ς.P1)) and
(remove, ς.P2, ς.balance(ς.P2)) to FB. Lastly, F sends (pc−opened, sid, ς) to ς.P1 and ς.P2. Otherwise, channel opening fails
and F sends (pc−failed, sid,⊥) to parties in ς.parties.

Promise: On input (promise−request, sid, ς) from a party P , such that P ∈ ς.parties and ς.other−party(P ) = T , F sends
(create−promise, sid, ς) to T , who can either abort or authorize the operation. In the former case, F receives (promise, sid,⊥)
from T , and sends (promise−failed, sid,⊥) to P . In the latter case, F receives (promise, sid,⊤) from T , and checks whether
ς.balance(T ) ≥ amt. If the condition is not satisfied it sends (promise−failed, sid,⊥) to both parties in ς.parties. Otherwise,
it stores Π = (pid, lid, cid, ν, P ) in P , for a random but unique Π.pid and Π.lid, a channel identifier Π.cid = ς.cid, a validity
period Π.ν, and sends (promise−created, sid,Π) to P .

Payment: On input (pay−request, sid′, lid, ς ′) from P ′, such that P ′ ∈ ς ′.parties, and ς ′.other−party(P ′) = T , F sends
(receive−payment, sid′, P ′, rand(lid), ς ′) to T , who can either abort or authorize the operation. In the former case, F receives
(pay, sid′,⊥) from T and sends (pay−failed, sid′,⊥) to P ′. In the latter case, F receives (pay, sid′, ) from T . At this point,
F checks the following conditions: 1) there is an entry Π ∈ P , such that Π.lid = lid and Π.ν ≥ ∆ (i.e., promise has not
expired), 2)  is a valid opening of Π.lid, and 3) ς ′.(P ′) ≥ amt. If the conditions are satisfied, then F updates the balances
of P ′ and T in channel ς ′ as ς ′.(P ′) −= amt and ς ′.(T ) += amt, respectively. Also, updates the balance of Π.P and T in
channel ς as ς.(P ) += amt and ς.(T ) −= amt, respectively, where ς.cid = Π.cid. Lastly, F removes the entry Π from P ,
and sends (paid, sid′,⊤) to P ′. Otherwise, if any of the conditions fails, then F sends (pay−failed, sid′,⊥) to parties in ς ′.parties.

Close Channel: On input (pc−close, sid, cid′) from a party P , F checks whether there exists a payment channel ς ∈ C, such
that ς.cid = cid′ and P ∈ ς.parties. If no such channel exists, F ignores the message. Otherwise, F checks whether there
exists a Π ∈ P , such that Π.cid = ς.cid and Π.ν ≥ ∆ (i.e., a promise has not expired). If such a Π exists, then F removes Π
from P . Then, F sends (add, ς.P1, ς.balance(P1)) and (add, ς.P2, ς.balance(P2)) to FB. Lastly, F removes ς from C, and sends
(pc−closed,⊤) to parties in ς.parties.

Fig. 9: Ideal functionality FPCH in the (FB,Fsmt,Fsyn)-hybrid model
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Public parameters: constant amount (amt) of coins, a validity period (υ) of a promise, and current time (∆)

Alice(ς ′) Tumbler(ς ′, ς) Bob(ς)
If ς.balance(T ) < amt then abort
Query FA2L on Promise()

FA2L returns (Π, ℓ)

If Π = ⊥ or ℓ = ⊥ then abort
Set t := ∆+ υ

A2L−Promise(Tumbler,Bob,Π,amt,t)←−−−−−−−−−−−−−−−−−−−→
ℓ

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

If ς ′.balance(A) < amt or t < ∆ then abort
A2L−Pay(Alice,Tumbler,ℓ,amt)←−−−−−−−−−−−−−−−−→

Query FA2L on Pay(ℓ)

FA2L returns 

If  = ⊥ then abort


−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Query FA2L on Open(Π, )

FA2L returns Θ

If Θ = ⊥ then abort
Query FA2L on Verify(Π,Θ)

FA2L returns b

Check b
?
= 1

Fig. 10: Trilero protocol in the (FA2L,FB,Fsmt,Fsyn)-hybrid model.
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Public parameters: G, g, q, a ring pk := ((pk1,0, pk1,1), (pkn−1,0, pkn−1,1), (pkTB,0, pkTB,1)), a message m′

PromiseT (skT , [pkTB ]T ) PromiseB(skB , [pkTB ]B)
s := ([s′0]T , s1, . . . , sn−1) ←$Zq

JT ← (Q′)[pkTB ]T ·k′
; ĴT ← (Q′)[s

′
0]T ·k′

RT ← g[s
′
0]T ;α ←$Zq; ca ← EncHE(pkT ,α)

A ← gα;A∗ ← pkα·k′

TB,1

πa ← PNIZK({∃α | A = gα ∧A∗ = (pkk
′

TB,1)
α,α})

πT ← PNIZK({∃[s′0]T | RT = g[s
′
0]T

∧ ĴT = (Q′k′
)[s

′
0]T }, [s′0]T )

s,JT , ĴT , RT ,πT ,πa, ca, A,A∗

If VNIZK(πT , (RT , ĴT )) ∕= 1

∨ VNIZK(πa, (A,A∗)) ∕= 1 then abort

[s′0]B ←$Zq;RB ← g[s
′
0]B

JB ← (Q′)[pkTB ]B ·k′
; ĴB ← (Q′)[s

′
0]B ·k′

J ← JT · JB

πB ← PNIZK({∃[s′0]B | RB = g[s
′
0]B

∧ ĴB = (Q′k′
)[s

′
0]B}, [s′0]B)

JB , ĴB , RB ,πB

If VNIZK(πB , (RB , ĴB)) ∕= 1 then abort
J ← JT · JB

h0 ← Hs(m
′g[s

′
0]T · g[s

′
0]B ·AĴT · ĴB ·A∗)

∀i ∈ {1, . . . , n− 1} :

Li ← gsi · (pki)
hi−1

Ri ← Hp(pki)
si · J hi−1

hi ← Hs(m
′LiRi)

[s0]T ← [s′0]T − hn−1 · skT
[σ]T := ([s0]T , s1, . . . , sn−1, h0,JT )

[σ]T

h0 ← Hs(m
′g[s

′
0]T · g[s

′
0]B ·AĴT · ĴB ·A∗)

∀i ∈ {1, . . . , n− 1} :

Li ← gsi · (pki)
hi−1

Ri ← Hp(pki)
si · J hi−1

hi ← Hs(m
′LiRi)

[s0]B ← [s′0]B − hn−1 · skB
[σ]B := ([s0]B , s1, . . . , sn−1, h0,JB)

β ←$Zq; ca′ ← ca · EncHE(pkT ,β)
A′ ← A · gβ

[σ]B

Send ℓ := (A′, ca′) to Alice
σ′ := ([s0]T + [s0]B , s1, . . . , sn−1, h0,J )

return σ := ([s0]T + [s0]B + α, s1, . . . , sn−1, h0,J ) return (Π := (β, ( pk,m′,σ′), ℓ)

Fig. 11: Promise protocol of A2L for Monero
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Public parameters: G, g, q, a ring pk := ((pk1,0, pk1,1), (pkn−1,0, pkn−1,1), (pkAT,0, pkAT,1)), a message m

PayA(skA, [pkAT ]A, ℓ := (A′, c′a)) PayT (skT , [pkAT ]T )
s := ([s′0]T , s1, . . . , sn−1) ←$Zq

JT ← Q[pkAT ]T ·k; ĴT ← Q[s′0]T ·k

RT ← g[s
′
0]T

πT ← PNIZK({∃[s′0]T | RT = g[s
′
0]T

∧ ĴT = (Qk)[s
′
0]T }, [s′0]T )

s,JT , ĴT , RT ,πT

If VNIZK(πT , (RT , ĴT )) ∕= 1 then abort

[s′0]A ←$Zq;RA ← g[s
′
0]A

JA ← Q[pkAT ]A·k; ĴA ← Q[s′0]A·k

πA ← PNIZK({∃[s′0]A | RA = g[s
′
0]A

∧ ĴA = (Qk)[s
′
0]A}, [s′0]A)

τ ←$Zq; ca′′ ← ca′ · EncHE(pkT , τ)

JA, ĴA, RA,πA, c
′′
a

If VNIZK(πA, (RA, ĴA)) ∕= 1 then abort

γ ← DecHE(c
′′
a);A

′′ ← gγ ; (A∗)′′ ← pkγ·k
AT,1

J ← JA · JT

h0 ← Hs(mg[s
′
0]T · g[s

′
0]A ·A′′ĴT · ĴA · (A∗)′′)

∀i ∈ {1, . . . , n− 1} :

Li ← gsi · (pki)
hi−1

Ri ← Hp(pki)
si · J hi−1

hi ← Hs(mLiRi)

[s0]T ← [s′0]T − hn−1 · skT
[σ]T := ([s0]T , s1, . . . , sn−1, h0,JT )

A′′, [σ]T

If (A′) · gτ ∕= A′′ then abort

h0 ← Hs(mg[s
′
0]T · g[s

′
0]A ·A′′ĴT · ĴA · (A∗)′′)

J ← JA · JT

∀i ∈ {1, . . . , n− 1} :

Li ← gsi · (pki)
hi−1

Ri ← Hp(pki)
si · J hi−1

hi ← Hs(mLiRi)

[s0]A ← [s′0]A − hn−1 · skA
[σ]A := ([s0]A, s1, . . . , sn−1, h0,JA)

[σ]A

σ := (s0 = [s0]A + [s0]T + γ, s1, . . . , sn−1, h0,J )

If verification of σ fails then abort
Else publish signature σ

γ ← s0 − ([s0]A + [s0]T ); ᾱ ← γ − τ

Send ᾱ to Bob
return ᾱ return ⊤

Fig. 12: Payment protocol of A2L for Monero
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