
A2L: Anonymous Atomic Locks for Scalability and
Interoperability in Payment Channel Hubs

Erkan Tairi

TU Wien

erkan.tairi@tuwien.ac.at

Pedro Moreno-Sanchez

TU Wien

pedro.sanchez@tuwien.ac.at

Matteo Ma�ei

TU Wien

matteo.ma�ei@tuwien.ac.at

ABSTRACT
Payment channel hubs (PCHs) constitute a promising solution to

the inherent scalability problems of blockchain technologies, allow-

ing for o�-chain payments between sender and receiver through an

intermediary, called the tumbler. While state-of-the-art PCHs pro-

vide security and privacy guarantees against a malicious tumbler,

they fall short of other fundamental properties, such as interoper-

ability, fungibility, and e�ciency.

In this work, we present Trilero, the �rst PCH protocol to achieve

all aforementioned properties. Trilero builds upon A
2
L, a novel

cryptographic primitive that realizes a three-party protocol for

conditional transactions, where the intermediary pays the receiver

only if the latter solves a cryptographic challenge with the help of

the sender, which implies the sender has paid the intermediary. We

prove the security and privacy guarantees of Trilero and A
2
L in

the Universal Composability framework and present three prov-

ably secure instantiations based on Schnorr, ECDSA and DLSAG

signatures. Trilero requires only digital signatures and timelock

functionality from the underlying cryptocurrencies and thus is

backwards compatible with virtually all cryptocurrencies available

today, even those that do not support any form of scripting lan-

guage such as Monero, Ripple or Stellar. Moreover, transactions

required in Trilero are structurally equal to simple payments, help-

ing thereby to maintain the fungibility of the cryptocurrencies.

We implemented Trilero and compared it to TumbleBit, the state-

of-the-art Bitcoin-compatible PCH. Asymptotically, Trilero has

a communication and computation complexity that is linear, as

opposed to binomial, in the security parameter. In practice, our

ECDSA-, DLSAG- and Schnorr-based constructions require ~19x,

~23x and ~30x less bandwidth, respectively, while being comparable

to TumleBit with respect to computation time.

1 INTRODUCTION
The increasing adoption of cryptocurrencies has raised scalability

issues [15] that go beyond the rapidly growing blockchain size.

For instance, the permissionless nature of the consensus algorithm

underlying widely deployed cryptocurrencies such as Bitcoin and

Ethereum strictly limits their transaction throughput to tens of

transactions per second at best [15], which contrasts with the

throughput of centralized payment networks such as Visa that

supports peaks of up to 47,000 transactions per second [51].

Among the several e�orts to mitigate these scalability issues [32,

33, 45], payment channels have emerged as the most widely de-

ployed solution in practice. The core idea of payment channels

is to let users lock a certain amount of coins (called collateral) in

a multisig address
1

(called channel) controlled by them, storing

the corresponding transaction on-chain. From that moment on,

these two users can pay each other by simply agreeing on a new

distribution of the coins locked in the channel: the corresponding

transactions are stored locally, that is, o�-chain. When the two users

disagree on the current redistribution or simply terminate their

economical relation, they submit an on-chain transaction that sends

back the coins to their owners according to the last agreed distribu-

tion of coins, thereby closing the channel. Thus, payment channels

require only two on-chain transactions (i.e., open and close chan-

nel), yet supporting arbitrarily many o�-chain payments, which

signi�cantly enhances the scalability of the underlying blockchain.

The problem with this simple construction is that in order to

pay di�erent people, a user should establish a channel with each

of them, which is computationally and �nancially prohibitive, as

this user would have to lock an amount of coins proportional to

the number of users she wants to transact with. Payment channel

networks (PCNs) o�er a partial solution to this problem, enabling

multi-hop payments along channel paths: if one sees a PCN as a

graph where nodes are users and edges are channels, PCNs enable

payments between any pair of nodes connected by a path in the

graph. PCNs, however, rise the issue of �nding paths in a network

and maintaining the network topology.

1.1 Payment Channel Hubs (PCHs)
PCHs constitute a conceptually simpler solution to the aforemen-

tioned problem. Each party opens a channel with a central party,

called the tumbler, which mediates payments between each pair

of sender and receiver. In particular, if the sender wants to trans-

fer x coins to the receiver, the sender pays x + fee to the tumbler,

which then forwards x coins to the receiver, where fee denotes a

fee charged by the tumbler to conduct the transaction. Such a naïve

construction, despite being still deployed in many gateways, su�ers

from obvious security and privacy issues: the tumbler could steal

coins [5, 52] from honest parties (e.g., by simply not forwarding a

payment) and identify who is paying to whom [5, 25].

Security can be seen in terms of transaction atomicity and should

protect the two participants who are sending coins. Atomicity is

thus two-fold: (i) the tumbler should receive the money from the

sender only if the tumbler has forwarded the corresponding amount

to the receiver; (ii) the receiver should receive money from the

tumbler only if the sender has paid the corresponding amount

to the tumbler. Privacy covers unlinkability, that is, the tumbler

should not able to link the sender and receiver of a given payment.

As these properties seem contradictory (i.e., how can the tumbler

1
A multisig address requires all address owners to agree on the usage of the coins

stored therein, which is achieved by signing the corresponding transaction.

1

A
2
L: Anonymous Atomic Locks for Scalability and Interoperability in Payment Channel Hubs

Table 1: Comparison among state-of-the-art PCH.

Atomicity Unlinkability Fungibility Interoperability (Required functionality)

BOLT [26] # (Zcash)

Perun [20] # # # (Ethereum)

NOCUST [31] # # # (Ethereum)

Teechain [34] G#2
(Trusted Execution Environment)

TumbleBit [27] 1 # G#3
(HTLC-based currencies)

A
2
L 1 (Digital signature veri�cation and time locks)

1
Payments have �xed amounts;

2
Every user must run a TEE;

3
Not supported by scriptless cryptocurrencies (e.g., Monero).

ensure atomicity without knowing who pays to whom?), designing

a secure and privacy-preserving PCH is a technical challenge.

Besides security and privacy, another fundamental property is

interoperability: the tumbler should be able to mediate payments in

di�erent cryptocurrencies (e.g., the sender transfering bitcoins and

the receiver getting ethers), thereby enabling cross-chain applica-

tions like exchanges and cross-currency mixing.

Finally, a desirable property in any currency is fungibility, which

means that all coins should be indistinguishable from each other:

in the speci�c case of PCHs, payments performed through the

tumbler should look the same as standard payments, as otherwise,

e.g., coins produced by a tumbler might be considered tainted and

not accepted by certain parties.

1.2 State-of-the-art in PCH
BOLT [26] is an o�-chain protocol for PCHs that provides strong

anonymity guarantees by leveraging the zero-knowledge proofs

of the underlying Zcash cryptocurrency. BOLT also inherits the

fungibility guarantees provided by Zcash.
2

BOLT, however, is only

compatible with ZCash since it requires zero-knowledge proofs.

Perun [20] is an o�-chain protocol that relies on Turing-complete

smart contracts to support payment channels. Moreover, Perun

builds the PCH upon virtual channels, a smart contract-based con-

struction that intuitively allows to fold two channels (e.g., Alice

→ Tumbler → Bob) into a single channel (Alice → Bob). This

technique, however, inherently leaks the sender-receiver relation

between Alice and Bob to the tumbler. Additionally, Perun lacks

fungibility, as transactions encode a logic that makes them distin-

guishable from transactions performed by other contracts, as well

as interoperability, as it works only in Ethereum.

NOCUST [31] is an o�-chain protocol that relies on an untrusted

operator to manage the o�-chain payments among parties. The

operator periodically includes a summary on-chain that includes

the balances and the transactions for public veri�ability. As Pe-

run, NOCUST does not provide unlinkability against a malicious

intermediate (i.e., operator). Similar to Perun, NOCUST also lacks

fungibility and interoperability.

TeeChain [34] is an o�-chain protocol that leverages trusted exe-

cution environments (e.g., Intel SGX) to manage o�-chain payments

and the handling of disputes. Thus, parties are required to run a

TEE, which hinders the widespread deployment of this approach.

TumbleBit [27] is a cryptographic protocol for PCHs that makes

transactions unlinkable (i.e., the tumbler does not learn who is

paying whom). TumbleBit requires to �x the same value for all

transactions, achieving a value privacy property that is weaker

2
Here we consider only coins held at shielded addresses that have not been tainted by

combining them with unshielded addresses [29].

than the one provided by Bolt, called privacy of the compatible

interaction graph: the tumbler learns how many coins each party

sends and receives in aggregated form, but not how much is sent in

each transaction. However, due to the underlying cut-and-choose

technique, TumbleBit requires computation and communication

costs that grow binomially in the security parameter. For instance,

enforcing only 80 bits of security requires messages of size between

250 and 400 KB for a single payment, which implies running times

of up to 10 seconds in the worst case. Moreover, TumbleBit relies

on the hash-time lock contract (HTLC), a Bitcoin script-based con-

struction that allows for payments conditioned on obtaining the

preimage of a hash function. This, however, limits the deployment

of TumbleBit to those cryptocurrencies supporting HTLC, ruling

out scriptless ones such as Ripple, Stellar, or Monero. Furthermore,

it hinders fungibility as multisig HTLC-based payments are clearly

distinguishable from standard payments.

We summarize the properties achieved by each PCH construction

in Table 1. Most notably, all state-of-the-art PCHs fail to achieve

at least one of the aforementioned properties and, in particular,

all of them fall short of interoperability: while BOLT, Perun and

NOCUST totally lack it, Teechain achieves it at the cost of adding

a new trust assumption (TEE), whereas TumbleBit is restricted to

blockchains supporting HTLC contracts, further su�ering from a

high communication and computation complexity.

This state of a�airs leads to the following question:

Is it possible to have a PCH interoperable with virtually all
cryptocurrencies that is practical and achieves the security and

privacy notions of interest?

1.3 Our Contributions
This work answers the previous question in the a�rmative and

presents the �rst secure, privacy-preserving, interoperable, and

fungibility-preserving PCH cryptographic construction, whose com-

munication and computational complexity is just linear in the se-

curity parameter. Speci�cally,

• We introduce Trilero, a cryptographic PCH realization whose

core technical ingredient is a novel cryptographic primitive called

anonymous atomic locks (A
2
L). Intuitively, A

2
L realizes a three-

party protocol for conditional transactions, where the interme-

diary pays the receiver only if the latter solves a cryptographic

challenge with the help of the sender, which implies that the

sender has paid the intermediary. We model Trilero as well as

its security and privacy properties (namely, atomicity and un-

linkability) in the Universal Composability (UC) framework [7],

providing the �rst formalization of the PCH problem in UC.

2

A
2
L: Anonymous Atomic Locks for Scalability and Interoperability in Payment Channel Hubs

• We give three concrete instantiations, based on Schnorr, ECDSA

and DLSAG signature scheme, respectively. While Schnorr pro-

vides the most e�cient protocol in terms of communication and

computation overhead, ECDSA is arguably the most widely de-

ployed signature scheme in practice, thereby achieving a high

degree of interoperability (e.g., we can realize a tumbler receiving

bitcoins and forwarding ethers). Notice also that it is possible to

combine our constructions if they are instantiated over the same

group [39]. By dispensing from HTLCs, our instantiations o�er

the highest degree of interoperability among the state-of-the-art

PCHs: e.g., Ripple and Stellar support ECDSA and Schnorr but

not HTLCs. We further show how to integrate A
2
L in a scriptless

cryptocurrency such as DLSAG-based Monero [41], a variant of

Monero proposed to add support for payment channels that is

being considered in the Monero community [43].

• Our A
2
L instantiations incur communication and computation

costs that are linear in the security parameter. Our evaluation

shows that they require a running time of ~1 second for ECDSA,

~0.7 second for DLSAG and ~0.5 second for Schnorr. Furthermore,

the communication cost is 17.3KB for ECDSA, 14.3KB for DLSAG

and 10.8KB for Schnorr. When compared to TumbleBit, the most

interoperable PCH prior to this work, which requires binomial

communication and computation complexity, our experimental

evaluation shows that ECDSA-, DLSAG- and Schnorr-based A
2
L

require ~19x, ~23x and ~30x less bandwidth, respectively, and

similar computation costs, despite targeting a higher security

level (128-bit vs 80-bit). These results demonstrate that A
2
L is

the most e�cient Bitcoin-compatible PCH. Furthermore, A
2
L

transactions are indistinguishable from standard transactions in

that they rely on neither multisigs nor HTLCs, thereby o�ering

fungibility guarantees.

2 PROBLEM DESCRIPTION
A payment-channel hub (PCH) can be represented as a graph,

where each vertex represents a party P , and each weighted edge

(Pi , Pj)
xi ,x j

represents a payment channel between two parties Pi
and Pj . The weight xi , x j on an edge (Pi , Pj) is a pair representing

the balance of each channel end-point. A PCH allows for o�-chain

payments between two parties connected by an intermediary, called

tumbler and denoted as Pt . A payment from Ps (sender) to Pr (re-

ceiver) for amt coins through channels (Ps , Pt)
xs ,xt

, (Pt , Pr)
x ′t ,x

′
r

requires that xs ≥ amt and x ′t ≥ amt. If these prerequisites are

met, a payment updates both channels as follows: xs := xs − amt,
xt := xt + amt, x ′t := x ′t − amt and x ′r := x ′r + amt. In other words,

amt is moved from the sender to the tumbler and from the tum-

bler to the receiver, updating the respective channel deposits. We

formalize the notion of a PCH later in De�nition 3.2.

Challenges in PCH. A straw man approach to realize a PCH

is to let Ps pay Pt , and later on let Pt forward the payment to Pr .

However, this falls short of two fundamental properties, namely,

unlinkability and atomicity. For the former, it is easy to see that

even in the presence of several simultaneous payments, Pt learns

that the two channels that are immediately updated are part of

the same payment, i.e., who pays to whom. Hence the transactions

belonging to di�erent payments must be intertwined in a non-

predictable way. For the latter, if Ps pays Pt �rst, then a malicious

Ps (pkt) Pt (skt , pkt) Pr (pkt)

Puzzle Promise

Propose ς ′
−−−−−−−−→

Create α
Enc(pkt , α)
` := (α̂ , cα)

`
−→
AS(α̂)
←−−−→

rand(`)
Send `′ to Ps

rand(`′)

Puzzle Solver

Propose ς ,`′′
−−−−−−−−−−→

Parse `′′ as (α̂ ′′, c ′′α)
Dec(skt , c

′′
α)

AS(ˆα ′′)
←−−−−→

Complete AS(α̂ ′′)
Learn α ′′

derand(α ′′)
Accept ς Accept ς
Send α ′ to Pr

derand(α ′)
Complete AS(α̂)

Accept ς ′ Accept ς ′

If timeout occurs reject ς ′

If timeout occurs reject ς

Figure 1: Overview of Trilero. Here ς and ς ′ denote the
updates (Ps , Pt)xs−amt,xt+amt and (Pt , Pr)x

′
t−amt,x ′r+amt respec-

tively. Black pseudocode denotes operations in A2L.

Pt could get the money from Ps without paying Pr ; even if Pt pays

�rst, there is still an attack, since a malicious Ps could abstain from

paying Pt , which would thus incur in a loss. Hence, the update in

the channel between Pt and Pr should be conditioned to the update

in the channel between Ps and Pt . Achieving unlinkability and

atomicity simultaneously is challenging, since one has to condition

two updates without establishing any observable link between the

two of them.

2.1 Our Approach
Our approach to achieve unlinkability and atomicity consists of two

steps. First, we design anonymous atomic locks (A2L), a three-party

cryptographic primitive that allows for synchronizing the updates

on two payment channels atomically while preserving unlinkability.

Second, we introduce Trilero, a PCH protocol that performs the

actual update on the channels by leveraging A2L.

2.1.1 Anonymous Atomic Locks (A2L). This primitive tackles

the unlinkability and atomicity challenges by conditioning the

updates on channels (Ps , Pt)
xs ,xt

and (Pt , Pr)
x ′t ,x

′
r . For that, Pt

creates a cryptographic puzzle ` so that an update on (Pt , Pr)
x ′t ,x

′
r

is successful only if Pr can provide a solution to `. At the beginning,

only Pt knows this solution. In order to obtain it, Ps initiates an

update on channel (Ps , Pt)
xs ,xt

that is successful only if Pt reveals a

solution to a randomized version of `, which is in turn a randomized

solution of the original puzzle. This mechanism thereby provides

atomicity. Moreover, if there are several payments in parallel, the

randomization prevents Pt from linking the sender to the receiver.

In our instantiation of A
2
L, we leverage adaptor signatures [39,

44], a two-party protocol to create a signature σ ∗ on a message m

3

A
2
L: Anonymous Atomic Locks for Scalability and Interoperability in Payment Channel Hubs

that is “almost valid”, meaning that the following two conditions

hold: (i) a party P2 can �nish the signature on its own only if it gets

to know a secret value α∗; (ii) if P2 �nishes the signature on its own,

then the other party P1 learns the secret value α∗. In the following,

we denote this protocol as {⊥,σ ∗ } ← 〈ASP1
(m, ˆα∗),ASP2

(m, ˆα∗)〉,

where
ˆα∗ denotes a one-way encoding of α∗.

We have divided A
2
L in two main protocols, namely puzzle

promise and puzzle solver, as shown in Figure 1. The puzzle promise

protocol takes as input an update on channel (Pt , Pr)
x ′t ,x

′
r . First,

Pt generates a secret α and creates the cryptographic challenge

` := (α̂, cα), where α̂ is the output of a one-way function with α as

input, and cα is an encryption ofα using a homomorphic encryption

scheme under Pt ’s public key pkt . Intuitively, α̂ is required to set

the condition on the update of the channel (Pt , Pr)
x ′t ,x

′
r , whereas

cα is required in the puzzle solver protocol. The puzzle promise ends

with Pt and Pr computing

{
⊥,σ ∗Pt ,Pr

}
← 〈ASPt ((Pt , Pr)

x ′t ,x
′
r , α̂),

ASPr ((Pt , Pr)
x ′t ,x

′
r , α̂)〉. It is important to note that at this point, Pr

cannot yet convert σ ∗Pt ,Pr
into a valid signature as Pr does not know

α (see condition (i) of AS). Moreover, it cannot forge the signature,

revert the one-way function or decrypt cα . Instead, Pr randomizes

both elements of ` into `′, and sends it to Ps , thereby triggering the

start of the puzzle solver protocol.

The puzzle solver protocol takes as input an update on channel

(Ps , Pt)
xs ,xt

and the aforementioned randomized puzzle `′. First,

Ps further randomizes `′ into `′′ to preserve its own anonymity

and sends `′′ to Pt . If Ps does not randomize the ciphertext, a

malicious Pt colluding with Pr can learn the identity of Ps (e.g.,

Pr reveals the pair (cα , c
′
α) to Pt). We note that the mentioned

attack only makes sense in a scenario where Ps wants to pay

without revealing her true identity (e.g., if Ps is a Tor user and

wants to perform an anonymous donation). For more informa-

tion about this attack we refer the reader to Appendix E. Next,

Ps and Pt compute the conditional update of their channel as{
⊥,σ ∗Ps ,Pt

}
← 〈ASPs ((Ps , Pt)

xs ,xt , ˆα ′′),ASPt ((Ps , Pt)
xs ,xt , ˆα ′′)〉.

This is where the element c ′′α of the puzzle is crucial as it allows Pt
to decrypt it and obtain α ′′, the doubly randomized version of the

value α (i.e., the secret required by Pr to complete the update on

channel (Pt , Pr)
x ′t ,x

′
r). As α ′′ is randomized, Pt cannot link it to Pr

and yet can use it to convert σ ∗Ps ,Pt
into a valid signature for the

update of (Ps , Pt)
xs ,xt

. Interestingly, the condition (ii) of AS allows

Ps to learn the randomized secret α ′′. Then, Ps can remove its part

of the randomness in α ′′ and send the result to Pr , who can also

remove its part of the randomness, and thereby getting the original

value α , which it uses to convert the “almost valid” signature σ ∗Pt ,Pr
into a fully valid one.

2.1.2 Trilero. The A
2
L primitive is agnostic of the actual con-

tent of the channel updates and it does not provide any timelock

mechanism. Trilero realizes a PCH by augmenting A
2
L to provide

the two aforementioned functionalities, which are crucial for a

PCH. First, Trilero ensures that channel updates re�ect a payment

from Ps to Pr through Pt for a �xed amount amt of coins, thereby

ensuring that parties have an economical incentive to execute A
2
L.

Second, Trilero implements a timelock mechanism to return the

coins to the initial owners if a payment operation fails (e.g., a party

PCH

Trilero
UC-realizes


LA

2

Schnorr

ECDSA

DLSAG

UC-realizes

UC-realizes

UC
-rea

lize
s

Figure 2: Ourmodeling for PCH. Dotted boxes represent pro-
tocols and solid boxes represent ideal functionalities.

does not answer), which ensures that the honest users do not lose

coins or that coins do not get in�nitely locked.

3 SECURITY AND PRIVACY MODEL
3.1 Preliminaries
We de�ne our security and privacy model modularly, as shown

in Figure 2, by leveraging the Universal Composability (UC) frame-

work from Canetti [7]. We �rst describe the payment-channel hub

(PCH) ideal functionality FPCH covering the security and privacy

notions for a PCH. Later, in Section 4, we present Trilero, our PCH

implementation that UC-realizes FPCH. Trilero relies on another

ideal functionality FA2L, which captures the expected behavior

as well as the security and privacy properties of the interaction

among sender, receiver, and tumbler. In Section 4 we show two

instantiations of A
2
L based on Schnorr and ECDSA. We defer our

DLSAG-based instantiation to Appendix F.

Attacker Model. We model the parties as interactive Turing

machines, which communicate with a trusted functionality F via

secure and authenticated communication channels. We model the

adversaryA as a PPT machine. The adversary can corrupt a party P
through an interface corrupt(·) that takes as input a party identi�er

P and provides the attacker with its internal state. Furthermore, all

subsequent incoming and outgoing communication of P is routed

throughA. As commonly done in the literature [20, 27, 38, 39], we

consider the static corruption model, that is, the adversary commits

to the identi�ers of the parties it wishes to corrupt ahead of time.

CommunicationModel.Communication happens through the

secure transmission functionality Fsmt [7] which informs the adver-

sary whenever a communication between any two parties happens,

and allows the adversary to delay the delivery of the messages

arbitrarily. However, the adversary cannot read nor change the

content of the messages. Additionally, we assume the existence of

an anonymous communication channel as de�ned in [6], which we

denote here as Fanon. For readability, we use the interfaces sendsmt
and receivesmt to exchange messages through the Fsmt functional-

ity, and interfaces sendanon and receiveanon to exchange messages

via Fanon. When sending of a message is not annotated with smt
or anon, we assume by default that it is of the form sendsmt.

We consider a synchronous communication network, where

communication proceeds in discrete rounds, as de�ned in [30] and

denoted here as Fsyn. The parties are always aware of the current

round, and if a party P sends a message in round r , the recipient

party receives the message in the beginning of round r + 1. The

adversary can change the order of messages, but we assume that the

order of messages between honest parties cannot be changed (which

4

A
2
L: Anonymous Atomic Locks for Scalability and Interoperability in Payment Channel Hubs

For brevity we write F for FPCH, and denote Tumbler as PT . We assume that the channel and promise identi�ers are unique and generated

at random. Additionally, there exists a lock randomizer function rand, and all the promises use a constant amount (amt).

Open Channel On input (pc−open, sid, (P, Pt)xP ,xPt) from a party P , F checks whether (P, Pt)
xP ,xPt is present in C. If it is present, then

F sends (pc−exists, sid,⊥) to P , otherwise it sends (pc−request, sid, (P, Pt)xP ,xPt) to Pt , who can either abort or authorize the operation. In

the latter case, F receives (pc−open, sid, (P, Pt)xP ,xPt) from Pt and checks whether B[P] ≥ xP and B[Pt] ≥ xPt . If the checks pass, F

sends (remove, P, xP) and (remove, Pt , xPt) to FB. Lastly, F sends (pc−opened, sid, (P, Pt)xP ,xPt) to P and Pt . Otherwise, channel opening

fails and F sends (pc−failed, sid,⊥) to P and Pt .

Pay On input (promise−request, sid, (Pt , Pr)xPt ,xPr) from a party Pr , F sends (create−promise, sid, ς) to Pt , who can either abort or

authorize the operation. In the former case, F receives (promise, sid,⊥) from Pt , and sends (promise−failed, sid,⊥) to Pr . In the latter case,

F receives (promise, sid,>) from Pt , and checks whether xPt ≥ amt. If the condition is not satis�ed it sends (promise−failed, sid,⊥) to

Pr and Pt . Otherwise, it generates and stores Π := (pid, lid, cid,ν, Pr) in P, for a random but unique Π.pid and Π.lid, a channel identi�er

Π.cid = id((Pt , Pr)xPt ,xPr), a validity period Π.ν , and sends (promise−created, sid,Π) to Pr .

On input (solve−request, sid′, lid, (Ps , Pt)xPs ,xPt) from Ps , F sends (solve−promise, sid′, Ps , rand(lid), (Ps , Pt)xPs ,xPt) to Pt , who can either

abort or authorize the operation. In the former case, F receives (solve, sid′,⊥) from T and sends (solve−failed, sid′,⊥) to Ps . In the

latter case, F receives (solve, sid′, ϱ) from Pt . At this point, F checks the following conditions: 1) there is an entry Π ∈ P, such that

Π.lid = lid and Π.ν ≥ ∆ (i.e., promise has not expired), 2) ϱ is a valid solution to the puzzle Π.lid, and 3) xPs ≥ amt. If the conditions

are satis�ed, then F updates (Ps , Pt)
xPs ,xPt as (Ps , Pt)

xPs −amt,xPt +amt
. Also, updates (Pt , Pr)

xPt ,xPr as (Pt , Pr)
xPt −amt,xPr +amt

, where

id((Pt , Pr)xPt ,xPr) = Π.cid. Lastly, F removes the entry Π from P, and sends (solved, sid′,>) to Ps . Otherwise, if any of the conditions fails,

then F sends (solve−failed, sid′,⊥) to Ps and Pt .

Close Channel On input (pc−close, sid, cid′) from a party P , F checks whether there exists a payment channel (P, Pt)
xP ,xPt ∈ C, such

that id((P, Pt)xP ,xPt) = cid′. If no such channel exists, F ignores the message. Otherwise, F checks whether there exists a Π ∈ P, such

that Π.cid = id((P, Pt)xP ,xPt) and Π.ν ≥ ∆ (i.e., a promise has not expired). If such a Π exists, then F removes Π from P. Then, F sends

(add, P, xP) and (add, Pt , xPt) to FB. Lastly, F removes ς from C, and sends (pc−closed,>) to P and Pt .

Figure 3: Ideal functionality FPCH in the (FB, Fsmt, Fsyn)-hybrid model.

can easily be realized using message counters). For simplicity, we

assume that computation is instantaneous.

Furthermore, as inputs of parties and the messages they send to

our ideal functionalities do not contain any private information, we

implicitly assume that the ideal functionalities forward all messages

they receive to the simulator S. We note that this is merely for ease

of exposition, and it is commonly done in the literature [19, 21].

Ledger Functionality (Coins). We assume the existence of a

blockchain B modeled as a trusted append-only bulletin board. The

corresponding ideal functionality FB, as de�ned in [20], is used

to store and update the balance of every party. It is de�ned in the

global UC (GUC) model [8], since it provides values that should

be globally accessible, and it can be updated by multiple instances

of our ideal functionality or by other protocols simultaneously. In

order to update the balance of a party P , FB processes the messages

(add, P, x) and (remove, P, x), which allow for adding/removing x
coins to/from a party P ’s account, respectively. For readability we

write the balance of a party P in B as B[P], we denote the number

of entries in B as |B|, and we model time as the number of entries

of the blockchain B (i.e., time ∆ = |B|).

Universal Composability.We now review the notion of secure

realization in the UC framework. Intuitively, a protocol realizes an

ideal functionality if the adversary has no way to distinguish be-

tween the ideal functionality and the real-world protocol, where a

simulator translates the messages produced by the ideal functional-

ity for the computational adversary. Here EXECπ ,A,E denotes the

ensemble of the outputs of the environment E when interacting

with the adversary A and users running protocol π .

De�nition 3.1 (UC-realization). A protocol π UC-realizes an ideal

functionality F if for any PPT adversaryA there exists a simulator

S, such that for any environment E, the ensembles EXECπ ,A,E

and EXECF,S,E are computationally indistinguishable.

3.2 Payment Channel Hub (PCH)
De�nition. Here, we formalize the notion of payment channel hub

(PCH) and we defer the de�nition of correctness to Appendix A.

De�nition 3.2 (Payment Channel Hub (PCH)). A PCH is de�ned

as a graph G := (V,E) equipped with the following operations:

• {(P1, P2)
xP

1
,xP

2 ,⊥} ← OpenChannel(P1, P2, xP1
, xP2
) : On in-

put two parties P1, P2 ∈ V, and two amounts xP1
, xP2

, if the oper-

ation is authorized by both parties,B[P1] ≥ xP1
andB[P2] ≥ xP2

,

OpenChannel creates a new payment channel (P1, P2)
xP

1
,xP

2

and adds it toE. Additionally,OpenChannel updates the blockchain

as B[P1] = B[P1] − xP1
and B[P2] = B[P2] − xP2

and returns

id((P1, P2)
xP

1
,xP

2). Otherwise, OpenChannel returns ⊥.

• {1, 0} ← CloseChannel((P1, P2)
xP

1
,xP

2) : On input a channel

(P1, P2)
xP

1
,xP

2 , if it does not exist in E, CloseChannel returns

0. Otherwise, CloseChannel updates B as B[P1] = B[P1] + xP1

5

A
2
L: Anonymous Atomic Locks for Scalability and Interoperability in Payment Channel Hubs

KGen(sid)
Upon invocation by Pi , where Pi ∈ {Ps , Pr }:

sendsmt (sid, Pi) to Pt
receivesmt (sid, b) from Pt
if b = ⊥ then send (sid, ⊥) to Pi and abort

else sendsmt (sid, Pi , Pt) to Pi

Open(sid,Π, ϱ ′)
Upon invocation by Pr :

if Π = ⊥ or ϱ′ = ⊥ then abort

set ϱ ← derand(ϱ′)

if ∃(Π∗, −, Θ∗, ϱ∗, P ∗i) ∈ L such that Π∗ = Π and

ϱ∗ = ϱ and P ∗i = Pr , then send (sid, Θ∗) to Pr
else send (sid, ⊥) to Pr and abort

PuzzleSolver(sid, `, Pr)
Upon invocation by Ps :

if ` = ⊥ then abort

set `′ ← rand(`)

sendsmt (sid, `′) to Pt
receivesmt (sid, ϱ′) from Pt
if ϱ′ = ⊥ or @(−, `∗, −, ϱ∗, P ∗) ∈ L such that

`∗ = ` and ϱ∗ = derand(ϱ′) and P ∗ = Pr then

sendsmt (sid, ⊥) to Ps and abort

else sendsmt (sid, ϱ′) to Ps
and sendanon (sid, ϱ′) to Pr

PuzzlePromise(sid, Ps)
Upon invocation by Pr :

sendsmt (sid, Pr) to Pt
receivesmt (sid, Π, `, ϱ , Θ) from Pt
if Π = ⊥ or ` = ⊥ or ϱ = ⊥ or Θ = ⊥ then abort

insert (Π, `, Θ, ϱ , Pr) into L

sendsmt (sid, Π, `) to Pr
sendanon (sid, `, Pr) to Ps
Verify(sid,Π,Θ)
Upon invocation by Pr :

if Π = ⊥ or Θ = ⊥ then abort

if ∃(Π∗, −, Θ∗, ϱ∗, P ∗i) ∈ L such that Π∗ = Π and

Θ∗ = Θ and P ∗i = Pr , then send (sid, >) to Pr
else send (sid, ⊥) to Pr

Figure 4: Ideal functionality for FA2L construction.

and B[P2] = B[P2] + xP2
, removes (P1, P2)

xP
1
,xP

2 from E and

returns 1.

• {1, 0} ← Pay(Ps , Pr , amt) : On input two parties Ps and Pr , let

(Ps , Pt)
xPs ,xPt and (Pt , Pr)

x ′Pt ,x
′
Pr be the corresponding chan-

nels in E. Then if xPs ≥ amt and x ′Pt
≥ amt, Pay updates the

channels as (Ps , Pt)
xPs −amt,xPt +amt

and (Pt , Pr)
x ′Pt −amt,x ′Pr +amt

and returns 1. Otherwise, no channel is updated and returns 0.

Data Structures. In order to simplify the exposition of our ideal

functionality, we de�ne the following data structures:

• List of promises P, which keeps track of the currently existing

promises. Each entry has the format (pid, lid, cid,ν, Pi), where

pid is a promise identi�er, lid is a lock identi�er, cid is the channel

identi�er, ν is a validity period (expiration time) of the promise,

and Pi is the party to whom the promise and lock are given. We

note that pid and lid are unique identi�ers, and each promise

has a validity period de�ned as ν = ∆ + υ for a constant value υ.

• List of open channels C, which keeps track of the currently open

channels. Each channel is de�ned as (P1, P2)
x1,x2

and identi�ed

by cid as the channel identi�er. For simplicity, we assume a

function id that returns the cid corresponding to (P1, P2)
x1,x2

.

We assume that one of the parties in each channel is always the

Tumbler (Pt) as the intermediary required in any PCH.

Ideal Functionality. We use FB, Fsmt, and Fsyn, thus, our ideal

functionality FPCH is de�ned in the (FB, Fsmt, Fsyn)-hybrid model.

We describe FPCH in Figure 3. Additionally, FPCH manages a list C

(initially set to C := ∅), to keep track of open payment channels.

In our model, every payment transfers a �xed amount amt of

coins, which we assume is globally available to all parties. If FPCH
observes a payment amount other than amt, it aborts. In order to

simplify the model we do not include any transaction fees, but we

note that our protocol retains its security and privacy properties

even in the presence of constant transaction fees
3
.

3
In case of transaction fees, we can de�ne our constant amt as amt = transaction+fee,

for some constants transaction and fee. If one does not use constant amounts, then it

becomes trivial to link the transacting parties.

OpenChannel and CloseChannel operations are the standard

channel operations [1, 38]. Pay is divided into two suboperations: (i)

a promise operation where a unique lock lid is generated modeling

the puzzle that Pr must solve to get amt coins from Pt ; (ii) a solve

operation where Ps uses a randomized version of lid to trigger an

atomic transfer of amt coins from Ps to Pr through Pt .

Discussion. We discuss here how the ideal functionality cap-

tures the security and privacy notions of interest for payment hubs.

Balance Security: The system should not be exploited to print new

money or steal existing money, even when parties collude. FPCH
provides balance security as the only place where the balances are

updated is inside the payment operation, and it makes sure that

either all the balances are updated or none. Additionally, it assures

that the balances are updated only if the correct solution for a lock is

provided by the Tumbler. The atomicity and correctness properties

are enough to ensure balance security.

Unlinkability: The intermediary should not learn information

that allows it to associate the sender and the receiver of a payment.

We argue unlinkability in terms of interactionmulti-graph as de�ned

in [27]. An interaction multi-graph is a mapping of payments from

senders to receivers. For each successful payment completed upon

a query from sender Sj at time t , this graph has an edge, labeled

with time t from the sender Sj to the tumbler and an additional

edge also labeled with time t from tumbler to the receiver Ri . An

interaction graph is compatible if it explains the view of the tumbler,

that is, the number of edges labeled with t incident on Ri equals

the number of edges labeled with t from Sj . Then, unlinkability

requires all compatible interaction graphs to be equally likely. The

anonymity set depends thus on the number of compatible inter-

action graphs. We defer a further discussion to Appendix E. FPCH
achieves unlinkability while it uses constant amounts and random

but unique identi�ers for locks, which gets rerandomized before

reaching the Tumbler.

6

A
2
L: Anonymous Atomic Locks for Scalability and Interoperability in Payment Channel Hubs

3.3 Anonymous Atomic Lock (A2L)
De�nition. Here, we formalize the notion of anonymous atomic

locks (A
2
L) and we defer the correctness de�nition to Appendix A.

De�nition 3.3 (Anonymous Atomic Lock (A2L)). An A
2
L consists

of the following protocols:

• {(skt , pki ,t), (ski , pki ,t)} ← 〈KGenPt (1
λ),KGenPi (1

λ)〉: On in-

put the security parameter 1
λ

, KGen returns a shared public key

pki ,t and a secret key skt (resp. ski) to Pt (resp. Pi).
• {·, (Π, `)} ← 〈PuzzlePromisePt (skt , pkr ,t), PuzzlePromisePr (skr ,

pkr ,t)〉: On input two secret keys skt , skr , and a public key pkr ,t ,

the PuzzlePromise protocol is executed between two parties

(namely, Pt and Pr), and it returns a promise Π and a lock `

to Pr .

• {ϱ, ·} ← 〈PuzzleSolverPs (sks , pks ,t , `), PuzzleSolverPt (skt , pks ,t)〉:
On input two secret keys sks and skt , a public key pks ,t , and a

lock `, the PuzzleSolver protocol is executed between two parties

(namely, Ps and Pt) and it returns the solution ϱ of the lock ` to

Ps .

• Θ ← Open(Π, ϱ): On input a promise Π and a solution ϱ, the

opening algorithm returns the promise full�llment Θ.

• {0, 1} ← Verify(Π,Θ): On input a promise Π and a promise

full�llment Θ, the veri�cation algorithm returns a bit b ∈ {0, 1}.

Ideal Functionality. We illustrate the ideal functionality for

A
2
L in Figure 4. We use Fanon, Fsmt and Fsyn, thus, our functional-

ity is de�ned in the (Fanon, Fsmt, Fsyn)-hybrid model. Additionally,

FA2L manages a list L (initially set to L := ∅), to keep track of each

cryptographic puzzle and its corresponding solution. The entries in

the list have the format (Π, `,Θ, ϱ, Pi), where Π is a promise, ` is a

lock, Θ is a promise full�llment, ϱ is the solution for the lock, and Pi
is the party involved in the promise with the tumbler Pt . Addition-

ally, for clarity of exposition, we denote by rand(·) and derand(·) the

randomization and the corresponding de-randomization functions,

which given as input a (possibly randomized) value, return the

(de-)randomized version of it. These functions are used inside the

PuzzlePromise and PuzzleSolver interfaces as de�ned in Figure 4.

FA2L provides �ve interfaces. The KGen interface allows the

tumbler and the other party to establish a link between themselves.

The PuzzlePromise interface allows a party to obtain a promise and

a lock from the tumbler. The PuzzleSolver interface allows a party

to acquire the solution of a given lock. The Open interface allows

a party to ful�ll a promise. Finally, the Verify interface veri�es that

the promise and the promise full�llment match each other.

Alternative Approaches for Ideal Functionality. Naturally,

there exist alternative approaches to model anonymous atomic

locks. We could de�ne two separate ideal functionalities, one for the

puzzle promise phase and the other one for the puzzle solver phase,

similar to the model in [27]. However, the ideal functionalities

in [27] by themselves only satisfy a property that is called fairness,

which is analogous to our atomicity notion. In order to achieve

any meaningful privacy notion one has to assume that the puzzle

input given to their payment functionality is blinded beforehand.

In contrast, our ideal functionality achieves unlinkability by design,

as a lock gets randomized inside the ideal functionality itself.

Another possible approach is to construct a single 2-of-2 sig-

nature ideal functionality, and then instantiate it with di�erent

signatures that satisfy the desired properties. However, it is harder

to �t this approach into our setting, as our primary property is

unlinkability, hence, we need a way to correlate the signature from

the promise protocol with the signature from the payment protocol

in an unlinkable fashion. It is not obvious how to do this with a

2-of-2 signature functionality.

Discussion. We introduce the security and privacy notions of

interest for our FA2L functionality.

Atomicity: Loosely speaking, the system should ensure that a lock

can only be opened if there has been a payment for it before. This

protects the tumbler from a malicious receiver. This is enforced by

FA2L because it keeps track of each promise along with the solution

of the lock and the promise full�llment. FA2L checks whether the

solution given to the Open interface corresponds to one of the

existing entries in the list L. Since a party obtains a solution only

from a call to the PuzzleSolver interface and FA2L is trusted, this

ensures that PuzzleSolver is called before Open in order for Open
to succeed.

Additionally, the system should ensure that if a payment can

be received by the tumbler then the receiver can full�l a matching

promise previously issued by the tumbler. This protects the sender

from a malicious tumbler. Assume that the PuzzleSolver interface is

invoked on a lock ` previously issued by a PuzzlePromise. If FA2L
does not abort, then FA2L ensures that it returns the correct solution

ϱ matching the promise Π. In other words, if Open is invoked on

input Π and ϱ, FA2L ensures there is an entry in L containing both.

Unlinkability: Intuitively, unlinkability means that the tumbler

does not learn information that allows it to associate the sender

and the receiver of a payment. This property is enforced by FA2L
since the lock ` that is created by the tumbler in the PuzzlePromise
interface gets randomized by FA2L within the PuzzleSolver interface

before it is sent back to the tumbler.

Additionally, since we assume the existence of an anonymous

communication channel between parties (i.e., the Fanon function-

ality), the intermediary cannot use the network information to

correlate sender and receiver. We remark that this assumption is

indispensable for unlinkability and is commonly adopted in the

PCH-related literature [26, 27].

4 OUR PROTOCOLS
4.1 Trilero: Our PCH Instantiation

System Assumptions. We assume a constant amount for every

payment, as otherwise it becomes trivial to link Ps and Pr in a

payment. Moreover, as in [27], we assume that the protocols are

run in epochs, optimizing the anonymity set within an epoch.

Protocol Description. A
2
L, in combination, with a blockchain

B can be used to realize a fully-�edged PCH. Here we assume that

both the sender (Ps) and receiver (Pr) have already carried out the

key generation procedure and have set up the payment channels

with the tumbler (Pt). We denote those channels as (Ps , Pt)
xs ,xt

and (Pt , Pr)
x ′t ,x

′
r , respectively. A payment of amt coins between Ps

and Pr through Pt is realized by updating both channels such that

Pt gets additional amt coins in (Ps , Pt)
xs ,xt

if and only if Pr gets

amt coins in (Pt , Pr)
x ′t ,x

′
r . In order to ensure this invariant, Trilero

relies on two contracts built upon the A
2
L functionality.

7

A
2
L: Anonymous Atomic Locks for Scalability and Interoperability in Payment Channel Hubs

Public parameters: constant amount (amt) of coins, a validity period (υ) of a promise, and current time (∆)

Ps ((Ps , Pt)xs ,xt) Pt ((Ps , Pt)xs ,xt , (Pt , Pr)x
′
t ,x
′
r) Pr ((Pt , Pr)x

′
t ,x
′
r)

If x ′t < amt then abort

Query FA2L on PuzzlePromise(Pr)
Receive (Π, `) from FA2L
If Π = ⊥ or ` = ⊥ then abort

Set t := ∆ + υ
A2L−Promise(Pt ,Pr ,Π,amt,t)
←−−−−−−−−−−−−−−−−−−−−−−−→

`
←−−−

If xs < amt or t < ∆ then abort

A2L−Solve(Ps ,Pt ,`,amt,t)
←−−−−−−−−−−−−−−−−−−−−−→

Query FA2L on PuzzleSolver(`, Ps)
Receive ϱ from FA2L
If ϱ = ⊥ then abort

ϱ
−−−→

Query FA2L on Open(Π, ϱ)
Receive Θ from FA2L
If Θ = ⊥ then abort

Query FA2L on Verify(Π, Θ)
Receive b from FA2L
Check if b = 1

Figure 5: Trilero protocol in the (FA2L, FB, Fsmt, Fsyn)-hybrid model.

In a bit more detail, �rst Pt and Pr execute the PuzzlePromise
protocol from A

2
L to get the input required to establish the follow-

ing A2L-Promise(Pt , Pr , Π, amt, t) contract:

(1) If Pr produces the promise full�llment data Θ, so that Verify(Π,
Θ) = 1 before time t expires, then (Pt , Pr)

x ′t ,x
′
r is updated as

(Pt , Pr)
x ′t−amt,x ′r+amt

(i.e., Tumbler pays receiver amt coins).

(2) If timeout t expires, (Pt , Pr)
x ′t ,x

′
r remains unchanged (i.e., Tum-

bler regains control over amt coins).

Here, Π is the output (along with `) of the PuzzlePromise proto-

col in A
2
L, t is an expiration time (validity period) of the promise,

which is properly set to give Pr the time it needs to reveal the solu-

tion ϱ. In case this does not happen, then Pt gets back the money,

thereby avoiding an inde�nite locking of money in the channel.

Notice that we require that B supports the Verify algorithm and

time management in its scripting language. This is the case in

practice as Verify is implemented as the unmodi�ed veri�cation al-

gorithm from Schnorr, ECDSA or DLSAG digital signature scheme,

and virtually all cryptocurrencies natively implement a timelock

mechanism where time is measured as the number of blocks in the

blockchain.

Second, Pr sends the lock ` (as output by the PuzzlePromise
protocol) to Ps . Then, Ps and Pt execute the PuzzleSolver protocol

to get the input required to establish the following A2L-Solve(Ps ,

Pt , `, amt, t ′) contract:

(1) If before t ′, Pt sends Ps the solution ϱ to the cryptographic chal-

lenge encoded in `, (Ps , Pt)
xs ,xt

is updated as (Ps , Pt)
xs−amt,xt+amt

(i.e., the sender pays Tumbler amt coins).

(2) Otherwise, (Ps , Pt)
xs ,xt

remains unchanged (i.e., the sender

regains control over amt coins).

Finally, Ps gets the solution ϱ to the challenge encoded in the lock

`. Then, Ps sends ϱ to Pr who can then complete the A2L-Promise

contract with the promise full�llment Θ := Open(Π, ϱ).

Security Analysis. Here we argue that the system as described

in Figure 5, UC-realizes the functionality FPCH as de�ned in Figure

3. Due to space constraints, we defer the proof to Appendix D.

Theorem 4.1. The system described in Figure 5, UC-realizes FPCH
(as de�ned in Figure 3) in the (FA2L, FB, Fsmt, Fsyn)- hybrid model.

4.2 A2L Instantiations
In this section, we present our A

2
L instantiations. In particular,

we give an overall intuition in Section 2.1, we discuss the building

blocks in Section 4.2.1, we detail the Schnorr-based instantiation

in Section 4.2.2 and the ECDSA-based instantiation in Section 4.3.

Due to lack of space, we defer our DLSAG-based instantiation

to Appendix F.

4.2.1 Cryptographic Building Blocks. We denote by 1
λ

, for λ ∈
N, the security parameter. We assume that the security parameter

is given as an implicit input to every function. We review here the

cryptographic primitives used in our protocols.

Commitment Scheme. A commitment scheme COM consists

of a commitment algorithm (com, decom) ← PCOM(m) and a ver-

i�cation algorithm {0, 1} ← VCOM(com, decom,m). The commit-

ment algorithm allows a prover to commit to a message m without

8

A
2
L: Anonymous Atomic Locks for Scalability and Interoperability in Payment Channel Hubs

Public parameters: G,д,q, messagem′, public key Q ′ := дx
′
1
+x ′

2

1 : PuzzlePromisePt (skt := x ′
2
, pk := Q ′) PuzzlePromisePr (skr := x ′

1
, pk := Q ′)

2 : α , k ′
2
←$Zq

3 : cα ← EncHE(pkt , α);A← дα

4 : πα ← PNIZK({∃α | cα = EncHE(pkt , α) ∧ A = д
α }, α)

5 : R′
2
← дk

′
2 ; π ′

2
← PNIZK({∃k ′2 | R

′
2
= дk

′
2 }, k ′

2
)

6 : (com, decom) ← PCOM((R′2, π
′
2
))

7 :
com, A, πα , cα

8 : If VNIZK(πα , (cα , A)) , 1 then abort

9 : k ′
1
←$Zq ;R′

1
← дk

′
1

10 : π ′
1
← PNIZK({∃k ′1 | R

′
1
= дk

′
1 }, k ′

1
)

11 :
R′

1
, π ′

1

12 : If VNIZK(π ′1, R
′
1
) , 1 then abort

13 : R′ ← R′
1
· R′

2
· A; e′ ← H (R′ ‖Q ′ ‖m′)

14 : s′
2
← k ′

2
− x ′

2
· e′ mod q

15 :
(decom, R′

2
, π ′

2
), s′

2

16 : If VCOM(com, decom, (R′
2
, π ′

2
)) , 1 then abort

17 : If VNIZK(π ′2, R
′
2
) , 1 then abort

18 : R′ ← R′
1
· R′

2
· A; e′ ← H (R′ ‖Q ′ ‖m′)

19 : If дs
′
2 , R′

2
· (Q ′/дx

′
1)−e

′
then abort

20 : s′
1
← k ′

1
− x ′

1
· e′ mod q

21 : s′ ← s′
1
+ s′

2
mod q

22 : β ←$Zq ;A′ ← Aβ ; c′α ← (cα)
β

23 :
s′

24 : If дs
′
, R′

1
· R′

2
·Q−e

′
then abort Send ` := (A′, c′α) to Ps

25 : return σ := (R′, s′ + α) return (Π := (β , (pk,m′, σ ′ := (R′, s′))), `)

Figure 6: Puzzle promise protocol of Schnorr-based construction.

revealing it. The veri�cation algorithm allows a veri�er to be con-

vinced that the messagem was committed using the revealed de-

commitment information decom. The security of COM is modeled

by the ideal functionality FCOM [7].

Non-Interactive Zero-Knowledge. Let R be an NP relation,

and let L be a set of positive instances corresponding to the re-

lation R (i.e., L = {x | ∃w s.t. R(x,w) = 1}). A non-interactive

zero-knowledge proof scheme NIZK [4] consists of a prover al-

gorithm π ← PNIZK(x,w) and a veri�cation algorithm {0, 1} ←

VNIZK(x, π). A NIZK scheme allows a prover to convince a veri�er

about the existence of a witness w for a statement x without re-

vealing any information apart from the fact that it actually knows

the witness w . We model the security of a NIZK scheme using the

ideal functionality FNIZK, as described in Appendix C.

Homomorphic Encryption. A linearly homomorphic encryp-

tion scheme HE is composed of the algorithms (KGenHE, EncHE,
DecHE), where (sk, pk) ← KGenHE(), c ← EncHE(pk,m), and

m ← DecHE(sk, c), for a secret/public key pair (sk, pk), a message

m, and a ciphertext c . In our construction, we use the homomorphic

encryption scheme by Castagnos-Laguillaumie (CL) [12], more pre-

cisely, the variant of the scheme described in [10, 13] (henceforth

HSM-CL). It supports homomorphic operations over ciphertexts of

the form EncHE(pk,m1) ·EncHE(pk,m2) = EncHE(pk,m1 +m2) and

EncHE(pk,m1)
m2 = EncHE(pk,m1 ·m2). We rely on the assumption

that HSM-CL encryption scheme is IND-CPA secure. We refer the

reader to Appendix B for more information about the HSM-CL

encryption scheme and its advantages over the other homomorphic

encryption schemes.

ECDSA Signature. The ECDSA signature scheme is composed

of the algorithms (KGenECDSA, SigECDSA,VfECDSA), where (sk, pk)
← KGenECDSA(), σ := (r , s) ← SigECDSA(sk,m), and {0, 1} ←

VfECDSA(pk,σ ,m), for a signing/public (veri�cation) key pair (sk, pk),
a message m and a signature σ . We use the two-party ECDSA

protocol of Castagnos et al. [10], which provides distributed key

generation and signing. An ideal functionality F ECDSA
KGen that se-

curely computes distributed key generation for two-party ECDSA

is given in Appendix C. A comparison of di�erent threshold ECDSA

schemes is discussed in Section 6.

Schnorr Signature. The Schnorr signature scheme is de�ned

using the algorithms (KGenSchnorr, SigSchnorr,VfSchnorr), such that

(sk, pk) ← KGenSchnorr(), σ := (e, s) ← SigSchnorr(sk,m), and

{0, 1} ← VfSchnorr(pk,σ ,m), for a signing/public (veri�cation) key

pair (sk, pk), a message m and a signature σ . In our protocol we

make use of a two-party Schnorr signature with distributed key

9

A
2
L: Anonymous Atomic Locks for Scalability and Interoperability in Payment Channel Hubs

Public parameters: G,д,q, messagem, public key Q := дx1+x2

1 : PuzzleSolverPs (sks := x1, pk := Q , ` := (A′, c′α)) PuzzleSolverPt (skt := x2, pk := Q)
2 : k2 ←$Zq ;R2 ← дk2

3 : π2 ← PNIZK({∃k2 | R2 = дk2 }, k2)

4 : (com, decom) ← PCOM((R2, π2))

5 :
com

6 : τ , k1 ←$Zq ; c′′α ← (c
′
α)
τ

7 : R1 ← дk1
; π1 ← PNIZK({∃k1 | R1 = дk1 }, k1)

8 :
c′′α , R1, π1

9 : If VNIZK(π1, R1) , 1 then abort

10 : γ ← DecHE(skt , c
′′
α);A

′′ ← дγ

11 : R ← R1 · R2 · A′′; e ← H (R ‖Q ‖m)
12 : s2 ← k2 − x2 · e mod q

13 :
(decom, R2, π2), s2, A′′

14 : If VCOM(com, decom, (R2, π2)) , 1 then abort

15 : If VNIZK(π2, R2) , 1 then abort

16 : If (A′)τ , A′′ then abort

17 : R ← R1 · R2 · A′′; e ← H (R ‖Q ‖m)
18 : If дs2 , R2 · (Q/дx1)−e then abort

19 : s1 ← k1 − x1 · e mod q
20 : s̄ ← s1 + s2 mod q

21 :
s̄

22 : s ← s̄ + γ
23 : If veri�cation of (e , s) fails then abort

24 : Else publish signature (e , s)
25 : γ ← s − s̄

26 : ᾱ ← γ · τ −1

27 : Send ᾱ to Pr
28 : return ᾱ return >

Figure 7: Puzzle solver protocol of Schnorr-based construction.

Open(Π, ᾱ)
Parse Π as (β , (pk,m′, σ ′ := (R′, s′)))
Set α ← ᾱ · β−1

Set s ← s′ + α
return (R′, s)

Verify(Π,σ)
Parse Π as (β , (pk,m′, σ ′))
return VerifySchnorr(pk,m

′, σ)

Figure 8: Open and verify algorithms of Schnorr-based con-
struction.

generation and signing. An ideal functionality F Schnorr
KGen that se-

curely computes distributed key generation for two-party Schnorr

is given in Appendix C.

4.2.2 Schnorr-based Construction. Let G be an elliptic curve

group of prime order q with a generator д, and let H : {0, 1}∗ → Zq
be a collision resistant hash function. Additionally, let COM,NIZK
andHE be a commitment scheme, a non-interactive zero-knowledge

scheme, and a homomorphic encryption scheme, respectively. The

Schnorr-based puzzle promise and puzzle solver protocols are shown

in Figures 6 and 7, respectively.

Each pair of parties (P1, P2) generates a shared Schnorr public

key pk := дx1+x2
via the F Schnorr

KGen ideal functionality, where we

assume that P2 := Pt (tumbler) in both protocols, and P1 := Pr
(receiver) in the puzzle promise protocol, whereas P1 := Ps (sender)

in the puzzle solver protocol. The Schnorr-based distributed key

generation functionality F Schnorr
KGen is described in Appendix C.

The puzzle promise protocol is run between the parties (Pt , Pr).
They initially agree on a message encoding a transaction that trans-

fers coins from Pt to Pr . Additionally, Pt chooses a secret value

α , encrypts it under its own public key using the homomorphic

encryption scheme, and sends the ciphertext cα along with A := дα

to Pr (lines 1-7 in Figure 6). Here we require a zero-knowledge

proof (denoted by πα in the puzzle promise protocol) proving that

the ciphertext cα encrypts the discrete logarithm of A (line 4 in

Figure 6). If we do not have such a proof, then Pt can perform the

following attack to link a potential payer and payee. At a partic-

ular epoch, Pt chooses a payee P∗r it wants to attack, and when

10

A
2
L: Anonymous Atomic Locks for Scalability and Interoperability in Payment Channel Hubs

performing the puzzle solver protocol with this party it encrypts

a value that is di�erent from the discrete logarithm of A. Then,

during the puzzle solver protocol, when a payer P∗s performs the

protocol with Pt , the check (A′)τ = A′′ (line 16 in Figure 7) will

fail, and P∗s will cause an abort. Although, in this case (due to our

atomicity property) no payment will go through, Pt can still link a

payee P∗r of its choice with its corresponding potential payer P∗s in

a given epoch.

Once this initial setup procedure is prepared by Pt , the parties

execute a coin tossing protocol to agree on a randomness R′ =
k ′

1
+ k ′

2
+ α , where α is unknown to Pr . The randomness here is

composed additively due to the linear structure of Schnorr. The

randomness R′ is computed by parties exchanging дk
′
1 and дk

′
2 , and

additionally making use of the value A. The computation of R′

together with the corresponding consistency proof is piggybacked

in the coin tossing (lines 5-13 in Figure 6). At this point, Pt computes

its side of the two-party Schnorr signature, but does not include

the secret α into the signature (line 14 in Figure 6). Now, Pr is

able to validate this partial signature that it receives from Pt , and

also to compute an “almost valid” signature by performing its part

of the two-party signature. This means that Pr computes a tuple

(e ′, s ′ := k ′
1
+ k ′

2
− e ′ · (x ′

1
+ x ′

2
)), and that the complete signature is

of the form (e ′, s ′ + α) (lines 18-21 in Figure 6). However, Pr does

not have α , so it cannot complete the signature. Nevertheless, Pr
receives cα := EncHE(pkt ,α) and A := дα from Pt at the beginning

of the puzzle promise protocol, and at the end of the protocol Pr
samples a random value β , which it uses to randomize the values as

c ′α := (cα)
β

and A′ := Aβ . This is possible due to the homomorphic

properties of the HSM-CL encryption scheme that we are using. The

puzzle promise protocol �nishes with Pr sending these randomized

values to Ps (lines 22 and 24 in Figure 6).

The puzzle solver protocol is executed between the parties (Ps , Pt).
At the beginning of the protocol, Ps samples a random value τ , and

randomizes the values it received from Pr , as c ′′α := (c ′α)
τ

and

A′′ := (A′)τ (line 6 in Figure 7). Once this is done, Ps and Pt per-

form a coin tossing protocol similar to the one performed between

Pr and Pt in the puzzle promise protocol, but additionally Ps sends

c ′′α to Pt (lines 7-11 in Figure 7). At this point, Pt decrypts c ′′α to

obtain the value γ := α · β · τ (line 10 in Figure 7). The rest of the

protocol continues similar to the puzzle promise protocol, where Pt
and Ps compute a common randomness, and then perform a two-

party Schnorr signature. However, this time Pt incorporates the

decrypted value γ as part of the randomness. After the two-party

Schnorr signature completes and Pt publishes it (allowing Pt to

receive the payment from Ps), Ps is able to extract the value γ from

the published signature (lines 24-25 in Figure 7). It removes her part

of the randomization from γ as ᾱ := γ · τ−1
, and sends this value

to Pr (lines 26-27 in Figure 7), who can also remove its part of the

randomization and obtain the initial α := ᾱ · β−1
. Once Pr obtains

α , it can complete the “almost valid” signature that it computed at

the end of the puzzle promise protocol, as seen in Figure 8, which

allows it to claim the coins that were promised by Pt .

Security Analysis. We de�ne the security of the Schnorr-based

construction in Theorem 4.2, and formally prove it in Appendix C.

Theorem 4.2. Let COM be a secure commitment scheme and let
NIZK be a non-interactive zero-knowledge scheme. If Schnorr sig-
nature is strongly existentially unforgeable and HSM-CL encryption
is IND-CPA secure, then the construction in Figures 6, 7 and 8, UC-
realizes the ideal functionalityFA2L in the (F

Schnorr
KGen , Fanon, Fsmt, Fsyn)-

hybrid model.

4.3 ECDSA-based Construction
The ECDSA signature does not have a linear structure as Schnorr,

making the design of our protocol more challenging. Let G be

an elliptic curve group of order q with a generator д, and let H :

{0, 1}∗ → Zq be a collision resistant hash function. Additionally, let

COM,NIZK, and HE be a commitment scheme, a non-interactive

zero-knowledge scheme, and a homomorphic encryption scheme,

respectively. The ECDSA-based puzzle promise and puzzle solver

protocols are shown in Figures 9 and 10, respectively.

Our ECDSA-based instantiation shares similar ideas with our

Schnorr-based instantiation. Hence, we only describe the di�er-

ences compared to the Schnorr-based variant here. Each pair of

parties (P1, P2) generates a shared ECDSA public key pk := дx1 ·x2

via the F ECDSA
KGen ideal functionality, where, as before, P2 := Pt (tum-

bler) in both protocols, whereas P1 := Pr (receiver) in the puzzle

promise protocol and P1 := Ps (sender) in the puzzle solver protocol.

Because ECDSA does not have the linear structure of Schnorr, the

distributed key generation is also more convoluted, and it requires

additionally exchanging a HSM-CL encrypted secret key. More pre-

cisely, P1 receives a HSM-CL secret key sk and its share x1, whereas

P2 receives its share x2 and the HSM-CL encryption ckey of x1. The

ECDSA-based distributed key generation functionality F ECDSA
KGen is

described in Appendix C.

The puzzle promise protocol runs similarly to the Schnorr-based

puzzle promise protocol, except that the randomness is composed

multiplicatively due to the structure of ECDSA. More precisely,

the parties agree on a randomness R′ = k ′
1
· k ′

2
· α , where α is

unknown to Pr (lines 4-14 in Figure 9). Once the randomness is

computed, Pt performs its side of the two-party ECDSA signature

using c ′key (the encryption of x ′
1
) and the homomorphic properties

of HSM-CL encryption scheme. However, Pt does not embed the

inverse of α into the signature (line 16 in Figure 9). Now, Pr is able

to compute an “almost valid” signature by decrypting the ciphertext

that it received from Pt and performing his part of the signature.

This means that Pr computes a tuple (r ′, s ′ :=
r ′ ·x ′

1
·x ′

2
+H (m′)

k ′
1
·k ′

2

), and

that the complete signature is of the form (r ′, s ′ · α−1) (lines 21-25

in Figure 9). Since Pr does not have α , he cannot complete the

signature. Exactly as in the Schnorr-based construction, Pr receives

cα := EncHE(pkt ,α) and A := дα from Pt at the beginning of the

puzzle promise protocol, and at the end of the protocol Pr samples

a random value β , and randomizes the values cα andA using β . The

puzzle promise protocol �nishes with Pr sending these randomized

values to Ps (lines 25-26 and 28 in Figure 9).

The puzzle solver protocol is similar to Schnorr-based puzzle

solver protocol, with the sole di�erence that Ps and Pt compute a

two-party ECDSA signature instead of a two-party Schnorr signa-

ture..

11

A
2
L: Anonymous Atomic Locks for Scalability and Interoperability in Payment Channel Hubs

Public parameters: G,д,q, messagem′, public key Q ′ := дx
′
1
·x ′

2

1 : PuzzlePromisePt (skt := x ′
2
, pk := Q ′, c′key = EncHE(pkr , x

′
1
)) PuzzlePromisePr (skr := x ′

1
, pk := Q ′)

2 : α , k ′
2
←$Zq ; cα ← EncHE(pkt , α);A← дα

3 : πα ← PNIZK({∃α | cα = EncHE(pkt , α) ∧ A = д
α }, α)

4 : R′
2
← дk

′
2 ; π ′

2
← PNIZK({∃k ′2 | R

′
2
= дk

′
2 }, k ′

2
)

5 : (com, decom) ← PCOM((R′2, π
′
2
))

6 :
com, A, πα , cα

7 : If VNIZK(πα , (cα , A)) , 1 then abort

8 : k ′
1
← Zq

9 : R′
1
← дk

′
1 ; π ′

1
← PNIZK({∃k ′1 | R

′
1
= дk

′
1 }, k ′

1
)

10 :
R′

1
, π ′

1

11 : If VNIZK(π ′1, R
′
1
) , 1 then abort

12 : R′c ← (R
′
2
)α

13 : π ′c ← PNIZK({∃α | Rc = (R′2)
α }, α)

14 : π ′a ← PNIZK({∃α | A = дα ∧ Rc = (R′2)
α }, α)

15 : R′ ← (R′
1
)
k′

2
·α

;R′ := (r ′x , r
′
y); Set r ′ ← r ′x mod q

16 : c′ ← EncHE(pkr , (k
′
2
)−1 · r ′ · x ′

1
· x ′

2
+ (k ′

2
)−1 · H (m′) + ρq)

17 :
(decom, R′

2
, π ′

2
), c′, R′c , π

′
c , π

′
a

18 : If VCOM(com, decom, (R′
2
, π ′

2
)) , 1 then abort

19 : If VNIZK(π ′2, R
′
2
) , 1 ∨ VNIZK(π ′c , R

′
c) , 1

20 : ∨ VNIZK(π ′a , (A, R
′
c)) , 1 then abort

21 : R′ ← (R′c)
k′

1 ;R′ := (r ′x , r
′
y)

22 : Set r ′ ← r ′x mod q
23 : s′

2
← DecHE(skr , c

′)

24 : If (R′
2
)
s′

2
mod q , (Q ′)r

′
· дH (m

′)
then abort

25 : s′ ← s′
2
· (k ′

1
)−1

mod q; β ←$Zq

26 : A′ ← Aβ ; c′α ← (cα)
β

27 :
s′

28 : If (R′
1
)
k′

2
·s′ , (Q ′)r

′
· дH (m

′)
then abort Send ` := (A′, c′α) to Pr

29 : return σ := (r ′, s′ · α−1) return (Π := (β , (pk,m′, σ ′ := (r ′, s′))), `)

Figure 9: Puzzle promise protocol of ECDSA-based construction.

Security Analysis. We de�ne the security of the ECDSA-based

construction in Theorem 4.3, and formally prove it in Appendix C.

Theorem 4.3. Let COM be a secure commitment scheme and
let NIZK be a non-interactive zero-knowledge scheme. If ECDSA is
strongly existentially unforgeable andHSM-CL encryption is IND-CPA

secure, then the construction in Figures 9 to 11 UC-realizes the ideal
functionality FA2L in the (F

ECDSA
KGen , Fanon, Fsmt, Fsyn)-hybrid model.

Discussions. Our protocol achieves interoperability and fungi-

bility. Interoperability is achieved due to the minimal cryptographic

requirements of our construction. More precisely, we only require

a digital signature that can be turned into an adaptor signature,

and a timelock mechanism from the underlying cryptocurrency,

two functionalities provided by virtually all cryptocurrencies today.

As a matter of fact, we can also adapt our approach to cryptocur-

rencies that totally lack a scripting language, such as Monero, as

we demonstrate in Appendix F. Furthermore, the tumbler is able

to mediate payments in di�erent cryptocurrencies, by running the

puzzle promise and puzzle solver protocols in di�erent cryptocur-

rencies. For example, this can be achieved by instantiating our

constructions with the same elliptic curve group, and using one

construction for the puzzle promise phase, and the other one for the

puzzle solver phase [39], thereby enabling cross-chain applications

like exchanges. Additionally, the output of our protocol results in

accepting a channel update with a single signature veri�able by a

single public key, which is essentially indistinguishable from any

other payment. This in turn preserves fungibility, a crucial privacy

property to avoid tainted coins and to meet GDPR requirements.

12

A
2
L: Anonymous Atomic Locks for Scalability and Interoperability in Payment Channel Hubs

Public parameters: G,д,q, messagem, public key Q := дx1 ·x2

1 : PuzzleSolverPs (sks := x1, pk := Q , ` := (A′, c′α)) PuzzleSolverPt (skt := x2, pk := Q , ckey = EncHE(pks , x1))

2 : k2 ←$Zq ;R2 ← дk2

3 : π2 ← PNIZK({∃k2 | R2 = дk2 }, k2)

4 : (com, decom) ← PCOM((R2, π2))

5 :
com

6 : τ , k1 ←$Zq ; c′′α ← (c
′
α)
τ

;R1 ← дk1

7 : π1 ← PNIZK({∃k1 | R1 = дk1 }, k1)

8 :
c′′α , R1, π1

9 : If VNIZK(π1, R1) , 1 then abort

10 : γ ← DecHE(skt , c
′′
α);A

′′ ← дγ ;Rc ← (R2)
γ

11 : πc ← PNIZK({∃γ | Rc = (R2)
γ }, γ)

12 : πγ ← PNIZK({∃γ | A′′ = дγ ∧ Rc = (R2)
γ }, γ)

13 : R ← (R1)
k2 ·γ

;R := (rx , ry); Set r ← rx mod q

14 : c ← EncHE(pks , (k2)
−1 · r · x2 · x1 + (k2)

−1 · H (m) + ρq)

15 :
(decom, R2, π2), c , A′′, Rc , πc , πγ

16 : If VCOM(com, decom, (R2, π2)) , 1 then abort

17 : If VNIZK(πc , Rc) , 1 then abort

18 : If VNIZK(πγ , (A′′, Rc)) , 1 then abort

19 : If (A′)τ , A′′ then abort

20 : R ← (Rc)k1
;R := (rx , ry); Set r ← rx mod q

21 : s2 ← DecHE(sks , c)

22 : If (R2)
s2 mod q , Qr · дH (m) then abort

23 : s̄ ← s2 · (k1)
−1

mod q

24 :
s̄

25 : s ← (γ)−1 · s̄
26 : If veri�cation of (r , s) fails then abort

27 : Else publish signature (r , s)

28 : γ ← (s · (s̄)−1)−1
; ᾱ ← γ · τ −1

29 : Send ᾱ to Pr
30 : return ᾱ return >

Figure 10: Puzzle solver protocol of ECDSA-based construction.

Open(Π, ᾱ)
Parse Π as (β , (pk,m′, σ ′ := (r ′, s′)))
Set α ← ᾱ · β−1

Set s ← s′ · α−1

return (r ′, s)

Verify(Π,σ)
Parse Π as (β , (pk,m′, σ ′))
return VerifyECDSA(pk,m

′, σ)

Figure 11: Open and verify algorithms of ECDSA-based con-
struction.

5 PERFORMANCE ANALYSIS
5.1 Implementation Details
We implemented our protocols and evaluated their performance.

The implementation is written in C, and it relies on the RELIC li-

brary [2] for the cryptographic operations, and on the PARI library

[50] for the arithmetic operations in class groups. All our construc-

tions have been instantiated over the elliptic curve secp256k1, which

is also used in Bitcoin. HSM-CL encryption scheme has been in-

stantiated for 128-bit security level as described in [10, Section 4].

Zero-knowledge proofs for discrete logarithm and Di�e-Hellman

tuple have been implemented using Σ-protocols [16] and made

non-interactive using the Fiat-Shamir heuristic [22]. Lastly, we

have instantiated the commitment scheme using the hash function

SHA-256.

We replaced the distributed key generation by randomly assign-

ing keys to every party. Key generation is a one-time operation

at setup (e.g., opening a payment channel). We refer to [10, 24]

for a detailed performance evaluation of distributed ECDSA and

Schnorr key generation, respectively. In the following, we focus on

the remaining operations as they are the ones de�ned for the �rst

time in this work. The source code is available at [23].

13

A
2
L: Anonymous Atomic Locks for Scalability and Interoperability in Payment Channel Hubs

5.2 Evaluation

Testbed. We used three EC2 instances from Amazon AWS, where

Pt was a m5a.2xlarge instance (2.50GHz AMD EPYC 7571 processor

with 8 cores, 32GB RAM) located in Frankfurt, whereas Ps and Pr
were m5a.large instances (2.50GHz AMD EPYC 7571 processor with

2 cores, 8GB RAM) located in Singapore and Oregon, respectively.

In order to show that network latency is the biggest bottleneck in

running times, we also measured performance in a LAN network.

The benchmarks for a LAN network were taken on a machine with

2.80GHz Intel Xeon E3-1505M v5 processor with 8 cores, 32GB

RAM. All the machines were running Ubuntu 18.04 LTS. We mea-

sured the average runtimes over 100 runs each. The results of our

performance evaluation are reported in Table 2.

Computation Time. All our protocols complete in < 5 seconds,

where the running time is dominated by network latency. The im-

pact of network latency is obvious when we look at the running

time for the LAN setting. In that case, our ECDSA-based construc-

tion �nishes in ~1 second, whereas our Schnorr- and DLSAG-based

constructions takes ~0.5 and ~0.7 second, respectively. The reason

for this is that ECDSA-based two-party signing has a more complex

structure, as it requires additional ciphertext computations and

homomorphic operations.

Next, we compare our constructions with the state-of-the-art

payment hub TumbleBit [27]. In order to have more precise results,

we performed the comparison in a LAN setting without any network

latency. TumbleBit requires ~0.6 second to complete, hence, our

Schnorr-based construction is slightly faster, whereas our DLSAG-

and ECDSA-based constructions are slightly slower.

Communication Overhead. We measured the communication

overhead as the amount of information that parties need to ex-

change during the execution of the protocols. Hence, the bandwidth

column in our table corresponds to the combined total amount of

messages exchanged for the speci�c protocol. The ECDSA-based

construction has a higher communication overhead compared to

DLSAG- and Schnorr-based constructions. This is due to the fact

that ECDSA-based two-party signing requires a HSM-CL ciphertext,

as explained in [10], and we have to perform two-party ECDSA

signing in both puzzle promise and puzzle solver protocols. Tum-

bleBit requires 326KB of bandwidth, hence, our ECDSA-, DLSAG-

and Schnorr-based constructions incur ~19x, ~23x and ~30x less

communication overhead, respectively.

In summary, we highlight three points. First, our constructions

highly reduce the communication complexity while retaining a

computation time comparable to TumbleBit. Interestingly, results

for TumbleBit [27] are shown for a security level of 80 bits, whereas

we run our experiments with a security parameter that provides

128 bits of security. Thus, our construction is more e�cient even

when providing a higher level of security.

Second, the reduction in communication overhead is not due to

a more e�cient implementation, but because A
2
L is asymptotically

more e�cient. In a bit more detail, TumbleBit relies on the cut-

and-choose technique, which implies that parties need to compute

and exchange messages composed of

(m+n
m

)
elements, wherem and

n are the parameters for the cut-and-choose game. For instance,

authors of TumbleBit usedm = 15 and n = 285 to achieve 80 bits of

security. Instead, A
2
L requires to compute and exchange messages

composed of constant number of elements.

Third, we note that the main bottleneck with respect to computa-

tion and communication in our constructions is CL encryption [12]

and CLDL zero-knowledge argument of knowledge [11] (denoted

as πα in our constructions). In our implementation a single CL

ciphertext has size of 3KB and takes ~130 milliseconds to compute,

while a CLDL proof has size of 2.5KB and takes ~140 milliseconds to

compute. A possible optimization is for Tumbler to generate many

random α values, along with their corresponding ciphertext cα and

proof πα during its idle time, so that during the actual protocol

run these values do not need to be computed, which results in a

signi�cant saving in computation time during the puzzle promise

protocol.

6 RELATEDWORK
On-Chain Tumblers. Several prior works exist where a central-

ized tumbler assists users to mix their coins [3, 5, 25, 28, 40, 42, 46–

49, 52, 53]. However, all these constructions heavily rely on on-chain

transactions to operate, thus, hindering scalability. A
2
L operates

instead with o�-chain payments, aiding the scalability of current

blockchains. Moreover, while the aforementioned systems are re-

stricted to one (or few) cryptocurrencies, A
2
L relies only on widely

deployed cryptographic primitives such as digital signatures and

timelocks, paving the way to interoperable cross-chain applications.

Payment-Channel Networks (PCNs). In a PCN [45], parties

performs payments through a path of opened channels between

sender and receiver. Recent works have studied their security, pri-

vacy, and concurrency guarantees [38, 39]. We consider this re-

search line as orthogonal to our work, since the underlying protocol

requires to reveal the predecessor and successor nodes in the path

to the intermediaries, which is exactly the privacy notion in a PCH,

with only one intermediary (i.e., the tumbler).

Threshold ECDSA Protocols. Subsequent to Lindell’s two-

party ECDSA construction [36], Doerner et al. [17, 18] and Lindell

et al. [37] provided a threshold variant of ECDSA signing, which

can also be used in the 2-of-2 signature setting that we require.

However, [37] performs worse with respect to both communication

and computation in this setting. On the other hand, although [17]

and [18] perform better with respect to computation in the 2-of-2

setting, they require more communication. Since we are in the WAN

network, we want to minimize the communication, hence, they

are not suitable for our scenario. Recently, Castagnos et al. [10]

proposed a generalized approach to Lindell’s original two-party

ECDSA protocol [36] using hash proof systems. Their approach

gets rid of the Paillier-EC assumption, and additionally requires less

communication compared to other protocols. Furthermore, their

homomorphic encryption scheme works over a group of the same

order as the order of the elliptic curve group for ECDSA. Hence,

they naturally avoid all the di�culties and ine�ciencies arising

from using a di�erent moduli for the encryption scheme and the

order of the elliptic curve (which was the case in Lindell’s construc-

tion [36]). Due to the aforementioned reasons we opted for the

two-party ECDSA construction of Castagnos et al. [10], and their

underlying homomorhpic encryption scheme [12] as building block

in our protocols.

14

A
2
L: Anonymous Atomic Locks for Scalability and Interoperability in Payment Channel Hubs

Table 2: Performance of Schnorr-, ECDSA- and DLSAG-based constructions. Time is shown in seconds.

WAN
1

LAN Bandwidth

Schnorr ECDSA DLSAG Schnorr ECDSA DLSAG Schnorr ECDSA DLSAG

Puzzle Promise 1.622 1.985 1.550 0.417 0.659 0.468 6.53KB 9.81KB 8.21KB

Puzzle Solver 1.102 1.579 1.230 0.111 0.349 0.167 4.11KB 7.39KB 5.92KB

Open 1.139 1.147 1.155 0.040 0.042 0.058 0.16KB 0.16KB 0.16KB

Total 3.863 4.711 3.935 0.568 1.050 0.693 10.80KB 17.36KB 14.29KB

1
Payment Hub (Singapore-Frankfurt-Oregon)

7 CONCLUSION
This paper presents Trilero, a new cryptographic protocol to re-

alize a secure, privacy-preserving, interoperable, and fungibility-

preserving PCHs. The core building block of Trilero is A
2
L, a novel

three-party protocol to synchronize the updates between the pay-

ment channels involved in a PCH. We developed three instanti-

ations of A
2
L, based on Schnorr, ECDSA and DLSAG signatures.

We de�ned and proved security and privacy for Trilero and A
2
L

in the UC framework. We further demonstrated that Trilero is the

most e�cient Bitcoin-compatible PCH, showing that our ECDSA-,

DLSAG- and Schnorr-based instantiations require ~19x, ~23x and

~30x less bandwidth, respectively, than the state-of-the-art PCH

TumbleBit, even when providing a higher level of security. More-

over, Trilero provides fungibility and interoperability with virtually

all cryptocurrencies today. For instance, this was shown with our

DLSAG-based instantiation, a novel linkable ring signature pro-

posed to add support for payment channels that is being considered

in the Monero community [43].

As a future work, it would be interesting to generalize our con-

struction to multi-hop payment hubs and, ultimately, to interface

PCHs with payment channel networks. Finally, we intend to ex-

plore techniques to achieve value privacy guarantees and, possibly,

the inherent trade-o�s between interoperability and value privacy.

ACKNOWLEDGEMENTS
We gratefully thank Lloyd Fournier and Ida Tucker for the helpful

discussions. This work has been partially supported by the Euro-

pean Research Council (ERC) under the European Unions Horizon

2020 research (grant agreement No 771527-BROWSEC); by Netidee

through the project EtherTrust (grant agreement 2158) and PRO-

FET (grant agreement P31621); by the Austrian Research Promotion

Agency through the Bridge-1 project PR4DLT (grant agreement

13808694); by COMET K1 SBA, ABC; by Chaincode Labs; by the

Austrian Science Fund (FWF) through the Meitner program and

project W1255-N23.

REFERENCES
[1] Lightning Network Speci�cations. Github project. https://github.com/

lightningnetwork/lightning-rfc.

[2] D. F. Aranha and C. P. L. Gouvêa. 2020. RELIC is an E�cient LIbrary for Cryp-

tography. Github Project. (2020). https://github.com/relic-toolkit/relic.

[3] George Bissias, A. Pinar Ozisik, Brian N. Levine, and Marc Liberatore. 2014.

Sybil-Resistant Mixing for Bitcoin. In WPES. ACM, 149–158. https://doi.org/10.

1145/2665943.2665955

[4] Manuel Blum, Paul Feldman, and Silvio Micali. 1988. Non-interactive Zero-

knowledge and Its Applications. In STOC. ACM, 103–112. http://doi.acm.org/10.

1145/62212.62222

[5] Joseph Bonneau, Arvind Narayanan, Andrew Miller, Jeremy Clark, Joshua A.

Kroll, and Edward W. Felten. 2014. Mixcoin: Anonymity for Bitcoin with Ac-

countable Mixes. In Financial Cryptography and Data Security. 486–504.

[6] Jan Camenisch and Anna Lysyanskaya. 2005. A Formal Treatment of Onion

Routing. In Advances in Cryptology – CRYPTO 2005. 169–187.

[7] Ran Canetti. 2000. Universally Composable Security: A New Paradigm for

Cryptographic Protocols. Cryptology ePrint Archive, Report 2000/067. https:

//eprint.iacr.org/2000/067.

[8] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Wal�sh. 2007. Universally

Composable Security with Global Setup. In Theory of Cryptography. 61–85.

[9] Ran Canetti and Tal Rabin. 2003. Universal composition with joint state. In

Annual International Cryptology Conference. 265–281.

[10] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and

Ida Tucker. 2019. Two-Party ECDSA from Hash Proof Systems and E�cient

Instantiations. In Advances in Cryptology – CRYPTO. 191–221.

[11] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and

Ida Tucker. 2020. Bandwidth-e�cient threshold EC-DSA. Cryptology ePrint

Archive, Report 2020/084. (2020). https://eprint.iacr.org/2020/084.

[12] Guilhem Castagnos and Fabien Laguillaumie. 2015. Linearly Homomorphic

Encryption from DDH. In Topics in Cryptology — CT-RSA. Cham, 487–505.

[13] Guilhem Castagnos, Fabien Laguillaumie, and Ida Tucker. 2018. Practical Fully

Secure Unrestricted Inner Product Functional Encryption Modulo p. In Advances
in Cryptology – ASIACRYPT. 733–764.

[14] Ronald Cramer and Victor Shoup. 2002. Universal Hash Proofs and a Paradigm

for Adaptive Chosen Ciphertext Secure Public-Key Encryption. In Advances in
Cryptology — EUROCRYPT 2002, Lars R. Knudsen (Ed.). Springer Berlin Heidel-

berg, Berlin, Heidelberg, 45–64.

[15] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed

Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, Dawn Song,

and Roger Wattenhofer. 2016. On Scaling Decentralized Blockchains. In Financial
Cryptography and Data Security.

[16] I. Damgård. 2002. On the σ -protocols. Lecture Notes, University of Aarhus,

Department for Computer Science. (2002).

[17] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. 2018. Secure Multi-

party Threshold ECDSA from ECDSA Assumptions. In Oakland S&P’2018.

[18] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. 2019. Threshold

ECDSA from ECDSA Assumptions: The Multiparty Case. In Oakland S&P’2019.

[19] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, Julia Hesse, and Kristina

Hostáková. 2019. Multi-party Virtual State Channels. In Advances in Cryptology –
EUROCRYPT 2019, Yuval Ishai and Vincent Rijmen (Eds.). Springer International

Publishing, Cham, 625–656.

[20] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Malinowski. 2017.

Perun: Virtual Payment Hubs over Cryptocurrencies. Cryptology ePrint Archive,

Report 2017/635. (2017). https://eprint.iacr.org/2017/635.

[21] Stefan Dziembowski, Sebastian Faust, and Kristina Hostakova. 2018. General

State Channel Networks. In CCS.

[22] Amos Fiat and Adi Shamir. 1987. How To Prove Yourself: Practical Solutions to

Identi�cation and Signature Problems. In Advances in Cryptology — CRYPTO’ 86.

186–194.

[23] Anonymized for submission. 2020. Source code for Trilero implementation.

Github repository. (2020). https://github.com/trileroa2l/evaluation.

[24] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. 2007. Secure

Distributed Key Generation for Discrete-Log Based Cryptosystems. Journal of
Cryptology (2007), 51–83.

[25] gmaxwell (pseudonym). 2013. CoinSwap: Transaction Graph Disjoint Trustless

Trading. Forum post. (2013). https://bitcointalk.org/index.php?topic=321228.0.

[26] Matthew Green and Ian Miers. 2017. Bolt: Anonymous Payment Channels for

Decentralized Currencies. In CCS.

[27] Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi, Alessandra Scafuro, and

Sharon Goldberg. 2017. TumbleBit: An Untrusted Bitcoin-Compatible Anony-

mous Payment Hub. In NDSS.

[28] Ethan Heilman, Foteini Baldimtsi, and Sharon Goldberg. 2016. Blindly Signed
Contracts: Anonymous On-Blockchain and O�-Blockchain Bitcoin Transactions.

15

https://github.com/lightningnetwork/lightning-rfc
https://github.com/lightningnetwork/lightning-rfc
https://github.com/relic-toolkit/relic
https://doi.org/10.1145/2665943.2665955
https://doi.org/10.1145/2665943.2665955
http://doi.acm.org/10.1145/62212.62222
http://doi.acm.org/10.1145/62212.62222
https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2020/084
https://eprint.iacr.org/2017/635
https://github.com/trileroa2l/evaluation
https://bitcointalk.org/index.php?topic=321228.0

A
2
L: Anonymous Atomic Locks for Scalability and Interoperability in Payment Channel Hubs

Technical Report 056.

[29] George Kappos, Haaroon Yousaf, Mary Maller, and Sarah Meiklejohn. 2018. An

Empirical Analysis of Anonymity in Zcash. In 27th USENIX Security Symposium,
USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018. 463–477.

[30] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. 2013. Uni-

versally Composable Synchronous Computation. In Theory of Cryptography.

477–498.

[31] Rami Khalil, Arthur Gervais, and Guillaume Felley. 2018. NOCUST - A Securely

Scalable Commit-Chain. Cryptology ePrint Archive, Report 2018/642. (2018).

https://eprint.iacr.org/2018/642.

[32] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Kho�, Linus

Gasser, and Bryan Ford. 2016. Enhancing Bitcoin Security and Performance

with Strong Consistency via Collective Signing. In USENIX Security Symposium.

279–296.

[33] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa

Syta, and Bryan Ford. 2018. OmniLedger: A Secure, Scale-Out, Decentralized

Ledger via Sharding. In 2018 IEEE Symposium on Security and Privacy, SP 2018,
Proceedings, 21-23 May 2018, San Francisco, California, USA. 583–598.

[34] Joshua Lind, Oded Naor, Ittay Eyal, Florian Kelbert, Peter R. Pietzuch, and

Emin Gün Sirer. 2018. Teechain: Reducing Storage Costs on the Blockchain

With O�ine Payment Channels. In ACM SYSTOR. 125.

[35] Yehuda Lindell. 2011. Highly-e�cient Universally-composable Commitments

Based on the DDH Assumption. In Proceedings of the 30th Annual International
Conference on Theory and Applications of Cryptographic Techniques: Advances
in Cryptology (EUROCRYPT’11). Springer-Verlag, Berlin, Heidelberg, 446–466.

http://dl.acm.org/citation.cfm?id=2008684.2008718

[36] Yehuda Lindell. 2017. Fast Secure Two-Party ECDSA Signing. Cryptology ePrint

Archive, Report 2017/552. (2017). https://eprint.iacr.org/2017/552.

[37] Yehuda Lindell and Ariel Nof. 2018. Fast Secure Multiparty ECDSA with Practical

Distributed Key Generation and Applications to Cryptocurrency Custody. In

CCS. ACM, 1837–1854. https://doi.org/10.1145/3243734.3243788

[38] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo Ma�ei, and Sri-

vatsan Ravi. 2017. Concurrency and Privacy with Payment-Channel Networks.

In CCS. ACM, 455–471. https://doi.org/10.1145/3133956.3134096

[39] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket Kate, and

Matteo Ma�ei. 2019. Anonymous Multi-Hop Locks for Blockchain Scalability

and Interoperability. (2019). https://www.ndss-symposium.org/ndss-paper/

anonymous-multi-hop-locks-for-blockchain-scalability-and-interoperability/

[40] Sarah Meiklejohn and Rebekah Mercer. 2017. Möbius: Trustless Tumbling for
Transaction Privacy. Technical Report 881.

[41] Pedro Moreno-Sanchez, Randomrun, Duc V. Le, Sarang Noether, Brandon Good-

ell, and Aniket Kate. 2019. DLSAG: Non-Interactive Refund Transactions For

Interoperable Payment Channels in Monero. Cryptology ePrint Archive, Report

2019/595. (2019). https://eprint.iacr.org/2019/595.

[42] Pedro Moreno-Sanchez, Tim Ru�ng, and Aniket Kate. 2017. PathShu�e: Credit

Mixing and Anonymous Payments for Ripple. PoPETs 2017, 3 (2017), 110. https:

//doi.org/10.1515/popets-2017-0031

[43] Sarang Noether and Brandon Goodell. 2018. Dual linkable ring signatures.

Monero Research Bulleting. (2018). https://web.getmonero.org/resources/

research-lab/pubs/MRL-0008.pdf.

[44] Andrew Poelstra. 2020. Documentation about scriptless scripts. Github reposi-

tory. (2020). https://github.com/ElementsProject/scriptless-scripts.

[45] Joseph Poon and Thaddeus Dryja. 2016. The Bitcoin Lightning Network: Scalable

O�-Chain Instant Payments. Technical Report. (2016). https://lightning.network/

lightning-network-paper.pdf.

[46] Tim Ru�ng and Pedro Moreno-Sanchez. 2017. ValueShu�e: Mixing Con�dential

Transactions for Comprehensive Transaction Privacy in Bitcoin. In Financial
Cryptography and Data Security -BITCOIN, Vol. 10323. Springer, 133–154.

[47] Tim Ru�ng, Pedro Moreno-Sanchez, and Aniket Kate. 2014. CoinShu�e: Practi-

cal Decentralized Coin Mixing for Bitcoin. In ESORICS’14, Vol. 8713. Springer,

345–364.

[48] Tim Ru�ng, Pedro Moreno-Sanchez, and Aniket Kate. 2017. P2P Mixing and

Unlinkable Bitcoin Transactions. In NDSS. The Internet Society.

[49] István András Seres, Dániel A. Nagy, Chris Buckland, and Péter Burcsi. 2019.

MixEth: E�cient, Trustless Coin Mixing Service for Ethereum. Technical Report

341.

[50] The PARI Group 2019. PARI/GP version 2.12.0. The PARI Group, Univ. Bordeaux.

available from http://pari.math.u-bordeaux.fr/.

[51] Manny Trillo. 2013. Stress Test Prepares VisaNet for the Most Wonder-

ful Time of the Year. http://www.visa.com/blogarchives/us/2013/10/10/

stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.

html. (2013). Accessed: 2017-08-07.

[52] Luke Valenta and Brendan Rowan. 2015. Blindcoin: Blinded, Accountable Mixes

for Bitcoin. In Financial Cryptography and Data Security (Lecture Notes in Com-
puter Science), Michael Brenner, Nicolas Christin, Benjamin Johnson, and Kurt

Rohlo� (Eds.). Springer Berlin Heidelberg, 112–126.

[53] Jan Henrik Ziegeldorf, Fred Grossmann, Martin Henze, Nicolas Inden, and Klaus

Wehrle. 2015. CoinParty: Secure Multi-Party Mixing of Bitcoins. In CODASPY.

ACM, 75–86. https://doi.org/10.1145/2699026.2699100

A CORRECTNESS DEFINITIONS
A.1 Payment Channel Hub (PCH)
Intuitively, a PCH is correct if the receiver gets the money paid by

the sender through the tumbler with overwhelming probability.

De�nition A.1 (Correctness of PCHs). Let P be a PCH, λ ∈ N and

n ∈ poly(λ). Let V = {P1, . . . , Pn, Pt } be a set of parties, and Pt be

the intermediary (tumbler).

For any Ps , Pr ∈ V, any xPs , xPt , x
′
Pt
, x ′Pr

∈ R>0, let

(Ps , Pt)
xPs ,xPt ← OpenChannel(Ps , Pt , xPs , xPt)

and

(Pt , Pr)
x ′Pt ,xPr ← OpenChannel(Pt , Pr , x ′Pt , x

′
Pr)

such that (Ps , Pt)
xPs ,xPt , ⊥ and (Pt , Pr)

x ′Pt ,x
′
Pr , ⊥.

We say that P is correct if there exists a negligible function negl,
such that for any amt ∈ R>0, where xPs ≥ amt and x ′Pt

≥ amt,
the following holds

Pr[Pay(Ps , Pr , amt) = 1] ≥ 1 − negl(λ) .

A.2 Anonymous Atomic Locks (A2L)
Intuitively, A

2
L is correct if opening of a promise using a valid

opening information veri�es with overwhelming probability.

De�nition A.2 (Correctness of A2Ls). Let L be an A
2
L, λ ∈ N

and n ∈ poly(λ). Let Pt be the intermediary, (P1, . . . , Pn) ∈ P
n

be

a vector of parties, (sk
1
, . . . , skn, skt) be a vector of secret keys,

and (pk
1,t , . . . , pkn,t) be a vector of public keys, such that for all

1 ≤ i ≤ n, it holds that

{(ski , pki ,t), (skt , pki ,t)} ← 〈KGenPi (1
λ),KGenPt (1

λ)〉.

Furthermore, let (Π1, . . . ,Πn) be a vector of promises, (`1, . . . , `n)

be a vector of locks, and (ϱ1, . . . , ϱn) be a vector of opening infor-

mation, such that for all 1 ≤ i, j ≤ n, it holds that

{·, (Πi , `i)} ← 〈PuzzlePromisePt (skt , pki ,t), PuzzlePromisePi (ski , pki ,t)〉

and

{ϱi , ·} ← 〈PuzzleSolverPj (skj , pkj ,t , `i), PuzzleSolverPt (skt , pkj ,t)〉.

We say that L is correct if there exists a negligible function negl,
such that for all 1 ≤ i ≤ n, the following holds

Pr[Verify(Πi ,Open(Πi , ϱi)) = 1] ≥ 1 − negl(λ) .

B HASH PROOF SYSTEMS AND
CASTAGNOS-LAGUILLAUMIE
ENCRYPTION SCHEME

In our constructions we use the homomorphic encryption scheme

by Castagnos-Laguillaumie (CL) [12], more speci�cally, the vari-

ant of the scheme described in [10, 13] (called HSM-CL), and its

instantiation based on class groups of an imaginary quadratic �eld.

HSM-CL follows the paradigm of Cramer-Shoup [14] for building

IND-CPA secure encryption scheme from hash proof systems (HPS),

which were also introduced in the same paper. Consider a set of

16

https://eprint.iacr.org/2018/642
http://dl.acm.org/citation.cfm?id=2008684.2008718
https://eprint.iacr.org/2017/552
https://doi.org/10.1145/3243734.3243788
https://doi.org/10.1145/3133956.3134096
https://www.ndss-symposium.org/ndss-paper/anonymous-multi-hop-locks-for-blockchain-scalability-and-interoperability/
https://www.ndss-symposium.org/ndss-paper/anonymous-multi-hop-locks-for-blockchain-scalability-and-interoperability/
https://eprint.iacr.org/2019/595
https://doi.org/10.1515/popets-2017-0031
https://doi.org/10.1515/popets-2017-0031
https://web.getmonero.org/resources/research-lab/pubs/MRL-0008.pdf
https://web.getmonero.org/resources/research-lab/pubs/MRL-0008.pdf
https://github.com/ElementsProject/scriptless-scripts
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
http://pari.math.u-bordeaux.fr/
http://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html
http://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html
http://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html
https://doi.org/10.1145/2699026.2699100

A
2
L: Anonymous Atomic Locks for Scalability and Interoperability in Payment Channel Hubs

words X, and NP language L ⊂ X, such that L := {x ∈ X | w ∈
W : (x,w) ∈ R}, where R is the relation de�ning the language, L

is the language of true statements in X, and for (x,w) ∈ R, w ∈ W
is a witness for x ∈ L. The tuple (X,L,W,R) de�nes an instance

of a subset membership problem (i.e., the problem of deciding if an

element x ∈ X is in L orX\L). A HPS associates a projective hash

family (PHF) to such a subset membership problem. It de�nes a

key generation algorithm PHF.KGen, which outputs a secret hash-

ing key hk sampled from distribution of hashing keys Dhk over

a hash key space Khk, and a public projection key hp ← ω(hk)
in projection key space Khp, where ω : Khk → Khp is an e�cient

auxiliary function. The secret hashing key hk de�nes a hash func-

tion Hhk : X → Π, where Π is typically an algebraic group, and

the public projection key hp allows for the public evaluation of the

hash function on words x ∈ L, more precisely,Hhp(x,w) = Hhk(x)
for (x,w) ∈ R. Thus, a projective hash family PHF is de�ned by

({Hhk}hk∈Khk
,Khk,X,L,Π,Khp,ω) [10]. Cramer-Shoup [14] de-

�ned an IND-CPA secure encryption scheme from HPS, which is

composed of the algorithms (KGen, Enc,Dec), where KGen runs

PHF.KGen and sets the secret key sk := hk ∈ Khk, and the associ-

ated public key pk := hp← ω(hk). Encryption of a plaintext mes-

sagem ∈ Zq is done by sampling a random pair (u,w) ∈ R, and com-

puting c := (u,Hhp(u,w) · Encode(m)) ← Enc(hp,m). To decrypt a

ciphertext (u, e) ∈ X × Π, one computes m := Decode(e
Hhk(u)

) ←

Dec(hk, (u, e)). The resulting encryption scheme also support ho-

momorphic operations as described in [10]. Applying this approach

to a HPS generated from the hard subset membership problem that

is based on class groups of an imaginary quadratic �elds results in

HSM-CL encryption scheme [10, 13].

The main reason for choosing the HSM-CL encryption scheme

as opposed to any other linearly homomorphic encryption scheme

is that it can be instantiated to work over Zq , for a q that is the same

as the order of the elliptic curve group used for Schnorr, ECDSA and

DLSAG signature schemes. If one uses an encryption scheme with

a plaintext space larger than q, then several problems appear. For

example, two-party ECDSA construction of Lindell [36] uses Paillier,

which has a plaintext space ZN , for a composite N much larger than

q. In that case to enforce correctness and security of the protocol the

value of N needs to be chosen large enough, so that no wrap around

occurs, and one needs to prove that the encrypted value is within the

right range, which requires an expensive range proof. We can avoid

these issues by using the HSM-CL encryption scheme instantiated

with the plaintext space Zq . Another advantage of HSM-CL is that

in the security proofs challenger’s access to the secret key does not

compromise the indistinguishability of ciphertexts, as it relies on

a computational assumption and a statistical argument. For more

information about the problems arising from using an encryption

scheme with a larger modulus than the elliptic curve group order,

and how these problems are addressed by the HSM-CL encryption

scheme we refer the reader to [10].

C SECURITY ANALYSIS OF A2L
Throughout this section we denote by poly(λ) any function that

is bounded by a polynomial in λ, where λ ∈ N is the security

parameter. We denote any function that is negligible in the security

parameter by negl(λ). We say an algorithm is PPT if it is modeled

as a probabilistic Turing machine whose running time is bounded

by some function poly(λ).
We prove security according to the UC framework [7], and in

the presence of malicious adversaries with static corruptions.
Key Generation Functionalities. Our protocols build on top

of key generation funtionalities for Schnorr, ECDSA and DLSAG.

The key generation functionalities for Schnorr and ECDSA are

taken from [39]. Ideal functionality for key generation of Schnorr

signature F Schnorr
KGen is de�ned below (it models a distributed key

generation for discrete logarithm-based schemes).

KeyGen(G,д,q)

Upon invocation by both P1 and P2 on input (G, д, q) :

sample x ←$Zq and compute Q = дx

set skP1 ,P2

= x

sample x1, x2 ←$Zq and a hash function H : {0, 1}∗ → Zq

send (x1,Q , H) to P1 and (x2,Q , H) to P2

ignore future calls by (P1, P2)

The ideal functionality for key generation of ECDSA signature

F ECDSA
KGen is de�ned as follows:

KeyGen(G,д,q)

Upon invocation by both P1 and P2 on input (G, д, q) :

sample x ←$Zq and compute Q = дx

set skP1 ,P2

= x

sample x1, x2 ←$Zq and a hash function H : {0, 1}∗ → Zq

sample a key pair (skP1 ,P2

, pkP1 ,P2

) ← KGenHE()

compute c ← EncHE(pk, x̃1) for a random x̃1 ←$Zq

send (x1,Q , H , sk) to P1 and (x2,Q , H , c) to P2

ignore future calls by (P1, P2)

Lastly, we de�ne the ideal functionality for key generation of

DLSAG signature FDLSAG
KGen , which is similar to the Schnorr-based

key generation, however, in DLSAG we require dual keys, hence,

we have to account for that in our ideal functionality.

KeyGen(G,д,q)

Upon invocation by both P1 and P2 on input (G, д, q) :

sample x , x ′ ←$Zq and compute Q = дx ,Q ′ = дx
′

set skP1 ,P2 ,0
= x and skP1 ,P2 ,1

= x ′

sample xP1 ,0, xP1 ,1, xP2 ,0, xP2 ,1 ←$Zq , a hash function H : {0, 1}∗ → Zq

send (xP1 ,0, xP1 ,1,Q ,Q ′, H) to P1 and (xP2 ,0, xP2 ,1,Q ,Q ′, H) to P2

ignore future calls by (P1, P2)

We stress that the copies of these functionalities that are invoked

as subroutines are fresh independent instances, and hence, the

composition theorem [7] directly applies to our setting.

Schnorr-based Construction. Here we prove Theorem 4.2.

Proof. The proof is composed of a series of hybrids, where we

gradually modify the initial experiment.

H0: Is identical to the construction as described in Section 4.2.2.

17

A
2
L: Anonymous Atomic Locks for Scalability and Interoperability in Payment Channel Hubs

H1: All the calls to the commitment scheme COM are replaced

with calls to the ideal functionality FCOM−ZK. which is de�ned for

a relation R as described in [36] and shown below.

Commit(sid, x,w)

Upon invocation by Pi , where i ∈ {1, 2}, on input (x ,w) :

if some (sid, ·, ·) is already recorded or (x ,w) < R

then ignore the message

else record (sid, i , x) and send (com, sid) to P3−i

Decommit(sid)

Upon invocation by Pi , where i ∈ {1, 2} :

if (sid, i , x) is recorded, then send (decom, sid, x) to P3−i

else ignore the message

We have to use the FCOM−ZK functionality, while in our protocol

the parties commit to non-interactive zero-knowledge proofs. This

functionality is securely realized by having the prover commit to a

non-interactive zero-knowledge proof using an ideal commitment

functionality FCOM, such as the one from [35]. Instead of calling

the commitment algorithm COM with (x,w), the parties send a

message of the form Commit(sid, x,w) to the ideal functionality

FCOM−ZK. Similarly, the decommitment is replaced with a message

of the form Decommit(sid). The verifying party records the mes-

sages from FCOM−ZK.

H2: All the calls to the non-interactive zero-knowledge scheme

NIZK are replaced with calls to the ideal functionality FNIZK, which

works with a relation R and is de�ned as follows.

Prove(sid, x,w)

Upon invocation by Pi , where i ∈ {1, 2}, on input (x ,w) :

if (x ,w) < R, then send (proof, sid, x) to P3−i

else ignore the message

Instead of calling the non-interactive zero-knowledge scheme

NIZK with input (x,w), the proving party queries the ideal func-

tionality FNIZK with message Prove(sid, x,w). The veri�er records

the messages from FNIZK.

H3: Consider the following ensemble of variables in the inter-

action with A: key pairs (sks , pks ,t), (skt , pks ,t), (skr , pkr ,t), and

(skt , pkr ,t), a pair (ᾱ, (Π, `)) such that

{·, (Π, `)} ← 〈PuzzlePromisePr (skr , pkr ,t), PuzzlePromisePt (skt , pkr ,t)〉

and

{ᾱ, ·} ← 〈PuzzleSolverPs (sks , pks ,t , `), PuzzleSolverPt (skt , pks ,t)〉.

If for any set of these variables, the adversary returns some σ :=

(R, s), such that Verify(Π,σ) = 1, but s , Open(Π, ᾱ)[s], then the

experiment aborts.

H4: Consider the following ensemble of variables in the inter-

action with A: key pairs (sks , pks ,t), (skt , pks ,t), (skr , pkr ,t), and

(skt , pkr ,t), a pair (ᾱ, (Π, `)) such that

{·, (Π, `)} ← 〈PuzzlePromisePr (skr , pkr ,t), PuzzlePromisePt (skt , pkr ,t)〉

and

{ᾱ, ·} ← 〈PuzzleSolverPs (sks , pks ,t , `), PuzzleSolverPt (skt , pks ,t)〉.

If for any set of these variables, the adversary returns some σ :=

(R, s), such that Verify(Π,σ) = 1, before Ps outputs ᾱ from puzzle

solver protocol with Pt , such that Verify(Π,Open(Π, ᾱ)) = 1 then

the experiment aborts.

S : The actions of the simulator S are dictated by interact-

ing with F . If A interacts with an honest user, then the simula-

tor queries the corresponding interface of F . More precisely, it is

queried by F on the following set of inputs:

• PuzzlePromise: The simulator initiates the puzzle promise

procedure with the adversary and replies with ⊥ if the

execution is not successful, otherwise replies with a valid

promise and lock.

• PuzzleSolver: The simulator initiates the puzzle solver pro-

cedure with the adversary and replies with ⊥ if the exe-

cution is not successful, otherwise it releases the opening

information of the corresponding lock.

• Open: The simulator returns the opened lock data.

Next, we prove the indistinguishability of the neighboring ex-

periments for the environment E.

Lemma C.1. For all PPT distinguisher E it holds that

EXECH0,A,E ≈ EXECH1,A,E .

Proof. The proof follows directly from the security of the com-

mitment scheme COM. �

Lemma C.2. For all PPT distinguisher E it holds that

EXECH1,A,E ≈ EXECH2,A,E .

Proof. The proof follows directly from the security of the non-

interactive zero-knowledge scheme NIZK. �

Lemma C.3. For all PPT distinguisher E it holds that

EXECH2,A,E ≈ EXECH3,A,E .

Proof. In order to show this claim, we introduce an intermedi-

ate hybrid.

H∗
2

: All the calls to the puzzle promise and puzzle solver pro-

tocols are replaced with calls to FSign ideal functionality, which is

de�ned as follows.

Sign(sid,m,α)

Upon invocation by P1 and P2 on input (sid,m, α) :

if some (sid, ·, ·) is already recorded, then ignore the message

else record (sid,m, α)

compute (R, s) ← SigSchnorr(skP1 ,P2

,m)

return (R, s − α)

We note that the key skP1,P2

refers to the previously established

key between the parties P1 and P2 in the call to the F Schnorr
KGen . During

the puzzle promise protocol P1 := Pr (receiver), whereas during

18

A
2
L: Anonymous Atomic Locks for Scalability and Interoperability in Payment Channel Hubs

the puzzle solver protocol P1 := Ps (sender), and in both protocols

P2 := Pt (tumbler).

Lemma C.4. For all PPT distinguisher E it holds that

EXECH2,A,E ≈ EXECH∗
2
,A,E .

Proof. The proof consists of the description of the simulators

for the interactive puzzle promise and puzzle solver protocols. Since

the puzzle promise protocol is executed between Pt and Pr , we

describe two simulators depending on whether the adversary is

playing the role of Pt or Pr . Later, we do the same thing for the

puzzle solver protocol, however, there the simulator takes the role

of Pt or Ps . We start with the simulation of the puzzle promise

protocol.

1) Pr corrupted: After agreeing on a messagem, the simulator

S samples a random α∗ ←$Zq , and queries Sign on input

(sid,m,α∗), for a random sid, and obtains σ ′ := (R′, s ′).
S computes A = дα

∗

and cα = EncHE(pkt ,α
∗), where

pkt is the HSM-CL encryption public key of Pt . S sends

((com, sid),A, cα , (proof, sid, {∃α∗ | cα = EncHE(pkt ,α
∗)∧

A = дα
∗

})) to A. At some point of the execution A sends

(R′
1
, (prove, {∃k ′

1
| R′

1
= дk

′
1 },k ′

1
)). S veri�es that R′

1
= дk

′
1 ,

and if this is not the case S simulates Pt aborting. S replies

with ©­­­«
decom, sid, ©­«

R′
2
= R′/(R′

1
· A),

proof, sid,
{∃k ′

2
| R′

2
= дk

′
2 }

ª®¬ ,
(s ′ − k ′

1
+ e · x ′

1
)

ª®®®¬
where e = H (pk‖R′‖m), and x ′

1
is the value returned by

the key generation to A. The rest of the execution is un-

changed.

The simulator is e�cient, and the distribution induced

by the simulator is identical to the real execution except

for the way cα is computed. Therefore, the indistinguisha-

bility reduces to to the IND-CPA security of the underlying

encryption scheme. We prove this indistinguishability by

closely following the indistinguishability proof given in

[10], and using the games they have de�ned, which can

be seen in Table 3. We note that here we use the notation

for the encryption scheme explained in Appendix B, and

we also implicitly assume that the messages have correct

encoding, and do not explicitly call an Encode function on

plaintexts as in [10]. In order to prove indistinguishabil-

ity, we prove the following lemma regarding the games

speci�ed in Table 3.

Lemma C.5. For all PPT distinguisher E it holds that

EXECGame0,A,E ≈ EXECGame1,A,E,

EXECGame1,A,E ≈ EXECGame2,A,E,

EXECGame2,A,E ≈ EXECGame3,A,E,

EXECGame3,A,E ≈ EXECGame4,A,E,

EXECGame4,A,E ≈ EXECGame5,A,E .

Proof. We demonstrate that the games depicted in

Table 3 are indistinguishable from the view of the adver-

sary A. We denote by Ei the probability that an algorithm

interacting with the simulator in Gamei outputs 1.

Game0 to Game1: The only di�erence between the two

games is how cα is computed. More precisely, in Game1 we

use the secret hashing key hk instead of the projection key

hp and the witness w to compute cα . Although, the values

are computed di�erently, they are distributed identically,

and hence, are perfectly indistinguishable. Thus,

| Pr[E1] − Pr[E0]| = 0.

Game1 to Game2: LetD be a distinguisher that can dis-

tinguish between Game1 and Game2 with a non-negligible

advantage. Then, we can device
˜S that can use D to break

the hard subset membership assumption.
˜S takes as input

a hard subset membership challenge x∗ (which is either

an element of L, or an element of X \ L), and instead of

sampling (u,w) ∈ R as S does in Game1, it sets u := x∗

and computes cα ← (u,Hhk(u) · α). When D returns a

bit b,
˜S returns the same bit, where 0 represents the case

x∗ ∈ L, and 1 represents the case x∗ ∈ X \ L. We can

distinguish two cases here: a) Case x∗ ∈ L: There exists

w ∈ W such that (x∗,w) ∈ R andHhp(x
∗,w) = Hhk(x

∗).

Hence, cα = (u, e) is an encryption of α as in Game1. b)

Case x∗ ∈ X \L: The ciphertext is (x∗,Hhk(x
∗) ·α), which

is the distribution obtained inGame2. Therefore, the advan-

tage of
˜S breaking the hard subset membership assumption

is at least that of D distinguishing both games. Thus,

| Pr[E2] − Pr[E1]| ≤ δL,

where δL is the maximal advantage of any PPT adversary

in hard subset membership problem, as de�ned in [10].

Game2 to Game3: Set α∗ := α + r mod q. Under the

assumption that the hash proof system is δs -smooth over

X (we refer the reader to [10] for smoothness de�nition of

HPS), it holds that the distribution of (x∗,Hhk(x
∗) · α) and

of (x∗,Hhk(x
∗) · α · r = Hhk(x

∗) · α∗)) for some random

α∗ ∈ Zq are δs -close. Hence, replacing (x∗,Hhk(x
∗) ·α) by

(x∗,Hhk(x
∗) · α∗) cannot be noticed by any PPT adversary

with advantage greater than δs , so we have that

| Pr[E3] − Pr[E2]| ≤ δs .

Game3 to Game4: As the changes are identical to that

between Game1 and Game2, indistinguishability follows

from the hardness of the subset membership problem on

which the hash proof system relies, and we get that

| Pr[E4] − Pr[E3]| ≤ δL .

Game4 to Game5: The changes are identical to that be-

tween Game0 and Game1, hence, both games are perfectly

indistinguishable. Thus,

| Pr[E5] − Pr[E4]| = 0.

Putting it all together, we get that

| Pr[E5] − Pr[E0]| ≤ 2δL + δs ,

and hence, by the hardness of the subset membership prob-

lem underlying the hash proof system, and the smoothness

of the hash proof system, it holds that cα is indistinguish-

able. �

19

A
2
L: Anonymous Atomic Locks for Scalability and Interoperability in Payment Channel Hubs

Game0 Game1 Game2 Game3 Game4 Game5

...
...

...
...

...
...

hk←$Dhk hk←$Dhk hk←$Dhk hk←$Dhk hk←$Dhk hk←$Dhk
hp← ω(hk) hp← ω(hk) hp← ω(hk) hp← ω(hk) hp← ω(hk) hp← ω(hk)

Sample (u,w) ∈ R ũ ←$X \ L ũ ←$X \ L, r ←$Zq Sample (u,w) ∈ R, r ←$Zq r ←$Zq
cα ← Enc(hp,α) ca ← (u,Hhk(u)·α) cα ← (ũ,Hhk(ũ) ·α) cα ← (ũ,Hhk(ũ) ·α +r) cα ← (u,Hhk(u) · α + r) cα ← Enc(hp,α+r)

...
...

...
...

...
...

Table 3: Sequence of games for the indistinguishability of cα using HSM-CL encryption scheme [10].

Consequently, by the above indistinguishability result,

we obtain that the distribution induced by the simulator

and the real execution is indistinguishable.

2) Pt corrupted: After agreeing on a messagem, the simulator

S is given

©­­­­­«
com, sid,

(
R′

2
,
prove, sid,
{∃k ′

2
| R′

2
= дk

′
2 },k ′

2

)
,

©­«A, cα ,
prove, sid,
{∃α | cα = EncHE(pkt ,α)∧

A = дα },α

ª®¬
ª®®®®®¬

by A. S veri�es that cα = EncHE(pkt ,α) and A = дα . If

the veri�cation fails, S simulates Pr aborting. S queries

Sign on input (sid,m,α), and obtains σ ′ := (R′, s ′). S

sends (R′
1
= R′/(R′

2
· A), (proof, sid, {∃k ′

1
| R′

1
= дk

′
1 }))

to A, and receives ((decom, sid), s ′
2
= k ′

2
− e ′ · x ′

2
), where

e ′ = H (pk‖R′‖m), and x ′
2

is the value returned by the

key generation to A. S veri�es that R′
2
= дk

′
2 , and if this

fails simulates Pr aborting. The rest of the execution is

unchanged.

The simulator is e�cient and the distribution induced

by the simulated view is identical to the one of the original

protocol.

Next, we continue with the simulation of the puzzle solver pro-

tocol. Similar to the simulation of the puzzle promise protocol, we

de�ne two simulators.

1) Ps corrupted: After agreeing on a message m, S sends

(com, sid) to A, for a random sid. At some point of the

execution A sends (c ′′α ,R1, (prove, {∃k1 | R1 = д
k1 },k1)).

If R1 , д
k1

, then S simulates Pt aborting. S decrypts c ′′α to

obtain γ , and computes A′′ = дγ . S queries Sign on input

(sid,m,γ), and receives σ := (R, s). S sends

©­­­«
decom, sid, ©­«

R2 = R/(R1 · A
′′),

proof, sid,
{∃k2 | R2 = д

k2 }

ª®¬ ,
(s − k1 + e · x1),A

′′

ª®®®¬
to A, where e = H (pk‖R‖m), and x1 is the value returned

by the key generation to A. The rest of the execution is

unchanged.

The simulator is e�cient and the distribution induced

by the simulated view is identical to the one of the original

protocol.

2) Pt corrupted: Prior to the interaction the simulator S is

given A′ and c ′α . After agreeing on a message m, the simu-

lator S receives(
com, sid,

(
R2,

prove, sid,
{∃k2 | R2 = д

k2 },k2

))
byA.S decrypts c ′α to obtain α ·β , then samples τ ∗ ←$Zq ,

computesγ ∗ = α ·β ·τ ∗,A′′ = (A′)τ
∗

, and c ′′α = (c
′
α)
τ ∗

, and

it queries Sign on input (sid,m,γ ∗). The simulator receives

σ := (R, s), and sends (c ′′α ,R1 = R/(R2·A
′′), (proof, sid, {∃k1 |

R1 = д
k1 })) to A. S receives ((decom, sid), s2 = k2 − e ·

x2,A
′′), where e ′ = H (pk‖R‖m), and x2 is the value re-

turned by the key generation to A. If R2 , дk2
, then S

simulates Ps aborting, else the rest of the execution is un-

changed.

The simulator is e�cient and the distribution induced

by the simulator is identical to the real execution except

for the way c ′′α is computed. However, the same argu-

ment about the indistinguishability of HSM-CL encryption

scheme from the simulation of the puzzle promise protocol

applies here as well. Hence, the distribution induced by

the simulated view is identical to the one of the original

protocol.

�

Next, we continue with the proof of Lemma C.3. Let cheat be

the event that triggers an abort of the experiment inH3. Assume

towards contradiction that Pr[cheat | H∗
2
] ≥ 1

poly(λ) , then we

can construct the following reduction against the strong existential

unforgeability of Schnorr signature. The reduction receives as input

a public key pk, and samples an index j ∈ [1,q], where q ∈ poly(λ)
is a bound on the total number of interactions. Let Q be the key

generated in the j-th interaction, the reduction sets Q = pk. All the

calls to the signing algorithm are redirected to the signing oracle. If

the event cheat happens, the reduction returns the corresponding

(pk∗,m∗,σ ∗ := (R∗, s∗)), otherwise it aborts.

The reduction is clearly e�cient. Assume that j is the index of

the interaction where cheat happens. Note that in the case the

guess of the reduction is correct we have that pk∗ = pkr ,t . Since

cheat happens we have that VerifySchnorr(pk
∗,m∗,σ ∗) = 1, but s∗ ,

Open(Π, ᾱ)[s], where Π and ᾱ are returned from the puzzle promise

and puzzle solver protocols, respectively. Recall that ᾱ = α · β and

Open parses Π as (R′, s ′), where s ′ = sj − α , for some α ∈ Zq ,

where sj is the answer of the oracle on the j-th session on inputmj .

20

A
2
L: Anonymous Atomic Locks for Scalability and Interoperability in Payment Channel Hubs

Substituting we get

s∗ , Open(Π, ᾱ)[s]

, s ′ + (ᾱ · β−1)

, sj − α + α · β · β
−1

, sj

as expected. Since each message uniquely identi�es a session, this

implies that (pk∗,m∗,σ ∗) is a valid forgery. By assumption this

happens with probability at least
1

q ·poly(λ) , which is a contradiction

and proves that Pr[cheat | H∗
2
] ≤ negl(λ). �

Lemma C.6. For all PPT distinguisher E it holds that

EXECH3,A,E ≈ EXECH4,A,E .

Proof. Let q ∈ poly (λ) be a bound on the total number of

interactions. Let cheat denote an event that triggers an abort inH4,

but not inH3. We prove the indistinguishability ofH3 andH4 by

showing that Pr[cheat | H3] ≤ negl(λ). Assume that the converse

is true, then we can construct the following reduction against the

discrete logarithm problem: On input some A∗ ∈ G and a public

key pk, the reduction guesses a session j ∈ [1,q]. The reduction

replaces A from the �rst message of the puzzle promise protocol

with A∗. If Ps is requested to call the puzzle solver protocol, the

reduction aborts. At some point of the execution A outputs some

(pk∗,m∗,σ ∗ := (R∗, s∗)). The reduction returns дs
∗−s ′

, where s ′ is

part of the output of the puzzle promise protocol.

The reduction is clearly e�cient, and whenever j is guessed

correctly, the reduction does not abort, and we also have that

pk∗ = pkr ,t . The event cheat happens only in the case where

VerifySchnorr(pk
∗,m∗,σ ∗) = 1, but puzzle solver protocol has not

been executed. Recall that s ′ = sj −α and A = дα , for some α ∈ Zq ,

where sj is the answer of the oracle on the j-th session on input

mj . We note that we replaced A with the input A∗ of the reduction,

hence A = A∗ in this case. As argued in the proof of Lemma C.3, if

s∗ , sj , then we have an attacker against the strong unforgeability

of the signature scheme. Hence, it follows that s∗ = sj with all but

negligible probability. Substituting we have

дs
∗−s ′ = дs

∗−(sj−α)

= дα

= A

as expected. Since, by assumption this happens with probability at

least
1

q ·n ·poly(λ) , we have a successful attacker against the discrete

logarithm problem. This proves our lemma. �

This concludes the proof of Theorem 4.2. �

ECDSA-based Construction. Here we prove Theorem 4.3.

Proof. The sequence of hybrids that we need are identical to the

ones used in the proof of the Schnorr-based construction. Hence,

here we only prove the indistinguishability of the neighboring

experiments which require modi�cations in the argument. If the

argument is the same, then the proof is omitted.

Lemma C.7. For all PPT distinguisher E it holds that

EXECH2,A,E ≈ EXECH3,A,E .

Proof. Similar to the proof of the Schnorr-based construction,

we de�ne an intermediate hybrid.

H∗
2

: All the calls to the puzzle promise and puzzle solver proto-

cols are substituted with calls to FSign ideal functionality, de�ned

as follows.

Sign(sid,m,α)

Upon invocation by P1 and P2 on input (sid,m, α) :

if some (sid, ·, ·) is already recorded, then ignore the message

else record (sid,m, α)

compute (r , s) ← SigECDSA(skP1 ,P2

,m)

return (r , min(s · α , −s · α))

Recall that the key skP1,P2

refers to the key established between

parties P1 and P2 in the call to the F ECDSA
KGen functionality.

Lemma C.8. For all PPT distinguisher E it holds that

EXECH2,A,E ≈ EXECH∗
2
,A,E .

Proof. We start with the simulation of the puzzle promise proto-

col. We de�ne two simulators, depending on whether the adversary

is playing the role of Pt or Pr .

1) Pr corrupted: After agreeing on a messagem, the simulator

S samples a random α∗ ←$Zq , and queries Sign on input

(sid,m,α∗), for a random sid, obtains σ ′ := (r ′, s ′) and sets

R′ = дH (m)·(s
′)−1

·Qr ′ ·(s ′)−1

. S computesA = дα
∗

and cα =
EncHE(pkt ,α

∗), where pkt is the HSM-CL encryption pub-

lic key of Pt . S sends ((com, sid),A, cα , (proof, sid, {∃α∗ |
cα = EncHE(pkt ,α

∗) ∧A = дα
∗

})) to A. At some point of

the execution A sends (R′
1
, (prove, {∃k ′

1
| R′

1
= дk

′
1 },k ′

1
)).

S veri�es that R′
1
= дk

′
1 , and if this is not the case S

simulates Pt aborting. S computes c ′ ← EncHE(pkt ,k
′
1
·

s ′ mod q). S provides A with

©­­­­­­­­­­­­­­«
decom, sid,

©­­­­­­­­­­­­­­«

Rc = (R
′)(k

′
1
)−1

,

R2 = (Rc)
(α ∗)−1

,

(proof, sid,
{∃k2 | R2 = д

k2 }),

(proof, sid,
{∃α∗ | Rc = Rα

∗

2
}),

(proof, sid,
{∃α∗ | A = дα

∗

∧

Rc = Rα
∗

2
})

ª®®®®®®®®®®®®®®¬
, c ′

ª®®®®®®®®®®®®®®¬
.

The rest of the execution is unchanged.

The simulator is e�cient and the distribution induced by the

simulator is identical to the real execution except for the way cα is

computed. The same argument about the distribution of cα from the

proof of Lemma C.4 applies here as well. Hence, indistinguishability

follows.

21

A
2
L: Anonymous Atomic Locks for Scalability and Interoperability in Payment Channel Hubs

2) Pt corrupted: After agreeing on a messagem, the simulator

S is given

©­­­­­«
com, sid,

(
R′

2
,
prove, sid,
{∃k ′

2
| R′

2
= дk

′
2 },k ′

2

)
,

©­«A, cα
prove, sid,
{∃α | cα = EncHE(pkt ,α)∧

A = дα },α

ª®¬
ª®®®®®¬

by A. S veri�es that ca = EncHE(pkt ,α) and A = дα . If

the veri�cation fails, S simulates Pr aborting. S queries

Sign on input (sid,m,α), obtains σ ′ := (r ′, s ′) and sets

R′ = дH (m)·(s
′)−1

· Qr ′ ·(s ′)−1

. S sends (R1 = (R
′)(k

′
2
)−1 ·α−1

,

(proof, sid, {∃k1 | R1 = д
k1 })) to A, and receives

©­­­­­­­«
decom, sid,

(
R′c ,

prove, sid,
{∃α | R′c = (R

′
2
)α },α

)
,

©­«A,R′c ,
prove, sid,
{∃α | A = дα∧
R′c = (R

′
2
)α },α

ª®¬ ,
c ′

ª®®®®®®®¬
.

S veri�es that R′
2
= дk

′
2 , R′c = (R

′
2
)α and A = дα . If the

veri�cation fails S simulates Pr aborting. S checks if

DecHE(skr , c
′) = r ′ · x ′

2
· x̃1 · (k

′
2
)−1 + H (m) · (k ′

2
)−1

mod q,

where x̃1 was sampled in the key generation algorithm,

and skr (the secret key of Pr for the encryption scheme)

corresponds to the secret hashing key hk in HSM-CL en-

cryption scheme as described in Appendix B. If the check

holds, then the rest of the execution proceeds unchanged,

else S simulates Pr aborting.

The simulator is e�cient and the distribution induced by the

simulated view is identical to the one of the original protocol due

to indistinguishability of the HSM-CL encryption scheme.

Next, we simulate the puzzle solver protocol. We de�ne two

simulators, one when Ps is corrupted, and the other one when Pt
is corrupted.

1) Ps corrupted: After agreeing on a message m, S sends

(com, sid) to A, for a random sid. At some point of the

execution A sends (c ′′α ,R1, (prove, {∃k1 | R1 = д
k1 },k1)).

If R1 , д
k1

, then S simulates Pt aborting. S decrypts c ′′α to

obtain γ , and computes A′′ = дγ . S queries Sign on input

(sid,m,γ), receives σ := (r , s), and sets R = дH (m)·s
−1

·

Qr ·s−1

. S computes c ← EncHE(pkt ,k1 · s mod q), and

sends©­­­­­­­­­­­­­­«
decom, sid,

©­­­­­­­­­­­­­­«

Rc = R(k1)
−1

,

R2 = (Rc)
α−1

,

(proof, sid,
{∃k2 | R2 = д

k2 }),

(proof, sid,
{∃α | Rc = Rα

2
}),

(proof, sid,
{∃α | A = дα∧
Rc = Rα

2
})

ª®®®®®®®®®®®®®®¬
, c

ª®®®®®®®®®®®®®®¬
.

to A. The rest of the execution is unchanged.

The simulator is e�cient and the distribution induced by the

simulator is identical to the real execution.

2) Pt corrupted: Prior to the interaction the simulator S is

given A′ and c ′α . After agreeing on a message m, the simu-

lator S receives(
com, sid,

(
R2,

prove, sid,
{∃k2 | R2 = д

k2 },k2

))
byA.S decrypts c ′α to obtain α ·β , then samples τ ∗ ←$Zq ,

computes γ ∗ = α · β · τ ∗, A′′ = (A′)τ
∗

, and c ′′α = (c
′
α)
τ ∗

,

and it queries Sign on input (sid,m,γ ∗). S receives σ :=

(r , s), and sets R = дH (m)·s
−1

· Qr ·s−1

. S sends (R1 =

R(k2)
−1 ·(γ ∗)−1

, (proof, sid, {∃k1 | R1 = дk1 })) to A. S re-

ceives

©­­­­­­­«
decom, sid,

(
Rc ,

prove, sid,
{∃γ ∗ | Rc = (R2)

γ ∗ },γ ∗

)
,

©­«A′′,Rc ,
prove, sid,
{∃γ ∗ | A′′ = дγ

∗

∧

Rc = (R2)
γ ∗ },γ ∗

ª®¬ ,
c

ª®®®®®®®¬
.

S veri�es that R2 , д
k2

, Rc = (R
′
2
)γ
∗

and A′′ = дγ
∗

. If the

veri�cation fails, then S simulates Ps aborting. S checks if

DecHE(sks , c) = r · x2 · x̃1 · (k2)
−1 + H (m) · (k2)

−1
mod q,

where x̃1 was sampled in the key generation algorithm,

and sks (the secret key of Ps for the encryption scheme)

corresponds to the secret hashing key hk in HSM-CL en-

cryption scheme as described in Appendix B. If the check

holds, then the rest of the execution proceeds unchanged,

else S simulates Ps aborting.

The simulator is e�cient and the distribution induced

by the simulated view is identical to the one of the orig-

inal protocol due to indistinguishability of the HSM-CL

encryption scheme.

�

Next, we continue with the proof of Lemma C.7. Let cheat be

the event that triggers an abort of the experiment inH3. Assume

towards contradiction that Pr[cheat | H∗
2
] ≥ 1

poly(λ) , then we can

construct the following reduction against the strong existential

unforgeability of ECDSA signature. The reduction receives as input

a public key pk, and samples an index j ∈ [1,q], where q ∈ poly(λ)
is a bound on the total number of interactions. Let Q be the key

generated in the j-th interaction, the reduction sets Q = pk. All the

calls to the signing algorithm are redirected to the signing oracle. If

the event cheat happens, the reduction returns the corresponding

(pk∗,m∗,σ ∗ := (r∗, s∗)), otherwise it aborts.

The reduction is clearly e�cient. Assume that j is the index of

the interaction where cheat happens. Note that in the case the

guess of the reduction is correct we have that pk∗ = pkr ,t . Since

cheat happens we have that VerifyECDSA(pk
∗,m∗,σ ∗) = 1, but s∗ ,

Open(Π, ᾱ)[s], where Π and ᾱ are returned from the puzzle promise

and puzzle solver protocols, respectively. Recall that ᾱ = α · β and

Open parses Π as (r ′, s ′), where s ′ = sj ·α , for some α ∈ Zq , where

sj is the answer of the oracle on the j-th session on inputmj .

22

A
2
L: Anonymous Atomic Locks for Scalability and Interoperability in Payment Channel Hubs

Substituting we get

s∗ , Open(Π, ᾱ)[s]

, s ′ · (ᾱ · β−1)−1

, sj · α · (α · β · β
−1)−1

, sj · α · β · β
−1 · α−1

, sj

as expected. Since each message uniquely identi�es a session, this

implies that (pk∗,m∗,σ ∗) is a valid forgery. By assumption this

happens with probability at least
1

q ·poly(λ) , which is a contradiction

and proves that Pr[cheat | H∗
2
] ≤ negl(λ). �

Lemma C.9. For all PPT distinguisher E it holds that

EXECH3,A,E ≈ EXECH4,A,E .

Proof. Let q ∈ poly (λ) be a bound on the total number of

interactions. Let cheat denote an event that triggers an abort inH4,

but not inH3. We prove the indistinguishability ofH3 andH4 by

showing that Pr[cheat | H3] ≤ negl(λ). Assume that the converse

is true, then we can construct the following reduction against the

discrete logarithm problem: On input some A∗ ∈ G and a public

key pk, the reduction guesses a session j ∈ [1,q]. The reduction

replaces A from the �rst message of the puzzle promise protocol

with A∗. If Ps is requested to call the puzzle solver protocol, the

reduction aborts. At some point of the execution A outputs some

(pk∗,m∗,σ ∗ := (R∗, s∗)). The reduction returns д(s
∗)−1 ·s ′

, where s ′

is part of the output of the puzzle promise protocol.

The reduction is clearly e�cient, and whenever j is guessed

correctly, the reduction does not abort, and we also have that

pk∗ = pkr ,t . The event cheat happens only in the case where

VerifyECDSA(pk
∗,m∗,σ ∗) = 1, but puzzle solver protocol has not

been executed. Recall that s ′ = sj · α and A = дα , for some α ∈ Zq ,

where sj is the answer of the oracle on the j-th session on input

mj . We note that we replaced A with the input A∗ of the reduction,

hence A = A∗ in this case. As argued in the proof of Lemma C.7, if

s∗ , sj , then we have an attacker against the strong unforgeability

of the signature scheme. Hence, it follows that s∗ = sj with all but

negligible probability. Substituting we have

д(s
∗)−1 ·s ′ = д(s

∗)−1 ·(sj ·α)

= дα

= A

as expected. Since, by assumption this happens with probability at

least
1

q ·n ·poly(λ) , we have a successful attacker against the discrete

logarithm problem. This proves our lemma. �

This concludes the proof of Theorem 4.3. �

DLSAG-based Construction. Here we prove Theorem F.1.

Proof. The sequence of hybrids that we need are identical to

the ones used in the previous proofs. Therefore, we only prove the

indistinguishability of the neighboring experiments which require

modi�cations in the argument.

Lemma C.10. For all PPT distinguisher E it holds that

EXECH2,A,E ≈ EXECH3,A,E .

Proof. In order to show this claim, we introduce an intermedi-

ate hybrid.

H∗
2

: All the calls to the puzzle promise and puzzle solver pro-

tocols are replaced with calls to FSign ideal functionality, which is

de�ned as follows.

Sign(sid, ®pk,b,m,α)

Upon invocation by P1 and P2 on input (sid, ®pk, b ,m, α) :

if some (sid, ·, ·, ·, ·) is already recorded, then ignore the message

else record (sid, ®pk, b ,m, α)

compute (s0, s1, . . . , sn−1, R, ˆJ, J, b) ← SigDLSAG(skP1 ,P2 ,b ,
®pk,m)

return (s0 − α , s1, . . . , sn−1, R, ˆJ, J, b)

We note that the key skP1,P2,b refers to the part of the previously

established dual key between the parties P1 and P2 in the call to

the FDLSAG
KGen . Similar to the previous proofs, we have that P1 :=

Pr (receiver) in the puzzle promise protocol, whereas P1 := Ps
(sender) in the puzzle solver protocol, and in both protocols P2 := Pt
(tumbler).

Lemma C.11. For all PPT distinguisher E it holds that

EXECH2,A,E ≈ EXECH∗
2
,A,E .

Proof. The proof consists of the description of the simulators

for the interactive puzzle promise and puzzle solver protocols. We

start with the puzzle promise protocol, and since it is executed be-

tween Pt and Pr , we describe two simulators depending on whether

the adversary is playing the role of Pt or Pr .

1) Pr corrupted: Prior to the interaction the simulator S is

given the ring
®pk′ := ((pk′

1,0, pk
′
1,1,k

′
1
), . . . , (pk′n−1,0, pk

′
n−1,1,

k ′n−1
), (pkr ,t ,0, pkr ,t ,1,kr ,t)), the bitb, and setsQ ′ := pkr ,t ,1−b .

After agreeing on a message m, the simulator S samples a

random α∗ ←$Zq , queries Sign on input (sid, ®pk′,b,m,α∗),
for a random sid, and obtainsσ ′ := (s ′

0
, s ′

1
, . . . , s ′n−1

,R′, ˆJ ′,J ′,b).

S computesA = дα
∗

,A∗ = (Q ′)α
∗ ·kr ,t

, and cα = EncHE(pkt ,α
∗),

where pkt is the HSM-CL encryption public key of Pt . The

simulator S sends ((com, sid),A,A∗, cα , (proof, sid, {∃α∗ |
cα = EncHE(pkt ,α

∗) ∧ A = дα
∗

}), (proof, sid, {∃α∗ | A =
дα
∗

∧A∗ = (Q ′kr ,t)α
∗

})) toA. At some point of the execu-

tion A sends (J ′
1
, ˆJ ′

1
,R′

1
, (prove, {∃[s ′

0
]r | R

′
1
= д[s

′
0
]r ∧

ˆJ ′
1
= (Q ′kr ,t)[s

′
0
]r }, [s ′

0
]r)). S veri�es that R′

1
= д[s

′
0
]r

and

ˆJ ′
1
= (Q ′kr ,t)[s

′
0
]r

. If the veri�cation fails, S simulates Pt
aborting. S replies with

©­­­­­­­­­­­­«
decom, sid,

©­­­­­­­­­«

(s ′
1
, . . . , s ′n−1

),

J ′
2
= J ′/J ′

1
,

ˆJ ′
2
= ˆJ ′/(ˆJ ′

1
· A∗),

R′
2
= R′/(R′

1
· A),

proof, sid,
{∃[s ′

0
]t | R

′
2
= д[s

′
0
]t∧

ˆJ ′
2
= (Q ′kr ,t)[s

′
0
]t }

ª®®®®®®®®®®¬
,

(s ′
0
− ([s ′

0
]r − h

′
n−1
· skr ,b), s

′
1
, . . . , s ′n−1

,J ′
2
)

ª®®®®®®®®®®®®¬
23

A
2
L: Anonymous Atomic Locks for Scalability and Interoperability in Payment Channel Hubs

where h′n−1
is computed by the simulator as in the original

protocol, and skr ,b := x
1,b is the value returned by the key

generation to A. The rest of the execution is unchanged.

The simulator is e�cient, and the distribution induced

by the simulator is identical to the real execution except

for the way cα is computed. However, the same argument

from Theorem C.4 about the distribution of cα applies

here. Hence, we obtain that the distribution induced by the

simulator and the real execution is indistinguishable.

2) Pt corrupted: Prior to the interaction the simulator S is

given the ring
®pk′ := ((pk′

1,0, pk
′
1,1,k

′
1
), . . . , (pk′n−1,0, pk

′
n−1,1,

k ′n−1
), (pkr ,t ,0, pkr ,t ,1,kr ,t)), the bitb, and setsQ ′ := pkr ,t ,1−b .

After agreeing on a messagem, the simulator S is given

©­­­­­­­­­­­­­­«
com, sid,

©­«J ′2 , ˆJ ′
2
,R′

2
,

prove, sid,
{∃[s ′

0
]t | R

′
2
= д[s

′
0
]t∧

ˆJ ′
2
= (Q ′kt ,r)[s

′
0
]t }, [s ′

0
]t

ª®®¬ ,©­­­­­­­«
A,A∗, cα ,

prove, sid,
{∃α | cα = EncHE(pkt ,α)∧

A = дα },α
prove, sid,
{∃α | A = дα∧

A∗ = (Q ′kt ,r)α },α

ª®®®®®®®¬

ª®®®®®®®®®®®®®®¬
by A. S veri�es that cα = EncHE(pkt ,α), A = дα , and

A∗ = (Q ′kr ,t)α . If the veri�cation fails, S simulates Pr
aborting. S queries Sign on input (sid, ®pk′,b,m,α), and ob-

tains σ ′ := (s ′
0
, s ′

1
, . . . , s ′n−1

,R′, ˆJ ′,J ′,b). S sends (R′
1
=

R′/(R′
2
·A), ˆJ ′

1
= ˆJ ′/(ˆJ ′

2
·A∗),J ′

1
= J ′/J ′

2
, (proof, sid, {∃[s ′

0
]r |

R′
1
= д[s

′
0
]r ∧ ˆJ ′

1
= (Q ′kr ,t)[s

′
0
]r })) to A, and receives

((decom, sid),σ ′
2

:= ([s0]t , s
′
1
, . . . , s ′

2
,J ′

2
)). S veri�es that

R′
2
= д[s

′
0
]t

and
ˆJ ′
2
= (Q ′kr ,t)[s

′
0
]t

. If the veri�cation fails,

S simulates Pr aborting, otherwise S continues rest of the

execution unchanged.

The simulator is e�cient and the distribution induced

by the simulated view is identical to the one of the original

protocol.

Next, we continue with the simulation of the puzzle solver pro-

tocol. Similar to the simulation of the puzzle promise protocol, we

de�ne two simulators.

1) Ps corrupted: Prior to the interaction the simulator S is

given the ring
®pk := ((pk

1,0, pk1,1,k1), . . . , (pkn−1,0, pkn−1,1,

kn−1), (pks ,t ,0, pks ,t ,1,ks ,t)), the bitb, and setsQ := pks ,t ,1−b .

After agreeing on a message m, S sends (com, sid) to A,

for a random sid. At some point of the execution A sends

(c ′′α ,J1, ˆJ1,R1, (prove, {∃[s ′
0
]s | R1 = д

[s ′
0
]s∧ ˆJ1 = (Q

ks ,t)[s
′
0
]s },

[s ′
0
]s)). If R1 , д[s

′
0
]s

or
ˆJ1 , (Q

ks ,t)[s
′
0
]s

, then S sim-

ulates Pt aborting. S decrypts c ′′α to obtain γ , and com-

putes A′′ = дγ , (A∗)′′ = (Qks ,t)γ . S queries Sign on input

(sid, ®pk,b,m,γ), and obtainsσ := (s0, s1, . . . , sn−1,R, ˆJ ,J ,b).
S sends©­­­­­­­­­­­­«

decom, sid,

©­­­­­­­­­«

(s1, . . . , sn−1),

J2 = J/J1

ˆJ2 = ˆJ/(ˆJ1 · (A
∗)′′),

R2 = R/(R1 · A
′′),

proof, sid,
{∃[s ′

0
]t | R1 = д

[s ′
0
]t∧

ˆJ1 = (Q
ks ,t)[s

′
0
]t }

ª®®®®®®®®®¬
,A′′, (A∗)′′,

(s0 − ([s
′
0
]s − hn−1 · sks ,b), s1, . . . , sn−1,J2)

ª®®®®®®®®®®®®¬

to A, where h′n−1
is computed by the simulator as in the

original protocol, and the key sks ,b := x
1,b is the one

returned by the key generation to A. The rest of the exe-

cution is unchanged.

The simulator is e�cient and the distribution induced

by the simulated view is identical to the one of the original

protocol.

2) Pt corrupted: Prior to the interaction the simulator S is

givenA′, the ciphertext c ′α , the ring
®pk := ((pk

1,0, pk1,1,k1),

. . . , (pkn−1,0, pkn−1,1,kn−1), (pks ,t ,0, pks ,t ,1,ks ,t)), the bit

b, and sets Q := pks ,t ,1−b . After agreeing on a messagem,

the simulator S receives©­­«com, sid,
©­«J2, ˆJ2,R2,

prove, sid,
{∃[s ′

0
]t | R2 = д

[s ′
0
]t∧

ˆJ2 = (Q
ks ,t)[s

′
0
]t }, [s ′

0
]t

ª®®¬
ª®®¬

by A. S decrypts c ′α to obtain α · β , then samples a ran-

dom τ ∗ ←$Zq , computes γ ∗ = α · β · τ ∗, and c ′′α = (c
′
α)
τ ∗

,

and it queries Sign on input (sid, ®pk,b,m,γ ∗). The simu-

lator receives σ := (s0, s1, . . . , sn−1,R, ˆJ ,J ,b), and sends

(c ′′α ,R1 = R/(R2·A
′′), ˆJ1 = ˆJ/(ˆJ2·(A

∗)′′),J1 = J/J2, (proof,
sid, {∃[s ′

0
]s | R1 = д[s

′
0
]s ∧ ˆJ1 = (Q

ks ,t)[s
′
0
]s })) to A. S

receives ((decom, sid),σ2 := ([s0]t , s1, . . . , sn1
,J2)), S ver-

i�es that R2 = д[s
′
0
]t

and
ˆJ2 = (Q

ks ,t)[s
′
0
]t

. If the veri�-

cation fails, then S simulates Ps aborting. S replies with

(s0 − [s0]t , s1, . . . , sn−1,J1). The rest of the execution is

unchanged.

The simulator is e�cient and the distribution induced

by the simulator is identical to the real execution except

for the way c ′′α is computed. However, the same argu-

ment about the indistinguishability of HSM-CL encryption

scheme from the simulation of the puzzle promise protocol

applies here as well. Hence, the distributions induced by

the simulated view is identical to the one of the original

protocol.

�

Next, we continue with the proof of Lemma C.10. Let cheat
be the event that triggers an abort of the experiment in H3. As-

sume towards contradiction that Pr[cheat | H∗
2
] ≥ 1

poly(λ) , then

we can construct the following reduction against the existential

unforgeability of DLSAG signature. The reduction receives as input

a ring
®pk, and a public key pk, such that pk ∈ ®pk and samples

an index j ∈ [1,q], where q ∈ poly (λ) is a bound on the total

number of interactions. Let Q be the key generated in the j-th in-

teraction, the reduction sets Q = pk. All the calls to the signing

algorithm are redirected to the signing oracle. If the event cheat
happens, the reduction returns the corresponding (pk∗,m∗,σ ∗ :=

(s∗
0
, s∗

1
, . . . , s∗n−1

,R∗, ˆJ ∗,J ∗,b∗)), otherwise it aborts.

The reduction is clearly e�cient. Assume that j is the index of the

interaction where cheat happens. Note that in the case the guess of

the reduction is correct we have that pk∗ = pkr ,t ,1−b∗ and pk∗ ∈ ®pk.

24

A
2
L: Anonymous Atomic Locks for Scalability and Interoperability in Payment Channel Hubs

Since cheat happens we have that VerifyDLSAG(®pk,m
∗,σ ∗) = 1, but

s∗
0
, Open(Π, ᾱ)[s0] (here we replaced s from the hybrid with

s0 as that is the s value of interest in DLSAG signatures), where

Π and ᾱ are returned from the puzzle promise and puzzle solver

protocols, respectively. Recall that ᾱ = α · β and Open parses Π as

(s ′
0
, s ′

1
, . . . , s ′n1

,R′, ˆJ ′,J ,b), where s ′
0
= s
(j)
0
− α , for some α ∈ Zq ,

where s
(j)
0

comes from the answer of the oracle on the j-th session

on inputmj . Substituting we get

s∗
0
, Open(Π, ᾱ)[s0]

, s ′
0
+ (ᾱ · β−1)

, s
(j)
0
− α + α · β · β−1

, s
(j)
0

as expected. Since each message uniquely identi�es a session, this

implies that (pk∗,m∗,σ ∗) is a valid forgery. By assumption this

happens with probability at least
1

q ·poly(λ) , which is a contradiction

and proves that Pr[cheat | H∗
2
] ≤ negl(λ). �

Lemma C.12. For all PPT distinguisher E it holds that

EXECH3,A,E ≈ EXECH4,A,E .

Proof. Let q ∈ poly (λ) be a bound on the total number of

interactions. Let cheat denote an event that triggers an abort inH4,

but not inH3. We prove the indistinguishability ofH3 andH4 by

showing that Pr[cheat | H3] ≤ negl(λ). Assume that the converse

is true, then we can construct the following reduction against the

discrete logarithm problem: On input some A∗ ∈ G, a ring
®pk, and

a public key pk, such that pk ∈ ®pk the reduction guesses a session

j ∈ [1,q]. The reduction replaces A from the �rst message of the

puzzle promise protocol withA∗. If Ps is requested to call the puzzle

solver protocol, the reduction aborts. At some point of the execution

A outputs some (pk∗,m∗,σ ∗ := (s∗
0
, s∗

1
, . . . , s∗n−1

,R∗, ˆJ ∗,J ∗,b∗)).

The reduction returns дs
∗
0
−s ′

0 , where s ′
0

is part of the output of the

puzzle promise protocol.

The reduction is clearly e�cient, and whenever j is guessed

correctly, the reduction does not abort, and we also have that

pk∗ = pkr ,t ,1−b∗ . The event cheat happens only in the case where

VerifyDLSAG(®pk,m
∗,σ ∗) = 1, but puzzle solver protocol has not

been executed. Recall that s ′
0
= s
(j)
0
− α and A = дα , for some

α ∈ Zq , where s
(j)
0

is part of the answer of the oracle on the j-th
session on input mj . We note that we replaced A with the input

A∗ of the reduction, hence A = A∗ in this case. As argued in the

proof of Lemma C.10, if s∗
0
, s
(j)
0

, then we have an attacker against

the unforgeability of the signature scheme. Hence, it follows that

s∗
0
= s
(j)
0

with all but negligible probability. Substituting we have

дs
∗
0
−s ′

0 = дs
∗
0
−(s (j)

0
−α)

= дα

= A

as expected. Since, by assumption this happens with probability at

least
1

q ·n ·poly(λ) , we have a successful attacker against the discrete

logarithm problem. This proves our lemma. �

This concludes the proof of Theorem F.1. �

D SECURITY ANALYSIS OF TRILERO
Multi-session Extension. Composition theorem requires that

each call of every ideal functionality spawns an independent in-

stance of the corresponding functionality. However, our FA2L func-

tionality formally requires a joint state between sessions. More

precisely, the KGen protocols that are used for establishing pair-

wise links are shared between multiple puzzle promise/puzzle solver

instances, which might potentially result in shared keys between

the di�erent instances of A
2
L that realize payment channels. There-

fore, we need to rely on composition with joint state (as discussed in

[9]), where the authors state a stronger version of the composition

theorem, called JUC, which accounts for joint state and randomness

across protocol sessions.

In order to satisfy the conditions for the JUC theorem to ap-

ply, we must �rst argue that our protocol realizes a stronger ideal

functionality
˜FA2L, that makes only independent calls to the under-

lying interfaces. More precisely, we need to argue for each of the

previously presented concrete realizations of FA2L that a parallel

composition of those protocols realizes the functionality
˜FA2L (with

all instances of the protocols sharing the same KGen, but running

independently otherwise). We show this in the following lemmas.

Lemma D.1. Let COM be a secure commitment scheme, let NIZK
be a non-interactive zero-knowledge scheme, and let �LSchnorrKGen
be the multi-session extension of the protocol described in Figures 6,
7 and 8, using a shared KGen algorithm that realizes F Schnorr

KGen . If
Schnorr signatures are strongly existentially unforgeable and HSM-

CL encryption is IND-CPA secure, then �LSchnorrKGen, UC-realizes the
ideal functionality ˜FA2L in the (F Schnorr

KGen , Fanon, Fsmt, Fsyn)-hybrid
model.

Proof. It is trivial to see that the F Schnorr
KGen functionality itself

is stateless, and therefore, consecutive invocations of F Schnorr
KGen are

indistinguishable from the invocations of fresh instances of the

functionality. Thus, for multiple protocols, it is identical to query

the same F Schnorr
KGen instance or to work on independent copies (note

that the same property carries over to protocols realizing this func-

tionality). Consequently, �LSchnorrKGen is indistinguishable from the

multi-session extension of LSchnorr using independent KGen copies

that realizeF Schnorr
KGen . Hence, the claim follows from the composition

theorem [7] and Theorem 4.2. �

Lemma D.2. Let COM be a secure commitment scheme, let NIZK
be a non-interactive zero-knowledge scheme, and let �LECDSAKGen
be the multi-session extension of the protocol described in Figures 9,
10 and 11, using a shared KGen algorithm that realizes F ECDSA

KGen . If
ECDSA signatures are strongly existentially unforgeable and HSM-CL

encryption is IND-CPA secure, then �LECDSAKGen, UC-realizes the
ideal functionality ˜FA2L in the (F ECDSA

KGen , Fanon, Fsmt, Fsyn)-hybrid
model.

Proof. F ECDSA
KGen satis�es the same independence properties as

F Schnorr
KGen , hence, the same argument as for Lemma D.1 applies. �

25

A
2
L: Anonymous Atomic Locks for Scalability and Interoperability in Payment Channel Hubs

Lemma D.3. Let COM be a secure commitment scheme, let NIZK
be a non-interactive zero-knowledge scheme, and let �LDLSAGKGen

be the multi-session extension of the protocol described in Figures
12, 13 and 14, using a shared KGen algorithm that realizes FDLSAG

KGen .
If DLSAG signatures are existentially unforgeable and HSM-CL en-

cryption is IND-CPA secure, then �LDLSAGKGen
, UC-realizes the ideal

functionality ˜FA2L in the (FDLSAG
KGen , Fanon, Fsmt, Fsyn)-hybrid model.

Proof. FDLSAG
KGen satis�es the same independence properties as

F Schnorr
KGen , hence, the same argument as for Lemma D.1 applies. �

Now, we are in a position to prove that Trilero UC-realizes FPCH
as de�ned in Theorem 4.1.

Proof. The proof consists of the observation that the ideal func-

tionality FA2L enforces balance security and unlinkability proper-

ties of a PCH (that are de�ned in Section 3.2). Balance security is

guaranteed due to the atomicity of FA2L, meaning either all the

balances are updated or none of them. This ensures that no party

loses or gains more than it should. As was discussed in Section 3.3,

FA2L satis�es the unlinkability property, hence, the same argument

for unlinkability applies here too. Also, note that the only informa-

tion that is sent outside of FA2L consists of amounts and timeouts,

and these values are chosen exactly as described in FPCH. Further-

more, it is su�cient to argue about the individual copies of FA2L
in isolation by the JUC theorem [9]. As was shown in Lemmas

D.1 and D.2, the multi-session extended ideal functionality
˜FA2L

is realized by our instantiations, and therefore, the JUC theorem

allows us to complete the analysis assuming independent copies of

FA2L running in parallel. �

E LIMITATIONS OF UNLINKABILITY
In this section, we discuss the unlinkability limitations inherent to

the PCH setting, and thus also a�ecting Trilero. We remark that

these limitations are inherent to any tumbler protocol, as shown

for instance in TumbleBit [27].

EpochAnonymity.Assume that Pt executes the puzzle promise

protocol with k parties during an epoch. If within the same epoch

k payments successfully complete, then the anonymity set is of

size k since there exist k compatible interaction graphs, as de�ned

in Section 3.2.

It is however not always the case that k is equal to the total

number of parties. The exact anonymity level can be established

only at the end of the epoch depending on the number of successful

puzzle promise and puzzle solver protocols. For instance, anonymity

is reduced by 1 if Pt aborts a a payment made by a party Ps . The

payment between Ps and Pr would be the only one failing, thereby

showing that Pr was the expected receiver. It is important to note

that Ps does not lose coins as Pt obtains a valid channel update

only if it cooperates in solving the puzzle.

Tumbler/Receiver Collusion. The tumbler Pt and the receiver

Pr can collude to learn the identity of the sender Ps . Intuitively,

this type of attack is only useful if Pr can be paid by Ps without

learning its true identity. We partially address this collusion in our

constructions by letting Ps randomize the puzzle it receives from

Pr . However, Pr can still send a maliciously constructed puzzle

(more precisely, an invalid puzzle or a non-randomized puzzle) to

Ps , which can cause an abort or leak information to Pt during the

execution of the puzzle solver protocol between Ps and Pt . This

in turn can allow Pt to link that Ps was the party that intended

to pay Pr . One possible mitigation to this is to force Pr to give

a zero-knowledge proof to Ps that the puzzle it sends is a valid

randomized puzzle.

Intersection Attack. The aforementioned k-anonymity notion

is broadly used in mixing protocols with an intermediate Pt . How-

ever, Pt can further reduce the anonymity set. At any epoch, Pt
can record the set of senders and receivers that participate in the

puzzle solver and puzzle promise protocols respectively. Then, Pt
can correlate this information across epochs to de-anonymize users

across epochs (e.g., using frequency analysis).

Ceiling Attack. The amount of payments that a certain Pr
can receive during a certain epoch is limited by the balance at

the channel between Pt and Pr . If such channel is exhausted (i.e.,

(Pt , Pr)
0,xPr), Pt can deterministically derive the fact that Pr is not

a potential receiver within the current epoch.

Attacks with Auxiliary Information.. Our notion of unlink-

ability does not consider auxiliary information available to Pt . As-

sume that Pt knows that a certain Pr has a shop online selling a

product for a value 2 ·amt. Further assume that during an epoch, Pt
executes the puzzle promise protocol only once on every channel

except for one Pr for which the puzzle promise protocol is exe-

cuted twice. Similarly, Pt could observe that there exists a single

Ps executing twice the puzzle solve protocol, allowing Pt to link

the pair Ps , Pr . As indicated in [27], this type of attacks (called

Potato attack in [27]) could be mitigated by aggregating payments

or adding noise à la di�erential privacy.

F A2L FOR MONERO
In the following, we present how to construct A

2
L for Monero.

Our construction makes use of the recent ring signature scheme,

called DLSAG, introduced by Moreno-Sanchez et al. [41]. The puzzle

promise and puzzle solver protocols can be seen in Figure 12 and

Figure 13, respectively. For simplicity we assume that the ring

®pk and the parity bit b indicating the chosen key are given as

public parameters. The values inside brackets denote the shares. For

instance, [s ′
0
]r and [s ′

0
]t denote the share of Pr and Pt , respectively,

for the value s0. We consider two hash functions: (i) Hs takes as

input a bitstring and outputs a scalar (i.e., Hs : {0, 1}∗ → Zq);

(ii) Hp takes as input a bitstring and outputs an element of G (i.e.,

Hp : {0, 1}∗ → G).Q ′ andQ denote the chosen key (according to the

bit b) of the dual key created when opening the payment channels

between Pr /Pt and Ps /Pt , respectively. For more information about

how to open payment channels and make conditional payments in

Monero we refer the reader to [41].

We de�ne the security of the DLSAG-based construction in The-

orem F.1 and formally prove it in Appendix C.

Theorem F.1. Let COM be a secure commitment scheme and let
NIZK be a non-interactive zero-knowledge scheme. If DLSAG signa-
ture is existentially unforgeable and HSM-CL encryption is IND-CPA

secure, then the construction in Figures 12, 13 and 14, UC-realizes the
ideal functionality FA2L in the (FDLSAG

KGen , Fanon, Fsmt, Fsyn)-hybrid
model.

26

A
2
L: Anonymous Atomic Locks for Scalability and Interoperability in Payment Channel Hubs

Public parameters: G,д,q, a bit b, a ring
®pk′ := ((pk′

1,0, pk
′
1,1,k

′
1
), . . . , (pk′n−1,0, pk

′
n−1,1,k

′
n−1
), (pkr ,t ,0, pkr ,t ,1,kr ,t)), a messagem′

PuzzlePromisePt (skt ,b ,Q
′

:= pkr ,t ,1−b) PuzzlePromisePr (skr ,b ,Q
′

:= pkr ,t ,1−b)
[s′

0
]t ←$Zq ; ®s′ := (s′

1
, . . . , s′n−1

) ←$Zq

J′
2
← (Q ′)skt ,b ·kr ,t ;

ˆJ′
2
← (Q ′)[s

′
0
]t ·kr ,t

R′
2
← д[s

′
0
]t

;α ←$Zq ; cα ← EncHE(pkt , α)
A← дα ;A∗ ← (Q ′)α ·kr ,t

πα ← PNIZK({∃α | cα = EncHE(pkt , α) ∧ A = д
α }, α)

πA ← PNIZK({∃α | A = дα ∧ A∗ = (Q ′kr ,t)α }, α)

π ′
2
← PNIZK({∃[s′0]t | R

′
2
= д[s

′
0
]t

∧ ˆJ′
2
= (Q ′kr ,t)[s

′
0
]t }, [s′

0
]t)

(com, decom) ← PCOM(®s′, J′2 , (ˆJ′
2
, R′

2
, π ′

2
))

com, πα , πA, cα , A, A∗

If VNIZK(πA, (A, A∗)) , 1

∨ VNIZK(πα , (cα , A)) , 1 then abort

[s′
0
]r ←$Zq ;R′

1
← д[s

′
0
]r

J′
1
← (Q ′)skr ,b ·kr ,t ;

ˆJ′
2
← (Q ′)[s

′
0
]r ·kr ,t

π ′
1
← PNIZK({∃[s′0]r | R

′
1
= д[s

′
0
]r

∧ ˆJ′
1
= (Q ′kr ,t)[s

′
0
]r }, [s′

0
]r)

J′
1
, ˆJ′

1
, R′

1
, π ′

1

If VNIZK(π ′1, (R
′
1
, ˆJ′

1
)) , 1 then abort

J′ ← J′
1
· J′

2
;R′ ← R′

1
· R′

2
· A;

ˆJ ← ˆJ′
1
· ˆJ′

2
· A∗

h′
0
← Hs (m′ ‖R′ ‖ ˆJ′)

∀i ∈ {1, . . . , n − 1} :

L′i ← дs
′
i · pk

′h′i−1

i ,b ;R′i ← pk
′s′i ·k

′
i

i ,1−b · J
′hi−1

h′i ← Hs (m′ ‖L′i ‖R
′
i)

[s0]t ← [s′0]t − h
′
n−1
· skt ,b

(decom, ®s′, J′
2
, ˆJ′

2
, R′

2
, π ′

2
), [s0]t

If VCOM(com, decom, (®s′, J′
2
, ˆJ′

2
, R′

2
, π ′

2
)) , 1 then abort

If VNIZK(π ′2, (R
′
2
, ˆJ′

2
)) , 1 then abort

J′ ← J′
1
· J′

2
;R′ ← R′

1
· R′

2
· A;

ˆJ′ ← ˆJ′
1
· ˆJ′

2
· A∗

h′
0
← Hs (m′ ‖R′ ‖ ˆJ′)

∀i ∈ {1, . . . , n − 1} :

L′i ← дs
′
i · pk

′h′i−1

i ,b ;R′i ← pk
′s′i ·k

′
i

i ,1−b · J
′hi−1

h′i ← Hs (m′ ‖L′i ‖R
′
i)

[s0]r ← [s′0]r − h
′
n−1
· skr ,b

β ←$Zq ; c′α ← (cα)
β

;A′ ← Aβ

[s0]r

Send ` := (A′, c′α) to Ps
σ ′ := ([s0]t + [s0]r , s′1, . . . , s

′
n−1

, R′, ˆJ′, J′, b)

return σ := ([s0]t + [s0]r + α , s′1, . . . , s
′
n−1

, R′, ˆJ′, J′, b) return (Π := (β , (®pk′,m′, σ ′), `)

Figure 12: Puzzle promise protocol of DLSAG-based construction.

27

A
2
L: Anonymous Atomic Locks for Scalability and Interoperability in Payment Channel Hubs

Public parameters: G,д,q, a bit b, a ring
®pk := ((pk

1,0, pk1,1,k1), . . . , (pkn−1,0, pkn−1,1,kn−1), (pks ,t ,0, pks ,t ,1,ks ,t)), a messagem

PuzzleSolverPs (sks ,b ,Q := pks ,t ,1−b , ` := (A′, c′α)) PuzzleSolverPt (skt ,b ,Q := pks ,t ,1−b)
[s′

0
]t ←$Zq ; ®s := (s1, . . . , sn−1) ←$Zq

J2 ← Q skt ,b ·ks ,t ;
ˆJ2 ← Q [s

′
0
]t ·ks ,t

;R2 ← д[s
′
0
]t

π2 ← PNIZK({∃[s′0]t | R2 = д[s
′
0
]t

∧ ˆJ2 = (Qks ,t)[s
′
0
]t }, [s′

0
]t)

(com, decom) ← PCOM(®s , J2, (ˆJ2, R2, π2))

com

[s′
0
]s ←$Zq ;R1 ← д[s

′
0
]s

J1 ← Q sks ,b ·ks ,t ;
ˆJ1 ← Q [s

′
0
]s ·ks ,t

π1 ← PNIZK({∃[s′0]s | R1 = д[s
′
0
]s

∧ ˆJ1 = (Qks ,t)[s
′
0
]s }, [s′

0
]s)

τ ←$Zq ; c′′α ← (c
′
α)
τ

J1, ˆJ1, R1, π1, c′′α

If VNIZK(π1, (R1, ˆJ1)) , 1 then abort

γ ← DecHE(skt , c
′′
α);A

′′ ← дγ ; (A∗)′′ ← Qγ ·ks ,t

πA ← PNIZK({∃γ | A′′ = дγ ∧ (A∗)′′ = (Qks ,t)γ }, γ)

J ← J1 · J2;R ← R1 · R2 · A′′; ˆJ ← ˆJ1 · ˆJ2 · (A∗)′′

h0 ← Hs (m ‖R ‖ ˆJ)

∀i ∈ {1, . . . , n − 1} :

Li ← дsi · pkhi−1

i ,b ;Ri ← pksi ·kii ,1−b · J
hi−1

hi ← Hs (m ‖Li ‖Ri)
[s0]t ← [s′0]t − hn−1 · skt ,b

(decom, ®s , J2, ˆJ2, R2, π2), A′′, (A∗)′′, πA, [s0]t

If VCOM(com, decom, (®s , J2, ˆJ2, R2, π2)) , 1 then abort

If VNIZK(π2, (R2, ˆJ2)) , 1

∨ VNIZK(πA, (A′′, (A∗)′′) , 1 then abort

If (A′)τ , A′′ then abort

J ← J1 · J2;R ← R1 · R2 · A′′; ˆJ ← ˆJ1 · ˆJ2 · (A∗)′′

h0 ← Hs (m ‖R ‖ ˆJ)

∀i ∈ {1, . . . , n − 1} :

Li ← дsi · pkhi−1

i ,b ;Ri ← pksi ·kii ,1−b · J
hi−1

hi ← Hs (m ‖Li ‖Ri)
[s0]s ← [s′0]s − hn−1 · sks ,b

[s0]s

σ := (s0 := [s0]s + [s0]t + γ , s1, . . . , sn−1, R, ˆJ, J, b)
If veri�cation of σ fails then abort

Else publish signature σ

γ ← s0 − ([s0]s + [s0]t); ᾱ ← γ · τ −1

Send ᾱ to Pr
return ᾱ return >

Figure 13: Puzzle solver protocol of DLSAG-based construction.

28

A
2
L: Anonymous Atomic Locks for Scalability and Interoperability in Payment Channel Hubs

Open(Π, ᾱ)

Parse Π as (β , (®pk′,m′, σ ′ := (s′
0
, s′

1
, . . . , s′n−1

, R′, ˆJ′, J′, b)))
Set α ← ᾱ · β−1

Set s0 ← s′
0
+ α

return (s0, s′
1
, . . . , s′n−1

, R′, ˆJ′, J′, b)

Verify(Π,σ)

Parse Π as (β , (®pk′,m′, σ ′))
return VerifyDLSAG(

®pk′,m′, σ)

Figure 14: Open and verify algorithms of DLSAG-based construction.

29

	Abstract
	1 Introduction
	1.1 Payment Channel Hubs (PCHs)
	1.2 State-of-the-art in PCH
	1.3 Our Contributions

	2 Problem Description
	2.1 Our Approach

	3 Security and Privacy Model
	3.1 Preliminaries
	3.2 Payment Channel Hub (PCH)
	3.3 Anonymous Atomic Lock (A2L)

	4 Our Protocols
	4.1 Trilero: Our PCH Instantiation
	4.2 A2L Instantiations
	4.3 ECDSA-based Construction

	5 Performance Analysis
	5.1 Implementation Details
	5.2 Evaluation

	6 Related Work
	7 Conclusion
	References
	A Correctness Definitions
	A.1 Payment Channel Hub (PCH)
	A.2 Anonymous Atomic Locks (A2L)

	B Hash Proof Systems and Castagnos-Laguillaumie Encryption Scheme
	C Security Analysis of A2L
	D Security Analysis of Trilero
	E Limitations of Unlinkability
	F A2L for Monero

