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Abstract—Payment channel hubs (PCHs) constitute a promis-
ing solution to the inherent scalability problems of blockchain
technologies, allowing for off-chain payments between sender
and receiver through an intermediary, called the tumbler.
While state-of-the-art PCHs provide security and privacy guar-
antees against a malicious tumbler, they do so by relying on the
scripting-based functionality available only at few cryptocur-
rencies, and they thus fall short of fundamental properties such
as backwards compatibility and efficiency.

In this work, we present Trilero, the first PCH protocol to
achieve all aforementioned properties. Trilero builds upon A2L,
a novel cryptographic primitive that realizes a three-party pro-
tocol for conditional transactions, where the tumbler pays the
receiver only if the latter solves a cryptographic challenge with
the help of the sender, which implies the sender has paid the
tumbler. We prove the security and privacy guarantees of A2L
(which carry over to Trilero) in the Universal Composability
framework and present a provably secure instantiation based
on adaptor signatures. We implemented A2L and compared
it to TumbleBit, the state-of-the-art Bitcoin-compatible PCH.
Asymptotically, A2L has a communication complexity that is
constant, as opposed to linear in the security parameter like in
TumbleBit. In practice, A2L requires ~33x less bandwidth than
TumleBit, while retaining the computational cost (or providing
2x speedup with a preprocessing technique). This demonstrates
that A2L (and thus Trilero) is ready to be deployed today.

In theory, we demonstrate for the first time that it is
possible to design a secure and privacy-preserving PCH while
requiring only digital signatures and timelock functionality
from the underlying scripting language. In practice, this re-
sult makes Trilero backwards compatible with virtually all
cryptocurrencies available today, even those offering a highly
restricted form of scripting language such as Ripple or Stellar.
The practical appealing of Trilero has resulted in a proof-of-
concept implementation in the COMIT Network, a blockchain
technology focused on cross-currency payments.

1. Introduction

The increasing adoption of cryptocurrencies has raised
scalability issues [1] that go beyond the rapidly growing
blockchain size. For instance, the permissionless nature of
the consensus algorithm underlying widely deployed cryp-
tocurrencies such as Bitcoin and Ethereum strictly limits

their transaction throughput to tens of transactions per sec-
ond at best [1], which contrasts with the throughput of
centralized payment networks such as Visa that supports
peaks of up to 47,000 transactions per second [2].

Among the several efforts to mitigate these scalability
issues [3], [4], [5], payment channels have emerged as
the most widely deployed solution in practice. The core
idea of payment channels is to let users lock a certain
amount of coins (called collateral) in a “2-of-2 multisig
address”1 (called channel) controlled by them, storing the
corresponding transaction on-chain. From that moment on,
these two users can pay each other by simply agreeing on
a new distribution of the coins locked in the channel: the
corresponding transactions are stored locally, that is, off-
chain. When the two users disagree on the current redis-
tribution or simply terminate their economic relation, they
submit an on-chain transaction that sends back the coins
to their owners according to the last agreed distribution of
coins, thereby closing the channel. Thus, payment chan-
nels require only two on-chain transactions (i.e., open and
close channel), yet supporting arbitrarily many off-chain
payments, which significantly enhances the scalability of
the underlying blockchain.

The problem with this simple construction is that in
order to pay different people, a user should establish a
payment channel with each of them, which is financially
prohibitive, as this user would have to lock an amount of
coins proportional to the number of users she wants to
transact with. Furthermore, the coins locked at a payment
channel with one user cannot be used to perform payments at
a different payment channel with another user. For instance,
assume that Alice has a payment channel with Bob where
she owns 3 coins and another payment channel with Carol
where she owns 5 coins. Now assume that the channel
between Alice and Carol becomes depleted (i.e., Alice pays
all 5 coins to Carol), then Alice cannot pay further to Carol,
even though she still owns 3 coins in the channel with
Bob. If Alice wants to pay more to Carol, she needs to
(i) close the payment channel with Bob to unlock the 3
coins; (ii) create another payment channel with Carol to
lock the 3 coins with her. Each of these two steps, however,

1. A 2-of-2 multisig address requires both address owners to agree on
the usage of the coins stored therein, which is achieved by signing the
corresponding transaction.



requires an on-chain transaction, reducing the scalability
gain of payment channels in the first place. Payment channel
networks (PCNs) offer a partial solution to this problem,
enabling multi-hop payments along channel paths: if one
sees a PCN as a graph where nodes are users and edges are
channels, PCNs enable payments between any two nodes
connected by a path. PCNs, but raise the issue of finding
paths in a network and maintaining the network topology.

Payment channel hubs (PCHs). PCHs constitute a con-
ceptually simpler solution to the aforementioned problem.
Each party opens a channel with a central party, called the
tumbler, which mediates payments between each pair of
sender and receiver. By our running example, Alice could
open a payment channel with the tumbler where she owns
8 coins, while the tumbler could open two channels, one
with Bob and one with Carol. In this setting, now Alice
can arbitrarily choose how to pay each of the 8 coins using
tumbler as the intermediary. In general, if the sender wants
to transfer x coins to the receiver, the sender pays x + fee
to the tumbler, which then forwards x coins to the receiver,
where fee denotes a fee charged by the tumbler. Such a naïve
construction, despite being still deployed in many gateways,
suffers from obvious security and privacy issues: the tumbler
could steal coins [6], [7] from honest parties (e.g., by simply
not forwarding a payment) and identify who is paying to
whom [7], [8].

In the PCH setting, security can be seen in terms of
transaction atomicity and should protect the two participants
who are sending coins. Atomicity is thus two-fold: (i) the
tumbler should receive the money from the sender only
if the tumbler has forwarded the corresponding amount to
the receiver; (ii) the receiver should receive money from
the tumbler only if the sender has paid the corresponding
amount to the tumbler. Privacy covers unlinkability, that is,
the tumbler should not able to link the sender and receiver
of a given payment, an important property for PCHs to
support privacy-preserving cryptocurrencies (e.g., Monero,
Zcash or Mimblewimble). As these two properties seem
contradictory (i.e., how can the tumbler ensure atomicity
without knowing who pays to whom?), designing a secure
and privacy-preserving PCH is a technical challenge.

Besides security and privacy, another fundamental prop-
erty is backwards compatibility: the tumbler should rely on
functionality available at as many cryptocurrencies avail-
able today as possible because only then the PCH setting
can be deployed in such cryptocurrencies. Additionally, it
opens the door to the tumbler being be able to mediate
payments across different cryptocurrencies (e.g., the sender
transfering bitcoins and the receiver getting ethers), thereby
enabling cross-chain applications like exchanges. Achieving
the backwards compatibility goal is technically challenging
in the presence of cryptocurrencies such as Ripple or Mim-
blewimble where payments governed by a highly restricted
functionality, namely digital signatures and time locks.

State-of-the-art in PCH. BOLT [9] is an off-chain pro-
tocol for PCHs that provides strong anonymity guarantees
by relying a novel protocol based on zero-knowledge proofs.
This approach, however, requires functionality that is only

provided by Zcash.
Perun [10] builds the PCH upon virtual channels, an

Ethereum smart contract-based construction that intuitively
allows to fold two channels (e.g., Alice→ Tumbler→ Bob)
into a single channel (Alice → Bob). This technique, how-
ever, inherently leaks the sender-receiver relation between
Alice and Bob to the tumbler.

NOCUST [11] is an off-chain protocol that relies on an
untrusted operator to manage the off-chain payments among
parties. The operator periodically includes a summary on-
chain that certifies the balances and the transactions for
public verifiability. Similar to Perun, NOCUST does not
provide unlinkability against a malicious intermediate (i.e.,
operator) and also lacks backwards compatibility.

TeeChain [12] is an off-chain protocol that leverages
trusted execution environments (e.g., Intel SGX) to manage
off-chain payments and resolve disputes among channel
participants. Thus, parties need to run a TEE, which hinders
the widespread deployment of this approach in practice.

TumbleBit [13] is a cryptographic protocol for PCHs
that makes transactions unlinkable (i.e., the tumbler does not
learn who is paying to whom). However, the cryptographic
construction used in TumbleBit builds upon the cut-and-
choose technique, and thus TumbleBit requires computation
and communication costs that grow linearly in the security
parameter. More precisely, TumbleBit’s security level is
computed via the binomial coefficient

(
m+n
m

)
, where m

and n are the parameters of the cut-and-choose game. This
implies that the parties need to compute and exchanges
messages composed of m+n elements, hence, linear in the
parameters of the security game. For instance, TumbleBit
requires messages of size 250−400KB for a single payment,
and running times of up to 10 seconds in the worst case
(over a WAN setting with parties connected through Tor
network). Moreover, TumbleBit relies on the hash-time lock
contract (HTLC), a Bitcoin script-based construction that
allows for payments conditioned on obtaining the preimage
of a hash function. However, this limits the deployment of
TumbleBit to the cryptocurrencies supporting HTLC, ruling
out cryptocurrencies without support for scripting language,
such as Ripple, Stellar or Mimblewimble.

We summarize the properties achieved by each PCH
construction in Table 1. Most notably, all state-of-the-art
PCHs fail to achieve at least one of the considered proper-
ties and, in particular, all of them fall short of backwards
compatibility: while BOLT, Perun and NOCUST totally
lack it, Teechain achieves it at the cost of adding a new
trust assumption (TEE), whereas TumbleBit is restricted to
blockchains supporting HTLC contracts, and suffers from a

TABLE 1: Comparison among state-of-the-art PCH.
Atomicity Unlinkability Compatibility (Required functionality)

BOLT [9]   # (Zcash)
Perun [10]  # # (Ethereum)
NOCUST [11]  # # (Ethereum)
Teechain [12]   G#2 (Trusted Execution Environment)
TumbleBit [13]   1 G#3 (HTLC-based currencies)
A2L   1  (Digital signature and timelocks)
1 Payments have fixed amounts; 2 Every user must run a TEE; 3 Not

supported by scriptless cryptocurrencies (e.g., Ripple and Stellar).



high communication complexity.
This state of affairs in the state-of-the-art leads us to

consider the following questions:
Q1: What is the minimal functionality from the scripting

language required to design a PCH?
Q2: Is it possible to have a PCH backwards compatible

with virtually all cryptocurrencies that is efficient and
provides security and privacy?

Our contributions. This work answers Q1 by present-
ing the first PCH construction that requires only digital
signatures and timelock functionality from the underlying
cryptocurrency. Besides the time required to implement a
change in the consensus protocol and the low likelihood
this is actually accepted, adding functionality to the under-
lying cryptocurrency increases the trusted computing base
(i.e., checking that there are no inconsistencies with other
functionalities) which in general exacerbates the problem of
verifying scripts (e.g., bugs in Ethereum smart contracts add
countless new attack vectors). Additionally, we also answer
Q2 in the affirmative as our protocol is the first secure,
privacy-preserving, and backwards compatible PCH, whose
communication complexity is constant (i.e., the number of
elements that need to be exchanged are independent of the
security parameter). Specifically,
• We introduce Trilero, a cryptographic PCH realization

whose core technical ingredient is a novel cryptographic
primitive called anonymous atomic locks (A2L). Intu-
itively, A2L realizes a three-party protocol for conditional
transactions, where the intermediary pays the receiver
only if the latter solves a cryptographic challenge with
the help of the sender, which implies that the sender
has paid the intermediary. We model Trilero as well
as its security and privacy properties (namely, atomicity
and unlinkability) in the Universal Composability (UC)
framework [14], providing the first formalization of the
PCH problem in UC.

• We give an instantiation based on adaptor signatures,
which in turn can be securely instantiated by well-known
signature schemes such as Schnorr and ECDSA [15]. By
dispensing from HTLCs, our instantiations offer the high-
est degree of backwards compatibility among the state-of-
the-art PCHs: e.g., Ripple and Stellar support ECDSA and
Schnorr but not HTLCs, whereas Mimblewimble supports
Schnorr but not HTLCs.

• Our evaluation of A2L shows that our construction re-
quires a running time of ~0.6 seconds. Furthermore, the
communication cost is less than 10KB . When compared
to TumbleBit, the most backwards compatible PCH prior
to this work, which has linear communication and compu-
tation complexity, our experimental evaluations shows that
A2L requires ~33x less bandwidth, and similar computa-
tion costs (or 2x speedup with a preprocessing technique),
despite providing additional security guarantees that Tum-
bleBit do not implement, such as protection against grief-
ing attacks. These results demonstrate that Trilero is
the most efficient Bitcoin-compatible PCH. Additionally,
Trilero has been implemented as a proof-of-concept in the

COMIT Network (see Section 5), a technology focussed
on payments across different cryptocurrencies.

2. Problem Description and Solution Overview

Notation. A payment-channel hub (PCH) can be repre-
sented as a graph, where each vertex represents a party P ,
and each edge represents a payment channel ς between two
parties Pi and Pj , for Pi, Pj ∈ P, where P denotes the set
of all parties. We define a payment channel ς as an attribute
tuple (ς.id, ς.users, ς.cash, ς.state), where ς.id ∈ {0, 1}∗ is
the channel identifier, ς.users ∈ P2 defines the identities
of the channel users, ς.cash : ς.users → R≥0 is a mapping
from channel users to their respective amount of coins in
the channel, and ς.state = (θ1, . . . , θn) is the current state
of the channel, which is composed of a list of updates.

Since our cryptographic construction is orthogonal to
how payment channels are actually updated, we abstract
away from the details to update a payment channel and refer
the reader to [4], [15] for a detailed description. Instead,
we hereby assume that payment channels support the two
functionalities that we require for our PCH construction.
First, we assume that the current channel state ς.state
requires a valid 2-of-2 multisignature from ς.users to be
added to the blockchain. We remark that this is only for
presentation purposes and we detail in Appendix F how
to modify our construction to be backwards compatible
with cryptocurrencies missing support for multisignatures
and only supporting standard digital signatures. Second, we
hereby denote by TLP(θ, t) a timelocked payment where the
channel update θ (within ς.state) can be accepted before
time t expires if ς.users provide the corresponding valid 2-
of-2 multisignature. After t expires, the update θ can only
be rejected.

PCH functionality. A PCH allows for off-chain pay-
ments between two parties connected by an intermediary,
called tumbler and denoted here as Pt. A payment from
the sender Ps to the receiver Pr for amt coins through
the channels ς and ς ′, such that ς.users = {Ps, Pt} and
ς ′.users = {Pt, Pr}, requires that ς.cash(Ps) ≥ amt and
ς ′.cash(Pt) ≥ amt. If these prerequisites are met, a pay-
ment updates the balances at both channels as follows:
ς.cash(Ps) −= amt, ς.cash(Pt) += amt, ς ′.cash(Pt) −=
amt and ς ′.cash(Pr) += amt. In other words, amt is
moved from the sender to the tumbler in the channel ς and
from the tumbler to the receiver in the channel ς ′. We note
that in practice for every successful payment Pt receives
certain amount of fees, which incentivizes Pt to participate
as an intermediary. We omit here the fees for the sake of
readability, and discuss them further in Section 5.1.2.

Challenges in PCH. Naively, Ps could pay Pt, and later
on let Pt forward the payment to Pr. However, this falls
short of both unlinkability and atomicity. For unlinkability,
even in the presence of several simultaneous payments, even
an honest-but-curious Pt learns that the two channels that
are immediately updated are part of the same payment,
i.e., who pays to whom. Hence different payments must be
intertwined in a non-predictable way. For atomicity, if Ps



1 : Ps((sks, pks), pkt, oid) Pt((skt, pkt), pks, pkr) Pr((skr, pkr), pkt)

2 :

Registration
pkt, TLP(oid, 3 ·∆) skt

tid, σ∗ oid

3 : Send (tid, σ∗) to Pr
4 : Propose TLP(θ′, 2 ·∆)

5 :

Puzzle Promise
(skt, pkt), pkr (tid, σ∗), (skr, pkr), pkt

(σt, σr) (σ̂t, σr), `

6 : `′ ← Rand(`)
7 : Send `′ to Ps
8 : `′′ ← Rand(`′)
9 : Propose TLP(θ,∆)

10 :

Puzzle Solver
(sks, pks), pkt, `

′′ (skt, pkt), pkr

(σs, σt), α
′′ (σs, σt)

11 : α′ ← Derand(α′′)
12 : Accept θ Accept θ
13 : Send α′ to Pr
14 : α← Derand(α′)
15 : σt ← Open(σ̂t, α)
16 : Accept θ′ Accept θ′

17 : If timeout occurs reject θ′
18 : If timeout occurs reject θ
19 : Release oid

Figure 1: Overview of Trilero. Here θ and θ′ denote the updates (ς.cash(Ps) −= amt, ς.cash(Pt) += amt) and
(ς ′.cash(Pt) −= amt, ς ′.cash(Pr) += amt) on channels ς and ς ′, respectively. Here, TLP(θ,∆) denotes a timelocked
payment of the state denoted by θ with timeout ∆ (i.e., the duration of an epoch). Black pseudocode are operations in A2L.

pays Pt first, then a malicious Pt could get the money from
Ps without paying Pr. Even if Pt pays first, a malicious Ps
could abstain from paying Pt, which would thus incur in a
loss. Hence, the update in the channel between Pt and Pr
should be conditioned to the update in the channel between
Ps and Pt. Achieving unlinkability and atomicity simulta-
neously is challenging, since one has to condition updates
at two different payment channels without establishing any
observable link between the two of them in the first place.

2.1. Our Approach

Our approach to achieve unlinkability and atomicity in
PCH consists of two building blocks, as depicted in Figure 1.
First, we design anonymous atomic locks (A2L), a three-
party cryptographic construction that allows the synchro-
nization of the updates on two payment channels atomically
while preserving unlinkability. Second, we introduce Trilero,
a PCH protocol that performs the actual update on the
channels by leveraging A2L. In the following, we overview
both building blocks.

2.1.1. Anonymous atomic locks (A2L). Inspired from
TumbleBit [13], we design A2L in two phases: puzzle
promise and puzzle solver (we omit registration for a mo-
ment). During these two phases, the update on the channel
ς ′, between Pt and Pr, defined as θ′ := (ς ′.cash(Pt) −=

amt, ς ′.cash(Pr) += amt) (i.e., the tumbler Pt paying amt
coins to the receiver Pr) is established first but its success
is conditioned on the successful update of the channel ς ,
between Ps and Pt, defined as θ := (ς.cash(Ps) −=
amt, ς.cash(Pt) += amt) (i.e., the sender Ps paying amt
coins to the tumbler Pt). In other words, the tumbler
“promises in advance” a payment to the receiver under the
condition that the sender successfully pays to the tumbler.

In a bit more detail, during the puzzle promise phase Pt
gives Pr a cryptographic puzzle ` and an “almost valid”
authorization (σ̂t, σr) for update θ′ on channel ς ′. Here,
“almost valid” means that Pr can covert σ̂t in a valid
signature σt only if Pr can provide a solution to `. Note
that at the beginning, only Pt knows this solution and Pr
does not have an efficient way to obtain it.

In such a setting, Ps helps Pr to get the solution to
the aforementioned challenge. In particular, Ps initiates the
update θ on channel ς conditioned on the fact that Pt reveals
α′′, a solution to a randomized version of the cryptographic
puzzle `′′, which is in turn a randomized solution of the
original puzzle `. Note here that it is important that Ps
inputs `′′, that is a randomized version of the puzzle `,
as otherwise the tumbler Pt could trivially link sender and
receiver by inspecting ` itself. If Pt accepts the update
θ (i.e., Pt receives amt coins from Ps by computing a
valid signature (σs, σt)), then Ps can obtain the puzzle
solution and provide it to Pr who then accepts the pending



update in θ′. Otherwise, both channel updates are expected
to be void after a certain predefined time expires. This
mechanism thereby provides atomicity. Moreover, if there
are several payments in parallel, the randomization of the
cryptographic puzzles intuitively prevents Pt from linking
the sender/receiver pairs.

This payment paradigm opens two challenges: (i) how
to instantiate the required cryptographic puzzle so that it
embeds the logic for “converting an almost valid signa-
ture into a fully valid signature reveals the solution to
the cryptographic puzzle” while not only atomicity and
unlinkability are preserved but also backwards compatibility
and efficiency are obtained; and (ii) how to mitigate griefing
attack, a DoS attack against the liquidity of the tumbler if
many (possibly Sybil) receivers ask the tumbler for pay-
ment promises (thus forcing the tumbler to lock coins in
a time-lock payment) that are never fulfilled later by the
corresponding sender. In the following, we overview how
we tackle both challenges.

Cryptographic puzzle in A2L. Different to TumbleBit
(and any other PCH in the literature), our instantiation
of the cryptographic puzzle required in A2L is a novel
cryptographic protocol built upon the notion of adaptor
signatures [15]. We give an intuitive description of adaptor
signatures here and refer the reader to Section 3.3.1 for
a more formal definition. An adaptor signature allows to
create a partial signature σ̂ on a message m with respect
to a secret value α that is “almost valid” (i.e., pre-sign a
message w.r.t. some statement A of a hard relation, where
α is the corresponding witness of A). An adaptor signature
requires the following two conditions to hold: (i) a party P
can convert σ̂ into a full and valid signature σ on its own
only if it gets to know the secret (witness) α; (ii) a party
P knowing the partial signature (pre-signature) σ̂ and the
corresponding valid signature σ can extract the secret value
α. These two conditions are at the core of adaptor signatures
and our construction as we overview here.

Strawman approach: We could construct A2L naïvely
leveraging adaptor signatures as follows: During the puzzle
promise phase the tumbler Pt gives a pre-signature σ̂t to the
receiver Pr with respect to a statement A for which only
Pt knows the corresponding witness α. This ensures that Pr
can turn σ̂t into a full and valid signature σt once Pr learns
the secret α. Pr could then compute σr on its own, update
the channel and effectively get paid from Pt. However, Pr
does not have access to α yet.

Instead, Pr can share the statement A with the sender
Ps, who can use it during the puzzle solver phase to give
a pre-signature σ̂s to Pt. At this point Pt can transform σ̂s
into a valid signature σs as it knows the witness α (this
corresponds to condition (i) of adaptor signatures as men-
tioned above), and use it to update the channel and get paid
from Ps. Next, Ps can extract α from σ̂s and the published
σs (this corresponds to condition (ii) of adaptor signatures
as mentioned above), and share α with Pr. Finally, Pr can
transform σ̂t, which it received from Pt during the puzzle
promise, into a valid signature σt and get paid from Pt.

Issues with strawman approach: Although, this naïve

approach provides the expected functionality and ensures
atomicity (i.e., Pr only gets paid once Pt is paid by Ps),
it completely breaks the sender/receiver unlinkability as the
same statement A is used in both puzzle promise and puzzle
solver phases, hence, Pt can trivially link that Ps pays
to Pr. An easy fix would be to randomize the statement
before starting the puzzle solver phase. In particular, we
could use an instance of the discrete logarithm problem
(i.e., {∃α | A = gα}), which is trivially randomizable
and can be done so by either Pr or Ps before the start of
the puzzle solver phase. Hence, during the puzzle promise
phase the statement A is used, while in the puzzle solver
phase the randomized statement A′ is used. Although this
approach maintain unlinkability (i.e., Pt cannot trivially link
Ps and Pr), now Pt cannot complete the pre-signature that
it receives from Ps, as the statement is A′, and Pt is missing
the corresponding witness.

This points us to the key challenge in A2L which is that
it must provide the following two properties: (i) it should
ensure atomicity (Pr gets paid only if Pt is paid by Ps,
which implies that Pt must know the solution for the puzzle
and can thus complete the signature during puzzle solver);
(ii) it should ensure unlinkability (Pt cannot link that Ps is
paying to Pr, e.g., because exactly the same statement and
solution is used for both puzzle promise and puzzle solver).

Add the encrypted solution to the puzzle: The key of our
solution to this dichotomy is the use of an additively homo-
morphic encryption scheme as follows. During the puzzle
promise phase, Pt sends the statement A as before and
additionally sends an encryption of the witness α under its
own public key (ciperhtext cα), which makes it decryptable
only by Pt. Then, Pr can randomize both the statement A
and the ciphertext cα with the same randomization factor
before giving them to Ps, who starts the puzzle solver
phase with Pt. At this point Pt can decrypt to obtain the
randomized witness α′ for the randomized statement A′ and
complete the pre-signature σ̂s to get paid by Ps. Then,
Ps can extract α′, which it shares with Pr, who can de-
randomize to obtain α and complete σ̂t. Intuitively, this
approach preserves both atomicity and unlinkability of A2L.

Putting everything together: Next, we describe how to
use A2L to build Trilero. First, Pt samples a secret value
α, and sets the puzzle (lock) ` to be an “encoded form”
of α. In our case encoding corresponds to an encryption of
α (denoted as cα) along with DLOG A = gα (i.e., ` :=
(A, cα)), which makes it hard to obtain α from the encoded
form, but allows for randomization. Next, Pt uses an adaptor
signature scheme along with A to create a partial signature
σ̂t on the update θ′ on channel ς ′, and provides Pr with σ̂t
and ` (this corresponds to the Puzzle Promise subprotocol
in Figure 1). This is sufficient for Pr to check that it can
finalize the signature (and thus the channel update) as soon
as it gets to know α. For that, Pr randomizes ` and sends
this randomized version `′ := (A′, c′α) to Ps (lines 5-6 in
Figure 1). In the puzzle solver phase, Ps also randomizes
the lock `′ to obtain `′′ := (A′′, c′′α) and uses it to create a
new adaptor signature σ̂s on the update θ on channel ς such
that the corresponding embedded secret value is α′′, which



is a doubly-randomized version of α. Then, Ps gives σ̂s and
`′′ to Pt, who decrypts the ciphertext c′′α and extracts α′′.
Next, Pt computes a valid signature σs on the update θ on
channel ς (this corresponds to the Puzzle Solver subprotocol
in Figure 1). Once the valid signature σs is published, Ps
extracts the value α′′ from the pair (σs, σ̂s), derandomizes
it to obtain α′, which corresponds to the decoded form of
`′ (i.e., the discrete logarithm of A′), and sends it to Pr
(lines 11-13 in Figure 1). Finally, Pr derandomizes α′ to
obtain α, which is the decoded form of the initial puzzle `
given to it by Pt, and computes a valid signature σt from
the pre-signature σ̂t using α (lines 14-15 in Figure 1).

Handling griefing attacks in A2L. As mentioned ear-
lier, the payment paradigm considered in this work (and also
in TumbleBit [13]) opens the door for griefing attacks where
the receiver Pr starts many puzzle promise operations, each
of which requires that tumbler Pt locks amt coins, whereas
the corresponding puzzle solver interactions are never car-
ried out. Previous proposals to handle this DoS attack [13]
force Pr to pay for a transaction fee on-chain every time
it triggers a puzzle promise. This approach, however, does
not work in the off-chain setting, which is our focus here.
Moreover, the transaction fee that Pr pays is smaller than
amt and thus this mitigation does not fully address the
griefing attack issue.

Our approach: We observe thus that in the considered
payment paradigm, Pt is at risk. Our approach is to move the
risk from Pt to the sender Ps by letting the latter lock amt
coins in advance to prove Pt the willingness to participate
in the protocol. This approach lines up the management of
the collateral with the incentives of each player. First, the
additional collateral (i.e., additional amt coins locked) is
handled by the sender Ps, who is the party that wants to
perform the payment in the first place. Second, the tumbler
Pt may decide not to carry out the payment, putting however
its reputation at stake (and a possible economic benefit in
terms of fees as we discuss in Section 5.1).

Mitigating the above mentioned DoS attack requires a
careful design to maintain the unlinkability of the payments.
For instance, the receiver Pr could indicate to Pt the collat-
eral that the corresponding Ps has locked for the payment
to happen. This approach, however, would trivially hinder
the unlinkability between Pr and Ps. We thus require a
cryptographic mechanism that achieves two goals: (i) Pr
can convince Pt that there exists a collateral of amt coins
locked for this interaction without revealing which Ps did
lock the coins; and (ii) Pt should be able to check that the
same collateral is not claimed twice.

Our DoS prevention approach is implemented in the
registration phase. Here, Ps updates its channel with Pt to
perform a TLP payment (a timelock payment) of amt coins
to Pt, but Ps does not authorize it (i.e., Ps does not sign it).
This effectively means that these amt coins are locked there
until a certain timeout expires and only then Ps is able to
reuse the coins. In Figure 1, we denote this output by oid.
While doing that, Pt creates a fresh token tid and signs it
using (blinded) randomizable signatures scheme. Intuitively,
Pt can create a signature σ∗ over a fresh random token tid

without learning tid in the first place. Pr can later show tid
to Pt as a proof that there exists a Ps who locked coins
beforehand, but yet not revealing the exact Ps. We note that
each token can only be used once as Pt keeps a list of all the
revealed tokens, hence, this avoids replay attacks. We refer
the reader to Section 3 for a more detailed description.

2.1.2. Trilero. The A2L primitive is agnostic of the actual
content of the channel updates (e.g., amount of coins) and it
does not provide any timelock mechanism. Trilero realizes a
PCH by augmenting A2L to provide the two aforementioned
functionalities, which are crucial for a PCH. First, Trilero
ensures that channel updates θ and θ′ reflect a payment from
Ps to Pr through Pt for a fixed amount amt of coins, thereby
ensuring that parties have an economic incentive to execute
A2L. Second, Trilero implements the timelock mechanism
that we denoted by TLP to void a certain channel update if a
payment operation fails (e.g., a party does not answer before
a certain timeout), which ensures that the honest users do
not lose coins or that coins do not get infinitely locked.

3. Our Protocols

System assumptions. We assume a constant amount of
coins (i.e., amt) for every payment, as otherwise it becomes
trivial to link Ps and Pr in a payment. Moreover, as in Tum-
bleBit [13], we assume that the protocols are run in phases
and epochs. Each epoch is composed of four phases for
us: (i) registration phase (i) puzzle promise phase (escrow
phase in TumbleBit), (iii) puzzle solver phase (payment
phase in TumbleBit), and (iv) open phase (cash-out phase
in TumbleBit). In each epoch instances of our protocols
are executed in their corresponding phases (e.g., registration
protocol is executed during the registration phase), optimiz-
ing thereby the anonymity set within an epoch.

Here we further assume that both the sender Ps and
the receiver Pr have already carried out the key generation
procedure and have set up the payment channels with the
tumbler Pt. We finally assume that communication between
honest Ps and Pr is unnoticed by Pt, which is a com-
mon assumption in other privacy-preserving PCH construc-
tions [13]. We stress that we only need this anonymous
communication between the sender and receiver when ex-
changing the puzzle and its solution.

3.1. Security and Privacy Goals

Authenticity. The PCH should only start a payment pro-
cedure if a fresh and authentic token, previously issued by
the tumbler Pt, is presented. This ensures that all payment
requests are already backed up by some locked coins, and
in turn avoids the griefing attacks described in Section 2.1.

Atomicity. The PCH should not be exploited to print
new money or steal existing money from honest users, even
when parties collude. This property thus aims to ensure
balance security for the honest parties as in [13].

Unlinkability. The tumbler Pt should not learn infor-
mation that allows it to associate the sender Ps and the



receiver Pr of a payment. We argue unlinkability in terms
of interaction multi-graph as defined in [13]. An interaction
multi-graph is a mapping of payments from a set of senders
to a set of receivers. For each successful payment completed
upon a query from the sender P js at epoch e, the graph has
an edge, labeled with e, from the sender P js to some receiver
P ir . An interaction graph is compatible if it explains the view
of the tumbler, that is, the number of edges labeled with
e incident to P ir equals the number of coins received by
P ir . Then, unlinkability requires all compatible interaction
graphs to be equally likely. The anonymity set depends thus
on the number of compatible interaction graphs.

3.2. Trilero: Our PCH Instantiation

As mentioned in Section 2, Trilero realizes a PCH
by appropriately setting the channel updates and timelock
mechanism for the otherwise payment agnostic A2L. In
particular, Trilero carries out this task as shown in Figure 1
(blue pseudocode) and described in the following:

1) Collateral setup: In Trilero, before the registration
phase of A2L starts, Ps updates its channel with Pt to
propose a timelock payment (TLP), represented by oid, that
locks amt coins from the balance of Ps into oid. This oid
update plays two roles: (i) since Ps does not authorize the
spending of oid, Ps ensures that she can recover the amt
coins locked there after the timeout expires; and (ii) since
Pt does not authorize the spending of oid either, Pt ensures
that the amt coins locked there cannot be reused before
the timeout, effectively serving as a proof of collateral to
perform subsequent phases of the PCH protocol.

2) Payment channel update proposals: In Trilero, be-
fore the puzzle promise phase of A2L starts, Pt updates its
channel with Pr to propose a timelock payment, represented
by θ′, where amt coins are transferred from the balance of
Pt to the balance of Pr. The authorization of this channel
update is then handled by A2L. A similar time-lock payment
for amt coins is proposed in the channel between Ps and
Pt before the puzzle solver phase of A2L is initiated.

3) Payment channel update resolutions: In Trilero, af-
ter both puzzle promise and puzzle solver have finished, the
channel updates proposed in the previous step are finalized.
There could be two outcomes. On the one hand, if both
puzzle promise and puzzle solver are successful, Trilero
first updates the channel between Ps and Pt to integrate
the payment represented in θ. Afterwards, Pr can finalize
the authorization of the update θ′ and Trilero accordingly
reflects this payment in the channel between Pt and Pr. On
the other hand, if any of puzzle promise or puzzle solver
fails, then Trilero rejects both payment proposals θ and θ′,
leaving balances at both channels as before the start of the
execution of the payment.

4) Collateral release: Independently of the outcome of
the previous phases, Trilero releases the coins locked by Ps
at the beginning of the payment as collateral.

3.3. Anonymous Atomic Locks (A2L)

3.3.1. Cryptographic Building Blocks. We denote by 1λ,
for λ ∈ N, the security parameter. We assume that the
security parameter is given as an implicit input to every
function, and all our algorithms run in polynomial time in λ.
We denote by x←$X the uniform sampling of the variable
x from the set X . We write x ← A(y) to denote that a
probabilistic polynomial time (PPT) algorithm A on input y,
outputs x. We use the same notation also for the assignment
of the computational results, for example, s ← s1 + s2.
If A is a deterministic polynomial time (DPT) algorithm,
we use the notation x := A(y). We use the same notation
for expanding the entries of tuples, for example, we write
σ := (σ1, σ2) for a tuple σ composed of two elements.
A function negl : N → R is negligible in n if for every
k ∈ N, there exists n0 ∈ N, such that for every n ≥ n0

it holds that |negl(n) | ≤ 1/nk. Throughout the paper we
implicitly assume that negligible functions are negligible in
the security parameter (i.e., negl(λ)). Next, we review here
the cryptographic primitives used in our protocols.

Commitment scheme. A commitment scheme COM
consists of PPT algorithms COM = (PCOM,VCOM),
where PCOM is the commitment algorithm, such that
(com, decom) ← PCOM(m), and VCOM is the verification
algorithm, such that {0, 1} := VCOM(com, decom,m). A
COM scheme allows a prover to commit to a message m
without revealing it, and convince a verifier, using com-
mitment com and decommitment information decom, that
the message m was committed. The security of COM is
modeled by the ideal functionality FCOM [14], as described
in Appendix D. In our protocols we use the Pedersen com-
mitment scheme [16], which is an information-theoretically
(unconditionally) hiding and computationally binding com-
mitment scheme.

Non-interactive zero-knowledge. Let R be an NP rela-
tion, and let L be a set of positive instances corresponding
to the relation R (i.e., L = {x | ∃w s.t. R(x,w) = 1}).
We say R is a hard relation if R is poly-time decidable,
there exists a PPT instant sampling function GenR and
for all PPT adversaries A, the probability of A produc-
ing the witness w given only the statement x, such that
R(x,w) = 1, is bounded by a negligible function. This is
more formally defined in Appendix A. A non-interactive
zero-knowledge proof scheme NIZK [17] consists of PPT
algorithms NIZK = (PNIZK,VNIZK), where PNIZK is the
prover algorithm, such that π ← PNIZK(x,w), and VNIZK is
the verification algorithm, such that {0, 1} := VNIZK(x, π).
A NIZK scheme allows a prover to convince a verifier, using
a proof π, about the existence of a witness w for a statement
x without revealing any information apart from the fact
that it knows the witness w. We model the security of a
NIZK scheme using the ideal functionality FNIZK, defined
in Appendix D.

Homomorphic encryption scheme. A public key en-
cryption scheme Ψ with a message space M is composed
of PPT algorithms Ψ = (KGen,Enc,Dec), such that for
every m ∈ M, it holds that Pr[Dec(sk,Enc(pk,m)) =



Public parameters: bilinear groups description (q, e,G1,G2,GT , g1, g2, gT )

1 : RegistrationPs
(pkΣ̃

t , oid) RegistrationPt
((skΣ̃

t , pk
Σ̃
t ))

2 : Sample a token tid←$Zq
3 : (com, decom := (tid, r))← PCOM(tid)
4 : π ← PNIZK({∃decom | VCOM(com, decom, tid) = 1}, decom)

5 : (π, com), oid

6 : If VNIZK(π, com) 6= 1 then abort

7 : σ′ ← BlindSig(skΣ̃
t , com)

8 : σ′

9 : σ := UnblindSig(decom, σ′)

10 : If Vf(pkΣ̃
t , tid, σ) 6= 1 then abort

11 : σ∗ ← RandSig(σ)
12 : Send (tid, σ∗) to Pr
13 : return (tid, σ∗) return >

Figure 2: Registration protocol of A2L. Blue part is related to the payment (i.e., non-cryptographic operation).

Public parameters: group description (G, g, q), message m′

1 : PuzzlePromisePt((sk
Σ
t , pk

Σ
t ), (skΨ

t , pk
Ψ
t ), pkΣ̃

t , pk
Σ
r ) PuzzlePromisePr ((skΣ

r , pk
Σ
r ), pkΣ

t , (tid, σ
∗))

2 : σ′r ← Sig(skΣ
r ,m

′)

3 : (tid, σ∗), σ′r

4 : If tid ∈ T ∨ Vf(pkΣ̃
t , tid, σ

∗) 6= 1 then abort
5 : Else add tid into T
6 : (A,α)← GenR(1λ); cα ← Enc(pkΨ

t , α)

7 : πα ← PNIZK({∃α | cα = Enc(pkΨ
t , α) ∧A = gα}, α)

8 : σ̂′t ← PreSig(skΣ
t ,m

′, A)

9 : A, πα, cα, σ̂
′
t

10 : If VNIZK(πα, (cα, A)) 6= 1 then abort
11 : If PreVf(pkΣ

t ,m
′, A, σ̂′t) 6= 1 then abort

12 : (c′α, β)← RandCtx(cα); A′ ← Aβ

13 : Set ` := (A′, c′α) and send to Ps
14 : Set Π := (β, (pkΣ

t , pk
Σ
r ),m′, (σ̂′t, σ

′
r))

15 : return (Adapt(σ̂′t, α), σr) return (Π, `)

Figure 3: Puzzle promise protocol of A2L.

m | (sk, pk) ← KGen(1λ)] = 1, for a security parame-
ter 1λ and a secret/public key pair (sk, pk). We say that
Ψ is additively homomorphic if it supports homomorphic
operations over the ciphertexts. More precisely, for every
m1,m2 ∈M and public key pk, we have that Enc(pk,m1) ·
Enc(pk,m2) = Enc(pk,m1 +m2). Furthermore, we assume
that the operation Enc(pk,m1)m2 is well-defined, and yields
Enc(pk,m1 ·m2). Homomorphic encryption schemes need
to satisfy the security notion of indistinguishability under
chosen plaintext attack (IND-CPA), which at a high level
guarantees that a PPT adversary A is not able to distin-
guish the encryption of two messages of its choice. In our
construction we use the additively homomorphic encryption
scheme by Castagnos-Laguillaumie (CL) [18] (more pre-

cisely, HSM-CL described in [19]), where M = Zq. The
reason for this is that we can instantiate CL to work with
any Zq for a prime q that is compatible with the underlying
signature scheme that we make use of. For more information
regarding why we chose the CL encryption scheme we refer
the reader to Appendix B. Additionally, we assume existence
of a function RandCtx, which given as input a ciphertext c,
returns the ciphertext c′ randomized through homomorphic
multiplication operation and the randomization factor r used
in the process. More precisely, given c ← Enc(pk,m),
the randomization process produces (c′, r) ← RandCtx(c),
where r is the randomization factor, and c′ is encryption of
m · r. This operation is supported in CL encryption scheme
through homomorphic multiplication with plaintext (in this



Public parameters: group description (G, g, q), message m

1 : PuzzleSolverPs((skΣ
s , pk

Σ
s ), ` := (A′, c′α)) PuzzleSolverPt((sk

Σ
t , pk

Σ
t ), (skΨ

t , pk
Ψ
t ), pkΣ

s )
2 : (c′′α, τ)← RandCtx(c′α); A′′ ← (A′)τ

3 : σ̂s ← PreSig(skΣ
s ,m,A

′′)

4 : c′′α, σ̂s

5 : α′′ := Dec(skΨ
t , c
′′
α); σs := Adapt(σ̂s, α

′′)

6 : σt ← Sig(skΣ
t ,m)

7 : If Vf(pkΣ
s ,m, σs) 6= 1 then abort

8 : Else publish (σs, σt)

9 : σs

10 : α′′ := Ext(σs, σ̂s, A
′′)

11 : If α′′ = ⊥ then abort
12 : Else α′ ← α′′ · τ−1 and send α′ to Pr
13 : return α′ return >

Figure 4: Puzzle solver protocol of A2L.

Open(Π, α′)

Parse Π as (β, (pkΣ
t , pk

Σ
r ),m′, (σ̂′t, σ

′
r))

α← α′ · β−1

σ′t := Adapt(σ̂′t, α)
return (σ′t, σ

′
r)

Verify(Π, σ)

Parse Π as (β, (pkΣ
1 , pk

Σ
2 ),m′, (σ′1, σ

′
2))

Parse σ as (σ1, σ2)

return Vf(pkΣ
1 ,m

′, σ1) ∧ Vf(pkΣ
2 ,m

′, σ2)

Figure 5: Open and verify algorithms of A2L.

case the plaintext is the randomization factor r).
Digital signature scheme. A digital signature scheme

Σ with a message space M is composed of PPT algo-
rithms Σ = (KGen,Sig,Vf), such that for every m ∈ M,
it holds that Pr[Vf(pk,Sig(sk,m),m) = 1 | (sk, pk) ←
KGen(1λ)] = 1, for a security parameter 1λ and a se-
cret/public key pair (sk, pk). The most common security
requirement of a signature scheme is existential unforgeabil-
ity under chosen message attack (EUF-CMA). At a high
level, it ensures that a PPT adversary A, that does not
know the secret key sk, cannot produce a valid signature
σ on a message m even if it sees polynomially many valid
signatures on messages of its choice (but different from m).

Adaptor signature scheme. An adaptor signature
scheme is defined with respect to a hard relation R
and a signature scheme Σ and consists of four algo-
rithms ΞR,Σ = (PreSig,PreVf,Adapt,Ext). For every
statement/witness pair (Y, y) ∈ R, secret/public key pair
(sk, pk) ← Σ.KGen(1λ) and a message m ∈ M, we have
that σ̂ ← PreSig(sk,m, Y ) is a pre-signature and σ :=
Adapt(σ̂, y) is a valid signature, and (pre-)verification holds
under pk for σ̂ and σ, respectively. Furthermore, it holds
that y := Ext(σ, σ̂, Y ). Adaptor signatures were formally

defined in [15], where the authors also defined the security
notion called the existential unforgeability under chosen
message attack for adaptor signature (aEUF-CMA). Apart
from aEUF-CMA security, an adaptor signature should also
provide pre-signature correctness, pre-signature adaptability
and witness extractability. Roughly speaking, pre-signature
correctness ensures that an honestly generated pre-signature
σ̂ w.r.t a statement Y is a valid pre-signature and can be
completed into a valid signature σ, from which a witness
of Y can be extracted. On the other hand, pre-signature
adaptability means that the pre-signature σ̂ can be adapted
into a valid signature σ using the witness y. Lastly, witness
extractability guarantees that a valid signature/pre-signature
pair (σ, σ̂) can be used to extract the corresponding witness
y of Y . We refer the reader to Appendix A for a more
formal and detailed treatment of adaptor signatures. Lastly,
we point out that the authors of [15] additionally gave
provably secure Schnorr- and ECDSA-based instantiations
of adaptor signatures.

(Blinded) Randomizable signature scheme. Further-
more, we need a signature scheme which can be random-
izable, and that enables the issuance of a signature on a
committed value, which can be seen as a type of a blinded
signature. More precisely, we call here a signature scheme Σ̃
a blinded randomizable signature scheme, if it provides three
additional PPT algorithms, namely, BlindSig,UnblindSig
and RandSig, in addition to the ones provided by a reg-
ular signature scheme Σ. Given a commitment com to a
message m, the signer can generate a blinded signature
σ′ ← BlindSig(sk, com). Then, the party holding the de-
commitment information decom, can unblind σ′ to pro-
duce a valid signature σ := UnblindSig(decom, σ′). Lastly,
given a valid signature σ, one can generate a randomized
signature as σ∗ ← RandSig(σ). A signature scheme that
provides these features and which we use in our construction
is Pointcheval-Sanders (PS) [20] signature scheme, which



works over Type-III bilinear groups.

3.3.2. A2L Construction. Our A2L construction is com-
posed of three protocols: registration, puzzle promise and
puzzle solver. We detail each of them in the following.

Registration. The registration protocol, which can be
seen in Figure 2, is used to defend against the griefing
attacks as explained in Section 2.1. The registration protocol
is executed between the sender Ps and the tumbler Pt, and
assumes that Ps has locked coins with Pt in 2-of-2 output
(oid) before the start of the protocol.

Our protocol is inspired from anonymous credentials
[21], however, contrary to the anonymous credentials where
the issued credentials can be used multiple times, we need to
ensure that the issued credential (token) is used only once
(in order to protect against the grifieng attacks explained
in Section 2.1). Furthermore, the party issuing and authen-
ticating the tokens in our case is the same party, i.e., the
tumbler Pt, whereas in anonymous credentials the issuance
and authentication of the credentials might be done by
different parties. Hence, instead of anonymous credentials
we have opted for a simpler but more efficient protocol that
is backwards compatible with current cryptocurrencies as it
happens off-chain.

Our registration protocol makes use of a (blinded) ran-
domizable signature scheme Σ̃ as described in Section 3.3.1,
which we instantiate with Pointcheval-Sanders (PS) [20],
a commitment scheme, for which we use Pedersen com-
mitment [16], and a NIZK proof of knowledge (PoK) for
opening of a Pedersen commitment.

At the beginning of the protocol Ps generates a random
token identifier tid and a commitment com to tid using
Pedersen commitment, along with a NIZK proof π for the
opening of the commitment, and sends the pair (π, com)
and the escrow output oid to Pt (lines 2-5 in Figure 2). Pt
verifies the proof π, and then (blindly) generates a signature
σ′ on the token tid using the commitment com, and sends
σ′ to Ps (lines 6-8 in Figure 2). Here, it is important that tid
is hidden (inside a commitment), otherwise, Pt can trivially
link the sender Ps and the corresponding receiver Pr. The
reason for this is that the puzzle promise protocol (see
Figure 3) starts with the receiver Pr sharing this tid in the
clear with the tumbler Pt as a form of validation (i.e., that
there already exists a payment promised to Pt). This is also
the reason why we require a signature scheme that allows
to (blindly) sign a value hidden inside a commitment (such
as Pointcheval-Sanders [20] signature scheme).

Next, Ps unblinds σ′ using the decommitment informa-
tion decom to obtain a valid signature σ on the token tid
(line 9 in Figure 2). Lastly, Ps randomizes σ to obtain σ∗

and sends the pair (tid, σ∗) to the receiver Pr (lines 11-12
in Figure 2), which finalizes the registration protocol. We
note that PS signature scheme is composed of two group
elements, and unblinding operation only affects the second
component of the signature, hence, we have that the first
components of both σ′ and σ are the same. Therefore, if
Pr gives σ to Pt at the beginning of the puzzle promise
protocol for validation, then Pt can easily link Ps and Pt.

This is the reason why we randomize σ and only share the
randomized signature σ∗ with Pt. This randomization can
be done either by Ps or Pr before the start of the puzzle
promise protocol (in Figure 2 it is randomized by Ps as part
of the registration protocol).

Puzzle promise. Once the registration protocol is com-
pleted the puzzle promise protocol shown in Figure 3 starts.
The puzzle promise protocol (and subsequently, the puzzle
solver protocol) relies on an adaptor signature scheme ΞR,Σ
for a hard relation R and a signature scheme Σ as described
in Section 3.3.1. The puzzle promise protocol starts with
Pr sending the pair (tid, σ∗) to Pt along with its own valid
signature σ′r on a previously agreed message m′, which is
the agreed transaction (lines 2-3 in Figure 3). Pt makes sure
that the signatures are valid and that the token tid has not
been previously used, in order to be protected against replay
attacks (i.e., Pr tries to claim the same collateral locked by
Ps more than once). For this reason Pt has to keep a list T
with all previously seen token identifiers. We note that since
we expect our protocols to run in epochs we can reduce the
storage requirement of Pt by letting it generate a new key
pair, publish pkΣ̃

t so that it is available to others, and then
reset the list T . Hence, from that point onward all the tokens
signed with the secret key of the previous epoch become
invalid from the perspective of Pt.

Next in the protocol, Pt samples a statement/witness pair
(A,α), for a statement A := gα, creates the cryptographic
challenge (puzzle) ` := (A := gα, cα), where cα is an
encryption of α using a homomorphic encryption scheme
Ψ under Pt’s public key pkΨ

t , along with a NIZK proof
πα proving that cα encrypts the witness of A (lines 6-7 in
Figure 3). Furthermore, Pt generates an adaptor signature σ̂′t
over the previously agreed message (transaction) m′, where
the secret adaptor is α, and shares the puzzle ` along with the
adaptor signature σ̂′t with Pr (lines 8-9 in Figure 3). At this
point Pr cannot claim the coins, because the signature σ̂′t
is not valid, however, Pr can pre-verify it by relying on the
pre-signature correctness property of the adaptor signature
(line 11 in Figure 3).

Once Pr is convinced of the validity of σ̂′t, it randomizes
the puzzle ` using the operation of the underlying group
and the homomorphic properties of Ψ to obtain the puzzle
`′, which it shares with Ps (lines 12-13 in Figure 3). This
finalizes the puzzle promise protocol, and allows Ps to start
the puzzle solver protocol with Pt, as shown in Figure 4.

Puzzle solver. In the puzzle solver protocol, Ps further
randomizes `′ into `′′ (line 2 in Figure 4) to preserve its own
anonymity and thwart attacks involving collusion of Pt and
Pr (see Section 5.1.1). Then, Ps gives an adaptor signature
σ̂s to Pt (lines 3-4 in Figure 4), which is adapted with the
newly randomized puzzle, along with the ciphertext element
of the puzzle, which in this case is c′′α . The ciphertext c′′α of
the puzzle is crucial as it is encrypted under the public key
of Pt, and hence, Pt can decrypt it to obtain α′′, the doubly
randomized version of the value α (i.e., the secret value
required by Pr to complete the adaptor signature σ̂′t obtained
from the puzzle promise protocol). As α′′ is randomized, Pt



cannot link it to Pr and yet can use it to convert σ̂s into a
valid signature σs by adapting it with α′′ (line 5 in Figure 4).

All that is remaining for Pt in order to get paid is to
compute its own signature σt on a previously agreed upon
message (transaction) m, and update the channel with the
signature pair (σs, σt) (lines 6-8 in Figure 4). Once Pt
provides Ps with this signature and gets paid, Ps can extract
α′′ using the adaptor signature σ̂s and the valid signature
σs, and then get rid of one layer of the randomization to
obtain α′, which it shares with Pr (lines 10-12 in Figure 4).
Finally, Pr removes its part of the randomness from α′, and
thereby gets the original value α, which it uses to adapt
the “almost valid” signature σ̂′t into a fully valid one σ′t, as
shown inside the Open algorithm in Figure 5.

3.3.3. Discussion. Our protocol achieves backwards com-
patibility with virtually all current cryptocurrencies. Back-
wards compatibility is achieved due to the minimal crypto-
graphic requirements of our construction from the underly-
ing cryptocurrency. More precisely, we only require a digital
signature that can be turned into an adaptor signature, and
a timelock mechanism from the underlying cryptocurrency,
two functionalities provided by virtually all cryptocurrencies
today. As a matter of fact, we can also adapt our approach
to cryptocurrencies that totally lack a scripting language
support for 2-of-2 signatures, such as Ripple, Stellar or
Mimblewimble following the threshold version of adaptor
signatures [22]. We describe in Appendix F how to use A2L
with threshold signatures where the output of our protocols
will result in accepting a channel update with a single
signature (instead of a 2-of-2 multisignature) verifiable by
a single public key.

Furthermore, our protocol opens the door to mediate
payments in different cryptocurrencies, by running the puz-
zle promise and puzzle solver protocols in different cryp-
tocurrencies. For example, this can be achieved by instan-
tiating our construction with adaptor signatures that work
over the same group, and using one signature scheme for
the puzzle promise phase, and the other one for the puzzle
solver phase [22], thereby enabling cross-chain applications
like exchanges. Moreover, even when the groups are not the
same we can still use this technique, assuming there exists
an efficiently computable bijection between the two groups,
and utilizing the proof for discrete logarithm equality across
groups described in [23]. We discuss further deployment
aspects for cross-chain payments in Section 5.1.

4. Security Analysis

We formalize the security and privacy of A2L and Trilero
in the universal composability (UC) framework [14]. We
rely on the synchronous version of global UC framework
(GUC) [24]. Here we describe the high level ideas of our
security analysis in the UC framework, and refer the reader
to Appendix C for more details about our security model.

First, we define an ideal functionality FA2L capturing
the ideal behavior of our A2L construction. FA2L specifies
the input/output behavior of A2L protocols, and the possible

influence of an adversary on the execution. Next, we show
that our A2L construction emulates FA2L. Roughly speaking,
this means that our construction is at least as secure as FA2L

itself, and any attack that can be performed on our protocols
can be simulated as an attack on FA2L.

The description of our ideal functionality FA2L (along
with its hybrid ideal functionalities) can be found in Ap-
pendix C. In Appendix D, we formally prove the following
theorem.

Theorem 1. Let COM be a secure commitment scheme,
NIZK be a non-interactive zero-knowledge scheme, Σ, Σ̃ be
EUF-CMA secure signature schemes, R be a hard relation,
ΞR,Σ be a secure adaptor signature scheme, and Ψ be an
IND-CPA secure encryption scheme, then the construction
in Figures 2 to 5 UC-realizes the ideal functionality FA2L

in the (FGDC,Fsmt,Fanon)-hybrid model.

Furthermore, we define an ideal functionality FPCH,
which defines the ideal behavior of our PCH protocol
Trilero. Similar to the proof of emulation of FA2L, we prove
indistinguishability between the real and ideal world. More
precisely, for FPCH described in Appendix C, we prove the
following theorem in Appendix E.2.

Theorem 2. The protocol described in Figure 8, UC-
realizes FPCH in the (FA2L,FGDC,Fsmt)-hybrid model.

4.1. Informal Analysis

Authenticity. Authenticity ensures that only authentic
payment requests which are previously backed up by some
locked coins are processed by the tumbler Pt during the
payment procedure. In our construction this is enforced by
Pt giving a blindly signed token to the sender Ps during the
registration protocol (see Figure 2), which then during the
puzzle promise protocol (see Figure 3) is presented to Pt,
by the receiver Pr, where Pt authenticates the validity of the
token and starts the payment procedure. The security of this
depends on the unforgeability of the underlying (blinded)
randomizable signature scheme Σ̃. More precisely, if an
adversary can make the tumbler start the payment procedure
(i.e., execute the puzzle promise protocol) before previously
obtaining a valid token (i.e., via the registration protocol),
then we can construct an adversary against the unforgeability
of the randomizable signature scheme.

Atomicity. Atomicity guarantees that no malicious party
can print new money and no honest user loses money,
which ensures balance security for the involved parties. This
property is only related to the puzzle promise and puzzle
solver protocols, and it relies on the security of the un-
derlying adaptor signature scheme ΞR,Σ, (see Appendix A)
hardness of the relation R (which is implied by the security
of the adaptor signature scheme), and the security of the
homomorphic encryption scheme Ψ.

We observe that the tumbler Pt loses money if it pays
to the receiver Pr without previously getting paid by the
sender Ps. This can only happen if Pr receives a valid
signature signed by Pt before the execution of the puzzle
solver protocol. Since Pt only shares with Pr a pre-signature



σ̂′t, the statement A corresponding to σ̂′t, and a ciphertext
cα which encrypts the witness of A, the only ways that Pr
can have a valid signature signed by Pt before an execution
of the puzzle solver protocol are the following: (i) generate
a signature on behalf of Pt; (ii) find the witness for a hard
relation; (iii) obtain the plaintext encrypted under the public
key of Pt. If the first approach succeeds, then we create
an adversary that can use the generated signature in order
to win the unforgeability game of the adaptor signature
scheme. If the second approach succeeds, then the malicious
party can obtain the witness α for A and adapt the pre-
signature σ̂′t into a valid signature σ′t. However, this implies
that we can break the discrete logarithm (DLOG) problem
(as the underlying hard relation in our case is DLOG), which
is believed to be a hard problem to solve. Both of these are
related to the security of the underlying adaptor signature
scheme. Lastly, if the third approach succeeds, then the
malicious party can obtain the witness from the ciphertext
cα and adapt the pre-signature. Though, then we can con-
struct an adversary against the indistinguishability of the
homomorphic encryption scheme, which implies protection
even against partial information leakage about the plaintext.

On the other hand, Ps loses money if at the end of
the puzzle solver protocol Pt receives money, but Pr does
not get paid. This can only happen if Pt provides a valid
signature signed by Ps which either does not reveal the
(randomized) secret value that Pr needs to get paid or
it reveals an invalid secret value that is useless to Pr.
However, the latter implies that the adversary can win the
witness indistinguishability game of the adaptor signature
scheme, and the former implies that the adversary can
break the pre-signature adaptability property. We refer the
reader to Appendix A for the formal definitions of witness
indistinguishability and pre-signature adaptability of adaptor
signatures.

Unlinkability. Unlinkability is defined in terms of inter-
action multi-graphs (defined in Section 3.1) and must hold
against a malicious tumbler Pt which does not collude with
other parties. Towards this goal we have to show that all
possible interaction multi-graphs compatible with Pt’s view
are equally likely.

First of all, since we are using payments of common
denomination (of amount amt as described in Section 3),
Pt cannot correlate the transaction values to learn any non-
trivial information. Next, in Section 3 we also assumed
that all protocols are coordinated in phases and epochs.
All registration, puzzle promise and puzzle solver protocol
executions happen during their corresponding registration,
puzzle promise and puzzle solver epochs, respectively. This
rules out the timing attacks where Pt intentionally delays
or speeds up its interactions with another party. Looking at
the protocol transcripts, we see that during the registration
protocol Pt only signs a commited value, hence, due to the
hiding property of the commitment scheme COM, we have
that Pt does not learn the signed token, and cannot use the
token with the signature it receives at the start of the puzzle
promise protocol to link the sender Ps and the receiver Pr.
Furthermore, the transcripts of the puzzle promise and puz-

zle solver protocols are information-theoretically unlinkable.
This is due to the fact that the randomized puzzles `′ and `′′
are equally likely to be randomizations of any of the puzzles
` produced by Pt during the puzzle promise phase. Lastly, in
Section 3 we assumed that Ps and Pr communicate through
a secure and anonymous communication channel, hence, Pt
cannot eavesdrop and use the network information to link
Ps and Pr.

5. Performance Analysis

Implementation details. The implementation is written
in C, and it relies on the RELIC library [25] for the
cryptographic operations (with GMP [26]) as the underlying
arithmetic library), and on the PARI library [27] for the
arithmetic operations in class groups. We implemented two
instantiations of the adaptor signature scheme ΞR,Σ with
the underlying signature scheme being either Schnorr or
ECDSA, and the hard relation R being DLOG in both
instantiations. Both instantiations are over the the ellip-
tic curve secp256k1, which is also used in Bitcoin. The
homomorphic encryption scheme Ψ has been instantiated
with HSM-CL encryption scheme [18], [19] for 128-bit
security level as described in [19, Section 4]. We instanti-
ated the (blinded) randomizable signature scheme Σ̃ with
Pointcheval-Sanders (PS) [20] signature scheme over the
pairing-friendly curve BN P-256. Note that it is not neces-
sary that this curve is the same as the underlying cryptocur-
rency (e.g., Bitcoin) as it is used solely in the registration
protocol to sign information that is kept only off-chain.
Zero-knowledge proofs (and arguments) of knowledge for
discrete logarithm (DLOG), CL discrete logarithm (CLDL)
and Diffie-Hellman (DH) tuple have been implemented us-
ing Σ-protocols [28] and made non-interactive using the
Fiat-Shamir heuristic [29]. Lastly, we have instantiated the
commitment scheme COM for the registration protocol (see
Figure 2) using the Pedersen commitment scheme [16]. We
replaced the key generation procedure by randomly assign-
ing keys to every party. The key generation is a one-time
operation at setup (e.g., when opening a payment channel).
The source code is available at https://github.com/etairi/a2l.

Testbed. We used three EC2 instances from Amazon
AWS, where the tumbler Pt was a m5a.2xlarge instance
(2.50GHz AMD EPYC 7571 processor with 8 cores, 32GB
RAM) located in Frankfurt, while the sender Ps and the
receiver Pr were m5a.large instances (2.50GHz AMD EPYC
7571 processor with 2 cores, 8GB RAM) located in Oregon
and Singapore, respectively. In order to show that network
latency is the biggest bottleneck in running times, we also
measured performance in a LAN network. The benchmarks
for a LAN network were taken on a machine with 2.80GHz
Intel Xeon E3-1505M v5 processor with 8 cores, 32GB
RAM. All the machines were running Ubuntu 18.04 LTS.
We measured the average runtimes over 100 runs each. The
results of our performance evaluation are reported in Table 2.

Computation time. All our protocols complete in ~3
seconds, where the running time is dominated by network
latency. The impact of network latency is obvious when we

https://github.com/etairi/a2l


look at the running time for the LAN setting. We can ob-
serve that both Schnorr- and ECDSA-based constructions re-
quire about the same computation time, with ECDSA being
slightly more expensive due to the inversion operations re-
quired when computing the signature, and the additional DH
tuple NIZK proof needed during the adaptor signature com-
putation as described in [15]. Next, we compare our con-
structions with the state-of-the-art payment hub TumbleBit
[13]. In order to have more precise results, we performed the
comparison in a LAN setting without any network latency.
TumbleBit requires ~0.6 second to complete, hence, our
Schnorr-based construction is slightly faster, whereas our
ECDSA-based construction requires about the same time
without any pre-processing. However, if we apply the pre-
precessing described in the Discussion paragraph below, we
obtain about 2x speed-up in comparison to TumbleBit.

Communication overhead. We measured the commu-
nication overhead as the amount of information that parties
need to exchange during the execution of the protocols.
Hence, the bandwidth column in our table corresponds
to the combined total amount of messages exchanged for
the specific protocol. The ECDSA-based construction has
a slightly higher communication overhead in the puzzle
promise protocol compared to the Schnorr-based construc-
tion as it requires an additional ZK proof during adaptor sig-
nature computation as specified in [15]. TumbleBit requires
326KB of bandwidth, thus, our ECDSA- and Schnorr-based
constructions incur ~33x less communication overhead.

Discussion. In summary, we highlight four points. First,
our construction provides ~33x reduction in the commu-
nication complexity while retaining a computation time
comparable to TumbleBit (or providing 2x speedup with
a preprocessing technique discussed below). Interestingly,
the results for TumbleBit [13] do not include any protection
against the griefing attack explained in Section 2.1, whereas
we have the registration protocol that provides protection for
such attacks. Thus, our construction is more efficient even
when providing a higher security.

Second, the reduction in communication overhead is
not due to a more efficient implementation, but because
A2L is asymptotically more efficient. In a bit more detail,
TumbleBit relies on the cut-and-choose technique, which
implies that the security is bounded by

(
m+n
m

)
and the

parties need to compute and exchange messages composed
of m+n elements, where m and n are the parameters for the
cut-and-choose game. For instance, authors of TumbleBit

TABLE 2: Performance of Schnorr- and ECDSA-based con-
structions. Time is shown in seconds.

Registration Promise Solver Total
WAN1 Schnorr 0.722 1.221 1.071 3.014

ECDSA 0.726 1.251 1.076 3.053
LAN Schnorr 0.008 0.464 0.116 0.588

ECDSA 0.008 0.475 0.118 0.601
LAN Schnorr 0.008 0.183 0.118 0.307
(preprocessing) ECDSA 0.008 0.194 0.118 0.320
Bandwidth (KB) Schnorr 0.30 7.18 2.31 9.79

ECDSA 0.30 7.31 2.31 9.92
1Payment Hub (Oregon-Frankfurt-Singapore)

used m = 15 and n = 285 in puzzle solver and m = n = 42
in puzzle promise protocol to achieve 80 bits of security.
On the other hand, A2L requires to compute and exchange
message composed of constant number of elements.

Third, we point that the main bottleneck with respect
to computation and communication in our constructions is
CL encryption [18] and CLDL zero-knowledge argument of
knowledge (AoK) [30] (denoted as πα in our construction).
In our implementation a single CL ciphertext has size of
2.15KB and takes ~140ms to compute and ~80ms to decrypt,
while a CLDL proof has size of 2.50KB and takes ~140ms
for both proving and verification operations. A possible
optimization is for the tumbler to generate many random
α values, along with their corresponding ciphertext cα and
proof πα during its idle time, so that during the actual
protocol run these values do not need to be computed. We
call this preprocessing, and it results in nearly 50% saving
in the overall computation time (even though it only affects
the puzzle promise phase) as shown in Table 2.

Lastly, we note that our A2L construction has already
attracted the attention of current blockchain deployments,
such as the COMIT Network, whose business focusses on
cross-currency payments. In particular, they have provided
an open-source proof-of-concept implementation in Rust:
https://github.com/comit-network/a2l-poc.

5.1. System Discussion

We discuss here further aspects of Trilero regarding both
limitations of unlinkability and practical deployment.

5.1.1. Limitations of Unlinkability. In this section, we
discuss the unlinkability limitations inherent to the PCH
setting, and thus also affecting Trilero. We remark that these
limitations are inherent to any tumbler protocol, as shown
for instance in TumbleBit [13]. Furthermore, even with these
limitations, Trilero augments the privacy guarantees for the
users of a PCH service.

Epoch anonymity. Assume that Pt executes the puzzle
promise protocol with k parties during a phase of an epoch.
If within the next phase, k payments successfully complete,
then the anonymity set is of size k since there exist k
compatible interaction graphs, as defined in Section 3.1.

It is however not always the case that k is equal to
the total number of parties. The exact anonymity level can
be established only at the end of the epoch depending on
the number of successful puzzle promise and puzzle solver
protocols. For instance, anonymity is reduced by 1 if Pt
aborts a payment made by a party Ps. The payment between
Ps and Pr would be the only one failing, thereby showing
that Pr was the expected receiver. It is important to note
that Ps does not lose coins as Pt obtains a valid channel
update only if it cooperates in solving the puzzle.

Tumbler/receiver collusion. The tumbler Pt and the
receiver Pr can collude to learn the identity of the sender
Ps. Intuitively, this type of attack is only useful if Pr can
be paid by Ps without learning its true identity (e.g., in
anonymous donations). We partially address this collusion

https://github.com/comit-network/a2l-poc


in our constructions by letting Ps randomize the puzzle it
receives from Pr. However, Pr can still send a maliciously
constructed puzzle (more precisely, an invalid puzzle or a
non-randomized puzzle) to Ps, which can cause an abort or
leak information to Pt during the execution of the puzzle
solver protocol between Ps and Pt. This in turn can allow
Pt to link that Ps was the party that intended to pay Pr.
One possible mitigation to this is to force Pr to give a zero-
knowledge proof to Ps that the puzzle it sends is a valid
randomized puzzle.

Intersection attack. The aforementioned k-anonymity
notion is broadly used in mixing protocols with an inter-
mediate Pt. However, Pt can further reduce the anonymity
set. At any epoch, Pt can record the set of senders and
receivers that participate in the puzzle solver and puzzle
promise protocols respectively. Then, Pt can correlate this
information across phases and epochs to de-anonymize users
(e.g., using frequency analysis).

Ceiling attack. The amount of payments that a certain
Pr can receive during a certain epoch is limited by the
balance at the channel ς between Pt and Pr. If the channel
is exhausted (i.e., ς.cash(Pt) = 0), Pt can deterministically
derive the fact that Pr is not a potential receiver within the
current epoch.

Attacks with auxiliary information. Our notion of un-
linkability does not consider auxiliary information available
to Pt. Assume that Pt knows that a certain Pr has an online
shop selling a product for a value 2·amt. Further assume that
during an epoch, Pt executes the puzzle promise protocol
only once on every channel except with Pr, for which the
puzzle promise protocol is executed twice. Similarly, Pt
could observe that there exists a single Ps executing twice
the puzzle solver protocol, allowing Pt to link the pair Ps,
Pr. As indicated in [13], this type of attacks (called Potato
attack in [13]) could be mitigated by aggregating payments
or adding noise à la differential privacy.

5.1.2. Practical Deployment. In this section, we discuss the
practical considerations for real-life deployment of Trilero.

Hub vs tumbler functionality. Trilero, as described in
this work, provides a tumbler functionality, that is, allows
payments between Ps and Pr while ensuring atomicity
and unlinkability. Providing these guarantees comes at the
cost of communication and computation overhead when
compared to payment hubs that simply forward payments
from Ps to Pr through Pt. Yet, our evaluation results show
that Trilero is the most efficient PCH among those tumbler
protocols with emphasis on privacy.

Variable payment amounts and fees. Trilero sacrifices
the support of arbitrary payment amounts in favor of achiev-
ing unlinkability. While for readability, we have described
Trilero working with a single fixed payment amount amt,
this limitation can be somewhat mitigated in practice by hav-
ing a set of fixed denominations (e.g., amt, 10·amt, 100·amt,
etc.). This thereby provides a tradeoff between more practi-
cal functionality at the expense of reducing the anonymity
set (and thus unlinkability) to those payments with the same
denomination. Similarly, Trilero can be extended to let the

tumbler Pt charge a fee for each puzzle promise/solver pair
that it processes. In particular, Trilero could be setup such
that each Ps pays amt+ fee while Pt pays only amt to each
Pr. As before, the unlinkability property requires that fee is
the same for all payments within the anonymity set.

Cross-currency payments. In principle, the crypto-
graphic protocol in A2L (and thus Trilero) supports the au-
thorization of transactions across different cryptocurrencies.
However, deploying Trilero as full-fledge cross-currency
PCH requires to consider several practical aspects. In the
following, we describe (a possibly incomplete list of) them.
First, one would require to fix exchange rate between the
cryptocurrencies being exchanged to ensure unlinkability of
payments (similar to the aforementioned argument for the
fees). In practice, one could fix an exchange rate for a period
of time (say one day) and let Trilero use it during that period.
Then, the tumbler Pt could account for the fluctuations
on the exchange rate during that period by (possibly over
approximating) the fee charged to each payment. Second,
one would require to fix a timeout for each phase indepen-
dently of the cryptocurrencies being exchanged (which may
have different block creation times) in order to maintain
unlinkability.

Communication between Ps and Pr. As discussed
in Section 3, we assumed that Pt does not notice the commu-
nication between Ps and Pr (e.g., the sending of the puzzle
and its randomized solution), as otherwise it trivially breaks
unlinkability. We note that this a standard assumption in
payment protocols providing privacy guarantees [13], [31].
In practice, Ps and Pt could communicate via an anonymous
communication channel (e.g., Tor).

Implementing phases and epochs. We expect our
construction to run in phases and epochs as described in
Section 3. An epoch constitutes a single run of our complete
construction, whereas phases are disjoint timeslots inside
an epoch, which correspond to our individual protocol runs
(e.g., all instances of the registration protocol run during the
registration phase). In practice one can simply set a system
specific duration for an epoch (e.g., one day), and then
divide the epoch duration into four equal timeslots (e.g., 6
hours per slot), one for each of our four phases: registration
phase, puzzle promise phase, puzzle solver phase, and open
phase. Making sure that the timeslots within an epoch are
equal, and more importantly, disjoint reduces the possible
information leakage that can be obtained from the timing
attacks.

6. Related Work

On-chain tumblers. Several prior works exist where
a centralized tumbler assists users to mix their coins [6],
[7], [8], [32], [33], [34], [35], [36], [37], [38], [39], [40],
[41], [42]. However, all these constructions heavily rely on
on-chain transactions to operate, thus, hindering scalability.
A2L operates instead with off-chain payments, aiding the
scalability of current blockchains. Also, while the afore-
mentioned systems are restricted to one (or few) cryptocur-
rencies, A2L relies only on widely deployed cryptographic



primitives such as digital signatures and timelocks, improv-
ing thereby the backwards compatibility of our solution and
paving the way to interoperable cross-chain applications.

Payment channel networks (PCNs). In a PCN [4], par-
ties performs payments through a path of opened channels
between sender and receiver. Recent works have studied
their security, privacy, and concurrency guarantees [22],
[43]. We consider this research line as orthogonal to our
work, since the underlying protocol requires to reveal the
predecessor and successor nodes in the path to the interme-
diaries, which is exactly the privacy notion in a PCH, with
only one intermediary (i.e., the tumbler).

7. Conclusion

We presented A2L a novel three-party protocol to syn-
chronize the updates between the payment channels involved
in a PCH, and using which we build Trilero, a secure,
privacy-preserving, interoperable, and backwards compat-
ible PCH. Our construction relies on an adaptor signa-
ture scheme, which can be instantiations from Schnorr or
ECDSA signatures. [15]. We defined and proved security
and privacy of Trilero and A2L in the UC framework.
We further demonstrated that Trilero is the most efficient
Bitcoin-compatible PCH, showing that our construction re-
quires ~33x less bandwidth, than the state-of-the-art PCH
TumbleBit, while retaining the computational cost (or pro-
viding 2x speedup with a preprocessing technique). More-
over, Trilero provides backwards compatibility with virtually
all cryptocurrencies today.
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Appendix

1. Adaptor Signatures

Here we give a more detailed and formal description
of an adaptor signature and its properties. The definitions
and security experiments are taken from [15] with minor
changes to fit our notation. Adaptor signatures have been
introduced by the cryptocurrency community to tie together
the authorization of a transaction with leakage of a secret
value. Due to its utility, adaptor signatures have been used in
previous works for various applications like atomic swaps
or payment channel networks [22]. An adaptor signature
scheme is essentially a two-step signing algorithm bound to
a secret: first a partial signature is generated such that it can
be completed only by a party that knows a certain secret,
where the completion of the signature reveals the underlying
secret.

More precisely, we define an adaptor signature scheme
with respect to a standard signature scheme Σ and a hard
relation R. Before moving on with the formal definition of
an adaptor signature, we first recall the definition of a hard
relation.

Definition 1 (Hard Relation). Let R be a relation with state-
ment/witness pairs (Y, y). Let us denote LR the associated
language defined as LR := {Y | ∃y s.t. (Y, y) ∈ R}. We
say that R is a hard relation if the following holds:
• There exists a PPT sampling algorithm GenR(1λ) that

on input the security parameter λ outputs a state-
ment/witness pair (Y, y) ∈ R.

• The relation is poly-time decidable.
• For all ppt adversaries A there exists a negligible

function negl, such that:

Pr

[
(Y, y∗) ∈ R

∣∣∣∣ (Y, y)← GenR(1λ),
y∗ ← A(Y )

]
≤ negl(λ) ,

where the probability is taken over the randomness of
GenR and A.

In an adaptor signature scheme, for any statement Y ∈
LR, a signer holding a secret key is able to produce a pre-
signature w.r.t. Y on any message m. Such pre-signature
can be adapted into a full valid signature on m if and only
if the adaptor knows a witness for Y . Moreover, if such a
valid signature is produced, it must be possible to extract
the witness for Y given the pre-signature and the adapted
signature. This is formalized as follows, where we take the
message space M to be {0, 1}∗.
Definition 2 (Adaptor Signature Scheme). An adaptor sig-
nature scheme w.r.t. a hard relation R and a signature
scheme Σ = (KGen,Sig,Vf) consists of four algorithms
ΞR,Σ = (PreSig,Adapt,PreVf,Ext) defined as:
PreSig(sk,m, Y ): is a PPT algorithm that on input a secret

key sk, message m ∈ {0, 1}∗ and statement Y ∈ LR,
outputs a pre-signature σ̂.

PreVf(pk,m, Y, σ̂): is a DPT algorithm that on input a
public key pk, message m ∈ {0, 1}∗, statement Y ∈ LR
and pre-signature σ̂, outputs a bit b.

https://github.com/lightningnetwork/lightning-rfc
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Adapt(σ̂, y): is a DPT algorithm that on input a pre-
signature σ̂ and witness y, outputs a signature σ.

Ext(σ, σ̂, Y ): is a DPT algorithm that on input a signature
σ, pre-signature σ̂ and statement Y ∈ LR, outputs a
witness y such that (Y, y) ∈ R, or ⊥.

In addition to the standard signature correctness, an
adaptor signature scheme has to satisfy pre-signature cor-
rectness. Informally, an honestly generated pre-signature
w.r.t. a statement Y ∈ LR is a valid pre-signature and can
be adapted into a valid signature from which a witness for
Y can be extracted.

Definition 3 (Pre-signature Correctness). An adaptor sig-
nature scheme ΞR,Σ satisfies pre-signature correctness if
for every λ ∈ N, every message m ∈ {0, 1}∗ and every
statement/witness pair (Y, y) ∈ R, the following holds:

Pr


PreVf(pk,m, Y, σ̂) = 1

∧
Vf(pk,m, σ) = 1

∧
(Y, y′) ∈ R

∣∣∣∣∣∣∣∣∣
(sk, pk)← KGen(1λ)
σ̂ ← PreSig(sk,m, Y )
σ := Adapt(σ̂, y)
y′ := Ext(σ, σ̂, Y )

 = 1.

Next, we define the security properties of an adaptor
signature scheme. We start with the notion of unforgeability,
which is similar to existential unforgeability under cho-
sen message attacks (EUF-CMA) but additionally requires
that producing a forgery σ for some message m is hard
even given a pre-signature on m w.r.t. a random statement
Y ∈ LR. We note that allowing the adversary to learn
a pre-signature on the forgery message m is crucial as
for our applications unforgeability needs to hold even in
case the adversary learns a pre-signature for m without
knowing a witness for Y . We now formally define the
existential unforgeability under chosen message attack for
adaptor signature (aEUF-CMA).

Definition 4 (aEUF-CMA Security). An adaptor signa-
ture scheme ΞR,Σ is aEUF-CMA secure if for every PPT
adversary A there exists a negligible function negl such
that: Pr[aSigForgeA,ΞR,Σ

(λ) = 1] ≤ negl(λ), where the
experiment aSigForgeA,ΞR,Σ

is defined as follows:

aSigForgeA,ΞR,Σ
(λ)

1 : Q := ∅
2 : (sk, pk)← KGen(1λ)

3 : m← AOS(·),OpS(·,·)(pk)

4 : (Y, y)← GenR(1λ)

5 : σ̂ ← PreSig(sk,m, Y )

6 : σ ← AOS(·),OpS(·,·)(σ̂, Y )

7 : return (m 6∈ Q ∧ Vf(pk,m, σ))

OS(m)

1 : σ ← Sig(sk,m)

2 : Q := Q∪ {m}
3 : return σ

OpS(m,Y )

1 : σ̂ ← PreSig(sk,m, Y )

2 : Q := Q∪ {m}
3 : return σ̂

An additional property that we require from adaptor
signatures is pre-signature adaptability, which states that
any valid pre-signature w.r.t. Y (possibly produced by a
malicious signer) can be adapted into a valid signature using
the witness y with (Y, y) ∈ R. We note that this prop-
erty is stronger than the pre-signature correctness property

from Definition 3, since we require that even maliciously
produced pre-signatures can always be completed into valid
signatures. The following definition formalizes this property.

Definition 5 (Pre-signature Adaptability). An adaptor signa-
ture scheme ΞR,Σ satisfies pre-signature adaptability if for
any λ ∈ N, any message m ∈ {0, 1}∗, any statement/witness
pair (Y, y) ∈ R, any key pair (sk, pk)← KGen(1λ) and any
pre-signature σ̂ ← {0, 1}∗ with PreVf(pk,m, Y, σ̂) = 1, we
have: Pr[Vf(pk,m,Adapt(σ̂, y)) = 1] = 1.

The last property that we are interested in is wit-
ness extractability. Informally, it guarantees that a valid
signature/pre-signatue pair (σ, σ̂) for a message/statement
pair (m,Y ) can be used to extract the corresponding witness
y of Y .

Definition 6 (Witness Extractability). An adaptor signature
scheme ΞR,Σ is witness extractable if for every PPT ad-
versary A, there exists a negligible function negl such that
the following holds: Pr[aWitExtA,ΞR,Σ

(λ) = 1] ≤ negl(λ),
where the experiment aWitExtA,ΞR,Σ

is defined as follows

aWitExtA,ΞR,Σ
(λ)

1 : Q := ∅
2 : (sk, pk)← KGen(1λ)

3 : (m,Y )← AOS(·),OpS(·,·)(pk)

4 : σ̂ ← PreSig(sk,m, Y )

5 : σ ← AOS(·),OpS(·,·)(σ̂)

6 : y′ := Ext(pk, σ, σ̂, Y )

7 : return (m 6∈ Q ∧ (Y, y′) 6∈ R
8 : ∧ Vf(pk,m, σ))

OS(m)

1 : σ ← Sig(sk,m)

2 : Q := Q∪ {m}
3 : return σ

OpS(m,Y )

1 : σ̂ ← PreSig(sk,m, Y )

2 : Q := Q∪ {m}
3 : return σ̂

Although, the witness extractability experiment aWitExt
looks similar to the experiment aSigForge, there is one
important difference, namely, the adversary is allowed to
choose the forgery statement Y . Hence, we can assume
that the adversary knows a witness for Y , and therefore,
can generate a valid signature on the forgery message m.
However, this is not sufficient to win the experiment. The
adversary wins only if the valid signature does not reveal a
witness for Y .

Combining the three properties described above, we can
define a secure adaptor signature scheme as follows.

Definition 7 (Secure Adaptor Signature Scheme). An adap-
tor signature scheme ΞR,Σ is secure, if it is aEUF-CMA
secure, pre-signature adaptable and witness extractable.

2. Castagnos-Laguillaumie Encryption Scheme

The main reason for using the Castagnos-Laguillaumie
(CL) [18], [19] encryption scheme as opposed to any other
linearly homomorphic encryption scheme is that it can be
instantiated to work over Zq, for a q that is the same
as the order of the elliptic curve group used in Schnorr
and ECDSA signature schemes. If one uses an encryption
scheme with a plaintext space larger than the group order



q, then several problems appear. For example, two- party
ECDSA construction of Lindell [44] uses Paillier, which
has a plaintext space ZN , for a composite N much larger
than q. In that case to enforce correctness and security of the
protocol the value of N needs to be chosen large enough, so
that no wrap around occurs, and one needs to prove in zero-
knowledge that the encrypted value is within the right range,
which requires an expensive range proof. We can avoid these
issues by using the CL encryption scheme instantiated with
the plaintext space Zq. Another advantage of CL is that
in the security proofs challenger’s access to the secret key
does not compromise the indistinguishability of ciphertexts,
as it relies on a computational assumption and a statistical
argument. For more information about the problems arising
from using an encryption scheme with a larger modulus than
the elliptic curve group order, and how these problems are
addressed by the CL encryption scheme we refer the reader
to [19].

3. Security and Privacy Model

3.1. Preliminaries. We define our security and privacy
model modularly by leveraging the Universal Composability
(UC) framework from Canetti [14]. More precisely, we rely
on the synchronous version of global UC framework (GUC)
[24]. We first describe the ideal functionality FA2L for A2L,
which captures the expected behavior as well as the security
and privacy properties of the interaction among the sender
Ps, receiver Pr and tumbler Pt, for which we provided an
implementation in Section 3.3. Then, we describe payment-
channel hub (PCH) ideal functionality FPCH covering the
security and privacy notions for a PCH, and which relies on
FA2L, and for which we already presented an implementation
called Trilero in Appendix E. The security proofs for A2L
and Trilero are given in Appendix D and Appendix E.2,
respectively.

Attacker model. We model the parties as interactive
Turing machines (ITMs), which communicate with a trusted
functionality F via secure and authenticated communication
channels. We model the adversary S as a PPT machine that
has access to an interface corrupt(·), which takes as input a
party identifier P and provides the attacker with the internal
state of P . From that point onward, all subsequent incoming
and outgoing communication of P is routed through S. As
commonly done in the literature [13], [22], [43], we consider
the static corruption model, that is, the adversary commits
to the identifiers of the parties it wishes to corrupt ahead of
time.

Communication model. We consider a synchronous
communication network, where communication proceeds in
discrete rounds. We follow [45] (which in turn follows [46]),
and formalizes the notion of rounds via an ideal functionality
Fclock, which represents the clock. The ideal functionality
requires all honest parties to indicate that they are ready to
proceed to the next round before the clock is ticked. Similar
to [45], we treat the clock functionality as a global ideal
functionality defined in the GUC model [24]. This implies
that all parties are aware of the given round.

We assume that the parties are connected via authenti-
cated communication channels with guaranteed delivery of
exactly one round. Hence, if a party P sends a message
m to party Q in round r, party Q receives the message at
the beginning of round r + 1. Furthermore, Q is sure that
the message was sent by P . The adversary can change the
order of messages that were sent in the same round, but
it cannot delay or drop messages sent between parties, or
it cannot insert a new message. For simplicity, we assume
that computation is instantaneous. These assumptions on
the communication channels are formalized as an ideal
functionality FGDC, as defined in [45].

Additionally, we use the secure transmission functional-
ity Fsmt, as defined in [14], which ensures that the adversary
cannot read or change the content of the messages. Lastly,
we assume the existence of an anonymous communication
channel as defined in [47], which we denote here as Fanon,
and which is only needed for communication between the
sender Ps and receiver Pr.

Payment channels. We make use of the ideal function-
ality FGC [15], which defines generalized channels, which
can be seen as an extension of payment channels. The
ideal functionality provides all the backbone necessary for
handling payment channels, such as the following interfaces:
Create, used for opening a payment channel, Close, used for
closing a payment channel, and Update, used to update the
balances of the parties involved in the payment channel.

Universal composability. We briefly overview the no-
tion of secure realization in the UC framework [14]. In-
tuitively, a protocol realizes an ideal functionality if any
distinguisher (the environment) has no way of distinguishing
between a real run of the protocol and a simulated inter-
action with the ideal functionality. Let EXECπ,A,E denote
the ensemble of the outputs of the environment E when
interacting with the adversary A and users running protocol
π, we define universal composability as follows.

Definition 8 (Universal Composability). A protocol π UC-
realizes an ideal functionality F if for any PPT adversary
A there exists a simulator S, such that for any environment
E , the ensembles EXECπ,A,E and EXECF,S,E are computa-
tionally indistinguishable.

3.2. Anonymous Atomic Lock (A2L). Here, we formalize
the notion of anonymous atomic locks (A2L).

Ideal functionality. We illustrate the ideal functional-
ity FA2L for A2L in Figure 6, where it implicitly uses
FGDC, Fsmt and Fanon, thus, FA2L is defined in the
(FGDC,Fsmt,Fanon)-hybrid model.

Furthermore, FA2L manages a list P (initially set to P :=
∅), to keep track of the cryptographic puzzles. The entries
in the list P have the format (pid, pid′, b), where pid is the
puzzle, pid′ is the randomized version of the puzzle and
b is a bit specifying whether the puzzle has been solved.
Additionally, it managed as list T , which keeps track of the
valid tokens.
FA2L provides three interfaces, which are depicted in

Figure 6. The Registration interface allows a party to obtain



Ideal Functionality FA2L

Registration: On input (Registration, Pr) from Ps, FA2L pro-
ceeds as follows:

- Send (registration−req, Ps) to Pt and S.
- Receive (register−res, b) from Pt.
- If b = ⊥ then abort.
- Sample tid←$ {0, 1}λ and add tid into T .
- Send (registered, tid) to Ps, Pr and S.

Puzzle Promise: On input (PuzzlePromise, Ps, tid) from Pr ,
FA2L proceeds as follows:

- If tid 6∈ T then abort.
- Else remove tid from T .
- Send (promise−req, Pr, tid) to Pt and S.
- Receive (promise−res, b) from Pt.
- If b = ⊥ then abort.
- Sample pid, pid′ ←$ {0, 1}λ.
- Store the tuple (pid, pid′,⊥) into P .
- Send (promise, pid) to Pr,S and (promise, pid′) to Ps,S.

Puzzle Solver: On input (PuzzleSolver, Pr, pid
′) from Ps, FA2L

proceeds as follows:
- If 6 ∃(·, pid′, ·) ∈ P then abort.
- Send (solve−req, Ps, pid′) to Pt and S.
- Receive (solve−res, b) from Pt.
- If b = ⊥ then abort.
- Update entry to (·, pid′,>) in P .
- Send (solve,>) to Ps and S.

Open: On input (Open, pid) from Pr , FA2L proceeds as follows:
- If 6 ∃(pid, ·, b) ∈ P or b = ⊥ then send ⊥ to Pr and abort.
- Else send > to Pr .

Figure 6: Ideal functionality FA2L.

a token, which is used for authentication purposes. The
PuzzlePromise interface given as input a valid token pro-
vides a puzzle. The PuzzleSolver interface allows a party
to acquire a solution to a puzzle. Lastly, the Open interface
allows a party to check the validity of the puzzle solution.

Discussion. We introduced the security and privacy
notions of interest for our system in Section 3.1. Here,
we paraphrase them regarding A2L and explain why FA2L

achieves these notions.
Authenticity: Authenticity ensures that puzzle promise

can only be executed if a valid token has been acquired and
that each token can only be used once. This is enforced
by FA2L as it checks the validity of the input token tid
to the PuzzlePromise interface, before continuing with its
execution. If the token is invalid it aborts the execution, and
otherwise, it continues removes the token from the list T
and continues with the execution of PuzzlePromise.

Atomicity: Loosely speaking, atomicity for A2L means
that a puzzle (lock) can only be solved, if there has been a
corresponding execution of puzzle solver with for this puz-
zle. This is enforced by FA2L because it keeps track of the
puzzles in the list P , and checks whether the puzzle given
as input to the Open interface corresponds to one of the
existing entries in the list P and it has been already solved.
Since the puzzles only get solved inside the PuzzleSolver

interface and FA2L is trusted, this ensures that PuzzleSolver
must be called before Open in order for it to succeed.

Unlinkability: Intuitively, unlinkability means that the
tumbler Pt does not learn information that allows it to
associate the sender Ps and the receiver Pr of a payment (i.e,
cannot link the calls of PuzzlePromise and PuzzleSolver).
This property is enforced by FA2L since for each call to the
PuzzlePromise interface, FA2L samples both a puzzle pid
and its randomized version pid′, and stores them as part of
the same entry in P . Then, it is this randomized puzzle pid′

that is given to Pt inside the PuzzleSolver interface.
Additionally, since we assumed the existence of secure

and anonymous communication channel for Ps and Pt (see
Section 3), which can be realized with Fanon [47] ideal
functionality, Pt cannot use the network information to
correlate Ps and Pr. We remark that this assumption is
indispensable for unlinkability and is commonly adopted in
the PCH-related literature, such as in [9], [13].

3.3. Payment Channel Hub (PCH). Here, we formalize
the notion of payment channel hub (PCH), more precisely,
we give a formalization of Trilero. We use the notation
described in Section 2 for payment channels.

Ideal functionality. FPCH ideal functionality makes use
of FGDC,FGC, and our previously defined FA2L ideal func-
tionalities, hence, it is defined in (FGDC,FGC,FA2L)-hybrid
model. FPCH is shown in Figure 7.
FPCH manages a list C (initially set to C := ∅), which

stores the currently open channels. In our model, we expect
that every participating party has a channel with the central
designated tumbler Pt, and that every payment transfers a
fixed amount amt of coins, which we assume is globally
available to all parties. Additionally, we assume that there
is a constant validity period v for payments, and we denote
the current time by ∆. In order to simplify the model we
do not include any transaction fees, but we note that our
protocol retains its security and privacy properties even in
the presence of constant transaction fees.
FPCH provides three interfaces, where OpenChannel and

CloseChannel operations are the standard channel open-
ing/closing operations [43], [48], which in our case are
handled via simulator calls to the FGC ideal functionality
defined in [15]. Lastly, Pay handles the payment operation
from the sender Ps to the receiver Pr through the via Pt by
making use of FA2L.

Discussion. We discuss here how the ideal functionality
captures the security and privacy notions of interest for
payment hubs as defined in Section 3.1.

Authenticity: This property ensures that only authenti-
cated payments should go through. Since FPCH is defined
in hybrid model with FA2L, it automatically inherits the
authenticity guarantees of FA2L.

Atomicity: The system should not be exploited to print
new money or steal existing money, even when parties
collude. FPCH achieves atomicity as the only place where
the balances are updated is at the end of the Pay interface,
where the ideal functionality makes sure that all the previous
operations related to A2L have been successfully finished.



Ideal Functionality FPCH

Open Channel: On input (OpenChannel, ς, txidP ) from a party
P , FPCH proceeds as follows:

- Send (Create, ς, txidP ) to S.
- Receive b from S.
- If b = ⊥, then F aborts.
- Add ς into C.
- Send (created, ς.cid) to ς.users.

Close Channel: On input (CloseChannel, ς) from a party P ,
FPCH proceeds as follows:

- Send (Close, ς.cid) to S.
- Receive b from S.
- If b = ⊥, then F aborts.
- Remove ς from C.
- Send (closed, ς.cid) to ς.users.

Pay: On input (Pay, Pr) from Ps, FPCH proceeds as follows:
- Retrieve ς and ς ′ from C, where ς.users = {Ps, Pt} and
ς ′.users = {Pt, Pr}.

- If ς = ⊥ or ς ′ = ⊥ then abort.
- Send (Registration, Pr) to S.
- Receive tid from S.
- If tid = ⊥ then abort.
- Set t′ = ∆ + 2v and propose ς ′.TLP(θ′ := (ς ′.cash(Pt)
−= amt, ς ′.cash(Ps) += amt), t′) to Pt and Pr .

- Send (PuzzlePromise, Ps, tid) to S.
- Receive pid′ from S.
- If pid′ = ⊥ then abort.
- Set t = ∆ + v and propose ς.TLP(θ := (ς.cash(Ps) −=
amt, ς.cash(Pt) += amt), t) to Ps and Pt.

- Send (PuzzleSolver, Pr, pid
′) to S.

- Receive b from sdv.
- If b = ⊥ then abort.
- Send (Open,Π, α) to S.
- Receive b from S.
- If b = ⊥ or t < ∆ then send ⊥ to Ps.
- Send the update (Update, ς.cid, θ := (ς.cash(Ps) −=
amt, ς.cash(Pt) += amt)) to S.

- Send the update (Update, ς ′.cid, θ′ := (ς ′.cash(Pt) −=
amt,ς ′.cash(Pr) += amt)) to S.

Figure 7: Ideal functionality FPCH.

This implies that FPCH inherits the atomicity guarantees of
FA2L.

Unlinkability: The intermediary should not learn infor-
mation that allows it to associate the sender and the receiver
of a payment. In Appendix C.2 it was argued that FA2L

provides such an unlinkability guarantee. Since, FPCH is
defined in hybrid model with FA2L, it inherits the unlink-
ability guarantees on FA2L. However, FPCH also handles
the payments, hence, we need to ensure that the actual
payments do not leak any information that can be used to
link the sender/receiver pair. Though, we note that FPCH

uses constant amount amt for all payments, therefore, the
amounts to not help in differing the payments.

4. Security Analysis of A2L

Throughout this section we denote by poly (λ) any
function that is bounded by a polynomial in λ, where λ ∈ N
is the security parameter. We denote any function that is
negligible in the security parameter by negl(λ). We say an
algorithm is PPT if it is modeled as a probabilistic Turing
machine whose running time is bounded by some function
poly(λ).

We prove security according to the UC framework [14],
and in the presence of malicious adversaries with static
corruptions. We recall the theorem stated in Section 4,
which we prove here.

Theorem 1. Let COM be a secure commitment scheme,
NIZK be a non-interactive zero-knowledge scheme, Σ, Σ̃ be
EUF-CMA secure signature schemes, R be a hard relation,
ΞR,Σ be a secure adaptor signature scheme, and Ψ be an
IND-CPA secure encryption scheme, then the construction
in Figures 2 to 5 UC-realizes the ideal functionality FA2L

in the (FGDC,Fsmt,Fanon)-hybrid model.

Proof. Throughout the following proof, we implicitly
assume that all messages of the adversary are well-formed
and we treat the malformed messages as aborts. The proof
is composed of a series of hybrids, where we gradually
modify the initial experiment.

HybridH0: This corresponds to the original construction
(as described in Section 3.3).

Hybrid H1: All calls to the commitment scheme COM
are replaced with calls to the ideal functionality FCOM.

Ideal Functionality FCOM

Commit: On input (commit, sid, x) from party Pi, where i ∈
{1, 2}, if some (commit, sid, ·) is already recorded, then ignore
the message. Else, record (sid, i, x) and send (receipt, sid) to
party P3−i.
Decommit: On input (decommit, sid) from party Pi, where i ∈
{1, 2}, if (sid, i, x) is recorded, then send (decommit, sid, x) to
party P3−i.

Hybrid H2: All calls to the non-interactive zero-
knowledge scheme NIZK are replaced with calls to the
ideal functionality FNIZK, which works with a relation R.

Ideal Functionality FNIZK

On input (prove, sid, x, w) from party Pi, where i ∈ {1, 2}, if
(x,w) 6∈ R or sid has been previously used, then ignore the
message. Otherwise, send (proof, sid, x) to P3−i.

Hybrid H3: For an honest tumbler Pt and sender Ps,
a corrupted receiver Pr, check if Pr returns some (tid, σ),
before an execution of the registration protocol (between
Pt and Pr), such that it does not cause the honest Pt to
abort during the promise protocol. If this is the case, abort
the experiment and output fail.



Hybrid H4: For an honest tumbler Pt and sender Ps,
a corrupted receiver Pr and a promise Π output from the
puzzle promise protocol, if Pr returns some σ := (σt, σr),
such that Verify(Π, σ) = 1, before a solution α′ is output
from an execution of the puzzle solver protocol, such that
Verify(Π,Open(Π, α′)) = 1, then the experiment aborts.

Hybrid H5: For an honest sender Ps and receiver Pr,
a promise Π output from the puzzle promise protocol and
a solution α′ output from the puzzle solver protocol, if the
parties do not abort and Verify(Π,Open(Π, α′)) 6= 1, then
the experiment aborts.

Simulator S: The simulator S simulates the honest par-
ties as in the previous hybrid, except that its actions are
dictated by the interaction with the ideal functionality FA2L.
More concretely, we define our simulator S as follows.

Simulator for registration

Case Ps is honest and Pt is corrupted
Upon Ps sending (Registration, Pr) to FA2L, proceed as

follows:
- Sample a token tid←$Zq and output oid←$ {0, 1}∗, commit

to the token and prove knowledge of the opening,

(com, decom := (tid, r))← PCOM(tid),

π ← PNIZK({∃decom | VCOM(com, decom, tid) = 1}, decom},

and send (registration−req, (π, com), oid) to Pt.
- Upon (registered, σ′) from A (on behalf of Pt), unblind the

signature, σ := UnblindSig(decom, σ′). If Vf(pkΣ̃
t , tid, σ) 6=

1, then simulate Ps aborting. Otherwise, randomize the signa-
ture, σ∗ ← RandSig(σ), store a copy of (tid, σ∗) and send it
to Pr .

Case Pt is honest and Ps is corrupted

Upon Ps sending (registration−req, (π, com), oid) to Pt, pro-
ceed as follows:
- If VNIZK(π, com) 6= 1, then simulate Pt aborting. Otherwise,

if Pt sends (registration−res,>) to FA2L, then compute σ′ ←
BlindSig(skΣ̃

t , com), and send (registered, σ′) to Ps. Else stop.

Simulator for puzzle promise

Case Pr is honest and Pt is corrupted
Upon Pr sending (PuzzlePromise, Ps, tid) to FA2L, proceed

as follows:
- Extract (tid, σ∗) that was previously stored, sign the

message (transaction), σ′r ← Sig(skΣ
r ,m

′), and send
(promise−req, (tid, σ∗), σ′r) to Pt.

- Upon (promise, A, πα, cα, σ̂
′
t) from A (on behalf of Pt), check

if VNIZK(πα, (cα, A)) 6= 1 or PreVf(pkΣ
t ,m

′, A, σ̂′t) 6= 1.
If this is the case, then simulate Pr aborting. Otherwise,
randomize the ciphertext and statement,

(c′α, β)← RandCtx(cα),

A′ ← Aβ ,

store Π := (β, (pkΣ
t , pk

Σ
r ),m′, (σ̂′t, σ

′
r)) and ` := (A′, c′α),

and send ` to Ps.

Case Pt is honest and Pr is corrupted

Upon Pr sending (promise−req, (tid, σ∗), σ′r) to Pt, proceed as
follows:
- If tid ∈ T or Vf(pkΣ̃

t , tid, σ
∗) 6= 1, then simulate Pt

aborting. Otherwise, if Pt sends (promise−res,>) to FA2L,
then add tid into T , generate new statement/witness pair
(A,α) ← GenR(1λ), encrypt α and prove that the encrypted
value is the witness of the statement A,

cα ← Enc(pkΨ
t , α),

πα ← PNIZK({∃α | cα = Enc(pkΨ
t , α) ∧A = gα}, α),

pre-sign the message (transaction) σ̂′t ← PreSig(skΣ
t ,m

′, A),
and send (promise, A, πα, cα, σ̂

′
t) to Ps. Else stop.

Simulator for puzzle solver

Case Ps is honest and Pt is corrupted
Upon Pr sending (PuzzleSolver, Pr, pid) to FA2L, proceed

as follows:
- Extract ` := (A′, c′α) that was previously stored, randomize

the ciphertext and statement,

(c′′α, τ)← RandCtx(c′α),

A′′ ← (A′)τ ,

pre-sign the message (transaction), σ̂s ← PreSig(skΣ
s ,m,A

′′).
Send (solve−req, cα′′ , σ̂s) to Pt.

- Upon (solve, σs) from A (on behalf of Pt), extract the witness,
α′′ ← Ext(σs, σ̂s, A

′′), and if α′′ = ⊥, then simulate Ps
aborting. Otherwise, compute α′ ← α′′ · τ−1 and send α′ to
Pr .

Case Pt is honest and Ps is corrupted

Upon Ps sending (solve−req, c′′α, σ̂s) to Pt, proceed as follows:
- Decrypt the input ciphertext, adapt the input pre-signature, and

sign the message (transaction),

α′′ := Dec(skΨ
t , c
′′
α),

σs := Adapt(σ̂s, α
′′),

σt ← Sig(skΣ
t ,m).

If Vf(pkΣ
s ,m, σs) 6= 1, then simulate Pt aborting. Otherwise,

if Pt sends (solve−res,>) to FA2L, then send σs to Ps. Else
stop.

Next, we proceed to proving the indistinguishability of
the neighboring experiments for the environment E .

Lemma 1. For all PPT distinguishers E it holds that

EXECH0,A,E ≈ EXECH1,A,E .

Proof. The proof follows directly from the security of the
commitment scheme COM.

Lemma 2. For all PPT distinguishers E it holds that

EXECH1,A,E ≈ EXECH2,A,E .

Proof. The proof follows directly from the security of the
non-interactive zero-knowledge scheme NIZK.



Lemma 3. For all PPT distinguishers E it holds that

EXECH2,A,E ≈ EXECH3,A,E .

Proof. We note that the two hybrids differ if the experiment
outputs fail, hence, it suffices to bound the probability that
such an event occurs. Observe that the event fail happens in
the case that an honest tumbler Pt does not abort the puzzle
promise protocol when executed with a token not obtained
from the registration protocol. We can bound the probability
that this happens by a reduction against the existential
unforgeability of the randomizable signature scheme Σ̃.
Assume towards contradiction that Pr[fail | H2] ≥ 1

poly(λ) ,
then we can construct the following reduction. The reduction
receives as input a public key pk, and samples an index
j ∈ [1, q], where q ∈ poly (λ) is a bound on the total
number of interactions. The reduction sets the public key
pkΣ̃
t generated in the j-th interaction to the challenge pk.

All calls to the signing algorithm are redirected to the
signing oracle. If the registration procedure is called, then
the reduction aborts. If the event fail happens, then the
reductions returns the corresponding (tid∗, σ∗), otherwise
it aborts.

The reduction is clearly efficient, and whenever j is
guessed correctly, the reduction does not abort. Since fail
happens it means that the registration protocol is not exe-
cuted, and puzzle promise protocol is called with (tid∗, σ∗)
as input, and furthermore, we have that Vf(pkΣ

t , tid
∗, σ∗) =

1 and tid∗ 6∈ T , which implies that Pt does not abort the
execution of the puzzle promise. As the size of T is poly(λ)
bounded and the token space is Zq (for a prime q at least
λ bits), we have that Pr[tid∗ 6∈ T | tid∗←$Zq] = 1− |T ||Zq| ,
which is overwhelming. Moreover, as every message (to-
ken identifier) uniquely identifies a session, we have that
(tid∗, σ∗) is a valid forgery. By assumption this happens
with probability at least 1

q·poly(λ) , which is a contradiction
and proves that Pr[fail | H2] ≤ negl(λ).

Lemma 4. For all PPT distinguishers E it holds that

EXECH3,A,E ≈ EXECH4,A,E .

Proof. Let fail be the event that triggers an abort in H4

but not in H3. In the following we are going to show that
the probability that such an event happens can be bounded
by a negligible function in the security parameter. Assume
towards contradiction that Pr[fail | H3] ≥ 1

poly(λ) , and
consider the following intermediate hybrid.
• Hybrid H∗3: The initial ciphertext cα is computed as

an encryption of a fixed string (e.g., 0) padded to the
appropriate length.

We note that the experiment no longer uses the secret
key skΨ

t , thus by the IND-CPA security of the homomorphic
encryption scheme Ψ we have that

Pr[fail | H∗3] ≥ Pr[fail | H3]− negl(λ) .

At this point all that remains is to show that the probability
of fail happening in H∗3 cannot be inverse polynomial.
This is implied by the hardness of the relation R and

unforgeability of the adaptor signature scheme ΞR,Σ. Since
the unforgeability of the adaptor signature also implies the
hardness of the relation R, we show that the probability
of fail happening in H∗3 cannot be inverse polynomial via
a reduction to the unforgeability of the adaptor signature
scheme ΞR,Σ. The reduction receives as input a public key
pk, pre-signature σ̂ and a statement Y , and samples an index
j ∈ [1, q], where q ∈ poly (λ) is a bound on the total
number of interactions. The reduction replaces σ̂′t with σ̂
and A with Y in the puzzle promise, and sets the public key
pkΣ
t generated in the j-th interaction to pk. All calls to the

pre-signing and signing algorithm are redirected to the pre-
signing and signing oracles, respectively. If the puzzle solver
procedure is called, then the reduction aborts. If the event
fail happens, then the reduction returns the corresponding
σ∗ := (σ∗t , σ

∗
r ), otherwise it aborts.

The reduction is clearly efficient, and whenever j is
guessed correctly, the reduction does not abort. Since fail
happens we have that Verify(Π, σ∗) = 1 and the puzzle
solver protocol is not executed. Recall that Pr is corrupted,
and hence, σ∗r is computed honestly with skΣ

r as in the
protocol, which implies that σr = σ∗r . Therefore, what
remains to show is that σ∗t is a valid forgery under pkΣ

t ,
which follows from the fact that every message uniquely
identifies a session (so the message is not queried before).
However, by assumption this happens with probability at
least 1

q·poly(λ) , which is a contradiction and proves that
Pr[fail | H∗3] ≤ negl(λ).

Lemma 5. For all PPT distinguishers E it holds that

EXECH4,A,E ≈ EXECH5,A,E .

Proof. Let fail be the event that triggers an abort in H5

but not in H4. We note that such an event can happen
in two scenarios. First, if a corrupted Pt comes up with a
pre-signature σ̂′t during the puzzle promise protocol, which
succeeds in pre-verification under the key pkΣ

t , but then
adapting this pre-signature inside Open produces an invalid
signature. Second, if a corrupted Pt produces a valid sig-
nature σs during the puzzle solver protocol, which when
extracted outputs an invalid witness. However, if the former
happens, then we have an adversary against the pre-signature
adaptability, and if the latter happens, then we have an
adversary against the witness extractability of the adaptor
signature scheme ΞR,Σ. In the following we are going to
show that the probability that such an event happens can be
bounded by a negligible function in the security parameter.
Assume towards contradiction that Pr[fail | H5] ≥ 1

poly(λ) ,
and consider the following intermediate hybrid.
• Hybrid H∗4: The pre-signature in the puzzle promise

protocol is set to σ̂′t←$ {0, 1}∗, such that pre-
verification of σ̂′t succeeds under the public key pkΣ

t .
By the pre-signature adaptability property of the adaptor

signature scheme ΞR,Σ we have that

Pr[fail | H∗4] = Pr[fail | H4].

At this point all that remains is to show that the proba-
bility of fail happening in H∗4 cannot be inverse polynomial.



This is done via the following reduction against the witness
extractability of the adaptor signature scheme ΞR,Σ. Assume
towards contradiction that Pr[fail | H∗4] ≥ 1

poly(λ) , then
we can construct the following reduction. The reduction
receives as input a public key pk and a pre-signature σ̂.
It samples an index j ∈ [1, q], where q ∈ poly (λ) is
bound on the total number of interactions. The reduction
replaces the pre-signature σ̂s from the puzzle solver protocol
with σ̂ and sets the public key pkΣ

s generated in the j-
th interaction to pk. All the calls to the pre-signing and
signing algorithms are redirected to the pre-signing and
signing oracles, respectively. If the event fail happens, then
the reductions returns the signature σs of Ps, and otherwise
it aborts.

The reduction is clearly efficient, and whenever
j is guessed correctly, the reduction does not abort.
Since fail happens we have that no party aborted, but
Verify(Π,Open(Π, α′)) 6= 1. Recall that the open algorithm
parses Π as (β, (pkΣ

t , pk
Σ
r ),m′, (σ̂′t, σ

′
r)), computes σ′t :=

Adapt(σ̂′t, α), for α = α′ · β−1, and returns σ := (σ′t, σ
′
r).

Since Pr i honest we have that σr is honestly generated and
its verification succeeds. Hence, it remains to show that the
computed σ′t is invalid. From the intermediate hybrid H∗4
and the pre-siganture adaptability property of the adaptor
signature scheme ΞR,Σ, we know that the adapt algorithm
works as expected. This implies that the only way we can
have an invalid σ′t is if the computed α is not a valid witness
the statement A. We have that α = α′′ · τ−1 · β−1, and
since Ps and Pr are honest, this implies that the extracted
α′′ is invalid (i.e., is not a witness of A′′). Hence, σt is
a valid signature that does not reveal a witness for A′′.
However, by assumption this happens with probability at
least 1

q·poly(λ) , which is a contradiction and proves that
Pr[fail | H∗4] ≤ negl(λ).

Lemma 6. For all PPT distinguishers E it holds that

EXECH5,A,E ≈ EXECFA2L,S,E .

Proof. The two experiments are identical, and the change
here is only syntactical. Hence, indistinguishability follows.

This concludes the proof of Theorem 1.

5. Description and Security Analysis of Trilero

5.1. Protocol Description of Trilero. In Trilero, we com-
bine A2L with a blockchain B in order to realize a fully-
fledged PCH. We denote the channel between Ps and Pt
as ς , and the channel between Pt and Pr as ς ′. A payment
of amt coins between Ps and Pr through Pt is realized by
updating both channels, such that Pt gets amt coins in ς if
and only if Pr gets amt coin in ς ′. In order to ensure this
invariant, Trilero relies on two contracts built upon A2L.

In a bit more detail, first Pt and Pr execute
the PuzzlePromise protocol from A2L to get the

input required to establish the following A2L-
Promise(Pt, Pr,Π, amt, ς ′, t′) contract:

1) If Pr produces a valid signature σ, so that Verify(Π, σ) =
1 before time t′ expires, then ς ′ is updated as
(ς ′.cash(Pt) −= amt, ς ′.cash(Pr) += amt) (i.e., tum-
bler pays the receiver amt coins).

2) If timeout t′ expires, ς ′ remains unchanged (i.e., tumbler
regains control over amt coins).

Here, Π is the output (along with `) from the
PuzzlePromise protocol in A2L, t is an expiration time
(validity period) of the promise, which is properly set to
give Pr the time it needs to reveal the final valid signature
σ. In case this does not happen, then Pt gets back the
money, thereby avoiding an indefinite locking of money in
the channel. Notice that we require that B supports the Verify
algorithm and time management in its scripting language.
This is the case in practice as Verify is implemented as
the unmodified verification algorithm of the digital signature
scheme (Schnorr and ECDSA in our case), and virtually all
cryptocurrencies natively implement a timelock mechanism
where time is measured as the number of blocks in the
blockchain.

Second, Pr sends the lock ` (as output by the
PuzzlePromise protocol) to Ps. Then, Ps and Pt execute the
PuzzleSolver protocol to get the input required to establish
the following A2L-Solve(Ps, Pt, `, amt, ς, t) contract:

1) If before t, Pt sends Ps the randomized solution α′ to
the cryptographic challenge encoded in `, ς is updated
as (ς.cash(Ps) −= amt, ς.cash(Pt) += amt) (i.e., the
sender pays tumbler amt coins).

2) Otherwise, ς remains unchanged (i.e., the sender regains
control over amt coins).

Finally, Ps gets the randomized solution α′ to the chal-
lenge encoded in the lock `. Then, Ps sends α′ to Pr who
can complete the A2L-Promise contract with the final valid
signature σ := Open(Π, α′).

Our Trilero protocol can be seen in Figure 8, where we
omit the key material to ease readability and assume that
they are given as implicit input to the subprotocols.

5.2. Security Analysis of Trilero. Here we prove the fol-
lowing theorem above Trilero, which was previously stated
in Section 4

Theorem 2. The protocol described in Figure 8, UC-
realizes FPCH in the (FA2L,FGDC,Fsmt)-hybrid model.
Proof. The proof consists of the observation that the ideal
functionality FA2L enforces authenticity, atomicity and un-
linkability properties of a PCH (that are defined in Sec-
tion 3.1 and discussed in Appendix C.3). Authenticity guar-
antees that only payments that were previously backed up
by some locked coins are processed. Atomicity guarantees
that either all the balances are updated or none of them,
which ensures that no party loses or gains more than it
should. Both of these properties are satisfied by FA2L as
was proven in Appendix D. Furthermore, as was discussed in



Public parameters: constant amount amt, validity period υ of a promise, current time ∆

Ps(ς) Pt(ς, ς
′) Pr(ς

′)
Create escrow output oid
(tid, σ∗)← 〈RegistrationPs

(oid),RegistrationPt
()〉

(tid, σ∗)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

If ς ′.cash(Pt) < amt then abort
〈PuzzlePromisePt(),PuzzlePromisePr (tid, σ∗)〉 → (Π, `)
If Π = ⊥ or ` = ⊥ then abort
Set t′ := ∆ + υ

A2L−Promise(Pt,Pr,Π,amt,ς′,t′)←−−−−−−−−−−−−−−−−−−→
`

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
If ς.cash(Ps) < amt or t′ < ∆ then abort

A2L−Solve(Ps,Pt,`,amt,ς,t)←−−−−−−−−−−−−−−−→
α′ ← 〈PuzzleSolverPs(`),PuzzleSolverPt()〉
If α′ = ⊥ then abort

α′

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
σ := Open(Π, α′)
b := Verify(Π, σ)
Check if b = 1

Figure 8: Trilero protocol (keys removed as inputs to subprotocols for readability).

Appendix C.2, FA2L also satisfies the unlinkability property,
hence, the same argument for unlinkability applies here
too, with the exception of the operations of FPCH4 that
are outside FA2L. However, we note that the only informa-
tion that is sent outside of FA2L consists of amounts and
timeouts, and since we use constant amounts along with
synchronized phases and epochs, this information by itself
does not break our unlinkability notion. Moreover, here the
job of the simulator S consists of interacting with FA2L and
FGC ideal functionalities on behalf of FPCH, and since the
parties do not obtain any secret input S becomes trivial to
realize.

6. Threshold Variants

We present here variants of our construction that are
based on 2-of-2 threshold signatures. Hence, at the end
of the protocols the parties obtain a single signature. We
note that our registration protocol does not depend on the
underlying signature scheme used, therefore, it remains un-
changed from Figure 2.

6.1. Schnorr-based Construction. Let G be an elliptic
curve group of prime order q with a generator g, and let
H : {0, 1}∗ → Zq be a collision resistant hash func-
tion. Additionally, let COM,NIZK and Ψ be a commitment
scheme, a non-interactive zero-knowledge scheme, and a
homomorphic encryption scheme, respectively. The Schnorr-
based puzzle promise and puzzle solver protocols are shown
in Figure 9 and Figure 10, respectively.

The construction requires that the parties have generated
shared Schnorr public keys (i.e., pktr between Pt and Pr to

be used during puzzle promise, and pkst between Ps and Pt
to be sued during puzzle solver). This shared key generation
can be done as explained in [22].

The puzzle promise protocol is run between the tumbler
Pt and the receiver Pr as before. They initially agree on a
message encoding a transaction that transfers coins from Pt
to Pr. Additionally, Pt chooses a secret value α, encrypts it
under its own public key using the homomorphic encryption
scheme, and sends the ciphertext cα along with A := gα

to Pr (lines 1-7 in Figure 9). Here we require a zero-
knowledge proof (denoted by πα in the puzzle promise
protocol) proving that the ciphertext cα encrypts the discrete
logarithm of A (line 4 in Figure 9). If we do not have such
a proof, then Pt can perform the following attack to link a
potential payer and payee. At a particular epoch, Pt chooses
a payee P ∗r it wants to attack, and when performing the
puzzle solver protocol with this party it encrypts a value
that is different from the discrete logarithm of A. Then,
during the puzzle solver protocol, when a payer P ∗s performs
the protocol with Pt, the check (A′)τ = A′′ (line 16 in
Figure 10) will fail, and P ∗s will cause an abort. Although,
in this case (due to our atomicity property) no payment will
go through, Pt can still link a payee P ∗r of its choice with
its corresponding potential payer P ∗s in a given epoch.

Next, the parties execute a coin tossing protocol to agree
on a randomness R′ = k′1 + k′2 + α, where α is unknown
to Pr. The randomness here is composed additively due to
the linear structure of Schnorr. The randomness R′ is com-
puted by parties exchanging gk

′
1 and gk

′
2 , and additionally

making use of the value A. The computation of R′ together
with the corresponding consistency proof is piggybacked



Public parameters: group description (G, g, q), message m′

1 : PuzzlePromisePt((sk
Σ
t , pk

Σ
tr), (sk

Ψ
t , pk

Ψ
t ), pkΣ̃

t ) PuzzlePromisePr ((skΣ
r , pk

Σ
tr), (tid, σ

∗))

2 : (tid, σ∗)

3 : If tid ∈ T ∨ Vf(pkΣ̃
t , tid, σ

∗) 6= 1 then abort
4 : Else add tid into T
5 : α, k′2 ←$Zq
6 : A← gα;R′2 ← gk

′
2

7 : cα ← Enc(pkΨ
t , α)

8 : πα ← PNIZK({∃α | cα = Enc(pkΨ
t , α) ∧A = gα}, α)

9 : π′2 ← PNIZK({∃k′2 | R′2 = gk
′
2}, k′2)

10 : (com, decom)← PCOM((R′2, π
′
2))

11 : com, A, πα, cα

12 : If VNIZK(πα, (cα, A)) 6= 1 then abort
13 : k′1 ←$Zq;R′1 ← gk

′
1

14 : π′1 ← PNIZK({∃k′1 | R′1 = gk
′
1}, k′1)

15 : R′1, π
′
1

16 : If VNIZK(π′1, R
′
1) 6= 1 then abort

17 : R′ ← R′1 ·R′2 ·A; e′ := H(R′‖pkΣ
tr‖m

′)

18 : s′2 ← k′2 − skΣ
t · e

′ mod q

19 : (decom, R′2, π
′
2), s′2

20 : If VCOM(com, decom, (R′2, π
′
2)) 6= 1 then abort

21 : If VNIZK(π′2, R
′
2) 6= 1 then abort

22 : R′ ← R′1 ·R′2 ·A; e′ := H(R′‖pkΣ
tr‖m

′)

23 : If gs
′
2 6= R′2 · (Q′/gsk

Σ
r )−e

′
then abort

24 : s′1 ← k′1 − skΣ
r · e

′ mod q

25 : s′ ← s′1 + s′2 mod q

26 : (c′α, β)← RandCtx(cα)

27 : A′ ← Aβ

28 : s′

29 : If gs
′
6= R′1 ·R′2 · (pkΣ

tr)
−e′ then abort Send ` := (A′, c′α) to Ps

30 : return σ := (R′, s′ + α) return (Π := (β, (pkΣ
tr,m

′, σ′ := (R′, s′))), `)

Figure 9: Puzzle promise protocol of Schnorr-based construction.

in the coin tossing (lines 5-13 in Figure 9). At this point,
Pt computes its side of the two-party Schnorr signature,
but does not include the secret α into the signature (line
14 in Figure 9). Now, Pr is able to validate this partial
signature that it receives from Pt, and also to compute
an “almost valid” signature by performing its part of the
two-party signature. This means that Pr computes a tuple
(e′, s′ := k′1 + k′2 − e′ · (x′1 + x′2)), and that the complete
signature is of the form (e′, s′+α) (lines 18-21 in Figure 9).
However, Pr does not have α, so it cannot complete the
signature. Nevertheless, Pr receives cα := Enc(pkΨ

t , α) and
A := gα from Pt at the beginning of the puzzle promise
protocol, and at the end of the protocol Pr randomizes
cα as (c′α, β) ← RandCtx(cα) (this is possible due to the
homomorphic properties of CL encryption scheme that we
are using), and using the obtained β, randomizes A as
A′ ← Aβ . The puzzle promise protocol finishes with Pr
sending these randomized values to Ps (lines 22 and 24 in

Figure 9).
The puzzle solver protocol is executed between the

sender Ps and the tumbler Pt. At the beginning of the
protocol, Ps samples a random value τ , and randomizes the
ciphertext it received from Pr, as (c′′α, τ) ← RandCtx(c′α)
(line 6 in Figure 10). Once this is done, Ps and Pt perform a
coin tossing protocol similar to the one performed between
Pr and Pt in the puzzle promise protocol, but additionally
Ps sends c′′α to Pt (lines 7-11 in Figure 10). At this point,
Pt decrypts c′′α to obtain the value α′′ := α · β · τ (line
10 in Figure 10). The rest of the protocol continues similar
to the puzzle promise protocol, where Pt and Ps compute a
common randomness, and then perform a two-party Schnorr
signature. However, this time Pt incorporates the decrypted
value α′′ as part of the randomness. After the two-party
Schnorr signature completes and Pt publishes it (allowing
Pt to receive the payment from Ps), Ps is able to extract
the value α′′ from the published signature (lines 24-25 in



Public parameters: group description (G, g, q), message m

1 : PuzzleSolverPs((skΣ
s , pk

Σ
st), ` := (A′, c′α)) PuzzleSolverPt((sk

Σ
t , pk

Σ
st), (sk

Ψ
t , pk

Ψ
t ))

2 : k2 ←$Zq;R2 ← gk2

3 : π2 ← PNIZK({∃k2 | R2 = gk2}, k2)
4 : (com, decom)← PCOM((R2, π2))

5 : com

6 : k1 ←$Zq; (c′′α, τ)← RandCtx(c′α)

7 : R1 ← gk1 ;π1 ← PNIZK({∃k1 | R1 = gk1}, k1)

8 : c′′α, R1, π1

9 : If VNIZK(π1, R1) 6= 1 then abort
10 : α′′ := Dec(skΨ

t , c
′′
α);A′′ ← gα

′′

11 : R← R1 ·R2 ·A′′; e := H(R‖pkΣ
st‖m)

12 : s2 ← k2 − skΣ
t · e mod q

13 : (decom, R2, π2), s2, A
′′

14 : If VCOM(com, decom, (R2, π2)) 6= 1 then abort
15 : If VNIZK(π2, R2) 6= 1 then abort
16 : If (A′)τ 6= A′′ then abort
17 : R← R1 ·R2 ·A′′; e := H(R‖pkΣ

st‖m)

18 : If gs2 6= R2 · (pkΣ
st/g

skΣt )−e then abort
19 : s1 ← k1 − skΣ

s · e mod q
20 : s̄← s1 + s2 mod q

21 : s̄

22 : s← s̄+ α′′

23 : If verification of (e, s) fails then abort
24 : Else publish signature (e, s)

25 : α′′ ← s− s̄
26 : α′ ← α′′ · τ−1

27 : Send α′ to Pr
28 : return α′ return >

Figure 10: Puzzle solver protocol of Schnorr-based construction.

Open(Π, α′)

Parse Π as (β, (pkΣ
tr,m

′, σ′ := (R′, s′)))
Set α← α′ · β−1

Set s← s′ + α
return (R′, s)

Verify(Π, σ)

Parse Π as (β, (pkΣ
tr,m

′, σ′))
return VerifySchnorr(pk

Σ
tr,m

′, σ)

Figure 11: Open and verify algorithms of Schnorr-based
construction.

Figure 10). It removes her part of the randomization from
α′′ as α′ ← α′′ · τ−1, and sends this value to Pr (lines
26-27 in Figure 10), who can also remove its part of the
randomization and obtain the initial α← α′ ·β−1. Once Pr
obtains α, it can complete the “almost valid” signature that

Open(Π, α′)

Parse Π as (β, (pkΣ
tr,m

′, σ′ := (r′, s′)))
Set α← α′ · β−1

Set s← s′ · α−1

return (r′, s)

Verify(Π, σ)

Parse Π as (β, (pkΣ
tr,m

′, σ′))
return VerifyECDSA(pkΣ

tr,m
′, σ)

Figure 12: Open and verify algorithms of ECDSA-based
construction.

it computed at the end of the puzzle promise protocol, as
seen in Figure 11, which allows it to claim the coins that
were promised by Pt.



Public parameters: group description (G, g, q), message m′

1 : PuzzlePromisePt((sk
Σ
t , pk

Σ
tr), (sk

Ψ
t , pk

Ψ
t ), pkΣ̃

t , pk
Ψ
r , cskΣr ) PuzzlePromisePr ((skΣ

r , pk
Σ
tr), (sk

Ψ
r , pk

Ψ
r ), (tid, σ∗))

2 : (tid, σ∗)

3 : If tid ∈ T ∨ Vf(pkΣ̃
t , tid, σ

∗) 6= 1 then abort
4 : Else add tid into T
5 : α, k′2 ←$Zq
6 : A← gα;R′2 ← gk

′
2

7 : cα ← Enc(pkt, α)

8 : πα ← PNIZK({∃α | cα = Enc(pkΨ
t , α) ∧A = gα}, α)

9 : π′2 ← PNIZK({∃k′2 | R′2 = gk
′
2}, k′2)

10 : (com, decom)← PCOM((R′2, π
′
2))

11 : com, A, πα, cα

12 : If VNIZK(πα, (cα, A)) 6= 1 then abort
13 : k′1 ← Zq;R′1 ← gk

′
1

14 : π′1 ← PNIZK({∃k′1 | R′1 = gk
′
1}, k′1)

15 : R′1, π
′
1

16 : If VNIZK(π′1, R
′
1) 6= 1 then abort

17 : R′c ← (R′2)α

18 : π′a ← PNIZK({∃α | A = gα ∧Rc = (R′2)α}, α)

19 : R′ ← (R′1)k
′
2·α;R′ := (r′x, r

′
y); r′ ← r′x mod q

20 : c1 ← Enc(pkΨ
r , (k

′
2)−1 ·H(m′))

21 : c2 ← (cskΣr )(k′2)−1·r′·skΣ
t

22 : c′ ← c1 · c2

23 : (decom, R′2, π
′
2), c′, R′c, π

′
a

24 : If VCOM(com, decom, (R′2, π
′
2)) 6= 1 then abort

25 : If VNIZK(π′2, R
′
2) 6= 1 then abort

26 : If VNIZK(π′a, (A,R
′
c)) 6= 1 then abort

27 : R′ ← (R′c)
k′1 ;R′ := (r′x, r

′
y); r′ ← r′x mod q

28 : s′2 ← Dec(skΨ
r , c
′)

29 : If (R′2)s
′
2 mod q 6= (pkΣ

tr)
r′ · gH(m′) then abort

30 : s′ ← s′2 · (k′1)−1 mod q

31 : (c′α, β)← RandCtx(cα)

32 : A′ ← Aβ

33 : s′

34 : If (R′1)k
′
2·s
′
6= (pkΣ

tr)
r′ · gH(m′) then abort Send ` := (A′, c′α) to Pr

35 : return σ := (r′, s′ · α−1) return (Π := (β, (pkΣ
tr,m

′, σ′ := (r′, s′))), `)

Figure 13: Puzzle promise protocol of ECDSA-based construction.

6.2. ECDSA-based Construction. The ECDSA signature
does not have a linear structure as Schnorr, which making
the design of our protocol more challenging.

Let G be an elliptic curve group of order q with a
generator g, and let H : {0, 1}∗ → Zq be a collision
resistant hash function. Additionally, let COM,NIZK, and Ψ
be a commitment scheme, a non-interactive zero-knowledge
scheme, and a homomorphic encryption scheme, respec-
tively. The ECDSA-based puzzle promise and puzzle solver
protocols are shown in Figure 13 and Figure 14, respectively.

Our ECDSA-based instantiation shares similar ideas
with our Schnorr-based instantiation. The parties again need
to have a shared public keys. However, in order to compute
two-party ECDSA signature (as described in [19], [44]),

one of the parties need to have in an encrypted form the
secret key of the other party. For example, during the puzzle
solver protocol we assume that the tumbler Pt has as input
a ciphertext cskΣ

s
, which is an encryption of the secret key

skΣ
s of the sender Ps and that forms the part of the joint

public key pkΣ
st computed between Ps and Pt.

The puzzle promise protocol runs similarly to the
Schnorr-based puzzle promise protocol, except that the ran-
domness is composed multiplicatively due to the structure of
ECDSA. More precisely, the parties agree on a randomness
R′ = k′1 · k′2 · α, where α is unknown to Pr (lines 4-14 in
Figure 13). Once the randomness is computed, Pt performs
its side of the two-party ECDSA signature using cΣtr (the
encryption of skΣ

r ) and the homomorphic properties of CL



Public parameters: group description (G, g, q), message m

1 : PuzzleSolverPs((skΣ
s , sk

Σ
st), (sk

Ψ
s , pk

Ψ
s ), ` := (A′, c′α)) PuzzleSolverPt((sk

Σ
t , sk

Σ
st), (sk

Ψ
t , pk

Ψ
t ), pkΨ

s , cskΣs )
2 : k2 ←$Zq;R2 ← gk2

3 : π2 ← PNIZK({∃k2 | R2 = gk2}, k2)
4 : (com, decom)← PCOM((R2, π2))

5 : com

6 : k1 ←$Zq; (c′′α, τ)← RandCtx(c′α)

7 : R1 ← gk1 ;π1 ← PNIZK({∃k1 | R1 = gk1}, k1)

8 : c′′α, R1, π1

9 : If VNIZK(π1, R1) 6= 1 then abort
10 : α′′ ← Dec(skΨ

t , c
′′
α);A′′ ← gα

′′
;Rc ← (R2)α

′′

11 : πα′′ ← PNIZK({∃α′′ | A′′ = gα
′′
∧

12 : Rc = (R2)α
′′
}, α′′)

13 : R← (R1)k2·α′′ ;R := (rx, ry); r ← rx mod q

14 : c1 ← Enc(pkΨ
s , (k2)−1 ·H(m))

15 : c2 ← (cskΣs )(k2)−1·r·H(m)

16 : c← c1 · c2

17 : (decom, R2, π2), c, A′′, Rc, πα′′

18 : If VCOM(com, decom, (R2, π2)) 6= 1 then abort
19 : If VNIZK(π2, R2) 6= 1 then abort
20 : If VNIZK(πα′′ , (A

′′, Rc)) 6= 1 then abort
21 : If (A′)τ 6= A′′ then abort
22 : R← (Rc)

k1 ;R := (rx, ry); r ← rx mod q

23 : s2 ← Dec(skΨ
s , c)

24 : If (R2)s2 mod q 6= (pkΣ
st)

r · gH(m) then abort
25 : s̄← s2 · (k1)−1 mod q

26 : s̄

27 : s← (α′′)−1 · s̄
28 : If verification of (r, s) fails then abort
29 : Else publish signature (r, s)

30 : α′′ ← (s · (s̄)−1)−1

31 : α′ ← α′′ · τ−1

32 : Send α′ to Pr
33 : return α′ return >

Figure 14: Puzzle solver protocol of ECDSA-based construction.

encryption scheme. However, Pt does not embed the inverse
of α into the signature (line 15 in Figure 13). Now, Pr is
able to compute an “almost valid” signature by decrypting
the ciphertext that it received from Pt and performing his
part of the signature. This means that Pr computes a tuple
(r′, s′ :=

r′·x′1·x
′
2+H(m′)
k′1·k′2

), and that the complete signature
is of the form (r′, s′ · α−1) (lines 20-24 in Figure 13).
Since Pr does not have α, he cannot complete the signature.
Exactly as in the Schnorr-based construction, Pr receives
cα := Enc(pkΨ

t , α) and A := gα from Pt at the beginning
of the puzzle promise protocol, and at the end of the protocol
Pr randomizes the values cα and A using a randomness β.
The puzzle promise protocol finishes with Pr sending these
randomized values to Ps (lines 25-26 and 28 in Figure 13).

The puzzle solver protocol is similar to Schnorr-based
puzzle solver protocol, with the sole difference that Ps and

Pt compute a two-party ECDSA signature instead of a two-
party Schnorr signature.
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