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Abstract. We analyze the structure of finite commutative rings with
respect to its idempotent and nilpotent elements. Based on this analysis
we provide a quantum-classical IND-CCA1 attack for ring homomorphic
encryption schemes. Moreover, when the plaintext space is a finite re-
duced ring, i.e. a product of finite fields, we present a key-recovery attack
based on representation problem in black-box finite fields. In particular,
if the ciphertext space has smooth characteristic the key-recovery at-
tack is effectively computable. We also extend the work of Maurer and
Raub on representation problem in black-box finite fields to the case of
a black-box product of finite fields of equal characteristic.

1 Introduction

One of the most important problems in cryptography is the construction of an
efficient and secure fully homomorphic encryption (FHE) scheme. A practical
solution to this problem would have a large number of consequences, such as
computation on encrypted data held on an untrusted server. In [16], C. Gentry
came up with the first construction of such a scheme based on ideal lattices.
Gentry’s approach goes as follows: first, he constructs a somewhat homomor-
phic encryption scheme which is an encryption scheme that supports evaluating
low-degree polynomials on the encrypted data; next, he ”squashes” the decryp-
tion procedure so that it can be expressed as a low-degree polynomial which
is supported by the scheme; and finally, he develops a bootstrapping technique
which allows one to obtain a fully homomorphic scheme. The first generation
of fully homomorphic encryption schemes ([17], [14], [33], [13], [19]) was con-
structed following Gentry’s recipe. A second generation of encryption schemes
started in [7], where fully homomorphic encryption was established in a simpler
way, based on the learning with errors assumption; the scheme was then im-
proved in [9]. Currently, perhaps the simplest FHE scheme based on the learn-
ing with errors assumption is by Brakerski [8] who builded on Regev’s public
key encryption scheme [29]. The most recent achievement in this direction was
obtained in [20], where a significant FHE scheme was introduced claiming three
important properties: simpler, faster, and attribute-based FHE. Another very
recent approach aiming for producing FHE was presented in [15], where the
authors based their construction on the finite field isomorphism problem. All



these schemes are based on the method of constructing a noisy version of the
ciphertext(the noise is added to guarantee the security of the cryptosystem).
The output of this approach is called noisy FHE scheme. In this respect, an
important and natural question would be whether one can actually construct
a noise-free FHE scheme. A possible approach towards noise-free FHE scheme,
could be the following setting: the ciphertext space and the plaintext space both
have ring structures, and the decryption algorithm is a ring homomorphism, so
that one would call such a scheme a ring homomorphic encryption scheme. Let
us mention here that a different approach towards achieving noise-free FHE was
considered in [27]. Namely, they showed that the NAND operator, which is suf-
ficient for constructing arbitrary operations on bits, can be realized (in a certain
suitable sense) in some non-commutative groups.

In this article, we investigate the structure of ring homomorphic encryption
schemes and their security, where the ciphertext and plaintext spaces are finite
commutative non-unital black-box rings.

1.1 Our Contribution

The contribution of this work is threefold. First, we prove that any ring homo-
morphic encryption scheme with commutative ciphertext and plaintext spaces
are not secure against quantum adversaries, where quantum computing is re-
quired only in the first phase of the attacks, when the ”secret key” is computed.
More precisely, we show that any ring homomorphic encryption scheme over a
quasi-unital ring (see section 3) is not IND-CCA1-secure. Moreover, in the case
of a ring homomorphic encryption scheme whose plaintext space is a reduced
ring we present a key-recovery attack based on the representation problem in
black-box finite fields ([25]). In particular, if the characteristic of the ciphertext
space is smooth then our key-recovery attack is effectively computable. These
results are proved under the assumption that the ciphertext and plaintext spaces
are black-box rings (see definition 5). In particular, we assume that a finite set
of generators is known both for the ciphertext space and for the plaintext space.
To prove these results, a big part of the paper is devoted to the computation of
primitive idempotents of finite commutative black-box rings. This is the second
important contribution of this work. In the end, we show that the results in [25]
can be extended to the case of a product of finite fields of equal characteristic.

1.2 Related Work

The security of the known (noisy) FHE schemes, was considered in many papers,
among which we mention [10] and [23]. It has been shown that these schemes
are not IND-CCA1 secure. On the other hand, to our knowledge, the security
of ring homomorphic encryption schemes was considered only in [5], where the
security of ring homomorphic encryption schemes over F2 has been investigated.
However, there exists a result that is related to our work, as we shall explain. It
is clear that any ring homomorphic encryption scheme gives rise to a (commu-
tative) group homomorphic encryption scheme by forgetting the multiplicative



structure on both the ciphertext and plaintext spaces. In [1], an IND-CPA at-
tack is presented on commutative group homomorphic encryption schemes. This
attack may be used in the case of a ring homomorphic encryption scheme, but is
much less efficient than our attack. Indeed, the attack is based on the existence
of a set of generators for the ciphertext space, viewed as an abelian group (or
as a Z-module). Our IND-CCA1 attack is also based on the existence of a set of
generators of the ciphertext space, but viewed as a ring (or as a Z-algebra). In
many situations in public key cryptography, the rings that represent ciphertext
spaces are described using generators and (possible hidden) relations, so that
our assumption is not too restrictive. Moreover, the existence of a finite set of
generators of a certain Z-algebra R, may produce a finite set of generators (see
[3]) for the Z-module (R,+), but the size of this set of generators is much larger
than the size of the initial one, so that the algorithm in [1] is less efficient. In
addition, in a general enough setting we propose key-recovery attacks, which ob-
viously is a much stronger attack than IND-CCA1. Moreover, we use quantum
algorithms only for the computation of the ”secret key”(which in the case of a
IND-CPA/CCA attack corresponds to the first phase of the attack) and then
we decrypt any ciphertext using classic algorithms, which is not the case for
the attack presented in [1] where in both phases of the attack one needs to use
quantum computations. One can adapt the arguments in this work to construct
IND-CPA attacks for the ring homomorphic encryption schemes using the idea
of δ-coverings described in [1]. However, for the clarity of the ideas presented in
this paper we decided to analyze only the IND-CCA1 security.

1.3 Outline

In the next section we present the notations and definitions of ring homomor-
phic encryption schemes and security attacks. In Section 3 we prove that any
finite commutative ring has a unique decomposition as a product of a unital
ring and a nilpotent ring (Theorem 1) and provide an explicit projection to its
unital part. The unital part decomposes further as a product of local unital
rings (Artin’s decomposition theorem [4]), each component corresponding to a
primitive idempotent. We then prove that any nontrivial homomorphism from
a unital ring to a finite local ring factorizes through a unique projection to one
of its local components. This fact will be essential in constructing our attacks.
In section 4 we recall the quantum algorithm for computing associated idem-
potents of elements of black-box semigroups, and we also show that in a finite
ring of prime power characteristic this quantum algorithm may be replaced by a
classical one. Section 5 is devoted to the computational aspects of the structural
decomposition of rings, presented previously. More precisely, we present algo-
rithms that compute the primitive idempotents of a ring and the residue fields
of its local components. In section 6 we provide two algorithms: an IND-CCA1

attack on ring homomorphic encryption schemes over general quasi-unital rings,
and a key-recovery attack on ring homomorphic encryption schemes over re-
duced rings, based on the solvability of the representation problem problem in



black-box finite fields. Also, we extend the results of [25] to the case of a product
of finite fields of equal characteristic.

2 Homomorphic Encryption - Definitions

The homomorphic encryption schemes in their generality were treated by dif-
ferent authors and many treaties. We refer to [21] and [31] for a comprehensive
treatment of the subject and also to [2] for a treatment of their security be-
havior. Let us define ring homomorphic encryption schemes and explore their
properties. Throughout this section (and this work) we use λ to indicate the
security parameter. Since a ring homomorphic encryption scheme is a certain
type of homomorphic encryption scheme, we introduce first this concept.

Definition 1. A homomorphic (public-key) encryption scheme

HE = (HE.KeyGen,HE.Enc,HE.Dec,HE.Eval)

is a quadruple of PPT algorithms as follows:

– Key Generation. The algorithm (pk, evk, sk)← HE.KeyGen(1λ) takes a
unary representation of the security parameter and outputs a public encryp-
tion key pk, an evaluation key evk, and a secret decryption key sk.

– Encryption. The algorithm c← HE.Encpk(m) takes the public key pk and
a single message m and outputs a ciphertext c.

– Decryption. The algorithm m? ← HE.Decsk(c) takes the secret key sk
and a ciphertext c and outputs a message m?.

– Homomorphic Evaluation. The algorithm cf ← HE.Evalevk(f, c1, ..., c`)
takes the evaluation key evk, a boolean circuit f : {0, 1}` → {0, 1} and a set
of ` ciphertexts c1, ..., c`, and outputs a ciphertext cf .

We say that a scheme HE is C-homomorphic for a class of circuits C =
{Cλ}λ∈N, if for any sequence of circuits fλ ∈ Cλ and respective inputs µ1, ..., µ` ∈
{0, 1} (where ` = `(λ)), it holds that

Pr[HE.Decsk(HE.Evalevk(fλ, c1, ..., c`) 6= fλ(µ1, ..., µ`)] = negl(λ),

where (pk, evk, sk)← HE.KeyGen(1λ) and ci ← HE.Encpk(µi).
In addition, we say that a homomorphic scheme HE is compact, if there exist

a polynomial s = s(λ) such that the output length of HE.Eval is at most s bits
long, regardless of f or the number of inputs.

Definition 2. A homomorphic scheme HE is fully homomorphic (FHE) if it
is compact and homomorphic for the class of all circuits.

Remark 1. If one weakens the compactness condition, one can construct such
schemes as in [6].



In this work we will consider only the following type of HE schemes:

Definition 3. A ring homomorphic encryption scheme (RHE) is a family in-
dexed by λ of quadruples (Rλ, Sλ,Encλ,Decλ), consisting of finite rings Rλ,
Sλ, a homomorphism of rings Decλ(sk, ·) : Rλ → Sλ, and a PPT algorithm
Rλ 3 c← Encλ(pk,m), where m ∈ Sλ such that the following conditions hold:

1. Decλ(sk, c) = m, for any c← Encλ(pk,m),
2. the scheme is compact as a homomorphic encryption scheme.

Let us note that compactness is equivalent in this case to the existence of two

representations: Rλ
ıR
↪→ {0, 1}nR(λ), Sλ

ıS
↪→ {0, 1}nS(λ), where nR(λ), nS(λ) are

polynomial in the security parameter λ, such that Decλ : ıR(Rλ) → ıS(Sλ)
is a deterministic polynomial time algorithm, and Encλ : ıS(Sλ)  ıR(Rλ)
is a probabilistic polynomial time algorithm. Hereafter, we will assume that
the finite rings Rλ and Sλ, i.e. the ciphertext and plaintext spaces of a ring
homomorphic encryption scheme, are commutative rings, not necessarily unital,
unless otherwise specified.

Remark 2. If the plaintext space is a quasi-unital ring(see section 3), then a ring
homomorphic encryption scheme is a fully homomorphic encryption scheme. In-
deed, by Theorem 1 and Proposition 1 the plaintext space Sλ contains a non-zero
idempotent, so that one can construct an F2-structure inside Sλ. To show that
such a ring homomorphic encryption scheme is a fully homomorphic encryption
scheme, one replaces any gate of a boolean circuit with the corresponding small
degree polynomial and use the homomorphicity of the decryption map.

We briefly recall the only security notion we need in what follows, that is
indistinguishability under chosen-ciphertext attack (IND-CCA1) for public key
encryption schemes. To define it we introduce first the following two-phase ex-
periment in which A is a polynomial time adversary.

Experiment IND-CCA1

- Phase One: Generate a pair of keys (pk, sk) ← HE.KeyGen(1λ). Give A
access to a decryption oracle and run A on input pk. A proposes two messages
m0 and m1.
- Phase Two: Choose at random a bit i, and compute c← HE.Encpk(mi). Give
c to A, and let A continue its computation without access to the decryption
oracle.
- Let m′ be A’s output. Output 1 if m′ = mi and 0 otherwise.

Definition 4. A scheme HE is IND-CCA1 secure if for any polynomial time
adversary A, the advantage of A satisfies:

AdvIND-CCA1(A) :=

∣∣∣∣Pr
[
IND-CCA1(A) = 1

]
− 1

2

∣∣∣∣ = negl(λ).

We shall also say that a scheme is quantum-classical IND-CCA1 secure if the
adversary A is allowed to use classical and quantum algorithms in the first



phase, whereas in the second phase the adversary is allowed to use only classical
algorithms. In the same manner, one can define quantum-quantum IND-CCA1

security etc..
In what follows, we shall suppose that the ciphertext space of a ring homo-

morphic encryption scheme is a black-box ring. We give a formal definition of
this notion:

Definition 5. A ring oracle ORλ takes queries of the form (λ, x, y,+), (λ, x,−),
(λ, 0), (λ, x, y, ·), where x, y are strings of length n(λ) (polynomial in λ) over
{0, 1}. The response to each of these queries is either a string of length n(λ)
or a symbol indicating invalid query. Let OR(λ) be the set of x ∈ {0, 1}n(λ) for
which (λ, x,−) is a valid query (the response to this query is the string encoding
the additive inverse of x, and the response to (λ, 0) is the string encoding additive
identity). We say that ORλ is a ring oracle if, for each λ, OR(λ) is either empty
or a ring with ring operations described by the responses to the above queries.
The subrings of OR(λ), given by finite generating sets will be called black-box
rings, or BBR for short.

Remark 3. By a finite generating set of a (nonunital) ring R, we understand
a finite subset {g1, g2, ..., gd} of R such that any element of the ring can be
written in the form P (g1, g2, ..., gd), where P (X1, ..., Xd) ∈ Z[X1, ..., Xd]+, i.e.
P (0, ..., 0) = 0. If R is a unital ring, then the unity itself can be written as a
polynomial with integer coefficients in the set of generators, so that, in this case,
{g1, g2, ..., gd} is a generating set for R if any element of the ring can be written
in the form P (g1, g2, ..., gd), where P (X1, ..., Xd) ∈ Z[X1, ..., Xd].

3 Finite Commutative Rings

In this section we investigate the structure of (non-unital) finite commutative
rings. Some of the results are known to specialists, but since we couldn’t find
them in the literature in the explicit form we need for our applications, we shall
give all the necessary details. We have the following structural theorem :

Theorem 1. Any finite commutative ring is isomorphic to a product of a unital
ring and a nilpotent ring. Moreover, the decomposition is unique (up to isomor-
phism).

A commutative ring R is called nilpotent if there exist a positive integer n
such that Rn = {0}. In the case of a finite commutative ring R, this is equivalent
to the existence, for any x ∈ R, of a positive integer (that may depend on x),
such that xn = 0. We say that a finite commutative ring is quasi-unital if it is
not nilpotent, in other words its unital part is non-trivial.

We shall prove this theorem by explicitly describing this decomposition (in-
side the ring), while the unicity comes from the properties of its pieces: unital,
respectively nilpotent. The reader should be warned of the fact that the nilpo-
tent ring exhibited in this theorem is also an ideal of the ring, but, in general,



is not the nilpotent radical of the ring. It is rather the maximal nilpotent ideal
of the ring, which is an internal direct summand as an ideal. The constructive
nature of our proof allows us to find a computable description of the structure
of finite commutative rings; this being essential in constructing our attacks on
ring homomorphic encryption schemes.

3.1 The Idempotent F2-algebra of R

If R is a ring then we denote by E(R) the idempotent semigroup associated to
the semigroup (R, ·). If we define addition in E(R) by: e ⊕ e′ = e + e′ − 2ee′,
∀e, e′ ∈ E(R), then this becomes a ring of characteristic 2. We shall refer to
this ring (E(R),⊕, ·) as being the idempotent ring of R, or as the idempotent
F2-algebra of R. It is shown in [5], that if R is a finite ring then there is a well
defined map R → E(R), that is a homomorphism of multiplicative semigroups.
Then:

Proposition 1. Let R be a (non-unital) finite commutative ring and let E(R)
be its idempotent ring then:

i) E(R) is an F2−algebra and is isomorphic to Fn2 for some n.

ii) Any nontrivial ring homomorphism φ : E(R) → F2 is the projection on
the i-th coordinate, for some i ∈ {1, ..., n} (here we identify E(R) with Fn2 via
the above isomorphism).

For a proof of this proposition see [5], Proposition 4.

Remark 4. If R is a finite commutative ring with unity then it is an Artin ring,
and the structure theorem for Artin rings (Theorem 8.7 in [4]) asserts that R
is isomorphic to a product R1 × ...×Rn of local Artin rings. This isomorphism
gives rise to

E(R) ' E(R1 × ...×Rn) ' Fn2

The proof of the last proposition shows that even in the case of a non-unital
ring R, the idempotent algebra is isomorphic to Fn2 . Notice that if R is a ring
with unity, then 1 = e1 + ...+ en, where e1, ..., en are the primitive idempotents
of R. Therefore, the map R →

∏
Rei, x 7→ (xe1, ..., xen) is an isomorphism,

so that the rings Ri are in fact isomorphic to the rings Rei. In particular, the
number of local Artin rings that appear in the decomposition of R is equal to
the number of its primitive idempotents (for more details see [5]).

In the next section, we shall use the structure of the idempotent F2-algebra
to give an explicit proof of Theorem 1.



3.2 Explicit Version of Theorem 1

Theorem 2. Let R be a finite commutative ring and let e1, ..., en be its primitive
idempotents. Let ē = ēR := e1⊕ ...⊕en, R̄ := R · ē, and NR := {x ∈ R | xē = 0}.
Then:

1. R̄ is a unital subring, and NR is a nilpotent ideal, hence subring of R.
2. R ' R̄×NR, where x 7→ (xē, x− xē).
3. Any morphism of rings S → R with S unital, factors as S → R̄ ⊆ R.

Proof. 1. The fact that R̄ is a unital ring is clear. The unit is ē, because xē·ē = xē,
∀x ∈ R. The following equality x · ē = 0 yields xn · ē = 0 for any positive integer
n, so that e(x) · ē = 0. But now the identity takes place in R̄ where ē is the unit,
thus e(x) = 0, so that x is nilpotent.

2. It is an easy exercise to check that the map µ : R → R̄ × NR defined by
µ(x) := (xē, x − xē) is indeed a ring homomorphism. It is an isomorphism of
rings, its inverse being µ−1(a, b) := a+ b.

3. See the proof of the next remark.

Remark 5. The map R 7→ R̄ is a functor from CRngs, that is the category of
commutative rings not necessarily with unity, to its full subcategory CRings
consisting of commutative rings with unity, but here the morphisms may not be
unital homomorphisms, as in the case of CRings, the category of commutative
rings with unity and unital homomorphisms of rings as morphisms. More pre-
cisely, it is the right adjoint functor of the forgetful functor CRings→ CRngs,
given by forgetting the multiplicative identity. In particular, the above decom-
position is not only unique, it is also functorial.

To prove that R 7→ R̄ is the right adjoint of the forgetful functor, consider a
morphism of crngs φ : S → R such that S ∈ CRings. Notice that e := φ(1S) is an
idempotent of R. Then φ(x) = φ(1S ·x) = φ(1S) ·φ(x) = e ·φ(x) = ē ·e ·φ(x) ∈ R̄.
Hence the morphism factors through R̄ ↪→ R.

Remark 6. The unicity of the decomposition in Theorem 1 may be shown as
follows: say R = R1×R2 with R1 unital and R2 nilpotent. By the above remark
we have R1 ⊆ R̄. On the other hand ēR = (ēR1 , ēR2) = (ēR1 , 0) = 1R1 , because
R1 is unital and R2 is nilpotent. Since R1 = R · R1, R1 ⊇ R · ē = R̄, hence
R1 = R̄. Notice that R2 = {x ∈ R | x · 1R1

= 0} thus R2 = NR.

The following theorem describes ring homomorphisms from a general ring to a
finite field. It will be used in an essential way to reduce the key-recovery attack for
ring homomorphic encryption schemes over reduced rings to the representation
problem in black-box finite fields.

Theorem 3. Let R, S be finite commutative rings with unity. Suppose that S
is a local ring, and consider a nontrivial ring homomorphism ϕ : R→ S. Then,
there exists a unique primitive idempotent e such that ϕ factors through its local
component, i.e. ϕ is the composition R→ Re→ S.



Proof. The homomorphism ϕ induces the homomorphism of rings E(R) →
E(S) ' F2, which is defined by a projection as in Proposition 1. In other words,
there exists a unique e ∈ R such that ϕ(e) 6= 0. Of course, ϕ(e) = 1. Using the
explicit decomposition Theorem 2, we conclude that, indeed, ϕ factors through
the projection R→ R · e.

We have the following immediate consequence of the last theorem:

Corollary 1. Let R be a finite (non-unital) commutative ring, and let k be a
finite field. Then, there exists a unique primitive idempotent e such that ϕ factors
through its local component, i.e. ϕ is the composition R→ Re→ k.

Proof. It is enough to prove that NR ⊆ ker(ϕ), which is obvious.

The following result is known to the specialists and establishes the existence
of Teichmüler liftings. We express it in a very explicit way that shall be used in
our applications:

Theorem 4. Let R be a finite local ring with maximal ideal m and residue field
K of size q. Then for each x̄ ∈ K there exists a unique x ∈ R such that xq = x
and x mod m = x̄. Moreover, if y ∈ R such that y mod m = x̄, then yq

n

= x for
any n such that mn = 0.

Proof. Since R is complete in the m−adic topology, the first part of the theorem
is just an application of Hensel’s lemma. Let yi := yq

i

, ∀i ≥ 1, then we have
y1 ≡ y mod m, so that y1 = y +m1, where m1 ∈ m. Then y2 = (y +m1)q ≡ yq
mod m2, therefore y2 = y1 + m2 with m2 ∈ m2. By induction, yi = yi−1 + mi

with mi ∈ mi, hence yn = yn−1 for any n such that mn = 0. Denoting by x this
stationary value, we get that xq = x and x ≡ y mod m.

Remark 7. Under the conditions of theorem 4, we have: e(y) = yq
n(q−1) ∈ {0, 1}.

We have the following useful consequence of Theorem 4 :

Corollary 2. Let (R,m) be a local ring and let π : R → R/m be the projection
map. Then there exists a subset X ⊆ R such that (X,⊕, ·) is isomorphic to the
residue field R/m, where x⊕ y = (x+ y)q

n

, and · is the usual multiplication on
R (here q is the size of the residue field R/m, and n is the nilpotency index of
the maximal ideal).

Proof. Let X be the set of all x ∈ R such that xq = x, then one can verify that
the map π induces an isomorphism of fields from X to the residue field of R.

Definition 6. Let R be a finite commutative ring with unity. For a prime p,
we denote by Rp the product of the local Artinian rings Ri, that occur in the
decomposition of R, whose residue fields are of characteristic p. Moreover, for
a prime p and a positive integer k, we denote by Rp,k the product of the local
Artinian rings Ri having residue fields isomorphic to Fpk . When R = Rp, we
say that R is a p-power ring.



Corollary 3. Let R be a p-power ring whose Artinian local rings have residue
fields isomorphic to a fixed finite field Fq. Then there exists S ⊆ R, such that
(S,⊕, ·) '

∏
iRi/mi, where x⊕ y = (x+ y)q

n

, and · is the usual multiplication
on R (here n is the nilpotency index of the ideal

∏
imi).

The arguments of Corollary 2 can be extended immediately to this more general
situation.

Remark 8. Notice that if R = R1×...×Rn is a finite ring, then Rred, the quotient
of R by its nilradical, is isomorphic to

∏
iRi/mi. Therefore, the ring S in the

last corollary is isomorphic to Rred. If R is a p-power ring then each Rp,k satisfies
the conditions of the last corollary. In particular, if R is also a BBR then each
Rp,k is a BBR, and then Rred

p,k is a BBR for each k. Indeed, since S above is a
subset of R, it inherits a BBR structure from R.

4 Computing the map e

In this section we investigate the complexity of the algorithm that computes the
map R → E(R). The algorithm we present here was described in [11](see also
[12], [5]), and is an adaptation of Shor’s algorithm(see [32]).

Proposition 2. Given a black-box semigroup G and an element g ∈ G, there is
an efficient polynomial time quantum algorithm that computes e(g). In particu-
lar, there is a quantum algorithm that computes the map R → E(R), where R
is a finite commutative BBR.

Interestingly enough, when R is a p-power BBR we can do much better. We
have the following:

Proposition 3. For any p-power black box ring R, there exist a classical poly-
nomial time algorithm that computes the map e : R→ E(R).

Proof. Let R = R1 × ...×Rn, where each Ri is a local finite ring with maximal
ideal mi, and residue field Ri/mi ' Fpki . We may suppose that mNii = (0), and
that Ni is the least positive integer with this property. If y = (y1, ..., yn), then
by the remark above we obtain that

e(y) = (e(y1), ..., e(yn)) = (y
pk1N1 (pk1−1)
1 , ..., yp

knNn (pkn−1)
n )

= yp
maxi{kiNi}(p−1)(p2−1)...(pmaxi{ki}−1).

Since Ri ⊃ mi ⊃ m2
i ⊃ ... ⊃ mnii = (0) and each mji/m

j+1
i is a Fpki -vector space,

we get |mji/m
j+1
i | ≥ pki so that



|Ri| =
ni−1∏
j=0

|mji/m
j+1
i | ≥ pkini

Consequently, pkini ≤ |Ri| ≤ |R| and ki ≤ logp |R| so that

e(y) = yp
blogp |R|c(p−1)(p2−1)...(pblogp |R|c−1)

We can efficiently evaluate e(y) by using the square-and-multiply techniques.

More precisely, we need O(log2 |R|) multiplications to compute z 7→ zp
blogp |R|c

and also to compute z 7→ zp
i−1 for each i ≤ blogp |R|c, so that to compute e(y)

we need O(log4 |R|) multiplications.

5 Computing the primitive idempotents of a ring

The purpose of this section is to prove the following theorem:

Theorem 5. Let R be a finite commutative black box ring. Given a finite set of
generators of R, there exists a polynomial-time quantum algorithm that computes
all its primitive idempotents. In other words, we show an explicit way of comput-
ing the decomposition R =

∏
iRei×NR, where ei are the primitive idempotents

of R. Moreover, for each local Artinian component Ri = Rei, there exists a sub-
set Rredi of Ri which, under the usual multiplication and a modified (explicitly
classically computable) addition, becomes isomorphic to the residual field Ri/mi
of Ri.

The last part of the theorem says that there exists an explicit way of representing
the reduced ring Rred '

∏
iRi/mi as a black-box ring (a similar situation as in

the case of Rp and Rp,k, cf. 8).

Remark 9. As mentioned before, we shall use quantum computing only to de-
termine each ep (with p prime) and NR, after that our algorithm will use only
classical computing.

5.1 Computing the unital part

Let R be a non-unital commutative BBR. In this section we show how to com-
pute the unit of its unital part R̄. Fix a set of generators G = {g1, ..., gd} of R.
Let {e1, . . . en} be the set of primitive idempotents of R. If e and e′ are idem-
potents in R we define the operation e∨ e′ = e⊕ e′ ⊕ ee′, which is commutative
and associative. Notice that if the primitive idempotent ei occurs in the sum
decomposition of at least one of the idempotents e and e′, then ei also occurs in
the decomposition of e ∨ e′.



Theorem 6. Let G = {g1, . . . , gd} be the generating set of a non-unital ring R.
Then

ē =

d∨
j=1

e(gj)

is the unit of its unital part R̄.

Proof. For every k ∈ 1, n, let Rk = Rek and let mk be its maximal ideal. It is
enough to show that there exists at least one i ∈ 1, d such that gi · ek 6∈ mk. As-
sume by contradiction that gi ·ek ∈ mk for all i ∈ 1, d. Then the whole generating
set G sits inside de kernel of the following composition of homomorphisms:

R→ R̄→ R̄/Nil(R̄) '
n∏
k=1

Rk/mk,

and this is impossible.

When R is a non-unital commutative BBR, we compute first each e(gi) using
the modified Shor’s Algorithm presented in Section 4, and then ē. Notice that
the set Gē := {g1ē, . . . , gdē} ⊆ R̄ is a system of generators of R̄, so that from
now on we shall work only on R̄, equivalently we may suppose that R is a unital
commutative BBR.

5.2 Computing the p−power parts of a unital ring

The purpose of this subsection is to show how to decompose a unital commutative
ring into his p−power parts, where p is a positive prime integer. We don’t need
a system of generators for this decomposition.

Theorem 7. Let R be a unital finite commutative BBR. There exists a polyno-
mial time quantum algorithm that determines for all primes p an idempotent ep,
such that R =

∏
pRep, and Rep is a p-power BBR.

Proof. Since R is finite, only finitely many ep will be nonzero and we shall
describe them shortly. Moreover, for every p, Rp := Rep is a semi local ring with
all its residual characteristics equal to p. We describe now the algorithm:

1. Use Shor’s quantum algorithm to compute the characteristic of R, i.e. the
minimal positive integer N such that N · 1R = 0 (see section 4).

2. Use Shor’s quantum factorization algorithm to compute the prime factoriza-
tion of N =

∏
p p

αp (see [32]).

3. Use Euclidean algorithm to compute integers up such that N
pαp | up and∑

p up = 1.
4. Set ep := up · 1R.

It is easy to check that, indeed, ep are orthogonal idempotents with sum 1R.
Moreover, the ring Rp has all its residual characteristics equal to p. Exactly as
at the end of the previous, it can be shown that Rp inherits a BBR structure
from R.



5.3 Computing Rp,k’s

The aim of this subsection is to show how to compute the idempotents ep.k,
which determine the rings Rp,k. As explained in Remark 9, from now on all
algorithms proposed are classical. We have the following result:

Theorem 8. Let R be a p-power BBR, and let G = {g1, . . . , gd} ⊆ R be a set of
generators for the ring R. There exists an explicit polynomial time algorithm that
determines for all positive integers k an idempotent ep,k such that R =

∏
k Rep,k

and Rp,k = Rep,k is a p-power BBR with all its residue fields isomorphic to Fpk .

Proof. Let {e1, . . . en} be the set of primitive idempotents of R. We shall con-
struct the ep,k’s inductively:

Algorithm 1 Compute ep,k

1: ēp,0 := 1R
2: k = 0
3: while ēp,k 6= 0
4: k = k + 1
5: for i = 1 to d do
6: ei,k := e(gi · ēp,k−1 − gp

k

i · ēp,k−1)
7: end for
8: ēp,k =

∨d
i=1 ei,k

9: ep,k = ēp,k−1 − ēp,k
10: end while
11: return ep,k, k ≥ 1

We prove by induction on k that all residue fields of the local Artinian
components of Rep,k are isomorphic to Fpk . Consider a primitive idempotent
ej . If e(gi − gpi ) · ej = ej for some i, then Rj/mj 6' Fp. Indeed, otherwise
giej ≡ (giej)

p = gpi ej mod mj , so that

0 = e(giej − gpi ej) = e(gi − gpi )ej = ej ,

which is a contradiction. Hence ēp,1 is a sum of primitive idempotents with cor-
responding residue fields non-isomorphic to Fp. Moreover, ēp,1 is the sum of all
primitive idempotents with corresponding residue fields non-isomorphic to Fp.
Let ej be a primitive idempotent with corresponding residue field non-isomorphic
to Fp. SinceRj/mj is non-isomorphic to Fp and {g1ej mod mj , ..., gdej mod mj}
generates Rj/mj , there exist an i such that giej − (giej)

p 6∈ mj , therefore
e(gi − gpi )ej = ej , which proves our claim. In particular, ep,1 is the sum of all
primitive idempotents with corresponding residue fields isomorphic to Fp. The
same argument works inductively for any k, because multiplication by ēp,k−1

restricts to the Artinian local components of R with corresponding residue fields
of size at least pk.



5.4 Computing the Artinian local components of Rp,k

The purpose of this section is to show how to compute the primitive idempotents
of a ring R with isomorphic residue fields Fq = Fpk . The first observation is that
we can work with Rred, instead of R. Indeed, as explained in Remark 8, Rred

has a well defined BBR structure, and in this case it is isomorphic to a product
of fields, each being isomorphic to Fq. Moreover, since Rred is just a subset of R
and the multiplication of Rred is inherited from R, the primitive idempotents of
R are the same as the primitive idempotents of Rred.

Computing the primitive idempotents when k = 1. We are in the case
R =

∏
iRei with Rei ' Fp,∀i. Let G = {g1, . . . , gd} be a generating set of R.

We distinguish two cases:

• The case p = 2. In this case, R is an idempotent ring of characteristic 2, i.e.
R ' Fn2 . The following algorithm computes the primitive idempotents of R2,1.
We shall use the following notation for X a subset of a ring R, and r ∈ R an
element of the ring:

rX := {rx|x ∈ R}.

Algorithm 2 Compute the primitive idempotents of R2,1

1: X0 := {0, 1}
2: for i = 1 to d do
3: Xi := giXi−1

⋃
(1− gi)Xi−1

4: end for
5: return Xd \ {0}

Notice that for each i,Xi consists of elements which are mutual orthogonal, so
that it has no more than n+1 elements, i.e. at most a polynomial (in the security
parameter) number of elements. Moreover, we claim than Xn\{0} := {f1, . . . fr}
is the set of all primitive idempotents of R. Notice that each fj is a product of
elements of R, each factor being equal to either gi or 1 − gi, for some i. This
means that either gifj = 0 or (1−gi)fj = 0⇔ gifj = fj , for all i ∈ 1, n, therefore
G generates only F2 · fj inside Rfj , which is possible only if fj is primitive.

• The case p ≥ 3, R ' Fnp . Consider the following algorithm, where x ∈ R,
r ∈ {0, 1, ..., p− 1}:

Algorithm 3 A(x, r)

1: Compute x±(r) := (x−r)p−1±(x−r)
p−1
2

2
2: return: {x+(r), x−(r)} \ {0}



Notice that if a ∈ Fp, then χ(a) := a
p−1
2 is the Legendre symbol, i.e. the primitive

quadratic character on Fp, and e(a) = ap−1. Let x =
∑
i xiei ∈ R, with xi ∈ Fp,

then x±(r) · ei = χ(xi−r)±χ(xi−r)2
2 · ei. The algorithm A(x, r) returns ∅ or {1}

if and only if either xi = r, ∀i or χ(xi − r) is constant for all i. We have the
following:

Proposition 4. Let x ∈ R be such that x 6= a · 1R for some a ∈ Fp. Then, the
probability that the algorithm A(x, r) returns a set of two different values is at
least 1

2 −
1
2p ≥

1
3 , when r is uniformly chosen from the set {0, 1, ..., p− 1}.

Proof. It is enough to compute the probability for n = 2, i.e. x = (a, b) with
a 6= b ∈ F×p . The experiment is successful if χ((a−r)(b−r)) = −1. To count how
many r’s have this property, we count first how many r’s satisfy χ((a − r)(b −
r)) = 1, but this is equivalent to finding the number of solutions of the equation
y2 = (x− a)(x− b) over Fp with y 6= 0, which is given by

∑
x 6=a,b

1 + χ((x− a)(x− b))
2

=
p− 2

2
+

1

2

∑
x6=a,b

χ((x− a)(x− b))

=
p− 2

2
+

1

2

∑
x6=a,b

χ

(
x− a
x− b

)
=
p− 2

2
+

1

2

∑
x6=0,1

χ(x) =
p− 3

2
,

where the second to the last equality follows from the fact that the map x 7→ x−a
x−b

is a bijection from Fp \{a, b} to Fp \{0, 1}, and the last equality is a consequence
of
∑
x∈F×p χ(x) = 0, for any nontrivial character. Thus, the probability of success

is greater than or equal to p−1
2p , which is exactly our claim.

We use A(x, r) in the following important algorithm:

Algorithm 4 Equal(x)

1: X0 := {0, 1}
2: for i = 1 to Θ(λ) do
3: Pick r uniformly random from {0, 1, ..., p− 1}, run A(x, r)
4: If A(x, r) returns ∅, then return: F := {1}
5: else Xi :=

⋃
y∈A(x,r) yXi−1

6: end for
7: return: F := XΘ(λ) \ {0}



Proposition 5. Let x ∈ R \ {0}. Then, the algorithm Equal(x) returns a set of
orthogonal idempotents F such that x =

∑
f∈F xf · f , xf ∈ F×p with probability

greater than 1− ( 2
3 )Θ(λ).

Proof. It is easy to see that e(x) =
∑
f∈F f , and xf ∈ F×p f , ∀f ∈ F , then:

x = x · e(x) =
∑
f∈F

xf,

which proves the required equality. The estimated probability follows from Propo-
sition 4.

Now, we are proceeding similarly to the case p = 2 to compute the primitive
idempotents of Rp,1:

Algorithm 5 Compute the primitive idempotents of Rp,1

1: X0 := {0, 1}
2: for i = 1 to d do
3: Run Equal(gi), and let F (gi) be the output
4: Xi := F (gi)Xi−1 ∪ (1− e(gi))Xi−1

5: end for
6: return: Xd \ {0}

where for two subsets X,Y ⊆ R, X · Y := {x · y|x ∈ X, y ∈ Y }.
The above algorithm returns with overwhelming probability a set of orthog-

onal idempotents F for which gi ·f = a(gi, f) ·f for some a(gi, f) ∈ Fp, ∀i ∈ 1, d,
i.e. all the components of gi corresponding to the primitive idempotents in f
are equal. Consequently, since {g1, ..., gd} is a set of generators of R, with over-
whelming probability, all primitive idempotents of R will appear in Xd \ {0}.

Computing the primitive idempotents when k ≥ 2. In this section, we
assume that R =

∏
Rei, where for all i ∈ 1, n, Rei ' Fq = Fpk with k ≥ 2. We

shall denote by πi : R→ Fq, ∀i the projection onto the ith- component. If x ∈ R,
then computing xp has the effect of acting with the Frobenius automorphism of
Fq on each primitive component. Moreover, if sj represents the jth− elemen-

tary symmetric polynomial in k variables, then computing sj(x, x
p, . . . xp

k−1

)
will produce on each primitive component the coefficient of Xk−j of the char-
acteristic polynomial P (X) of that component. It is well known that, since the
characteristic polynomial of some number of Fq is just a power of its minimal
polynomial, we get that two numbers in Fq have the same characteristic poly-
nomial if and only if they are Galois conjugates. Notice also that for any x ∈ R
and every j ∈ 1, k:

sj(x, x
p, . . . , xp

k−1

) ∈
∏
i

Fpei.



The following algorithm takes as input a non-zero element x and outputs a
set of orthogonal idempotents, such that on each one of them, the corresponding
primitive components are Galois conjugates.

Algorithm 6 Conj(x)

1: F := {0, 1}
2: for i = 1 to k
3: Compute uj(x) := sj(x, x

p, . . . xp
k−1

)
4: Ej := Equal(uj(x))
5: F = Ej · F

⋃
(1− e(uj(x))) · F

6: end for
7: return: F \ {0}

Now we collect all the idempotents returned by applying Conj to the generating
set:

Algorithm 7 ConjG

1: F := {0, 1}
2: for i = 1 to d
3: Xi := Conj(gi)
5: F = Ei · F

⋃
(1− e(gi)) · F

6: end for
7: return: F \ {0}

The above algorithm allows us to reduce to the case in which the primitive
components of any element of the generating set are Galois conjugates, namely
for each f ∈ ConjG, replace R by Rf , and G by fG.

Lemma 1. All primitive components of x ∈ R are Galois conjugates if and only
if Fp[x] is a field.

Proof. Observe that the restriction π1 : Fp[x]→ Fq is injective when all primitive
components of x ∈ R are Galois conjugates, so that Fp[x] is a field. Conversely,
let xi and xj be two distinct primitive components of x ∈ R, and let Q(X) be
the minimal polynomial of xi over Fp. We get that the ith and jth components
of Q(x) ∈ R are 0 and Q(xj), respectively. If Q(xj) 6= 0, then Q(x) were a zero
divisor in R, so that it couldn’t be invertible in R, consequently also not in Fp[x].
So Q(xj) = 0, which proves that xi and xj are Galois conjugate.

Let GalConj(R) be the set of all x ∈ R satisfying Lemma 1, then for any
x ∈ GalConj(R) we define the size:

k(x) = [Fp[x] : Fp] = [Fp[πi(x)] : Fp],∀i.



It is clear that k(x) = min{j ∈ N|xpj = x}, and if R is a BBR then k(x) is
polynomial in the security parameter λ.

Lemma 2. Let x, y ∈ GalConj(R) with gcd(k(x), k(y)) = 1, then Fp[x, y] is a
field.

Proof. Let i ∈ {2, ..., n}, then xi = xp
ui

1 , and yi = yp
vi

1 , for some integers ui, vi.
Since (k(x), k(y)) = 1, by the Chinese Remainder Theorem, there exist an integer

Ni such that Ni ≡ ui (mod k(x)), and Ni ≡ vi (mod k(y)), so that xi = xp
Ni

1 ,

and yi = yp
Ni

1 . Consequently, the restriction of π1, π1 : Fp[x, y]→ Fq is injective,
hence Fp[x, y] is a field.

Remark 10. A useful consequence of the last lemma is that if x, y ∈ GalConj(R),
then any polynomial with integer coefficients in x and y is also in GalConj(R).

The rest of this section is heavily influenced by the results of [25], where R is
just a finite field. The main arguments are there, we just verified that they can
be extended to our case. First of all we show that there exist ḡ ∈ GalConj(R)
with k(ḡ) = k. The following algorithm is called combine gen, we shall make
it suitable to our situation:

Algorithm 8: combine gen(a, b)

0: Let a, b ∈ GalConj(R)
1: Find ka|k(a) and kb|k(b) such that:

gcd(ka, kb) = 1, lcm(ka, kb) = lcm(k(a), k(b))

2: Find a′ ∈ Fp[a], b′ ∈ Fp[b] such that k(a′) = ka, k(b′) = kb.
3: return: a′ + b′

Step 1 and Step 2 are explained in [25], and the arguments also work in our
case because Fp[a],Fp[b] are fields. Since gcd(ka, kb) = 1, by Lemma 2, Fp[a, b]
is a field. Obviously Fp[a, a+ b] = Fp[a+ b, b] = Fp[a, b] so that

lcm(k(a′), k(a′ + b′)) = lcm(k(a′ + b′), k(b′)) = lcm(k(a′), k(b′)) = k(a′) · k(b′).

We get that k(a′ + b′) = k(a′) · k(b′) = lcm(k(a), k(b)), also by the last remark
we obtain a′ + b′ ∈ GalConj(R).

Algorithm 9: Computing ḡ

0: Let {g1, ..., gd} be a generating set for R.
1: Set ḡ := g1

2: for i = 2 to d do



3: ḡ := combine gen(ḡ, gi)
4: end for
5: return: ḡ

It is clear that k(ḡ) = lcm(k(g1), ..., k(gd)), and ḡ ∈ GalConj(R). Since Fq is
generated as a ring by {π1(g1), ..., π1(gd)}, lcm(k(g1), ..., k(gd)) = k. In other
words k(ḡ) = k, i.e. Fp[ḡ] ' Fq.

By the well-known dual basis theorem [24], there exist an Fp-basis h1, ..., hk
of Fp[ḡ] such that trFq/Fp(ḡihj) = δi+1,j , where trFq/Fp(x) := x+xp+ ...+xp

k−1

,
for any x ∈ R.

Algorithm 10 Compute the primitive idempotents of Rp,k

1: for i = 1 to d do
2: Compute trFq/Fp(gihj), ∀j
3: Let Xi :=

⋃
j Equal(trFq/Fp(gihj))

4: end for
5: Let Y := ∪iXi = {y1, ..., y`}
6: Let F := {0, 1}
7: for i = 1 to ` do
8: F := yiF ∪ (1− yi)F
9: end for
10: return: F̄ := F \ {0}

To prove that F̄ consists of all primitive idempotents of R, notice first that∑⊕
f∈F̄ f = 1. Also, it is easy to see that

f ∈ F̄ ⇔ trFq/Fp(gihj)f ∈ Fpf, ∀i, j.

Let xi := gi −
∑k
j=1 trFq/Fp(gihj) · ḡj−1,∀i ∈ 1, d.

trFq/Fp(xihjf) = trFq/Fp(gihjf)− trFq/Fp(

k∑
`=1

trFq/Fp(gih`)fḡ
`−1hj)

= trFq/Fp(gihj)f −
k∑
j=1

trFq/Fp(gih`)f · trFq/Fp(ḡ`−1hj)

= trFq/Fp(gihj)f − trFq/Fp(gihj)f = 0

We obtained trFq/Fp(xihjf) = trFq/Fp(xihj)f = 0, ∀j ∈ 1, d, f ∈ F̄ . Since∑⊕
f∈F̄ f = 1, each primitive idempotent e occurs in the decomposition of at



least one f , so that trFq/Fp(xihj)e = trFq/Fp(xihje) = 0, for all primitive idem-

potents e. Notice that {hje|j ∈ 1, d} is the dual basis of {ḡj−1e|j ∈ 1, d}, for
every primitive idempotent e, which yields xie = 0, ∀e, hence xi = 0. We have:

gif =

k∑
j=1

trFq/Fp(gihj)f · ḡj−1 ∈ Fp[ḡ],∀i ∈ 1, d,

in other words, the ring generated by {gif |i ∈ 1, d} is a subring of the field
Fp[ḡ], so that it has no zero divisors. On the other hand, {gif |i ∈ 1, d} generates
Rf , consequently Rf has no zero divisors, hence each f ∈ F̄ is a primitive
idempotent. Since

∑
f∈F̄ f = 1, F̄ contains all primitive idempotents of R, and

we are done.

6 Decrypting in Ring Homomorphic Encryption Schemes

6.1 IND-CCA1−attack on ring homomorphic encryption schemes
over general quasi-unital rings

We present in this section one of our cryptanalysis results:

Theorem 9. If the ciphertext space of a ring homomorphic encryption scheme
is a quasi-unital ring, then the scheme is not IND-CCA1−secure.

Proof. Suppose that R and S are the ciphertext space, and respectively the
plaintext space of a ring homomorphic encryption schemes, and that S is a quasi-
unital ring. We use all the results in Section 5 to find the primitive idempotents
of R. Then we start decrypting the primitive idempotents, using the decryption

oracle, until we find a nonzero decryption, say f
Dec7−→ m, where Rf has residual

characteristic equal to p. Then we usem and 0 in S in the IND-CCA1 experiment.
Fix a positive integer n > logp |R|, and let t = pn(p− 1) · ... · (pn − 1). Since any
ciphertext c ∈ Enc(m) satisfies e(cf) = (cf)t = f , and any c ∈ Enc(0) satisfies
e(cf) = (cf)t = 0 (cf. Proposition 3), the strategy for the decryption of c is
clear, and is pictured in the following commutative diagram:

R R̄ Rf

S S Sm

·ē

Dec Dec

f ·

D

= ·m

Remark 11. As we mentioned in the Introduction, we have used quantum com-
putations only in the process of finding the primitive idempotents of the cipher-
text space. After the ciphertexts are sent to the challenger, only classical algo-
rithms are used to win the game. Thus, we have constructed a quantum-classical
IND-CCA1 attack. Please also notice that we have used the assumption that the
plaintext is quasi-unital because otherwise, all the primitive idempotents of R
decrypt to 0. On the other hand, if S is quasi-unital, then Sred is non-trivial,
i.e. it has at least one non-trivial primitive idempotent. Finally, since Dec is a
non-trivial homomorphism of rings we can find f and m as above.



6.2 Reduced black-box rings of small prime characteristic

In this section, we extend the results of [25] to the case of a reduced p-power
BBR, equivalently a finite product of finite fields, all of characteristic p. As in
[25], we have the following:

Definition 7. (Representation Problem) Let R be a reduced p-power BBR, and
let G = {g1, ..., gd} be a generating set for R. If x ∈ R, then finding a multi-
variate polynomial P (X1, ..., Xd) ∈ Fp[X1, ..., Xd] such that x = P (g1, ..., gd) is
called the representation problem.

We state the following extension of Theorem 1 from [25]:

Theorem 10. The representation problem for a reduced p-power BBR is effi-
ciently reducible to the representation problem for Fp.

Proof. The results of sections 5.3 and 5.4 show how to compute the primitive
idempotents of the reduced p-power BBR in terms of the generating set, more
precisely as multi-variate polynomials in the elements of the generating set.
Hence, we reduce the representation problem for a p-power BBR to the repre-
sentation problem for each local Artin component of it, and since each local Artin
component is a finite field of characteristic p, our result follows from Maurer and
Raub’s result.

Consequently, we have the following:

Corollary 4. If R is a reduced p-power BBR and p is small, then the represen-
tation problem for R is efficiently solvable.

Remark 12. We refer the reader to [25] for the connection between the repre-
sentation problem and the extraction and isomorphism problems for black-box
fields. As in [25], our result shows that the extraction and isomorphism prob-
lems for a reduced p-power BBR are efficiently reducible to the representation
problem for Fp.

6.3 Key-recovery attack on ring homomorphic encryption schemes
over reduced rings of smooth characteristic

We investigate in this section the security of ring homomorphic encryption
scheme with plaintext space a reduced ring of smooth characteristic. This means
that the ciphertext space is a product of fields, such that each field that occurs
in the product has small characteristic.

Theorem 11. Let (R,S,Dec,Enc) be a ring homomorphic encryption scheme
with plaintext space S, a reduced ring of smooth characteristic. Then there exist
an efficient (quantum) key-recovery attack.

Proof. We consider the following commutative diagram:



R R̄
∏
pRep(R)

∏
p,k Rep,k(R) Rej (Rredj ,⊕, ·)

S S̄
∏
p Sep(S)

∏
p,k Sep,k(S) SDec(ej)

·ēR

Dec Dec Dec Dec Dj
Ψj

=

where ep,k(R), respectively ep,k(S), are the primitive idempotents corresponding
to the decomposition in local fields with residue fields isomorphic to Fpk in R,
respectively in S. Moreover, Rredj is the Teichmüller lifting of the residue field
Rj/mj (cf. Corollary 3 and Remark 8). As we have seen before, each primi-
tive idempotent of S corresponds to a unique primitive idempotent of R, which
decrypts to it (cf. Corollary 1). Consider the following algorithm:

1. Compute the idempotent structure on R using the generating set G, that
is compute all ej(R). For each ej find Dec(ej) using the decryption oracle;
these are necessarily either primitive idempotents of S or equal to 0.

2. Record the triples (ej , ẽj := Dec(ej),Size(Rredj )) with ẽj 6= 0. Set Ẽ := {ej |
ẽj 6= 0}.

3. Let c ∈ R. Compute {c · ej | ej ∈ Ẽ}, and cj := (c · ej)q
n

for large enough n.
4. Put Dec(c) =

∑
ej∈Ẽ Ψj(cj).

We claim that Ψj : Rredj → Sẽj is an isomorphism for all j such that ej ∈ Ẽ.
It is clear that Ψj is injective. On the other hand, it is easy to see, using Enc and
going backwards in the diagram from Sẽj to Rredj , that is also surjective. Now,
if a generator for S · ẽj is given, then we can use Enc again, then pass through
all the steps described above to find a generator in Rredj that maps under Ψj to

the given generator. Thus, we have a set of generators in Rredj that is mapped
to the given set of generators of S · ẽj . Now, the result of Maurer and Raub
([25], Theorem 1) shows that the map Ψj is efficiently computable, which ends
the argument.

Remark 13. In general, if the characteristic of the plaintext space is any number,
the above argument shows that decryption map may be computed correctly,
when the representation problem is solvable for any prime divisor of it.

Remark 14. Since our strategy for the key-recovery attack uses in an essential
way the computation of idempotents, we cannot deduce any information about
the nilpotent part. This is why we have to assume in the theorem that the
plaintext S is a reduced ring.
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