
DLSAG: Non-Interactive Refund Transactions
For Interoperable Payment Channels in Monero

Pedro Moreno-Sanchez1, Arthur Blue2, Duc V. Le3, Sarang Noether4, Brandon
Goodell4, Aniket Kate3

1 TU Wien pedro.sanchez@tuwien.ac.at
2 Independent Researcher

3 Purdue University {le52,aniket}@purdue.edu
4 Monero Research Lab {sarang,surae}@getmonero.org

Updated: 05 October 2020

Abstract. Monero has emerged as one of the leading cryptocurrencies
with privacy by design. However, this comes at the price of reduced ex-
pressiveness and interoperability as well as severe scalability issues. First,
Monero is restricted to coin exchanges among individual addresses and
no further functionality is supported. Second, transactions are autho-
rized by linkable ring signatures, a digital signature scheme used in Mon-
ero, hindering thereby the interoperability with virtually all the rest of
cryptocurrencies that support different digital signature schemes. Third,
Monero transactions require an on-chain footprint larger than other cryp-
tocurrencies, leading to a rapid ledger growth and thus scalability issues.
This work extends Monero expressiveness and interoperability while miti-
gating its scalability issues. We present Dual Linkable Spontaneous Anony-
mous Group Signature for Ad Hoc Groups (DLSAG), a linkable ring
signature scheme that enables for the first time non-interactive refund
transactions natively in Monero: DLSAG can seamlessly be implemented
along with other cryptographic tools already available in Monero such as
commitments and range proofs. We formally prove that DLSAG provides
the same security and privacy notions introduced in the original linkable
ring signature [30] namely, unforgeability, signer ambiguity, and linkabil-
ity. We have evaluated DLSAG and showed that it imposes even slightly
lower computation and similar communication overhead than the cur-
rent digital signature scheme in Monero, demonstrating its practicality.
We further show how to leverage DLSAG to enable off-chain scalabil-
ity solutions in Monero such as payment channels and payment-channel
networks as well as atomic swaps and interoperable payments with vir-
tually all cryptocurrencies available today. DLSAG is currently being
discussed within the Monero community as an option for adoption as a
key building block for expressiveness, interoperability, and scalability.

1 Introduction

Bitcoin fails to provide meaningful privacy guarantees as largely demonstrated in
the literature [11,12,27,34,43,47]. In this state of affairs, Monero appeared in the

2 Moreno-Sanchez et al.

cryptocurrency landscape with the distinguishing factor of adopting privacy by
a design principle, combining for the first time stealth address [45], linkable ring
signatures [30], cryptographic commitments [39] and range proofs [17]. As of the
time of writing, Monero has been regularly among the top 15 cryptocurrencies
in market capitalization, has catered more than 6 million transactions since
its creation [8], and is the most popular CryptoNote-style cryptocurrency [1].
Currently, the Monero blockchain processes around 4000 daily transactions and
Monero coins are part of a daily trade volume of more than 76M USD [2].
Monero has, however, significant room for improvement. First, Monero suffers
from reduced expressiveness: While cryptocurrencies like Bitcoin or Ethereum
enable somewhat complex policies to spend coins (e.g., a coin can be governed
by script-based rules), Monero only supports coins governed with (mostly a
single) private key, reducing the functionality to simple transfer of coins with no
policy associated with it.

Cryptocurrencies such as Bitcoin and Ethereum overcome this lack of expres-
siveness by adding a script language at the cost of fungibility [9] (i.e., transaction
inputs/outputs can be easily distinguished by their script) and interoperability
as those script languages are not compatible with each other. Thus, it is inter-
esting to include new policies to spend Monero coins cryptographically, instead
of including a scripting language that hampers fungibility and interoperability.

Second, Monero suffers from similar scalability issues as Bitcoin [19]: The per-
missionless nature of the Monero consensus algorithm limits the block rate to one
block every two minutes on average. In fact, the scalability problem in Monero
is more pressing. The crucial privacy goal in Monero relies on well-established
cryptographic constructions to homogenize transactions: linkable ring signatures
are used to obfuscate what public key corresponds to the signer of a transaction
while commitment schemes and range proofs are leveraged to hide the exchanged
amounts, ensure transaction validity and the expected coin supply. These key
design choices make Monero transactions require higher on-chain footprint than
transactions in other cryptocurrencies. Although used only for less than five
years, the Monero blockchain has currently a size of 59.37 GB and grows at
around 635MB per month [4].

Given this trend, it would be interesting to enable payment channels and
payment channel networks [6, 31, 42] in Monero, a scalability solution already
adopted in Bitcoin and Ethereum where the transaction rate is no longer limited
by the global consensus but rather by the latency among the two users involved
in a given payment. However, this is far from trivial as current payment-channel
networks are built upon script languages (e.g., hash-time lock contract) or digital
signatures schemes such as ECDSA or Schnorr that are not available in Monero.
Leveraging these techniques in Monero would hamper its fungibility.

In summary, the current state of affairs in Monero with respect to the re-
duced expressiveness, lack of interoperability, and severe scalability issues calls
for a solution. Adopting solutions provided in other cryptocurrencies like Bitcoin
and Ethereum is not seamlessly possible as they are not backwards compatible

DLSAG 3

with Monero. Moreover, as aforementioned, the inclusion of a scripting language
would hamper the fungibility and interoperability of Monero.

Our contributions. In this work, we present Dual Linkable Spontaneous
Anonymous Group Signature for Ad Hoc Groups (DLSAG), the linkable ring
signature scheme for Monero that improves upon the lack expressiveness, inter-
operability, and scalability guarantees in Monero. In particular:

– Expressiveness. We formalize DLSAG (Section 3), a new linkable ring
signature scheme that relies only on cryptographic tools already available in
Monero and improves its expressiveness. In a bit more detail, DLSAG enables
for the first time that Monero coins can be spent with one of two signing keys,
depending on the relation between a time flag and the height of the current block
in the Monero blockchain.

– Scalability. We describe how to leverage the DLSAG signatures to encode
for the first time non-interactive refund transactions in Monero, where Alice
can pay to Bob a certain amount of coins redeemable by Bob before a certain
time in the future. After such time expires, the coins can be refunded to Alice.
Refund transactions are the building block that opens the door for the first time
to scalability solutions based on payment channels for Monero (Section 6). In
particular, we describe how to build uni-directional payment channels, payment-
channel networks, off-chain conditional payments and atomic swaps.

– Interoperability. We further show that it is possible to combine the
aforementioned payment channels protocols with the corresponding ones in other
cryptocurrencies, making thereby Monero interoperable (Section 6).

– Formal analysis. We formally prove that DLSAG achieves the security
and privacy goals of interest for linkable ring signatures, namely, unforgeability,
signer ambiguity, and linkability as introduced in [30] (Section 3).

– Implementation and adoption. We have implemented DLSAG and
evaluated its performance (Section 4) showing that it imposes a single bit more
of communication overhead and smaller computation overhead as the current
digital signature scheme in Monero, demonstrating thus its practicality. In fact,
DLSAG is a new result that paves the way in practice towards an expressiveness
and scalability solution urgently needed in Monero to improve its integration
in the cryptocurrency landscape. DLSAG is actively being discussed within the
Monero community as an option for adoption [7, 37] and it is compatible with
other CryptoNote-style cryptocurrencies [1].

Comparison with related work. Poelstra introduced the notion of Scriptless
Scripts [41] as a means of encoding somewhat limited smart contracts that no
longer require the Bitcoin scripting language. Malavolta et al. [32] formalized
this notion and extended it to support Schnorr and ECDSA digital signatures.
In this work, we instantiate the notion of Scriptless Scripts to realize conditional
payments compatible with DLSAG and the current Monero protocol. Bitcoin
payment channels [5, 20, 42] have been presented in the literature as a scala-
bility solution for the Bitcoin blockchain. Bitcoin payment channels have been
then leveraged to build payment-channel networks in academia [25, 26, 31] and
in industry [6, 40, 42]. However, none of these solutions are compatible with the

4 Moreno-Sanchez et al.

current Monero. They rely on either Bitcoin script [6, 31, 42], ZCash script [25],
Ethereum contracts [26] or Schnorr signature scheme [40], none of which are
available in Monero. Similarly, Bitcoin scripts have been leveraged to construct
an atomic swap protocol [16]. We, instead, present a payment-channel network
and atomic swap protocols that no longer require scripting language, and it is
compatible with Monero. Goodell and Noether have proposed threshold signa-
tures [24] for Monero whereas Libert et al. [29] proposed a logarithmic-size ring
signature from the DDH assumption; although interesting, they do not address
the expressiveness, interoperability and scalability issues considered in this work.

2 Background

Notation. We denote by 1n the security parameter. We denote by poly(λ) a
polynomial function in λ and negl(λ) a negligible function in λ. We denote by
G a cyclic group of prime order q and by g we denote a fixed generator of such
group. We denote by (pk, sk) a pair of public and secret keys. We denote by pk
an array of public keys. We use letters A to Z to identify users in a protocol. We
denote by XMR the Monero coins. Finally, we consider two hash functions: (i) Hs

takes as input a bitstring and outputs a scalar (i.e., Hs : {0, 1}∗ → Zq); (ii) Hp

takes as input a bitstring and outputs an element of G (i.e., Hp : {0, 1}∗ → G).

Transactions. A Monero transaction [45] is divided in inputs and outputs.
They are defined in terms of tuples of the form (pk,Com(γ), Π-amt) where pk
denotes a fresh public key, Com(γ) denotes a cryptographic commitment [39]
to the amount γ and Π-amt denotes a range proof [17] that certifies that the
committed amount is within a range [0, 2k] where k is a system parameter. In
particular, each input consists of a set of such tuples while each output consists
of a single tuple. The set of public keys included in an input is called a ring.
Finally, the transaction includes a digital signature σ for each input.

In the illustrative example shown in Fig. 1, we assume that Alice has previ-
ously received 5 XMR in the public key pkA. We also assume that she wants to pay
Bob 4 XMR. For that, Alice first should get Bob’s public key (pkB) and a fresh
public key for herself (pk′A) to keep the change amount. Second, Alice should
choose a set of n − 1 output tuples {(pki,Com(vi), Π-amti)} already available

Inputs:

[0] {(pk1,Com(v1), Π-amt1), . . . , (pkn−1,Com(vn−1), Π-amtn−1),
(pkA,Com(5), Π-amtA)}

Outputs:

[0] pkB, Com(4), Π-amtB; [1] pk′A, Com(1), Π-amt′A
Authorizations:

[0] σ

Fig. 1: Illustrative example of a (simplified) Monero transaction. Alice (pkA) contributes
5 XMR to pay 4 XMR to Bob (pkB) and get 1 XMR back (pk′A). Finally, the transaction is
authorized with a ring signature σ from the input ring.

DLSAG 5

in the Monero blockchain to complete the input. Finally, Alice should create a
valid signature of the transaction content using the ring (pk1, . . . , pkn−1, pkA)
and her private key skA. For that, she uses a linkable ring signature scheme.

Linkable ring signatures. The signature scheme used in Monero is an in-
stantiation of the Linkable Spontaneous Anonymous Group Signature for Ad Hoc
Groups (LSAG)5 signature scheme [30]. We recall the definition of LSAG in Def-
inition 1. Here, we explicitly add a generic definition of the linking algorithm
which was briefly mentioned in [30].

Definition 1 (LSAG [30]). An LSAG signature scheme is a tuple of algo-
rithms (KeyGen, Sign, Vrfy, Link) defined as follows:

– (sk, pk)← KeyGen(1n): The KeyGen algorithm takes as input the security
parameter 1nand outputs a pair of private key sk and public key pk.

– σ ← Sign(sk,pk,m): The Sign algorithm takes as input a private key sk, a
list pk of n public keys which includes the one corresponding to sk, a message
m and outputs a signature σ.

– b ← Vrfy(pk,m, σ): The Vrfy algorithm takes as a public key list pk, a
message m and a signature σ, and returns 1 if ∃sk, pk ← KeyGen(1n) s.t.
pk ∈ pk and σ := Sign(sk,pk,m). Otherwise, it returns 0.

– b ← Link((pk1,m1, σ1), (pk2,m2, σ2)): The Link algorithm takes as in-
put two triples (pk1,m1, σ1) and (pk2,m2, σ2). The algorithm outputs 1 if
∃(sk, pk) ← KeyGen(1n) s.t. pk ∈ pk1, pk ∈ pk2, σ1 := Sign(sk,pk1,m1)
and σ2 := Sign(sk,pk2,m2). Otherwise, the algorithm outputs 0.

Apart from the straightforward correctness definition, Liu et al. [30] define three
security and privacy goals for a LSAG signature scheme. We present them here
informally and defer their formal description to Section 3.2.

– Unforgeability: The adversary without access to the secret key should
not be able to compute a valid signature σ on a message m.

– Signer ambiguity: Given a valid signature σ on a message m, the ad-
versary should not be able to determine better than guessing what public key
within the ring corresponds to the secret key used to create the signature.

– Linkability: Given two rings pk1, pk2, two valid signatures σ1, σ2 in
two messages m1, m2, there should exist an efficient algorithm that faithfully
determines if the same secret key has been used to create both signatures.

Due to the lack of space, we defer to the full version [35] the detailed construc-
tion of LSAG used in Monero, and to [38] for its security and privacy analysis.

The current LSAG in Monero only supports transfer of coins authorized by
a signature, reducing the expressiveness to payments. Adding a script language
(as done in Bitcoin or Ethereum) would harm fungibility (i.e., transaction in-
puts/outputs can be easily distinguished by their script) and interoperability
as those languages are not compatible with each other. Instead, in this work

5 Monero in fact uses a matrix version of LSAG (MLSAG) [38] to prove balance
without revealing spent ring members. We describe here the simplest LSAG version
but our constructions can be trivially extended to support matrix version.

6 Moreno-Sanchez et al.

we aim to propose a signature scheme for Monero that cryptographically sup-
ports more expressive transaction authorization policies, without hampering the
security and privacy guarantees of the current digital signature scheme.

3 Dual-Key LSAG (DLSAG)

3.1 Key ideas and construction of DLSAG

Our approach builds upon a tuple format defined as ((pkA,0, pkB,1),Com(γ),
Π-amt, t) and that enables to spend it to two different public keys (and poten-
tially two different users) depending on a flag t. A dual-key tuple deviates from
the current Monero tuple in two main points (highlighted in blue): (i) it contains
two public keys instead of one to identify the two users that can possibly spend
the output; and (ii) it includes an additional element t that denotes a switch
(e.g., pkA,0 is used if t is smaller than the current block height in the Monero
blockchain) between the public keys.

Dual-key tuple format enables the encoding of the logic for a refund trans-
action. In the sample tuple shown above, assume that t signals that pkA,0 must
be used. Then Alice must choose a ring of the form (pk0,pk1), containing
(pkA,0, pkB,1) at some position, and sign with the secret key skA, that is, the
secret key corresponding to the public key pkA,0. Conversely, if t signals that
pkB,1 must be used, Bob can then sign with skB instead. Note that if a single
user knows both skA and skB, such an user can always use a dual-key tuple
independently of the value t.

The remaining step is to design a linkable ring signature scheme that supports
this new tuple format. This, however, requires to address the following challenges.

Key-image mechanism. The ring signature scheme currently used in Mon-
ero achieves linkability by publishing the key-image constructed from the single
public key. For instance, Alice produces a signature with skA; the signature will
contain the key-image I = Hp(pkA)skA . If Alice signs again with skA, the same
key-image would be computed and this can be detected. To mimic this behav-
ior while handling the dual-key tuple format, the challenge is to define a single
key-image that uniquely identifies a pair of public keys (pk0, pk1) and yet can
be computed knowing only one of the signing keys skb. Similar to the Diffie-
Hellman key exchange mechanism [21], our approach redefines the key-image as
J = gsk0·sk1 , fulfilling thereby the expected requirements: (i) knowing skb suffices

to compute J := pkskb1−b; (ii) it uniquely identifies (pk0, pk1) since pkskb1−b = pk
sk1−b

b .

Hardening key-image linkability. The aforementioned key-image defini-
tion allows to link the pair of public keys (pk0, pk1). However, it is crucial to
make the key-image unique not only to the pair of public keys but also to the
output that contains them itself. Otherwise, one of the users could create an-
other dual-key tuple with the same pair of public keys, create a signature with
it (and thus a key-image), and effectively make the funds in the original tuple
unspendable since in Monero every key-image is only allowed to appear once.
That can be mitigated by introducing a random unique identifier, m, to each

DLSAG 7

– (sk, pk)← KeyGen(1n): Choose sk0, sk1 uniformly at random from Zq, m as
a bitstring chosen uniformly at random from {0, 1}n. Set both pkb := gskb for
b ∈ {0, 1}. Output sk = (sk0, sk1), pk = (pk0, pk1,m).

– σ ← Sign(skb, pk, tx): Parse: ((pk1,0, pk1,1,m1), . . . , (pkn,0, pkn,1,mn))← pk.
Sample s′0, s1, . . . , sn−1 from Zq. Compute:

J := pkmn·skb
n,1−b ; L0 := gs

′
0 ; R0 := pk

s′0·mn

n,1−b ; h0 := Hs(tx||L0||R0);

Then, for i ∈ {1, . . . , n− 1}, compute the following sequences:

Li := gsi · pkhi−1

i,b ; Ri := pksi·mi
i,1−b · J

hi−1 ; hi := Hs(tx||Li||Ri)

Now, solve for s0 such that Hs(tx||gs0 · pk
hn−1

n,b ||pk
s0·mn
n,1−b · J

hn−1) = h0. For
that, we get s0 = s′0 − hn−1 · skb. Return: σ = (s0, s1, . . . , sn−1, h0,J , b).

– b′←Vrfy(pk, tx, σ): Parse

(s0, s1, . . . , sn−1, h0,J , b)← σ; ((pk1,0, pk1,1,m1), . . . , (pkn,0, pkn,1,mn))← pk

For i ∈ {1, . . . , n}, compute the sequences:

Li := gsi · pkhi−1

i,b ; Ri := pksi·mi
i,1−b · J

hi−1 ; hi := Hs(tx||Li||Ri)

Return 1 if h0 = hn. Otherwise, return 0.
– b ← Link((pk1, tx1, σ1), (pk2, tx2, σ2)): If (Vrfy(pk1, tx1, σ1) ∧

Vrfy(pk2, tx2, σ2)) = 0: return 0. Else, parse: (s0, s1, . . . , sn−1, h0,J1, b1)←
σ1 and (s′0, s

′
1, . . . , s

′
n−1, h

′
0,J2, b2) ← σ2. Return 1 if J1 = J2, and 0

otherwise.

Fig. 2: Construction of DLSAG. For ease of exposition, we assume that the secret key
skb corresponds with the public key pkn,b. As noted before, the position of the true
signer’s public key is chosen uniformly random.

output, and this identifier can be included in the computation of the key-image
without violating the security and privacy guarantees of the signature scheme.
In Monero, such an unique identifier can be constructed by hashing the trans-
action that included the output and the output’s position in the transaction.
Thus, we may view the rings used in DLSAGs as consisting of unique triples,
(pk0, pk1,m)[1,n], and we define the dual key-image to be J := gmj ·skj,0·skj,1 , for
some j ∈ [1, n] corresponding to the position of the true signer in the ring.

The rest is to follow the idea of the Monero LSAG modified to support the
new linkability tag. Fig. 2 introduces the details of the DLSAG construction.

3.2 Security analysis

We use the existential unforgeability of ring signatures with respect to insider
corruption introduced in [15]. Signer ambiguity and linkability properties are
similar to those in LSAG [30], adapted to DLSAG syntax for readability.

Definition 2 (Existential unforgeability of ring signature with respect
to insider corruption). Let λ be a security parameter, let N , qH , qS, qC be
natural numbers such that qC ≤ N ≤ poly(λ), 1 ≤ qH ≤ poly(λ), 1 ≤ qS ≤
poly(λ). Let (G, q, g) be some group parameters from a Dual LSAG signature

8 Moreno-Sanchez et al.

scheme (KeyGen,Sign,Verify,Link). Let OC be a corruption oracle that can
be queried up to qC times which acts as a discrete logarithm oracle. Let OS be a
signature oracle that can be queried up to qS times. Presume OS takes as input
some ring of public keys pk, message m, signing index `, and parity bit b, and
produces as output a valid signature. Let OH be a random oracle that can be
queried up to qH times.

The Dual LSAG signature scheme is said to be existentially unforgeable with
respect to insider corruption if any PPT algorithm A has at most a negligible
probability of success in the following game.

1. The challenger selects a set of N public keys from the Dual LSAG signature
scheme key space PK ←

{
(pk1,0, pk1,1,m0), · · · , (pkN,0, pkN,1,mN)

}
and

sends this set to the player A.
2. The player is granted access to oracles OC , OS, and OH .
3. The player outputs a message m, a ring of public keys pk ={(Y1,0, Y1,1,m′1),

(Y2,0, Y2,1,m
′
2), · · · , (YR,0, YR,1,m′R)} ⊆ PK where R ≥ 1 and a purported

forgery (σ, b).

The player A wins if Verify(pk,m, σ) = 1 and the following additional
success constraints are satisfied:

– The keys in pk are distinct and every key (Yi,0, Yi,1,m
′
i) ∈ pk satisfies

(Yi,0, Yi,1,m
′
i) = (pkj(i),0, pkj(i),1,mj(i)) ∈ PK for some j(i);

– OC has not been queried with any Yi,b for any i;
– The purported forgery is not a complete copy of a query to OS with its

corresponding response.

Definition 3 (Existential unforgeability with respect to insider corrup-
tion [15]). For a fixed N , qH , qS, and qC , if A is an algorithm that operates in
the game defined Definition 2 in time at most t and succeeds at the above game
with probability at least ε, we say A is a (t, ε,N, qH , qS , qC)-forger where ε is
measured over the joint distribution of the random coins of A and the challenge
set PK.

Definition 4 (DLSAG signer ambiguity [30]). A DLSAG signature scheme
with security parameter λ is signer ambiguous if for any PPT algorithm A, on
inputs any message m, any list pk of n public key pairs, any valid signature σ on
pk and m generated by user π, such that skπ /∈ Dt and any set of t private keys
Dt := {sk1, . . . , skt} where {gsk1 , . . . , gskt} ⊂ pkb, n − t ≥ 2 and b is extracted
from σ. There exists a negligible function negl(·) such that:∣∣∣∣Pr[A(m,pk,Dt, σ) = π]− 1

n− t

∣∣∣∣ ≤ negl(λ)

Definition 5 (DLSAG linkability). A DLSAG signature scheme is linkable
if there exists a PPT algorithm Link that takes as input two rings pk1,pk2, two
messages tx1, tx2, their corresponding DLSAG signatures σ1, σ2 (with respective

DLSAG 9

true signing indices π1 and π2 not provided to Link), and outputs either 0 or 1,
such that there exists a negligible function negl(·) with the property that:

Pr[Link((pk1, tx1, σ1), (pk2, tx2, σ2)) = 1|(pkπ1
,mπ1) 6= (pkπ2

,mπ2)]+

Pr[Link(pk1, tx1, σ1), (pk2, tx2, σ2)) = 0|(pkπ1
,mπ1) = (pkπ2

,mπ2)] ≤ negl(λ)

In this part, we state the theorems for the security of DLSAG. Due to the
lack of space, we defer the security proofs to [35].

Theorem 1 (DLSAG unforgeability). DLSAG signature scheme is existen-
tially unforgeable against adaptive chosen-plaintext attack according to Defini-
tion 3 provided that the One-More Discrete Logarithm (OMDL) problem 6 is
hard, under the random oracle model.

Theorem 2 (DLSAG signer ambiguity). DLSAG achieves signer ambiguity
according to Definition 4 provided that the Decisional Diffie-Hellman assumption
(DDH) is hard, under the random oracle model.

Theorem 3 (DLSAG linkability). DLSAG achieves linkability as defined
in Definition 5 provided that the OMDL problem is hard, under the random
oracle model.

Further security and privacy analysis. We have analyzed the security
and privacy of the digital signature scheme. Recent privacy studies on Mon-
ero [28, 36] show that composition of several transactions (and thus signatures)
can lead to new threats and leakages. In particular, we observe that DLSAG
allows an observer to track when the receiver spends his coin if the sender use
the stealth address mechanism used in Monero to generate the one time address
for the receiver. Such linkability issue can be mitigated if the receiver spends his
coins as soon as he receives it. We defer to the full version [35] the discussion on
this and others venues for future work in security and privacy.

4 Implementation and performance analysis

Implementation. We developed a prototypical C++ implementation [10] of
DLSAG to demonstrate the feasibility of our DLSAG construction in comparison
with the Monero LSAG. We have implemented DLSAG and LSAG using the
same cryptographic library, libsodium [3], and cryptographic parameters (i.e.
the ed25519 curve) as currently used in Monero.

Testbed. We conducted our experiments on a commodity desktop machine,
which is equipped with Intel(R) Core(TM) i5-7400 CPU @ 3.00 GHz CPU, 12GB
RAM. In these experiments, we focus on evaluating the overhead of DLSAG over
LSAG in terms of computation time and signature size.

Computation time. The results depicted in Table 1 show that the running
time of DLSAG is practically the same as the running time of LSAG in both

10 Moreno-Sanchez et al.

signing and verifying algorithms. Thus, DLSAG could be included in Monero
without incurring computation overhead. We estimate that the computation
time for DLSAG is systematically a 7% smaller than that of LSAG. One of the
main reasons is that in DLSAG, we eliminate the use of hash-to-point evaluations
(e.g., as required in the old key-image mechanism). More specifically, for ring of
size n, both DLSAG signing and verifying algorithms incur approximately ≈ 4n
group operations and n hash-to-scalar evaluations while in LSAG, signing and
verifying algorithms require additional n hash-to-point evaluations, which we see
as the main factor for the differences in running time. Therefore, our evaluation
shows that DLSAG does not impose any computation overhead in comparison
to current LSAG. In fact, if adopted, DLSAG might even slightly improve the
signature creation and verification times.

Signature size. Here, we studied the overhead in terms of signature size,
and thus indirectly the communication overhead imposed by DLSAG. We ob-
served that in comparison to the LSAG signature, the signature of DLSAG has
just one extra parity bit to indicate the position of the public key needed for
verification (i.e., either pk0 or pk1). This short signature size can be achieved at
the cost of higher tuple footprint. However, DLSAG enables off-chain payments
and thus reducing the number of on-chain tuples required overall. In summary,
this evaluation shows that DLSAG can be deployed in practice with almost no
communication overhead and yet improves the scalability of Monero since it
enables off-chain operations as we discuss later in this paper.

5 DLSAG in Monero

Bootstrapping DLSAG in Monero. DLSAG can be seamlessly added into
Monero. First, Monero regularly performs network upgrades for consensus rules
and protocol improvements that allows for the integration of new functionality
such as DLSAG. Second, it is possible to have transactions that mix LSAG with
DLSAG. A mixed transaction will contain a LSAG signature for each single-key
input and a DLSAG signature for each input in the dual-key format. In fact, both
formats only differ in the number of public keys and the inclusion of an extra
field (i.e. flag t). Thus, Monero operations and verifications on the commitment
and range proofs remain compatible.

6 The One-More Discrete Logarithm hardness assumption is defined in [13].

LSAG DLSAG

Ring Size Sign Vrfy Sign Vrfy

5 1.929 1.835 1.771 1.699

10 3.863 3.789 3.665 3.428

15 5.873 5.577 5.625 5.512

20 8.045 7.952 7.516 7.428

Table 1: Running time (in milliseconds) of DLSAG and LSAG for different ring sizes

DLSAG 11

Inputs:

[0] ((pk1,0, pk1,1),Com(v1), Π-amt1,Com(t1), Π-time1), . . . ,
(pkn−1,0, pkn−1,1),Com(vn−1), Π-amtn−1,Com(tn−1), Π-timen−1),
((pkA, pk

′
A),Com(10), Π-amtA,Com(tA), Π-timeA)

Outputs:

[0] (pkB, pk′′A), Com(10), Π-amt′A, Com(tB), Π-timeB
Authorizations:

[0] σ0

Fig. 3: A simplified Monero transaction using dual-key tuples and hidden timelocks.

Fungibility. Different tuple formats coexisting on the blockchain may be
detrimental to fungibility. For instance, miners might decide to stop mining
certain transactions depending on the tuple format chosen. In order to mitigate
that, we note that direct transfers using single-key tuples can easily be simulated
by setting the two public keys of the dual-key tuples to belong to a single user.
Thus, the fungibility of Monero may not be hampered with dual-key tuples only.

Backwards compatible timelock processing. Dual-key tuples contain a
flag t in the clear. We envision that this flag is implemented in Monero as a block
height, so that given a pair (pk0, pk1), pk0 can be used before block t is mined and
pk1 is used afterwards. Although it is unclear and an interesting future research
work, it could be possible that the different t values leak enough information
for an adversary to break privacy, in the spirit of Monero attacks shown in
the recent literature [28, 36]. Given that, in this work we proactively propose
an alternative timelock processing scheme that allows to have indistinguishable
timeouts. This scheme, added as an extension to the dual-key tuple format and
DLSAG signature scheme helps to maintain the fungibility of Monero. We note
that this timelock processing could be of individual interest as timelocks are part
of virtually all cryptocurrencies.

The core idea of the timelock processing scheme is as follows. Instead of
including t in the clear, each output contains a Pedersen commitment to that
value Com(t, r1), where r1 is the mask value which is included along with a proof
(Π-time) that t is in the range [0, 2k]. Now, one can prove that t has expired as
follows: pick t′ such that t < t′. If T is a block height such that t′ < T , that
would tell the miner that indeed t < T , and such a transaction will be mined
only if the appropriate key is being used. In order to convince the miner that the
relation t < t′ holds, the signer picks a random mask r2 and forms the Pedersen
commitment Com(t′− t, r2), and includes this commitment along with the value
t′, a range proof Π-time to prove that t′ − t is in range [0, 2k] and other ring
member information.

5.1 Putting all together

In this section, we use the illustrative example in Fig. 3 to revisit the processes
of spending and verifying a transaction assuming that Monero includes dual-key
tuples, supports DLSAG signature scheme and the timelock processing scheme.

12 Moreno-Sanchez et al.

Assume that Alice has previously received 10 XMR in the public key (pkA, pk′A)
(i.e., input [0]). Assume that she wants to pay Bob for a service worth 10 XMR

with a certain timeout tB. Thus, either Bob claims the 10 XMR before tB or Alice
gets them refunded at the address pk′′A. For this, Alice can create the transaction
shown in Fig. 3. After this transaction is added to the Monero blockchain, Bob
can get his coins by spending the output [0]. In the following, we describe the
generation of this transaction and how it can be verified by the interested party
(e.g., miners).

Transaction generation. Assume that Alice wants to spend coins held
in (pkA, pk

′
A). First, Alice invokes the Sign algorithm for DLSAG on input

(skA, ((pk1,0, pk1,1), . . . , (pkn−1,0, pkn−1,1), (pkA, pk
′
A), tx), obtaining thereby a

signature σ. Second, she has to use the timelock processing mechanism to prove
that tA has not expired. For that, she creates the tuple (Com(tA), t′A,Com(t′A −
tA), Π-timeA) as mentioned above. Similar to the problem of publishing commit-
ment of amounts, publishing Com(tA) would reveal what public key within the
ring is being used, hindering thus signer ambiguity. Fortunately, we can adapt the
approach in Monero to handle value commitments for Com(tA) (Appendix C).

Transaction validation. Every miner can validate the inclusion of Alice’s
transaction in a block at height T by checking whether t′A < T . If so, he proceeds
to verify the range proofs for the commitment values. Next, he verifies that the
DLSAG signature is correct using the corresponding Vrfy algorithm. Finally,
the miner checks that the dual ring signature is also correct using the Vrfy
algorithm as defined in DLSAG. We remind that using the extension of DLSAG
as defined in the full version [35], the miner would have to verify only one dual
signature, using the DLSAG verification algorithm.

6 Applications in Monero enabled by DLSAG

6.1 Building blocks

Commitment Scheme. A commitment scheme Com = (PCom,VCom) con-
sists of a commitment algorithm PCom(m) → (com, decom) and a verification
algorithm VCom(com, decom,m)→ b ∈ {0, 1}. The commiment scheme allows a
prover to commit to a message m without revealing it, and the verficiation al-
gorithm allows a verifiers to be able to verify that message m was committed
using the revealed decommitment information decom.

Zero-knowledge proofs (ZKP). A ZKP system allows a prover to prove
to a verifier the validity of a statement without revealing more information than
the pure validity of the statement itself. In particular, a ZKP is composed by
two algorithms (ZKProve, ZKVerify) defined as follows. First, the prove al-
gorithm Π ← ZKProve(st, w) takes as input a statement st and a witness w
and returns a proof Π. The verification algorithm >,⊥ ← ZKVerify(st, Π)
takes as input a statement st and returns > if Π is a valid proof for st. Other-
wise, it returns ⊥. We require a ZKP that fulfills the zero-knowledge, soundness
and completeness properties [23].

DLSAG 13

In our constructions, we instantiate it with the sigma protocol [46], using the
Fiat-Shamir heuristic to make it non-interactive [22]. For simplicity of notation,
we denote by Π({x}, (X, g)) a proof of the fact that X = gx where X and g
are public and x is maintained private from the verifier. Moreover, we denote by
Π({x}, (X, g) ∧ (X ′, g′)) a proof of the fact that X = gx and X ′ = g′x, where x
is maintained private from the verifier and the rest of values are public.

2-of-2 DLSAG signatures. Assume that Alice and Bob want to jointly pay
a receiver R for a service. We require that Alice and Bob jointly create a ring
signature that spends γ XMR from a dual-key (pkAB,0, pkAB,1), distributing them
as γ′ to (pkR,0, pkR,1) and the remaining γ − γ′ back to themselves. For that,
Alice and Bob execute 2of2RSSign(pkAB,b, [skAB,b]A, [skAB,b]B, tx) protocol, as
shown in Fig. 4. The 2of2RSSign protocol largely resembles the Sign algorithm
from the DLSAG scheme. The main difference comes in the computation of
h0 = Hs(tx||gr||pkrmAB,1−b) where the targets gr and pkrmAB,1−b, as well as their
shared key-image JAB , have to be jointly constructed by Alice and Bob.

This protocol results in Alice and Bob obtaining their share of the signature
[σ]A and [σ]B that they must combine to complete the final ring signature σ :=
([s0]A+[s0]B, s1, . . . sn−1, h0, (JA ·JB), b). Interestingly, Alice (and similarly Bob)
can verify that [σ]B is indeed a share of a valid signature σ by computing

g([s0]A+[s0]B) ?
=

(RA ·RB)

pk
hn−1

AB,b

, where RA = g[s
′
0]A and RB = g[s

′
0]B

6.2 Payment channels in Monero

Background. A payment channel enables several payments between two users
without committing every single one of them to the blockchain. For this reason,
payment channels are being widely developed as a scalability solution in cryp-
tocurrencies such as Bitcoin [42]. However, the conceptual differences between
Monero and Bitcoin hinder a seamless adoption of Bitcoin payment channels in
Monero. We instead leverage the refund transactions described in this work.

The lifecycle of a payment channel between Alice and Bob consists of three
steps. First, Alice and Bob must open a payment channel by including an on-
chain transaction that transfers XMR from Alice into a public key pkAB whose
private key skAB is shared by Alice and Bob, that is, Alice holds [skAB]A and Bob
holds [skAB]B such that [skAB]A + [skAB]B = skAB. Second, they perform off-chain
payments by locally adjusting how many XMR each of them gets from the shared
address. Finally, they must close the payment channel by submitting a second
on-chain transaction that distributes the XMR from the shared address to Alice
and Bob as defined by the last balance agreed off-chain. Thus, payment channels
require only two on-chain transactions (open and close) but allow for many off-
chain payments to take place during its life time. In the following, we show our
design of payments channel using the building blocks explained in Section 6.1.

Open a payment channel. Assume that Alice holds γ XMR in a dual key
(pkA,0, pkA,1) and she wants to create a payment channel with Bob. First, she

14 Moreno-Sanchez et al.

2of2RSSign(pkAB,b, [skAB,b]A, [skAB,b]B, tx)

Alice([skAB,b]A, Q = pkAB,1−b) Bob([skAB,b]B, Q = pkAB,1−b)

s := (s1, . . . , sn−1)
$←− Zn−1

q ,
[
s
′
0

]
A

$←− Zq [s
′
0]B

$←− Zq ;

JA := Q
[skAB,b]Am

; ĴA := Q
[s′0]Am

; JB := Q
[skAB,b]Bm

, ĴB := Q
[s′0]Bm

;

RA := g
[s′0]A RB := g

[s′0]B ;

πA = ΠA({[s′0]A}, (RA, g) ∧ (ĴA, Q
m
)) πB ← ΠB({[s′0]B}, (RB, g) ∧ (ĴB, Q

m
))

paramA := (s,JA, ĴA, RA, πA) paramB := (JB, ĴB, RB, πB)

(comA, decomA)← PCom(paramA) (comB, decomB)← PCom(paramB)

comA

comB

paramA

If VCom(comA, decomA, paramA) = ⊥
then abort;

If ZKVerify(πA, (g,Q
m
)) = ⊥

then abort;

paramB

If VCom(comB, decomB, paramB) = ⊥
then abort;

If ZKVerify(πB, (g,Q
m
)) = ⊥

then abort;

Parse: paramA := (s,JA, ĴA, RA, πA) Parse: paramB := (JB, ĴB, RB, πB)

h0 := Hs(tx||g[s
′
0]A+[s′0]B · Y ||ĴA · ĴB · Y ∗) Compute {hi} as done by Alice;

Set J = JA · JB. Compute: [s0]B := [s
′
0]B − hn−1[skAB]B;

For i ∈ {1, . . . , n− 1} :

Li := g
si · pk

hi−1
i , Ri := pk

simi
i,1−b · J

hi−1

hi = Hs(tx||Li||Ri)

[s0]A := [s
′
0]A − hn−1[skAB, b]A

Output: Output:

[σ]A := ([s0]A, s1, . . . sn−1, h0,JA, b) [σ]B := ([s0]B, s1, . . . sn−1, h0,JB, b)

Fig. 4: Description of the protocol 2of2RSSign(pkAB,b, [skAB,b]A, [skAB,b]B, tx),
where pkAB denotes a one-time address shared between Alice and Bob,
[skAB,b]A, [skAB,b]B denote the Alice and Bob shares of the private key for
pkAB,b, and tx denotes the transaction to be signed. The ring used was:
((pk1,0, pk1,1,m1), . . . , (pkn−1,0, pkn−1,1,mn−1), (pkAB,0, pkAB,1,m)) and omitted for
readability. The pseudocode in light blue denotes the changes required to implement
the 2of2RSSignCond(pkAB, [skAB]A, [skAB]B, tx, Y, Y

∗) protocol, that additionally
takes as input two group elements of the form Y := gy and Y ∗ := pkymAB,1−b.

DLSAG 15

transfers γ XMR to a dual key of the form (pkAB, pk
′
A) and sets the timeout to a

desired block height t. This way, if Bob never manages to coordinate with Alice
to spend from pkAB, she will automatically regain control of her funds after that
height, eliminating the need for a separate refund transaction. On the other
hand, if Bob has received any off-chain transfers from pkAB, he needs to be sure
to put the final balance in a transaction on chain before the block with height t
is published.

Off-chain payments. Assume that Alice wants to pay γ′ < γ XMR to Bob
using the aforementioned payment channel. For that, Alice transfers γ′ XMR from
(pkAB, pkA) to a Bob’s dual address (pkB,0, pkB,1) and the change γ−γ′ XMR back
to an Alice’s dual address (pkA.0, pkA,1). As the XMR are being spent from the
shared address pkAB, the transaction must be signed by both users to be valid.
The cornerstone of payment channels, however, is that only Alice signs otx and
gives her share of the signature [σ]A to Bob, who can in turn verify it. At this
point, Bob publish the transaction and get the γ′ XMR before the timelock expires.
Instead, Bob locally stores otx and the corresponding signature [σ]A until either
Bob receives another off-chain payment for a value higher than γ′ XMR or the
channel is about to expire.

Close channel. The channel between Alice and Bob can be closed for two
reasons. First, Bob does not wish to receive more off-chain payments from Alice.
Then, assume that Bob got a pair (tx, [σ]A), where tx is the last agreed balance.
He can simply complete σ′ with his own share [σ′]B and publish the transaction.
Second, if the timelock included in the deposit transaction expires, and Alice
regains control of the original γ XMR deposited.

6.3 Conditional payments in Monero

A conditional payment only becomes valid if the receiver can give the solution to
a cryptographic problem such as finding the preimage of a hash value or solving
an instance of the discrete logarithm problem. Conditional payments open many
new applications such as payment-channel networks as well as atomic swaps and
therefore we consider them of independent interest.

We aim to simulate the following Discrete-log Timelock Contract (DTLC)
contract defined on a group element Y = gy, an amount γ of XMR and a timeout
t. DTLC (Alice, Bob, Y , γ, t): (i) If Bob produces a value y such that gy = Y
before t days, Alice pays Bob γ XMR; (ii) If t elapses, Alice gets the γ XMR back.

Here, we describe our implementation of the DTLC contract by means of
an example. Assume that Alice and Bob got γ XMR in a dual address (pkAB, pkA)
created, for instance, in the opening of a payment channel between Alice and
Bob. Further assume that Alice wants to perform a conditional payment (ctx)
for γ′ < γ XMR to Bob conditioned on him knowing the discrete logarithm of Y .

Alice and Bob sign ctx using the 2of2RSSignCond protocol (Fig. 4, light
blue pseudocode) on the condition Y . The cornerstone of this protocol is to
imagine that there are three users instead of two that jointly execute the protocol:
Alice, who contributes ([s′0]A, [skAB]A), Bob, who contributes ([s′0]B , [skAB]B), and

16 Moreno-Sanchez et al.

a “third user” who contributes (y, y). After running the protocol, Alice and Bob
obtain [σ]A and [σ]B, but they also require y to complete the signature.

Therefore, after running the 2of2RSSignCond protocol, Bob gives his sig-
nature share [σ]B to Alice who in turn can verify its validity and reply with
her signature share [σ]A. This exchange, in this order, ensures that ctx is only
published if value y is revealed and if the height lock ` has not been reached.

Now we note that whenever Bob claims his XMR at the ctx, he should provide
the signature σ that contains [s′0]A + [s′0]B + y, and Bob can do this only if he
knows the value y. But as soon as that signature is published, Alice trivially
learns y from σ as she already knows [σ]A and [σ]B. Additionally, we note that
the values y and Y remain invisible, and therefore outside observers cannot
use them to link this transaction with any other transactions using the same
condition values (e.g. the counterpart transaction in an atomic swap). In fact,
this transaction is indistinguishable from those Monero transactions that can
be spent unconditionally, contributing thereby to the fungibility (and thus the
overall privacy) of the Monero cryptocurrency.

6.4 Payment-Channel network in Monero

Assume that Alice wants to perform an off-chain payment to Dave using a path
of opened payment channels of the form Alice, Bob, Carol, Dave. Such a payment
is performed in three phases. First, Dave creates a condition (Y := gy, Y ∗ :=
pkymCD,1) and communicates the conditions (Y, Y ∗) to Alice. Second, Alice creates
a conditional payment to Bob under condition (Y, Y ∗), who in turn creates a
conditional payment to Carol under the same condition, and finally Carol creates
the last conditional payment to Dave under condition (Y, Y ∗). Finally, in the
third phase, Dave reveals y to Carol to pull the coins from her, who in turn,
reveals y to Bob and finally Bob to Alice.

We have to overcome a subtle but crucial challenge to make such construction
fully compatible with Monero. The problem consists on that the same condition
(Y, Y ∗) cannot be used by every pair of users in the path: While g is the same
for every user, each Y ∗i requires the value y (only known by Dave before the
payment is settled) and the dual address (pkPiPi+1

, pkPi
) that defines each of

the payment channels (and therefore only known by the two users sharing the
channel). To overcome that, we add an extra round of communication where
each pair of users forward to the receiver of the payment their shared address’
refund address multiplied by their output identifier (i.e., pkmAB

A where pkA is
the refund address of the pair (pkAB, pkA)). Upon reception of these values, the
receiver computes the pair (Y, Y ∗i) for each user along with a zero-knowledge
proof of the fact that both condition values are constructed as expected. Finally,
the receiver sends these conditions and proofs back to each user in the payment
path from the receiver to the sender.

Now, before setting the conditional payment, each user must validate the
zero-knowledge proof produced by the receiver to ensure that the condition for
the incoming payment is built upon the same value y as the condition for the
outgoing payment. It is important to note that soundness of the zero-knowledge

DLSAG 17

scheme does not allow Dave to cheat on the proof and still be correctly validated
by other users. Otherwise, it could be the situation that an intermediate user
loses coins because his outgoing payment goes through but cannot use the same
value y for unlocking the incoming payment.

6.5 Atomic swaps

Monero does not support Hash Timelock Contract HTLC [44], the building
block for atomic swaps in other cryptocurrencies. Instead, we leverage DTLC-
based conditional payments (Section 6.3) to enable atomic swaps between Mon-
ero and other cryptocurrencies. We describe our approach with an example.

Assume that Alice has 1 bitcoin and wants to exchange it by 1 XMR from Bob.
For that, Alice first creates a value y and sets h := H(y), Y := gy, Y ∗ := pkymAB,1
She then creates a zero-knowledge proof Π of the fact that the discrete logarithm
of Y w.r.t. g and Y ∗ w.r.t. pkmAB,1 are the same as the pre-image of h. Second,
Alice creates a Bitcoin transaction that transfers her 1 bitcoin to Bob using the
HTLC(Alice, Bob, h, 1, 1 day). Finally, Alice gives h, Y , Y ∗ and Π to Bob.

The idea now is that Bob creates a Monero conditional payment conditioned
on (Y, Y ∗), as described in Section 6.3, that transfers his 1 XMR to Alice. However,
Bob must first check that indeed the discrete-log of Y and Y ∗ is also the pre-
image of h so that the swap is indeed atomic. Otherwise, Alice could simply
claim the 1 XMR from Bob but Bob could not claim the bitcoin from Alice. Bob
ensures the atomicity of the swap by checking the validity of the proof Π.

We note that the above protocol requires a zero-knowledge proof protocol
such as ZK-Boo [18] or Bulletproofs [17] to prove knowledge of the pre-image of
a hash value. We also note that if Schnorr signatures are available in both cryp-
tocurrencies or HTLC is substituted by discrete-log based constructions [32],
zero-knowledge proofs may not be needed.

7 Concluding remarks and outlook

We present DLSAG, a linkable ring signature scheme that serves as a building
block to improve expressiveness, interoperability, and scalability in Monero. We
have formally proven that DLSAG provides unforgeability, sender ambiguity, and
linkability. We also evaluate the performance of DLSAG showing that DLSAG
provides a single bit of communication overhead while slightly reducing the com-
putation overhead when compared to current LSAG. Moreover, we contribute
additional cryptographic schemes (e.g., timelock processing) to help to maintain
the fungibility of Monero. DLSAG enables payment channels, payment channel
networks, and atomic swaps for the first time in Monero. DLSAG is currently
under consideration by Monero researchers as an option for adoption and it is
also compatible with other CryptoNote-style cryptocurrencies [1].

Outlook. In the future, we identify the following future research directions:
– Bi-directional payment channels: In this work, we present a construc-

tion for uni-directional payment channels. An extension is thus the design and

18 Moreno-Sanchez et al.

implementation of bi-directional payment channels. In particular, we find in-
teresting to investigate if techniques in other scalability solutions, such as the
Lightning Network, are compatible with our payment channels or what are the
challenges otherwise.

– Further expressiveness: We envision that expressiveness of DLSAG
could be expanded with threshold signatures similar to those of Thring [24]
and key aggregation similar to that of [33]. A thorough investigation of these
approaches constitutes a venue for future research.

– Extend security and privacy models: So far, security and privacy defi-
nitions for Monero focus on individual signatures. However, recent studies [28,36]
show that an adversary that considers several transactions (and thus several sig-
natures) at a time, can create profiling information about the users. Thus, new
security and privacy models are required to further characterized the security
and privacy notions provided by the complete Monero cryptocurrency. Moreover,
we plan to study the privacy guarantees provided by suggested extensions such
as the timelock processing scheme.

– Timelock offset analysis and mitigations: To prove to the network
that a certain timelock t has or has not expired, the signer publishes the timelock
offset value t′, which leaks information about the position of the real timelock t,
which in turn leaks information about whether a certain ring is likely to represent
the spend of an output that was controlled by two different parties, or just one.
Coming up with heuristics to separate those two cases, on one hand; on the
other hand, figuring out the correct timelock distributions to draw t from for
transactions where it is not meaningfully being used should become interesting
areas of research.

– New privacy implications: With the use of DLSAG and the new key im-
age mechanism, we introduce a new privacy implication in the Monero blockchain.
In particular, given two rings and their corresponding signatures, the sender can
determine whether the two truly spent public keys belong to the same user (i.e.,
the two public keys where derived from the same stealth address with random-
ness provided by the sender herself). We refer to the full version [35] for the
detailed description of the traceability method and practical countermeasures.

Acknowledgments. This work has been partially supported by the Austrian
Science Fund (FWF) through the Lisa Meitner program and by the National
Science Foundation under grant CNS-1846316.

References

1. Cryptonote currencies, https://cryptonote.org/coins

2. https://coinmarketcap.com/, https://coinmarketcap.com/

3. Libsodium documentation, https://libsodium.gitbook.io/doc/

4. Monero monthly blockchain growth, https://moneroblocks.info/stats/
blockchain-growth

5. Payment channels, https://en.bitcoin.it/wiki/Payment channels

6. Raiden network, https://raiden.network/

DLSAG 19

7. Research meeting: 18 March 2019, 17:00 UTC, https://github.com/monero-
project/meta/issues/319

8. Understanding the structure of Monero’s LMDB and how explore its con-
tents using mdb stat, https://monero.stackexchange.com/questions/10919/
understanding-the-structure-of-moneros-lmdb-and-how-explore-its-

contents-using

9. What is Fungibility?, https://www.investopedia.com/terms/f/fungibility.asp
10. DLSAG prototype numbers (2019), https://github.com/levduc/DLSAG-

prototype-number

11. Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating
User Privacy in Bitcoin. In: FC. pp. 34–51 (2013)

12. Barber, S., Boyen, X., Shi, E., Uzun, E.: Bitter to Better — How to Make Bitcoin
a Better Currency. In: FC. pp. 399–414 (2012)

13. Bellare, Namprempre, Pointcheval, Semanko: The One-More-RSA-Inversion Prob-
lems and the Security of Chaum’s Blind Signature Scheme. Journal of Cryptology
16(3), 185–215 (Jun 2003)

14. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: CCS. pp. 390–399 (2006)

15. Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and con-
structions without random oracles. In: Theory of Cryptography Conference. pp.
60–79. Springer (2006)

16. Bowe, S., Hopwood, D.: Hashed time-locked contract transactions (2017), https:
//github.com/bitcoin/bips/blob/master/bip-0199.mediawiki

17. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Short Proofs for Confidential Transactions and More. In: S&P. pp. 315–334 (2018)

18. Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C.,
Slamanig, D., Zaverucha, G.: Post-quantum zero-knowledge and signatures from
symmetric-key primitives (2017), https://eprint.iacr.org/2017/279

19. Croman, K., Decker, C., Eyal, I., Gencer, A.E., Juels, A., Kosba, A., Miller, A.,
Saxena, P., Shi, E., Gün Sirer, E., Song, D., Wattenhofer, R.: On Scaling Decen-
tralized Blockchains. In: FC. pp. 106–125 (2016)

20. Decker, C., Wattenhofer, R.: A Fast and Scalable Payment Network with Bitcoin
Duplex Micropayment Channels. In: Stabilization, Safety, and Security of Dis-
tributed Systems SSS. pp. 3–18 (2015)

21. Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Trans. Inf. Theor.
22(6), 644–654 (Sep 2006)

22. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: CRYPTO. pp. 186–194 (1987)

23. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. jacm 38(3), 691–729
(1991)

24. Goodell, B., Noether, S.: Thring Signatures and their Applications to Spender-
Ambiguous Digital Currencies. Cryptology ePrint Archive, Report 2018/774
(2018), https://eprint.iacr.org/2018/774

25. Green, M., Miers, I.: Bolt: Anonymous Payment Channels for Decentralized Cur-
rencies. In: CCS. pp. 473–489 (2017)

26. Khalil, R., Gervais, A.: Revive: Rebalancing off-blockchain payment networks. In:
CCS. pp. 439–453 (2017)

27. Koshy, P., Koshy, D., McDaniel, P.: An Analysis of Anonymity in Bitcoin Using
P2P Network Traffic. In: FC. pp. 469–485 (2014)

20 Moreno-Sanchez et al.

28. Kumar, A., Fischer, C., Tople, S., Saxena, P.: A Traceability Analysis of Monero’s
Blockchain. In: ESORICS. pp. 153–173 (2017)

29. Libert, B., Peters, T., Qian, C.: Logarithmic-size ring signatures with tight security
from the ddh assumption. In: Lopez, J., Zhou, J., Soriano, M. (eds.) Computer
Security. pp. 288–308. Springer International Publishing, Cham (2018)

30. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable Spontaneous Anonymous Group Signa-
ture for Ad Hoc Groups. In: Information Security and Privacy. pp. 325–335 (2004)

31. Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M., Ravi, S.: Concurrency
and privacy with payment-channel networks. In: CCS. pp. 455–471 (2017)

32. Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A., Maffei, M.: Anony-
mous Multi-Hop Locks for Blockchain Scalability and Interoperability. In: NDSS
(Jan 2019)

33. Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple Schnorr Multi-Signatures
with Applications to Bitcoin. Cryptology ePrint Archive, Report 2018/068 (2018),
https://eprint.iacr.org/2018/068

34. Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker,
G.M., Savage, S.: A Fistful of Bitcoins: Characterizing Payments Among Men
with No Names. In: IMC. pp. 127–140. IMC ’13 (2013)

35. Moreno-Sanchez, P., Randomrun, Le, D.V., Noether, S., Goodell, B., Kate, A.:
DLSAG: Non-interactive refund transactions for interoperable payment chan-
nels in monero. Cryptology ePrint Archive, Report 2019/595 (2019), https:

//eprint.iacr.org/2019/595

36. Möser, M., Soska, K., Heilman, E., Lee, K., Heffan, H., Srivastava, S., Hogan, K.,
Hennessey, J., Miller, A., Narayanan, A., Christin, N.: An Empirical Analysis of
Traceability in the Monero Blockchain. PETS 2018(3), 143 – 163 (2018)

37. Noether, S., Goodel, B.: Dual linkable ring signatures, https://ww.getmonero.org/
resources/research-lab/pubs/MRL-0008.pdf

38. Noether, S., Mackenzie, A.: Ring Confidential Transactions. Ledger 1(0), 1–18 (Dec
2016)

39. Pedersen, T.P.: Non-Interactive and Information-Theoretic Secure Verifiable Secret
Sharing. In: CRYPTO. pp. 129–140 (1991)

40. Poelstra, A.: Lightning in scriptless scripts (2017), https://lists.launchpad.net/
mimblewimble/msg00086.html

41. Poelstra, A.: Scriptless scripts (2017), https://download.wpsoftware.net/
bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-expo/slides.pdf

42. Poon, J., Dryja, T.: The Bitcoin Lightning Network. Whitepaper (2016), http:
//lightning.network/

43. Reid, F., Harrigan, M.: An Analysis of Anonymity in the Bitcoin System. In:
Security and Privacy in Social Networks, pp. 197–223. New York, NY (2013)

44. Rusty: Lightning Networks Part II: Hashed Timelock Contracts (HTLCs) (2015),
https://rusty.ozlabs.org/?p=462

45. van Saberhagen, N.: Cryptonote v 2.0. Whitepaper (2013), https://

cryptonote.org/whitepaper.pdf

46. Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology
4(3), 161–174 (1991)

47. Spagnuolo, M., Maggi, F., Zanero, S.: BitIodine: Extracting Intelligence from the
Bitcoin Network. In: FC. pp. 457–468 (2014)

DLSAG 21

A Linkable ring signature in Monero

Fig. 5 shows the construction of LSAG originally used in the current Monero
cryptocurrency.

– (sk, pk) ← KeyGen(1n): Choose sk uniformly at random and set pk := gsk.
Output sk, pk.

– σ ← Sign(sk, pk, tx): Parse: (pk1, . . . , pkn) ← pk. Sample s′0, s1, . . . , sn−1

from Zq. Compute:

I := Hp(pkn)sk;L0 := gs
′
0 ; R0 = Hp(pkn)s

′
0 ;

h0 := Hs(tx||L0||R0).

For i ∈ {1, . . . , n− 1} compute the following series:

Li := gsi · pkhi−1

i ; Ri := Hp(pki)
si · Ihi−1

hi := Hs(tx||Li||Ri)

Solve for s0 such that: Hs(tx||gs0 · pk
hn−1
n ||Hp(pkn)s0 · Ihn−1) = h0. For that,

we get that s0 = s′0 − hn−1 · sk. Return σ = (s0, s1, . . . , sn−1, h0, I)
– b← Vrfy(pk, tx, σ): Parse:

(s0, s1, . . . , sn−1, h0, I)← σ, (pk1, . . . , pkn)← pk

For i ∈ {1, . . . , n}, compute the sequences:

Li := gsi · pkhi−1

i ; Ri := Hp(pki)
si · Ihi−1

hi := Hs(tx||Li||Ri)

Return 1 if h0 = hn. Otherwise, return 0.
– b ← Link((pk1, tx1, σ1), (pk2, tx2, σ2)): If (Vrfy(pk1, tx1, σ1) ∧ Vrfy(pk2,

tx2, σ2)) = 0, return 0. Else: parse (s0, s1, . . . , sn−1, h0, I1)← σ1 and (s′0, s
′
1,

. . . , s′n−1, h
′
0, I2)← σ2. Return 1 if I1 = I2. Otherwise, return 0.

Fig. 5: Construction of LSAG in Monero [38]. For ease of exposition, in the signing
algorithm we assume that the secret key sk corresponds with the n-th public key pkn.
In practice, the position of true signer’s public key is chosen uniformly random.

B DLSAG security properties

In this section, we state the definitions of DLSAG unforgeability, signer ambi-
guity, and linkability. Signer ambiguity and linkability properties are similar to
those in LSAG [30], adapted to DLSAG syntax for readability. For the unforge-
ability property, we used the existential unforgeability of ring signatures with
respect to insider corruption introduced in [15]. Then, to prove the security of

22 Moreno-Sanchez et al.

the DLSAG signature scheme, we outline computational hardness assumptions
as well as the general forking lemma [14] used in our proofs in Appendix B.1.
Then, we later provide our proofs for stated theorems in Appendix B.2.

B.1 Preliminaries

In order to prove the security of the proposed scheme, we first need to introduce
the following definitions and results.

Definition 6 (Forking algorithm [14]). Let A be a PPT algorithm that takes
as input some inp. Assume A has access to a random oracle OHs that outputs
random element from Zq and the query responses are temporally ordered by index
e0, e1, . . . , eqH−1. Define the forking algorithm associated with A, denoted FA, as
the following algorithm:

1. Take as input some inp, select random coins ρ for A, and select qH oracle

query responses, e0, e1, . . . , eqH−1
$← Zq.

2. Execute α← A(inp; ρ), responding to the ith query to OHs made by A with
the response ei.

3. If α = ⊥ return ⊥ and terminate. Otherwise, parse (j, out)← α.

4. Select new oracle query responses e′j , e
′
j+1, . . . , e

′
qH−1

$← Zq.
5. Execute α′ ← A(inp; ρ), responding to the ith query to OHs made by A with

the response ei when i < j and e′i otherwise.
6. If α′ = ⊥, return ⊥ and terminate. Otherwise, parse (j′, out′)← α′.
7. If j = j′ and ej 6= e′j, return (j, out, out′). Otherwise, return ⊥.

Lemma 1 (Generalized forking lemma [14]). Let qH be an integer, A be a
randomized algorithm which takes as input some main input inp and h0, h1, . . .
, hqH−1 ∈ Zq and returns either a distinguished failure symbol ⊥ or a pair (j, out),
where 0 ≤ j < q and out is some side output. The accepting probability of A,
denoted acc(A), is defined as the probability that A does not output ⊥ (where

this probability is measured over the random selection of inp, {ei}qH−1i=0 , and

{e′i}
qH−1
i=j). Let B be the forking algorithm associated with A from Definition 6.

Let acc(B) be the probability (over the draw of inp and the random coins of B)
that B returns a non-⊥ output. Then

acc(B) ≥ acc(A)

(
acc(A)

qH
− 1

q

)
.

In particular, if A has non-negligible acceptance probability, then so does B.

Definition 7 (One-More discrete logarithm hardness [13]). Let λ be a
security parameter. Let N be natural number such that 1 ≤ N < poly(λ). Let
(G, q, g)← Setup(1λ) be some group parameters. Let OC be a corruption oracle.
For any fixed N , these group parameters are said to satisfy the one-more discrete
logarithm hardness (OMDL) assumption for N if any PPT algorithm A has at
most a negligible probability of success in the following game.

DLSAG 23

1. A sequence of N + 1 independent and identically distributed observations of
a uniform random variable on G are made, S = {H0, . . . ,HN} ⊆ G. The
group parameters (G, q, g) and the set S are sent to A.

2. A is granted oracle access to OC .
3. A outputs an index 0 ≤ i ≤ N and a scalar x ∈ Zq.

A succeeds if gx = Hi, the corruption oracle OC is not queried with Hi, and the
corruption oracle OC is queried at most N times.

Definition 8. If A is an algorithm that runs in time at most t and succeeds
at the one-more discrete logarithm game for some N with probability at least ε,
then we say A is a (t, ε,N)-OMDL solver where ε is measured over the joint
distribution of the random coins of A and the challenge group elements Hi.

Definition 9 (Decisional Diffie-Hellman assumption). Let (G, q, g) be the
group parameters. We say the Decisional Diffie-Helman Problem is hard relative
to G if for all probabilistic polynomial time algorithms M there exist a negligible
function ε(·) such that

Pr[M(G, g, q, A,B,C) = b : (A,B,C) = (Ab, Bb, Cb)

where (A0, B0, C0) = (ga0 , gb0 , gc0);

(A1, B1, C1) = (ga1 , gb1 , ga1b1)]

≤ 1

2
+ ε(λ)

where ai, bi, ci for i ∈ {0, 1} are uniformly chosen from Zq.

B.2 Proofs of stated theorems

In this subsection, we provide our proofs for our stated theorems.

Proof of Theorem 1

Proof. We construct (t′, ε′, N ′)-OMDL solver B from a (t, ε,N, qH , qS , qC)-forger
A. A takes as input a set of N public keys from the signature scheme, has qS
oracle queries available to a signing oracle OS , has qH oracle queries available
to a random oracle OHs , and has qC oracle queries available to a corruption
oracle OC . We wrap A in an algorithm A′ with the same oracle access that is
appropriate for use in the forking algorithm.
B takes as input a set of N ′ + 1 = 2N group elements (the challenge points)

and has up to N ′ queries available to a corruption oracle OC . B executes a
forking algorithm FA′ as a black box, passing the challenge points onto FA′ as
input, which in turn forks a black box execution of A′ (the simple wrapper of
A) using the challenge points as input.
B answers corruption oracle queries made by FA′ by querying OC directly

and passing along the result. FA′ answers corruption oracle queries for A′ by

24 Moreno-Sanchez et al.

passing them along to B. FA′ simulates responses to random oracle queries to
OHs (or signing oracle queries to OS , respectively) made by A′ by flipping coins
(or by flipping coins and backpatching, respectively).

In a transcript resulting in a successful forgery, A′ queries the random oracle
during verification with all queries of the form

hi+1 ← OHs(tx || gsi · Y hi

i,b || Y
si
1,(1−b) · J

hi).

That is to say, A′ does not guess hi+1 but actually queries the random oracle
at least once in each transcript (except in transcripts that occur with negligible
probability). To see why, note that if A does not make one of these queries, then
A is selecting hi+1 at random by flipping coins and later discovering that hi+1 is
precisely the image of some (tx || gsi · pkhi

i,b || pk
si
i,1−b · J hi) through the random

oracle. This occurs with probability at most 1/q which is negligible.
In the transcript of A′, queries made to the random oracle occur in linear

order; denote the responses received by A as e0, e1, e2, Define the distin-
guished pair (j, i) to be the index of the oracle response ej such that the oracle

query ej = hi+1 = OHs(tx || gsi · Y hi

i,b || Y
si
1,(1−b) · J

hi) corresponds to the first

verification query made to the random oracle. We refer to such a transcript as
a (j, i)-forgery.

Note that any algorithm executing A in a black box can inspect the transcript
of A and extract the pair (j, i) in O(qH) time. Hence, if A takes time t, then the
simple wrapper A′ takes time t+O(qH). Note that the acceptance probabilities
acc(A) = acc(A′), and A′ can be used in the forking lemma. The algorithm FA′

runs A′ as a black box, selecting its random tape. FA′ rewinds the transcript
of A′ while preserving the random tape and the oracle responses preceding the
rewind point e0, e1, . . . , ej−1. The algorithm FA′ responds with new random val-
ues e′j , e

′
j+1, . . . from that point forward. By the forking lemma, if A′ has success

probability acc(A) > ε, then FA′ has success probability acc(B) > ε
(
ε
qh
− 1

q

)
.

In particular, if ε is non-negligible, then so is acc(FA′).
For timing, the forking algorithm associated with A′ runs in twice the time

of A′ in addition to whatever additional time is required to simulate the oracle
queries made by A′. In particular, since A′ runs in time t + O(qH), FA runs in
time at most 2t+O(4qH + 2qS).

Now in both transcripts produced by FA′ , the first random oracle query
relevant to the forgery is the jth query, and in both transcripts, the inputs to
this query are identical. However, in each transcript, the query responses are
different. In the first transcript we have

ej = OHs(tx || L || R)

and in the second transcript we have

e′j = OHs(tx || L || R)

for some ej 6= e′j , and where the inputs to these queries are identical.

DLSAG 25

Since pk is included in tx, the ring of public keys in the forgery is the same in
each transcript. At this point in the transcript, the forger may not have decided
which ring member this assignment is made to, i.e. may not have decided upon
an index i or value si such that L = gsi · Y hi

i,b , and R = Y si1,(1−b) · J
hi . Certainly

the forger cannot know the values of hi except with negligible probability, either,
since the index j was selected to be the first oracle query used in verification of
the forgery.

In fact, since ej 6= e′j and this is the first oracle query made, the probability
that the subsequent signature challenges {hi}i are identical in each transcript is
negligible. Yet the forger has produced from the first transcript some si, hi and

from the second transcript some s′i, h
′
i such that L = gsi · Y hi

i,b = gs
′
i · Y h

′
i

i,b .
Any algorithm running the forking algorithm FA′ as a black box learns the

index i common to both transcripts, the signing data from each transcript si
and s′i and the challenges hi, h

′
i from those transcripts, and can compute the

discrete logarithm

Yi,b = g
s′i−si
hi−h′

i

in time that is O(1) related to inverting scalars.
Hence, B takes 2N group elements as input, runs in time at most 2t+O(4qH+

2qS + 1), has acceptance probability at least ε
(
ε
qh
− 1

q

)
, makes at most qC ≤

2N−1 = N ′ corruption oracle queries, and yet successfully produces the discrete
logarithm of at least one challenge point.

Proof of Theorem 2

Proof. We will consider WLOG that the DLSAG is signed by the first public
key of the key pair, i.e. the before-key. The case for the after key is completely
analogous.

Let m be a message, and 0 ≤ t ≤ n−2. Let pk be a ring of n public keys pairs,
of which t private keys are known that corresponding to some of the before-keys.
Let σ be a DLSAG of the message m, with the ring pk by a random public key
of index π whose private key is not among the revealed ones.

Assume that there exists a non-negligible function ε(·) and PPT A such that:

Pr[A(m,pk, σ) = π] ≥ 1

n− t
+ ε(λ)

We will use A to construct a PPT M that violates the DDH assumption
with non-negligible advantage.

Indeed, without loss of generality, we provide our proof for t = 0. The proof
for t 6= 0 can be carried out in the same manner.

Upon receiving the DDH triple (A,B,C), A picks n − 1 public key pairs of
which A knows corresponding private before-keys. Append (A,B) at the end to
obtain an n-sized ring, [(Ai, Bi)]

n
i=1 Pick a random index π and swap the pair

in that entry with (A,B), let that be pk.

26 Moreno-Sanchez et al.

In order to generate a purported signature σ by that ring with the index π on
the given message. We will toss coins to set the random oracle query responses
and feed those results back to A when it queries the oracle for verification.

Specifically, we pick random values s1, . . . , sn, h1, . . . , hn, and define, for all
i ∈ Zn the oracle query responses as:

hi+1 := Hs(m||gsi ·Ahi
i ||B

si
i · C

hi).

If C = gab, then the above will be a proper DLSAG signature with the given
oracle; if not, then C is just a random point and shouldn’t be more likely to be
linked to A,B than any other pair in the ring by A.

Since A is able to extract the true signer from the given key image with non-
negligible advantage, we feed σ = (h1, s1, . . . , sn, C) to it. We setM(A,B,C) to
return 1 if A(m,pk, σ) = π, and return a coin toss otherwise. Computing M’s
advantage:

Pr[M(A,B,C) = b|b = 1] =

Pr[(M(A,B,C) = b|b = 1) ∧ (A(m,pk, σ) = π)]

+ Pr[(M(A,B,C) = b|b = 1) ∧ (A(m,pk, σ) 6= π)]

≥ 1 ·
(

1

n
+ ε(λ)

)
+

1

2

(
1− 1

n
− ε(λ)

)
=

1

2
+

1

2n
+
ε(λ)

2

And

Pr[M(A,B,C) = b|b = 0] =

Pr[(M(A,B,C) = b|b = 0) ∧ (A = π)]

+ Pr[M(A,B,C) = b|b = 0 ∧ A 6= π]

= 0

(
1

n

)
− 1

2

(
1− 1

n

)
=

1

2
− 1

2n

Combining the two equations, we get:

Pr[M(A,B,C) = b] =

Pr[b = 1] Pr[M(A,B,C) = b|b = 1] + Pr[b = 0] Pr[M(A,B,C) = b|b = 0]

≥ 1

2

(
1

2
+

1

2n
+
ε(λ)

2

)
+

1

2

(
1

2
− 1

2n

)
=

1

2
+
ε(λ)

4

Since ε(λ) was non-negligible, so is ε(λ)/4, which shows that M breaks the
DDH assumption with non-negligible probability, as we wanted to show.

DLSAG 27

Proof of Theorem 3

Proof. We will use the notation introduced in the previous proof. Notice that in
the unforgeability proof, the discrete logarithm of Yi,b was extracted by compar-
ing the two representations of the same point L. At that point, one could have
also extracted the discrete logarithm of J with respect to the point Y mi

1,(1−b) by

comparing the two representations of the point R:

J = Y

(
s′i−si
hi−h′

i

)
mi

1,(1−b) .

Moreover, those discrete logarithms are the same.
Now, if there existed a PPT adversary A, having no prior knowledge of

private keys in the b-bit component other than the private key of a certain
(Z(0),Z(1),m), that could produce a signature σ with a purported dual key
image J̄ , distinct from the honest key image J .

Then we could fork A and extract a second signature σ′ whose first verifica-
tion query is the same as that of σ.

ej = OHs(tx || L || R)

and in the second transcript we have

e′j = OHs(tx || L || R)

for some ej 6= e′j . Writing the representations of those two points we get:

gsi · Y hi

i,b = L = gs
′
i · Y h

′
i

i,b , and

Y simi

1,(1−b) · J̄
hi = R = Y

s′imi

1,(1−b) · J̄
h′i

There are two cases to consider: If Yi,b = Z(b), then, as observed at the
beginning of this proof, we extract the discrete logarithm of J̄ and conclude
that J̄ = J , a contradiction.

Otherwise, if Yi,b 6= Z(b), then, again as observed at the beginning, we extract
the discrete logarithm of Yi,b, thus solving the DLP for that point.

By the above corollary, all we are left to show is that Pr[Link(tx1, σ1, tx2, σ2) =
1|(pkπ1

,mπ1) 6= (pkπ2
,mπ2)] is negligible.

Since our Link algorithm just compares the dual key images, this would
require a PPT algorithm A to obtain two tuples of the form (A,B,m1) and
(C,D,m2) such that they both have the same point as dual key image, J =
gabm1 = gcdm2 .

However, if the output containing the dual address (A,B) is created at the
i1 position of the output vector of transaction tx1, then m1 := Hs(tx1, i1). This
means, by the ROM, that a and b have to be fixed before the value of m1.
Similarly, m2 := Hs(tx2, i2) can only be known after c and d are fixed.

Each side of the equation gabm1 = gcdm2 therefore behaves as a random
oracle, so the chance of they matching is negligible. This shows that our DLSAG
scheme is linkable.

28 Moreno-Sanchez et al.

C Transaction example

In this section, we will work out an example of how a concrete Monero transaction
using dual outputs and hidden time locks could work.

Assume that Alice wants to spend coins held in an output of the form:

((pk0, pk1,m),A, ΠA, T , ΠT)

where A = Com(γ, r) and T = Com(t, k), for some amount γ and some timelock
t known to Alice, and ΠA and ΠT are the range proofs of those commitments.
And let’s say she would like to create the new outputs of the form:

((pk1,0, pk1,1),A1, ΠA1
, T1, ΠT 1)

((pk2,0, pk2,1),A2, ΠA2 , T2, ΠT 2).

First she decides on amounts γi such that γ1 + γ2 + fee = γ, and the corre-
sponding timelocks ti and their respective masks ri and ki. Then, for i = 1, 2,
she sets Ai := Com(γi, ri) and Ti := Com(ti, ki), and computes the range proofs
for those commitments, ΠAi := RProve(γi, ri) and Πi,T := RProve(ti, ki).

Next, she needs to prove that she can spend her output according to the
timelock t. That means proving that the timelock t has or has not expired, and
then signing with the appropriate bit-key. WLOG, let’s assume that she controls
pk1 so that t must already have expired. For that, she picks t′ such that t < t′,
but also t′ < T , where T is a block height for which she wishes her transaction
to be mined. She picks a random mask k′, and computes Tdif := Com(t′− t, k′)
and ΠTdif := RProve(t′ − t, k′).

Now, she picks n − 1 decoy outputs from the blockchain, computes their
output identifiers mj , and forms the ring:

((pkj,0, pkj,1,mj),Aj , ΠAj , Tj , ΠTj)[1,n].

As before, for ease of exposition, we assume that her output is the last one
in the ring, but in practice its position must be selected uniformly at random
to preserve signer ambiguity. She won’t need the range proofs for her signing,
ignoring them, she is left with:

((pkj,0, pkj,1,mj),Aj , Tj)[1,n].

Before continuing, observe that the following are commitments to zero:

Tn
Tdif · ht′

=
Com(t, k)

Com(t′ − t, k′) · ht′
= g(k−k

′)

An
A1 · A2 · hfee

=
Com(γ, r)

Com(γ1, r1) ·Com(γ2, r2) · hfee
= g(r−r1−r2).

DLSAG 29

So that if we define:

Tj,zero :=
Tj

Tdif · ht′
,Aj,zero :=

Aj
A1 · A2 · hfee

,

then we should get commitments to zero for j = n, which can in turn be viewed
as signing keys.

Here, the most straight forward approach is to extend the format of current
MLSAGs and concatenate another component to the signature in the following
way:

Alice picks random values s′0, s1, · · · , sn−1, r′0, r1, · · · , rn−1 and q′0, q1, · · · , qn−1
and computes:

L0 := gs
′
0 , R0 := pk

s′0·mn

0 ,A0 := gr
′
0 , T0 := gq

′
0

and h0 := Hs(tx||L0||R0||A0||T0). Next, for j ∈ [1, n− 1], she computes:

Lj := gsj · pkhj−1

j,1

Rj := pk
sj ·mj

j,0 · J hj−1

Aj := grj · Ahj−1

j

Tj := gqj · T hj−1

j

hj := Hs(tx||Lj ||Rj ||Aj ||Tj)

Finally, she computes:

s0 := s′0 − hn−1 · sk1
r0 := r′0 − hn−1 · (r − r1 − r2)

q0 := q′0 − hn−1 · (k − k′).

Therefore, the signature is:

σ := (s0, · · · , sn−1, r0, · · · , rn−1, q0, · · · , qn−1, h0,J , 1).

Transaction validation. A miner that receives Alice’s transaction and is
considering including it in a block at height T will start by checking whether
t′ < T . If so, he proceeds to verify the range proofs for the commitment values.
Finally, he validates the signature by computing, for j ∈ [0, n]:

Lj := gsj · pkhj−1

j,1

Rj := pk
sj ·mj

j,0 · J hj−1

Aj := grj · Ahj−1

j

Tj := gqj · T hj−1

j

hj := Hs(tx||Lj ||Rj ||Aj ||Tj).

If hn = h0, then the transaction is valid, and can be mined.

30 Moreno-Sanchez et al.

D Stealth address in Monero

In this section, we present how stealth addresses are used in Monero. Intuitively,
one use stealth addresses to generate an one time address known only to the
receiver and sender.

A stealth address is composed of two group elements A := ga, B := gb and
represents a Monero account where a user can receive multiple payments without
interacting with the potential senders. The sender creates a fresh public key
pk := gHs(A

r) ·B where r is chosen uniformly at random and pays the receiver by
sending γ XMR in a transaction that includes, among other information, pk and
the value R := gr. The receiver verifies the reception of a payment by computing
pk′ := gHs(R

a) · B and checking whether pk′ = pk. Moreover, the receiver can
spend the γ XMR by setting sk := Hs(R

a) + b.
We will later discuss what the privacy implication when combining DLSAG

and the current stealth address generation in Appendix E.

E Future directions

In this section, we identify the following future research directions:
– Bi-directional payment channels: In this work, we present a construc-

tion for uni-directional payment channels. An extension is thus the design and
implementation of bi-directional payment channels. In particular, we find inter-
esting to investigate if techniques in Lightning Network are compatible with our
payment channels or what are the challenges otherwise.

– Further expressiveness: We envision that expressiveness of DLSAG
could be expanded with threshold signatures similar to those of Thring [24]
and key aggregation similar to that of [33]. A thorough investigation of these
approaches constitutes a venue for future research.

– Extend security and privacy models: So far, security and privacy defi-
nitions for Monero focus on individual signatures. However, recent studies [28,36]
show that an adversary that considers several transactions (and thus several sig-
natures) at a time, can create profiling information about the users. Thus, new
security and privacy models are required to further characterized the security
and privacy notions provided by the complete Monero cryptocurrency. Moreover,
we plan to study the privacy guarantees provided by suggested extensions such
as the timelock processing scheme.

– Timelock offset analysis and mitigations: To prove to the network
that a certain timelock t has or has not expired, the signer publishes the timelock
offset value t′, which leaks information about the position of the real timelock t,
which in turn leaks information about whether a certain ring is likely to represent
the spend of an output that was controlled by two different parties, or just one.
Coming up with heuristics to separate those two cases, on one hand; and, on the
other hand, figuring out the correct timelock distributions to draw t from for
transactions where it is not meaningfully being used should become interesting
areas of research.

DLSAG 31

– New privacy implications: With the use of DLSAG and the new
key image mechanism, we introduce a new privacy implication in the Monero
blockchain. In particular, given two rings and their corresponding signatures,
the sender can determine whether the two truly spent public keys belong to the
same user (i.e., the two public keys where derived from the same stealth address
with randomness provided by the sender herself). We briefly explain how the
traceability method works as follow:
Let (B1, B2) = (gb1 , gb2) be the stealth address of Bob. Let assume that Alice
needs to pay to Bob twice, Alice generates 2 dual addresses as follow:

(pkB,0, pkB,1) = (Hs(B
r1
1) ·B2, Hs(B

r2
1) ·B2)

(pk′B,0, pk
′
B,1) = (Hs(B

r3
1) ·B2, Hs(B

r4
1) ·B2)

where r1, r2, r3, r4 are chosen uniformly at random from Zq. Here, we note that
Alice knows the value of r1, r2, r3, r4.
As we discussed in Appendix D, Bob will use the following corresponding secret
keys to spend the money in future transaction:

(skB,0, skB,1) = (Hs(R
b1
1) + b2, Hs(R

b1
2) + b2)

(sk′B,0, sk
′
B,1) = (Hs(R

b1
3) + b2, Hs(R

b1
4) + b2)

However, with the new key image mechanism, when Bob spends those outputs,
he will need to publish two transaction with the following two key images:

J1 = gm·skB,0·skB,1

J2 = gm
′·sk′B,0·sk

′
B,1

where m,m′ is defined to be the hash of the transaction and the output, so Alice
computes both m,m′. Thus, given two different key images, Alice can determine
if Bob created those two transaction by computing:

Jm−1

1

Jm′−1

2

=
g(Hs(R

b1
1)+b2)·(Hs(R

b1
2)+b2)

g(Hs(R
b1
3)+b2)·(Hs(R

b1
4)+b2)

=
gHs(R

b1
1)Hs(R

b1
2)+Hs(R

b1
2)b2+Hs(R

b1
2)b2+b

2
2

gHs(R
b1
3)Hs(R

b1
4)+Hs(R

b1
3)b2+Hs(R

b1
4)b2+b22

=
gHs(B

r1
1)Hs(B

r2
1) ·BHs(B

r1
1)

2 ·BHs(B
r2
1)

2

gHs(B
r3
1)Hs(B

r4
1) ·BHs(B

r3
1)

2 ·BHs(B
r4
1)

2

(1)

The final step of Eq. (1) contains all information known to Alice. Therefore, she
precomputes that value to determine when Bob starts spending those coins paid
by her. However, Alice can only determine when Bob starts spending one step
in the future, and after that she should not know when Bob will spend again.
Thus, one way to mitigate that problem is to require Bob to generate another
dual address and move all money received to the new address. This adds the need

32 Moreno-Sanchez et al.

for another transaction, but it enables payment channel and off-chain payments,
thus paving the way to reduce the overall number of on-chain transactions. It
would be an interesting future work to determine what other privacy implications
are there when combining DLSAG with Monero, and whether different stealth
address schemes and key image definitions exist that would avoid this issue.

