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Abstract. Information ratio of an access structure is an important pa-
rameter for measuring the efficiency of the best secret sharing scheme
realizing it. The most common security notion of secret sharing is that
of total (perfect) realization. Two well-known relaxations are the notions
of statistical and quasi-total secret sharing. Very little is known about the
relation between the information ratio of access structures with respect
to different security notions. In this paper, we introduce an extremely
relaxed security notion, called partial secret sharing and study its prop-
erties.
First, we prove that partial and total information ratios coincide for
the class of linear secret sharing schemes. One implication of this result
is that quasi-total and total information ratios coincide as well for the
class of linear schemes. Another implication is that a strong requirement
on the linear schemes in the so-called weighted decompositions can be
relaxed. Second, we prove that the so-called Shannon-type information
inequalities provide the same lower-bound on the partial and total infor-
mation ratios. Third, we provide some indication that shows partial and
total information ratios probably do not coincide for the class of abelian
schemes.

1 Introduction

A (total) secret sharing scheme [9, 43] is a cryptographic tool that allows a
dealer to share a secret among a set of participants such that only certain qual-
ified subsets of them are able to reconstruct the secret. The secret must remain
information theoretically hidden from the remaining subsets, called unqualified.
The collection of all qualified subsets is called an access structure, which is sup-
posed to be monotone, i.e., closed under the superset operation. The original
definition, known as threshold secret sharing, only dealt with access structures
that include all subsets of size larger than a certain threshold and the general
notion was later introduced in [25]. Access function [20] generalizes the notion of
access structure in a natural way. An access function is a monotone real function
that specifies the percentage of the information on the secret that is obtained
by each subset of participants. This concept has been matured by building on
a sequence of prior works [10, 33, 44, 47]. Access structures are especial cases of
access functions where only all or nothing recovery of the secret is allowed.
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The information ratio [11,13,37] of a participant in a secret sharing scheme
is defined as the ratio of the size of his share and the size of the secret. The
information ratio of a secret sharing scheme is the maximum (also sometimes
defined as the average) of all participants’ information ratios. The information
ratio of an access structure is defined as the infimum of the information ratios
of all secret sharing schemes that realize it. Computation of information ratio
of access structures is a challengingly difficult problem even when we restrict
to certain classes of schemes. Information ratio of an access structure can also
be defined with respect to a restricted class of schemes, such as the linear or
abelian ones. We refer to the corresponding measures as the linear and abelian
information ratio, respectively.

Most of the literature on secret sharing deals with total (perfect) realization
of access structures by secret sharing schemes. In this notion, the security is
considered for a single scheme, all the qualified sets recover the whole secret,
and the secret remains information theoretically hidden from the unqualified
sets. These requirements can be relaxed by loosening the reconstruction and
privacy requirements. The qualified subsets may miss some information about
the secret or may recover it with some error probability. The unqualified subsets
are also allowed to gain some information on the secret. By considering a family
of schemes, the information leak and incomplete reconstruction are required to be
negligible. Two different approaches have been proposed in the literature. The
first approach is a standard cryptographic relaxation, called statistical secret
sharing (see [3] for probably the oldest modern definition and [8] for an old
construction). The second one has been introduced in [30, 31], under the name
of quasi-perfect secret sharing.

For every access structure and every security notion, one can define a corre-
sponding information ratio. It is an open problem if the information ratio of an
access structure is invariant with respect to different security notions.

In this paper, we introduce an extremely relaxed security notion, called partial
security. We study the relation between partial and total information ratios and
provide some non-trivial results. We then mention two applications.

1.1 Partial secret sharing and its information ratio

We introduce an extremely relaxed security notion, called partial security, and a
slightly more liberal one called semi-partial. We say that a secret sharing scheme
partially realizes an access structure if the amount of information gained by any
qualified set is strictly greater than that of any unqualified one. In other words,
the qualified sets have a positive advantage δ over the unqualified ones with
regard to the secret recovery. In the semi-partial realization, we additionally
require that the secret remain perfectly hidden from the unqualified sets.

The total information ratio of a secret sharing scheme is defined on its own,
i.e., regardless of what access structure it realizes, if any. However, we measure
the efficiency of a partial scheme, which we refer to as the partial information
ratio, with respect to the access structure that it realizes. We define the partial
information ratio as a scaled version of the total information ratio where the
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scale factor is 1{δ, where δ is the advantage mentioned above. The intuition
behind this choice stems from decomposition constructions [23, 46,47,49].

1.2 Properties of partial secret sharing

We prove two results and provide an observation (conjecture) about the relation
between partial and total information ratios.

Equality of partial and total linear information ratios. We prove that the
partial information ratio of an access structure is the same as its total information
ratio for the class of all linear secret sharing schemes. To this end, given a
partial linear scheme for an access structure, we turn it into a total one for the
same access structure with the same information ratio. The proof is somewhat
technical and is handled via two linear algebraic lemmas.

Equality of Shannon lower bound. It is easy to show that the lower-bound
achieved for statistical and quasi-total information ratios, by merely considering
Shannon-type inequalities, is the same as that of total information ratio [30]. We
prove that the same thing happens for partial information ratio. To prove this
result, we introduce the notion of partial polymatorid for an access structure.
Then for a given partial polymatroid for an access structure, we construct a total
polymatroid for the same access structure with the same information ratio.

It remains open if our result can be strengthened, e.g., by allowing certain
additional non-Shannon type information inequalities [50], e.g., along the lines
of [6, 39]. A corollary of our result is that Csirmaz sub-linear lower bound [16]
also applies to partial security, which is not clear at a first glance.

On abelian class. Even though we prove that the partial and total security
notions coincide with respect to the linear upper-bound and the Shannon lower-
bound, it remains open if the two notions coincide for general schemes. We
expect the partial and total abelian information ratios not to coincide for the
following reason. Recently, an upper-bound on the (total) abelian information
ratio of the access structure F ` N—the union of access structures induced by
Fano and non-Fano matroids [4,38]— has been computed in [27] (maxď 7{6 and
averageď 41{36). Moreover, it has been conjectured that a non-trivial lower-
bound (i.e., strictly greater than one) exists. In this paper, we show that the
partial abelian information ratio of this access structure is one. Therefore, we
would not be surprised if total and partial information ratios turn out to become
separate for abelian schemes.

1.3 Applications

Our result on equality of partial and total linear information ratios has the
following consequences.



4 Jafari-Kaboli-Khazaei

Equality of quasi-total and total linear information ratios. We prove that
if the partial and total information ratios are equal for some class of schemes, the
same holds true for the quasi-total and total information ratios. It remains open if
the converse holds true as well. Our result on equality of partial and total linear
information ratios then implies that quasi-total and total linear information
ratios coincide too.

We remark that even if it turns out that partial and total information ratios
coincide for the class of abelian scheme, it is not clear how to show that the same
thing happens for quasi-total and total abelian information ratios. The reason
is lack of notions such as independence and basis for groups, which exists for
vector spaces. However, as we mentioned above, we conjecture that partial and
total abelian information ratios not to coincide. This makes it even harder to say
anything about the relation between quasi-total and total abelian information
ratios.

On decomposition techniques. A common approach for finding upper bounds
on the information ratio of access structures is the so-called decomposition tech-
niques. These techniques have mainly been used to find upper-bounds on the
information ratio of concrete access structures on a small number of partici-
pants [11,18,23,24,26,34,36,46,48]. They build on Stinson’s λ-decomposition [46]
by decomposing a given access structure into suitable sub-access structures [49]
or sub-access functions [23,47]. In particular, the decomposition theorems in [23,
47] assume that in the linear partial sub-schemes, every subset of participants
fully recovers a certain subset of secret elements and nothing more; that is, re-
covering a non-trivial linear combination of the secret elements is not allowed.
Using the notion of partial information ratio and our result on the equality of
partial and total linear information ratios, we show this strong requirement can
be removed.

1.4 Related work

The relation between different security notions are not well understood. In very
few cases, it is known that information ratio with respect to different security
notions coincide for some restricted class of schemes. In [3], it has been observed
that the statistical and total securities coincide for linear schemes. This result
has been recently extended in [28, 29] for a class of schemes which includes
group-homomorphic1 secret sharing schemes. Apart form this result, we are not
aware for any coincidence or separation result with respect to different security
notions. In [32], it has been proved that statistical security implies quasi-total
security. It is easy to argue that the other direction does not necessarily hold true.
Nevertheless, it is an open problem if the statistical and quasi-total information
ratios coincide.

1 A secret sharing scheme is called homomorphic if the product of the shares of two
secrets produce a share for the product of the secrets. A homomorphic scheme is
called group-homomorphic if the secret and share spaces are all groups.
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1.5 Paper organization

In Section 2, we present the required preliminaries and introduce our notation. In
Section 3, the partial and semi-partial security notions are introduced. Section 4
is devoted to the proof of the equality of (semi-) partial and total information
ratios for the class of linear schemes. In Section 5, we prove that the Shan-
non lower-bound on the partial and total information ratios coincide. Section 6
includes our observation (conjecture) on abelian secret sharing. In Section 7,
we study the quasi-total security notion and its relation with partial security.
Section 8 studies decomposition techniques regarding our new result on partial
secret sharing schemes. Section 9 concludes the paper.

2 Secret sharing schemes

In this section, we provide the basic background along with some notations. We
refer the reader to Beimel’s survey [2] on secret sharing.

General notations. We denote the support of the random variable X by
supppXq. All random variables are discrete in this paper. We assume that the
reader is familiar with the Shannon entropy of a random variable X, denoted
by HpXq, and the mutual information of random variables X,Y , denoted by
IpX : Y q. For a positive integer m, we use rms to represent the set t1, . . . ,mu.
Throughout the paper, P “ tp1, . . . , pnu stands for a finite set of participants.
A distinguished participant p0 R P is called dealer and we notate Q “ P Y tp0u.
Unless otherwise stated, we identify the participant pi with its index i; i.e.,
Q “ t0, 1, . . . , nu. The set of positive integers and real numbers are respectively
denoted by N and R. All logarithms are to the base two. The closure of a topo-
logical set X is denoted by X , defined as the union of X with all its limit points.

Definition 2.1 (Access structure) A non-empty subset Γ Ď 2P , with H R Γ ,
is called an access structure on P if it is monotone; that is, A Ď B Ď P and
A P Γ imply that that B P Γ .

A subset A Ď P is called qualified if A P Γ ; otherwise, it is called unqualified.
A qualified subset is called minimal if none of its proper subsets is qualified.

Definition 2.2 (Access function [20]) A mapping Φ : 2P Ñ r0, 1s is called
an access function if ΦpHq “ 0 and it is monotone; i.e., A Ď B Ď P implies
that ΦpAq ď ΦpBq. An access function is called rational if ΦpAq is rational for
every subset A and called total if ΦpAq P t0, 1u.

Definition 2.3 (Secret sharing scheme) A tuple Π “
`

Si

˘

iPPYt0u
of jointly

distributed random variables, with finite supports, is called a secret sharing
scheme on participant set P when HpS0q ą 0. The random variable S0 is called
the secret random variable and its support is called the secret space. The random
variable Si, for any participant i P P , is called the share random variable of the
participant i and its support is called his share space.
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When we say that a secret s P supppS0q is shared using Π, we mean that a
tuple

`

si
˘

iPPYt0u
is sampled according to the distribution Π conditioned on the

event tS0 “ su.

A secret sharing scheme Π is said to be linear if there exists a finite field F
such that the support of every marginal random variable is an F-vector space
of finite dimension; additionally, we require that the joint distribution Π be
uniform. When we want to emphasize the underlaid finite field, we call it an
F-linear scheme. When characteristic of F is p, a prime, we call it a p-linear
scheme.

The most common definition of a linear scheme is based on linear maps. A
secret sharing scheme pSiqiPQ is said to be linear if there are finite dimensional
vector spaces E and pEiqiPQ, and linear maps µi : E Ñ Ei, i P Q such that
Si “ µipEq, where E is the uniform distribution on E. In this paper, we use the
following equivalent definition (see Appendix B or [27] for justification).

Definition 2.4 (Linear scheme) A tuple Π “ pT ;T0, T1, . . . , Tnq is called an
F-linear (or simply a linear) secret sharing scheme if T is a finite dimensional
F-vector space, Ti is a subspace of T , for each i P rns, and dimT0 ě 1. When
there is no confusion, we omit T and simply write Π “ pTiqiPPYt0u. If the
characteristic of F is p, we call the scheme p-linear.

Definition 2.5 (Total realization) We say that a secret sharing scheme Π “
`

Si

˘

iPPYt0u
is a (total) scheme for Γ , or it (totally) realizes Γ , if the following

two hold, where SA “ pSiqiPA, for a subset A Ď P :

(Correctness) HpS0|SAq “ 0 for every qualified set A P Γ and,

(Privacy) IpS0 : SBq “ 0 for every unqualified set B P Γ c.

Definition 2.6 (Access function/convec of a scheme) The access function
and the (total) convec of a secret sharing scheme Π “

`

Si

˘

iPPYt0u
are respec-

tively denoted by ΦΠ and cvpΠq and defined as follows:

ΦΠpAq “
IpS0 : SAq

HpS0q
, cvpΠq “

`HpSiq

HpS0q

˘

iPP
.

For a linear scheme Π “ pTiqiPPYt0u, it is easy to verify that

ΦΠpAq “
dimpT0 X TAq

dimpT0q
, cvpΠq “

` dimpTiq

dimpT0q

˘

iPP
.

Information ratio and convec set. Convec is short for contribution vec-
tor [26] and a norm on it can be used as a measure of efficiency of a secret
sharing scheme. The convec set of an access structure can be defined with re-
spect to a class of secret sharing schemes (e.g., linear, group-characterizable,
abelian, etc).
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Definition 2.7 (Total convec set) The (total) convec set of an access struc-
ture Γ , denoted by ΣtpΓ q, is defined as the set of all convecs of all secret sharing
schemes that (totally) realize Γ . When we restrict to the class C of secret sharing
schemes, we use the notation ΣC

t pΓ q.

We use the notation ΣL
t (resp. Σp

t ) when the convec set is restricted to the
class of all linear (resp. p-linear) secret sharing schemes and call it the linear
(resp. p-linear) convec set. The maximum and average information ratios of an
access structure Γ on n participants, for the class C of secret sharing schemes,
are respectively defined as:

mintmaxpxq : x P ΣC
t pΓ qu and 1

n mint
řn

i“1 xi : px1, . . . , xnq P ΣC
t pΓ qu .

The polymatroidal set. Additionally, we introduce the Kt-set, called the
total polymatroidal set, as a generalization of the κ-parameter [35]. The total
polymatroidal set of an access structure Γ on n participants, denoted by KtpΓ q,
is an n-dimensional polytope derived by taking into account all the Shannon
inequalities as well as the correctness and privacy conditions. In Section 5, we
present a precise definition; see Definition 5.5.

3 Partial and semi-partial secret sharing

In this section, we introduce two relaxed security notions for secret sharing
schemes, referred to as semi-partial and partial realizations. A scheme is said to
partially realize an access structure if the amount of information gained on the
secret by every qualified set is strictly larger than that of any unqualified one.
The semi-partial definition is less relaxed since it requires that the secret still
remain information theoretically hidden from unqualified sets.

As we will see in Section 7 and Section 8, this secuirty notion plays a
cruital role for 1) proving that the quasi-total [30] and total convec sets co-
incide for linear schemes and 2) relaxing the requirements of the weighted-
decompositions [23,47].

3.1 Security definition

We begin by giving a formal definition of partial and semi-partial security no-
tions.

Definition 3.1 (Partial and semi-partial realization) We say that a se-
cret sharing scheme Π is a partial scheme for Γ , or it partially realizes Γ ,
if:

δ “ min
APΓ

ΦΠpAq ´ max
BPΓ c

ΦΠpBq ą 0 . (3.1)

We call it a semi-partial scheme, if additionally ΦΠpBq “ 0, for every unqualified
set B P Γ c.
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The parameter δ is a normalized measure for quantifying the advantage of the
qualified sets over the unqualified ones with respect to the amount of information
that they gain on the secret. The intuition behind the choice of this factor and
the following definition stems from decomposition constructions [23, 46, 47, 49],
in which a similar scale factor appears. We will revisit decomposition methods
in Section 8.

3.2 Partial convec

We measure the efficiency of a (semi-) partial scheme for an access structure via
a scaled version of its usual (i.e., total) convec, that we call partial convec.

Definition 3.2 (Partial convec) Let Π be a partial scheme for Γ . The partial
convec of Π (with respect to Γ ) is defined and denoted by

pcvpΠ,Γ q “
1

δ
cvpΠq,

where δ, the (normalized) advantage, is defined as in Equation (3.1). When there
is no confusion, we simply use the notation pcvpΠq.

The notions of partial and semi-partial realization give rise to two new convec
sets.

Definition 3.3 (Partial and semi-partial convec sets) The partial convec
set of an access structure Γ , denoted by ΣppΓ q, is defined as the set of all partial
convecs of all secret sharing schemes that partially realize Γ . The semi-partial
convec set is defined similarly and is denoted by ΣsppΓ q. When we restrict to
the class C of secret sharing schemes, we notate ΣC

p pΓ q and ΣC
sppΓ q.

The Kp, ΣL
p and Σp

p-sets are defined similar to the case of total convec

set. Similar notations are used for semi-partial security. The relation ΣC
t pΓ q Ď

ΣC
sppΓ q Ď ΣC

p pΓ q is immediate for any access structure Γ and any class C of
secret sharing schemes. In Section 4 we prove that for the three security notions,
the linear convec sets are the same (i.e., ΣL

t pΓ q “ ΣL
sppΓ q “ ΣL

p pΓ q). Also, in
Section 5, we prove that the Shannon inequalities give the same lower-bound for
the convec set (i.e., KtpΓ q “ KsppΓ q “ KppΓ q). In Section 6, we provide some
evidence that for the class C of abelian schemes the inclusion ΣC

t pΓ q Ď ΣC
sppΓ q

might be proper. The following proposition then follows.

Proposition 3.4 (Convec set relations) For any access structure Γ , we have

ΣL
t pΓ q Ď ΣtpΓ q Ď ΣsppΓ q Ď ΣppΓ q Ď KtpΓ q .
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Separation. Separation result between closures of ΣL
t and Σt has been proved

in a recent work [27]2. Separation between closure of Σt and Kt is also known [5]
(based on an old result by Seymour [42]). It is easy to find examples that separate
between Σp and Kt. Proving or disproving separations between Σt and Σsp and
also between Σsp and Σp remains open.

Convexity. It is easy to show that the total convec set of any access structure
is a set with convex closure. It remains open if this is also the case for the partial
and semi-partial security notions.

4 Equality of total and partial linear convec sets

In this section, we prove that the linear convec set is the same for the total,
partial and semi-partial security notions. Two linear algebraic lemmas lie at the
core of our proofs. The first one is used in Proposition 4.4 for transforming a
semi-partial linear secret sharing scheme for a given access structure into a total
one without changing its (partial) convec. But we also need the second lemma
in Proposition 4.5 for proving a similar claim for partial schemes. The following
theorem is then a direct corollary of both propositions.

Theorem 4.1 (Equality of partial and total linear convec sets) Let p be
a prime and Γ be an access structure. Then, Σp

ppΓ q “ Σp
sppΓ q “ Σp

t pΓ q, and in
particular,

ΣL
p pΓ q “ ΣL

sppΓ q “ ΣL
t pΓ q .

It remains open if the claim of Theorem 4.1 holds for other classes of schemes.
In Section 6, we show that they probably become separate for the class of abelian
schemes. However, their separation/coincidence for general secret sharing re-
mains unclear.

4.1 Two linear algebraic lemmas

Our first lemma promises the existence of some linear maps that work for any
subspace over a given finite field. The lemma does not hold if the space is not
defined over a field that is not finite. So the claim is truly a property of finite
fields.

2 In this paper, we only focus on amortized definition of information ratio, i.e. the
secret can be arbitrarily long. Refer to [1] for the role of amortization in secret
sharing. In fact our definition of a linear scheme allows arbitrary secret dimension,
which is usually called multi-linear in the literature. In another variant, which we
call scaler-linear, the secret is allowed to contain only one field element. Separation
between scaler-linear and non-linear secret sharing was first proved by Beimel and
Ishai in [3] under some plausible assumption. Later, such a separation was proved
in [7] without relying on any assumption.
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Lemma 4.2 (Linear transformation lemma) Let 1 ď λ ď m be integers.
Let T0 be a vector space over some finite field with dimension m. Then, there
exist m linear maps L1, . . . , Lm : T0 Ñ Tλ

0 such that for any subspace E Ď T0 of
dimension dimE ě λ, the following holds

m
ÿ

i“1

LipEq “ Tλ
0 .

Proof. Without loss of generality we can assume that T0 “ Fm, where F is the
underlying finite field. We show that there exist m linear maps L1, . . . , Lm :
Fm Ñ Fmλ, such that for any λ linearly independent vectors x1, . . . , xλ P Fm,
the mλ vectors Lipxjq P Fmλ, i P rms and j P rλs, are linearly independent. The
construction is explicit and is as follows.

Let |F| “ q and identify Fm with a finite field K with qm elements that is
an extension of F with degree m. Choose a basis w1, ..., wm for K over F and
identify Fmλ with Kλ.

Define Li by sending x P K to pwix,wix
q, ..., wix

qλ´1

q P Kλ. Note that the

mappings x ÞÝÑ xq is an F-linear map from K to K and x ÞÝÑ xqi is the
composition of this map with itself i times. Therefore, the mapping Li is F-
linear too, for every i P rms. If there exist coefficients cij , i P rms and j P rλs,

such that Σλ
j“1Σ

m
i“1cijLipxjq “ 0, then

řλ
j“1p

řm
i“1 cijwiqx

qk´1

j “ 0 for every

k P rλs. Since the λˆλ matrix M “

´

xqk´1

i

¯

iPrλs,kPrλs
is invertible (to be proved

at the end), we have
řm

i“1 cijwi “ 0 for all j P rλs and thus cij “ 0, for every
i P rms and j P rλs, as the vectors w1, ..., wm are linearly independent over F.
Therefore, the vectors Lipxjq, i P rms and j P rλs, are linearly independent over
F.

We complete the proof by showing that the matrixM is invertible. Assume for

a row vector y “ py1, . . . , yλq, we have yM “ 0, hence y1x`y2x
q`. . .`yλx

qλ´1

“

0 for every x “ x1, . . . , xλ. Since this polynomial is linear over the field F,
it vanishes on the span of these independent vectors over F, a space with qλ

elements. However, as the polynomial is of degree qλ´1, it is identically zero;
i.e., y “ 0. This shows that M is invertible. [\

The following lemma is true for finite fields that are sufficiently large. In
Appendix A we present an interesting probabilistic proof, proposed by one the
Eurocrypt reviewers, but with a slightly stronger requirement on the field size.

Lemma 4.3 (Non-intersecting subspace lemma) Let T0 be a vector space
of dimension m over a finite field with q elements and let E1, . . . , EN be subspaces
of T0 of dimension at most ω, 1 ď ω ă m. If N ă

qm´1
qm´1´1 , then there is a

subspace S Ă T0 of dimension m ´ ω such that S X Ei “ 0, for every i P rN s.

Proof. Without loss of generality we can assume that dimEi “ ω. Let F be
the underlying finite field with q elements. We show that if N ă

qm´1
qm´1´1 , then

the required subspace S of dimension m ´ w with zero intersection with Ei’s
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exists. We prove this by induction on m ´ w. If m ´ w “ 1, then each Ei has
qm´1 ´ 1 non-zero elements so we have at most Npqm´1 ´ 1q non-zero elements

in their union. If N ă
qm´1

qm´1´1 then there is a non-zero element outside this union
that generates the required subspace S. If Ei’s are of dimension w, then since
N ă

qm´1
qw´1 the above proof shows that there is a non-zero vector u outside their

union. If we add this vector to each Ei we get subspace E1
i of dimension w ` 1.

Therefore, by induction, we have a subspace S1 of dimension m ´ w ´ 1 that
has zero intersection with each E1

i. Now the space generated by S and u is the
required subspace of dimension m ´ w and zero intersection with each Ei. [\

4.2 A convec-preserving total linear scheme from a semi-partial
linear one

The following proposition will be generalized in next subsection. However, we
present it separately in this subsection since we will build on its proof in the
course of the proof of Proposition 4.5.

Proposition 4.4 (Σp
sp “ Σp

t ) Let Γ be an access structure and Π 1 be a semi-
partial F-linear secret sharing scheme for it. Then, there exists a total F-linear
secret sharing scheme Π for Γ such that cvpΠq “ pcvpΠ 1q.

Proof. We first provide an informal proof by using duals of the linear maps
introduced in Lemma 4.2. Identify the secret space of Π 1 by Fm. Since Π 1 is a
semi-partial scheme for Γ , there exists an integer λ, with 1 ď λ ď m, such that
every qualified participant set discovers at least λ independent linear relations
on the secret. With a slight abuse of notation, let L‹

1, . . . , L
‹
m : Fmλ Ñ Fm be the

dual (transpose) of the linear maps of Lemma 4.2. We construct a total linear
scheme Π for Γ with secret space Fmλ such that its convec is the same as the
partial convec of Π 1. To share a secret s P Fmλ, we share each of the m secrets
L‹
1psq, . . . , L‹

mpsq P Fm using an independent instance of Π 1. Each participant
in Π receives a share from each instance of Π 1. Hence, while the secret length
has been multiplied by λ, the share of each participant has increased by a factor
of at most m. By adding dummy shares, one can achieve an exact factor of m.
Therefore, the total convec of Π and semi-partial convec of Π 1 are equal. Note
that since the m different instances of Π 1 use independent randomnesses, any
qualified set gains no information on the secret. By Lemma 4.2, each qualified
set gets mλ independent linear relations on s. We conclude that the scheme Π
is total.

We now prove the lemma more formally by direct use of linear maps of
Lemma 4.2. Let Π 1 “ pT 1;T 1

0, T
1
1, . . . , T

1
nq be the F-linear semi-partial scheme

that satisfies λ “ minAPΓ tdimpT 1
A X T 1

0qu ě 1 and dimpT 1
A X T 1

0q “ 0 for all
A P Γ c. Let m “ dimpT0q ě 1.

Our goal is to build a total F-linear scheme Π “ pT ;T0, T1, . . . , Tnq such that
dimpTiq ď mdimpT 1

i q for every i P rns and dimpT0q “ mλ.
Find an orthogonal complement R1 for T 1

0 inside T 1; hence, T 1 “ T 1
0 ‘R1. Let

T “ T 1λ
0 ‘ R1m.
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Let L1, . . . , Lm : T 1
0 Ñ T 1λ

0 be the linear maps of Lemma 4.2 and define
ϕ : T 1m Ñ T by

ϕps1, . . . , sm, r1, . . . , rmq “
`

m
ÿ

i“1

Lipsiq, r1, . . . , rm
˘

,

where s1, . . . , sm P T 1
0 and r1, . . . , rm P R1.

We let T0 “ T 1λ
0 and Ti “ ϕpT 1m

i q. Then, the conditions on dimensions are
clear and consequently cvpΠq ĺ pcvpΠ 1q. It is straightforward to tweak the
scheme such that the claimed vector equality holds. It remains to prove that Π
totally realizes Γ .

For A Ď rns, by linearity of ϕ, we have TA “ ϕpT 1m
A q . Also, we have:

TA X T0 “ ϕpT 1m
A q X T 1λ

0

“ ϕpT 1m
A X T 1m

0 q

“ ϕ
`

pT 1
A X T 1

0qm
˘

“
řm

i“1 LipT
1
A X T 1

0q ,

where the second equality follows from the following fact: ϕpxq P T 1λ
0 if and only

if x P T 1m
0 .

If A P Γ , then dimpT 1
AXT 1

0q ě λ. Therefore, by Lemma 4.2, we have TAXT0 “

T0. Also, if B P Γ c, then T 1
B X T 1

0 “ 0 and hence TB X T0 “ 0. This shows that
Π is a total scheme for Γ . [\

4.3 A convec-preserving total linear scheme from a partial linear
one

The following proposition is a generalization of Proposition 4.4. The proof ex-
pands on the proof of Proposition 4.4 by appropriately using Lemma 4.2.

Proposition 4.5 (Σp
p “ Σp

t ) Let Γ be an access structure and Π 1 be a partial
F-linear secret sharing scheme for it. Then, there exists a finite extension K of F
and a total K-linear secret sharing scheme Π for Γ such that cvpΠq “ pcvpΠ 1q.
Consequently, Σp

ppΓ q “ Σp
t pΓ q, for every prime p.

Proof. Let Π 1 “ pT 1
0, . . . , T

1
nq and denote

λ “ minAPΓ tdimpT 1
A X T 1

0qu

ω “ maxAPΓ ctdimpT 1
A X T 1

0qu

m “ dimT 1
0

where 1 ď λ ´ ω ď m.
Let N be the number of maximal unqualified subsets in Γ c and K be an

extension of F that satisfies |K| ě N . By the process of extending scalers, we
can turn Π 1 into a K-linear scheme with the same convec, access function and
dimensions. For simplicity, we use the same notation for the new scheme; i.e.,
from now on Π 1 is considered to be a K-linear scheme. In particular, the relations
for λ, ω,m are still valid.
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Construct pT0, . . . , Tnq from Π 1 the same way as in the proof of Proposi-
tion 4.4 and recall that dimT0 “ mλ and dimTi ď m dimT 1

i . The same ar-
gument, which was used in the proof of Proposition 4.4, shows that for any
A P Γ , we have TA X T0 “ T0. It is also trivial that for every B P Γ , we have
dim

`

TB X T0

˘

ď mω.

By Lemma 4.3 (Ei is TB XT0 for some maximal unqualified set B, dimEi ď

mω and dimT0 “ mλ), one can choose S Ď T0 of dimension mpλ´ωq such that
TB X S “ 0, for every B P Γ c. Also, it is trivial that TA X S “ S, for every
A P Γ . Now, it is clear that Π “ pS, T1, . . . , Tnq is a total secret sharing scheme
for Γ such that dimS “ mpλ ´ ωq. Therefore, cvpΠq ĺ pcvpΠ 1q. Again, it is
straightforward to tweak the scheme such that the convec equality holds. [\

5 Shannon lower-bound for partial information ratio

The main result of this section is to prove that the Shannon inequalities give the
same lower-bound for the total and partial security notions. In other words, the
polymatroidal sets of an access structure with respect to all security definitions
are equal. It remains open if our result can be strengthened, e.g., by allowing
certain additional non-Shannon type information inequalities, e.g., along the
lines of [6, 39]). Our result shows that Csirmaz sub-linear lower bound [16] also
applies to partial security.

We define the polymatroidal sets precisely and then prove our claim. We
use the following definition for a polymatroid, first introduced by Edmonds [19]
in 1970. The relation between polymatroids and random variables was realized
by Fujishige [22] in 1978. We refer the reader to Padro’s lecture notes [40] for
a leaner introduction to matroids, polymatroids and their connection to secret
sharing.

Definition 5.1 (Polymatroid) Let Q be a finite set. We say that S “ pQ, rq

is a polymatroid with ground set Q and rank function r : 2Q Ñ R, when:

a) rpHq “ 0,

b) rpXq ď rpY q, for every subsets X Ď Y Ď Q (monotonicity),

c) rpXq ` rpY q ě rpX Y Y q ` rpX X Y q, for every subsets X,Y Ď Q (sub-
modularity).

We simply denote the rank function of a singleton set tpu by rppq. We let Q “

P Y tp0u where P “ tp1, ¨ ¨ ¨ , pnu and assume that rpp0q ą 0. We borrow the
following notation from [20].

Notation 5.2 Let S “ pQ, rq be a polymatroid and A and B be subsets of Q.
We notate

rpA|Bq “ rpABq ´ rpBq,

∆rpA : Bq “ rpAq ` rpBq ´ rpABq.
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5.1 Total polymatroidal set

Informally, the total polymatroidal set of an access structure Γ on n participants,
denoted by KtpΓ q, is the n-dimensional polytope derived by taking into account
all the Shannon inequalities as well as the correctness and privacy conditions.

Definition 5.3 (Total polymatroid) Let Γ be an access structure on P and
S “ pQ, rq be a polymatroid. We say that S is a total polymatroid for Γ when:

a) ∆rptp0u : Aq “ rpp0q, for every qualified set A P Γ and,
b) ∆rptp0u : Bq “ 0, for every unqualified set B P Γ c.

Definition 5.4 (Total convec of a polymatroid) The total convec of a poly-
matroid S “ pQ, rq is defined and denoted by cvpSq “ 1

rpp0q
prppqqpPP .

Definition 5.5 (Total polymatroidal set) The Kt-set or total polymatroidal
set of an access structure Γ , denoted by KtpΓ q, is defined as the set of all total
convecs of all polymatroids for Γ .

The following proposition is an extention of the inequality κpΓ q ď σpΓ q [35].

Proposition 5.6 (ΣtpΓ q Ď KtpΓ q) For any access structure Γ , it holds that
ΣtpΓ q Ď KtpΓ q.

5.2 Partial and semi-partial polymatroidal sets

Definition 5.7 (Partial and semi-partial polymatroid) Let Γ be an ac-
cess structure on P and S “ pQ, rq be a polymatroid. We say that S is a partial
polymatroid for Γ when:

δ “ min
APΓ

∆rptp0u : Aq ´ max
BPΓ c

∆rptp0u : Bq ą 0 . (5.1)

If for every unqualified set B P Γ c it additionally holds that ∆rptp0u : Bq “ 0,
we call it a semi-partial polymatroid for Γ .

Definition 5.8 (Partial and semi-partial convec of a polymatroid) Let Γ
be an access structure on P and S “ pQ, rq be a partial polymatroid for Γ . The
partial convec of S (with respect to Γ ) is defined and denoted by

pcvpS, Γ q “
1

δ
prppqqpPP .

where δ, the advantage, is defined as in Equation (5.1). When there is no con-
fusion, we simply use the notation pcvpSq.

Definition 5.9 (Partial and semi-partial polymatroidal convec sets) The
partial polymatroidal convec set of an access structure Γ , denoted by KppΓ q, is
defined as the set of all partial convecs of all polymatroids that partially realize
Γ . The semi-partial polymatroidal convec set is defined similarly and is denoted
by KsppΓ q.
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Proposition 5.6 also holds for the partial security; that is, for any access
structure Γ , it holds that ΣppΓ q Ď KppΓ q and ΣsppΓ q Ď KsppΓ q. The relation
KtpΓ q Ď KsppΓ q Ď KppΓ q is immediate for any access structure Γ . In next
section we prove that these sets are indeed the same.

5.3 Main claim

Even though the Kt-set is trivially a polytope, it is not trivial that so are the
other two sets, let alone being identical to the Kt-set.

Theorem 5.10 (Kp “ Ksp “ Kt) For any access structure, the total, partial
and semi-partial polymatroidal sets are identical.

Proof. We know that KtpΓ q Ď KsppΓ q Ď KppΓ q for any access structure Γ .
It is sufficient to prove that KppΓ q Ď KtpΓ q. Suppose that a1 P KppΓ q. Then,
there exists a partial polymatroid S 1 “ pP Y tp0u, r1q for Γ and a1 “ pcvpS 1q.
We construct a total polymatroid S “ pP Y tp0u, rq from S 1 for Γ such that
cvpSq “ pcvpS 1q. Let δ be as in Definition 5.1 and define α, β as follows,

α “ min
APΓ

∆rptp0u : Aq{r1pp0q , β “ max
BPΓ c

∆rptp0u : Bq{r1pp0q.

Define the function r : 2PYtp0u Ñ r0,8q as follows:

rpAq “ r1pAq{α for A P Γ c,
rpAq “ r1pA|tp0uq{α ` r1pp0q for A P Γ ,
rpA Y tp0uq “ rpAq for A P Γ ,
rpA Y tp0uq “ rpAq `

α´β
α r1pp0q for A P Γ c;

Note that we have rpHq “ 0 and rpp0q “
α´β
α r1pp0q.

We claim that r is a rank function of a polymatroid with ground set P Ytp0u.
First, we show that r has the monotonicity property. We check the monotonicity
property only for the following nontrivial case: A Y tp0u Ď B Y tp0u where A is
a unqualified set and B is qualified. Checking the monotonicity property for the
other cases is easier and left to the reader. Since AY tp0u Ď BY tp0u, the mono-
tonicity of r1 implies that r1pA Y tp0uq ď r1pB Y tp0uq. Therefore r1pA|tp0uq ď

r1pB|tp0uq. Since A is unqualified we have r1pAq ď r1pA|tp0uq ` βr1ptp0uq. Thus

rpA Y tp0uq “ rpAq `
α ´ β

α
r1ptp0uq

“
r1pAq

α
` r1ptp0uq ´

β

α
r1ptp0uq

ď
r1pA|tp0uq

α
`

β

α
r1ptp0uq ` r1ptp0uq ´

β

α
r1ptp0uq

ď
r1pB|tp0uq

α
` r1ptp0uq

“ rpBq

“ rpB Y tp0uq.
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For the sub-modularity property, we only check the sets A,B Ď P where A,
B and A X B are unqualified and A Y B is qualified and other cases which are
simpler are left to the reader. Since r1 is sub-modular, we have r1pAq ` r1pBq ě

r1pA Y Bq ` r1pA X Bq. Since A Y B is qualified, by definition of α we have α ď

∆r1 ptp0u : AYBq{r1ptp0uq, or equivalently, r1pAYBq ě r1pAYB|tp0uq `αrpp0q.
We observe that

rpAq ` rpBq “ r1pAq{α ` r1pBq{α

“
1

α
rr1pAq ` r1pBqs

ě
1

α
rr1pA Y Bq ` r1pA X Bqs

ě
1

α
rr1pA Y B|tp0uq ` αr1pp0q ` r1pA X Bqs

“
`

r1pA Y B|tp0uq{α ` r1pp0q
˘

`
`

r1pA X Bq{α
˘

“ rpA Y Bq ` rpA X Bq.

Now, we show that S is a total polymatroid for Γ . For every qualified set A P Γ ,
we have rpA Y tp0uq “ rpAq by definition of r. Also, for every unqualified set
B P Γ c, we have rpB Y tp0uq “ rpBq ` rpp0q. Therefore S “ pP Y tp0u, rq is total
for Γ .

It remains to show that cvpSq “ pcvpS 1q. Therefore, by definition of r, we
have rppq “ r1ppq{α for any participant p P P (we have assumed that no singleton
set is qualified, but it is easy to remove this assumption). Thus,

cvpSq “
1

rptp0uq

`

rptpuq
˘

pPP

“
1

α´β
α r1ptp0uq

`

r1ptpuq{α
˘

pPP

“
1

pα ´ βqr1pp0q
pr1ppqqpPP

“
1

δ
pr1ppqqpPP

“ pcvpS 1q

Consequently, KppΓ q Ď KtpΓ q. [\

6 On abelian information ratio

Equality of total and partial linear information ratios was proved in Section 4
and equality of Shannon lower bound with respect to these security notions was
proved in Section 5. In this section, we provide some evidence that the abelian
information ratios probably do not match.

We study F ` N , a well-known 12-participant access structure [4, 38] which
has both Fano (F) and non-Fano (N ) access structures as minors. The access
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structure F (resp. N ) is the port of Fano (resp. non-Fano) matroid and it is
known [38] to be ideal only on finite fields with even (resp. odd) characteristic.
As a result, their union (i.e., F `N ) is nearly ideal. That is, its information ratio
is one without admitting an ideal scheme. Recently, in [27], the exact value of its
linear information ratio has been determined (max“ 4{3 and average“ 41{36).
Also, an upper-bound on its abelian information ratio has been provided (maxď

7{6 and averageď 41{36). Additionally, it has been conjectured in [27], that the
exact value of its (total) abelian information ratio is strictly greater than one.
Below, we show that the semi-partial abelian ramification ratio of this access
structure is one.

Abelian schemes. An abelian scheme on a set P of participants is a collection
pGiqiPQ of subgroups of a finite group G. An abelian schemeΠ “ pGiqiPQ realizes
an access structure if 1) for every qualified set A Ď P we have G0XGA “ G0 and
2) for every unqualified set A Ď P we have G0XGA “ t0u, where GA “

ř

iPA Gi.
The convec and access function of an abelian scheme Π “ pGiqiPQ are com-

puted as follows:

ΦΠpAq “
log |G0 X GA|

log |G0|
, cvpΠq “

` log |Gi|

log |G0|

˘

iPP
.

Every linear scheme is abelian. If Π “ pGiqiPQ and Π 1 “ pG1
iqiPQ are abelian

schemes for an access structure Γ , so is their direct sumΠ‘Π 1 “ pGi‘G1
iqiPQ. In

particular, ifΠ andΠ 1 are linear schemes for Γ , thenΠ‘Π 1 is an abelian scheme
for Γ . The following corollary then becomes trivial. We refer to Appendix B
or [27] for further discussion on abelian schemes.

Corollary 6.1 For every even (resp. odd) number m, there exists an ideal abelian
scheme for Fano (resp. non-Fano) access structure such that the order of all sub-
groups are m.

A nearly ideal semi-partial abelian scheme for F ` N . Let k P N be an
integer. Let ΠF

k (resp. ΠN
k ) be an ideal abelian scheme for F (resp. N ) whose

subgroups all have order 2k (resp. 2k ` 1). We construct a nearly ideal semi-
partial family of schemes tΠku for F ` N . Instead of describing the scheme
Πk using formal notation, we describe it informally. The secret space of Πk is
the direct sum of the secret spaces of ΠF

k and ΠN
k , i.e., GF

0 ‘ GN
0 . To share a

secret psF , sN q P GF
0 ‘ GN

0 , we share sF via ΠF
k and share sN via ΠN

k , using
independent randomnesses. It is easy see thatΠk is a semi-partial abelian scheme
for F ` N and its information ratio converges to one as k goes to infinity.

Summary. Table 1 summarizes the known results on the F ` N access struc-
ture. We believe that, for the class of abelian schemes, computing the total
information ratio of F `N is reachable within known techniques (e.g., by man-
ually using the common information method of [21] in a clever way), but as we
will discuss in Section 7.2, computing its quasi-total abelian information ratio
probably demands substantially more advanced ideas and techniques.
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total quasi-total (semi-)partial reference

general
max

1 [4, 38]
average

abelian
max 1 ď ¨ ď 7{6 1 ď ¨ ď 7{6

1
average 1 ď ¨ ď 41{36 1 ď ¨ ď 41{36 [27]

linear
max 4/3 Theorems 4.1, Corollary 7.5

average 41/36 [27], [3]

Table 1: Known results on the max/average information ratio of the access
structure F `N w.r.t. different security notions and different classes of schemes.

7 On quasi-total security

In this section, we review the notion of quasi-total security, proposed in [30,31],
though its connection to partial security notion. We prove that if partial and
total information ratios coincide for any class of secret sharing schemes, the same
thing happens for the total and quasi-total information ratios. As a corollary of
Theorem 4.1, the partial, quasi-total and total information ratios are all equal
for the class of linear schemes.

7.1 Definition

We need the following definition before giving a formal definition of the quasi-
total secret sharing and quasi-total convec set.

Definition 7.1 (Convec-converging family of schemes) A sequence F “

tΠkukPN of secret sharing schemes on participants set P is called a convec-
converging family of schemes if i) the entropy of secret does not vanish; i.e.,
HpSk

0q “ Ωp1q and, ii) the sequence tcvpΠkqukPN is converging. The convec of
the convec-converging family F is defined as cvpFq “ limkÑ8 cvpΠkq.

Definition 7.2 (Quasi-total realization [30]) Let Γ be an access structure
on P and F “ tΠkukPN be a convec-converging family of secret sharing schemes.
We say that F is a quasi-total family for Γ if limkÑ8 ΦΠk

“ ΦΓ , where ΦΓ :
2P Ñ t0, 1u is a (monotone) mapping defined as ΦΓ pAq “ 1 ðñ A P Γ .

Definition 7.3 (Quasi-total convec set) The quasi-total convec set of an ac-
cess structure Γ , denoted by ΣqtpΓ q, is defined as the set of all convecs of all
quasi-total families for Γ . When we restrict ourselves to the class C of secret
sharing schemes, we use the notation ΣC

qt.

Notice that the quasi-total convec sets are closed. It is easy to prove that the
Σqt-set (similar to the Σt-set) is convex, but recall that the closure convexity of
the (semi-) partial convec set was left open.
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7.2 Connections with partial and total security notions

We prove that if the partial and total convec sets are equal for some class of
schemes, the same holds true for the quasi-total and total convec sets. It remains
open if the reverse holds true as well.

Proposition 7.4 (ΣC
p “ ΣC

t ùñ ΣC
qt “ ΣC

t ) For any class C of schemes

and any access structure Γ , if ΣC
p “ ΣC

t then ΣC
qt “ ΣC

t .

Proof. It suffices to prove the inclusion ΣC
qtpΓ q Ď ΣC

t pΓ q. Equivalently, we show

that for every σ P ΣC
qtpΓ q we have σ P ΣC

t pΓ q. Let F “ tΠkukPN be a quasi-
total family of class-C schemes for Γ with cvpFq “ σ. We construct a convec-
converging family F 1 “ tΠ 1

kukPN of class-C schemes such that: i) Π 1
k is a total

scheme for Γ for sufficiently large k and ii) cvpF 1q “ σ. This proves that σ P

ΣC
t pΓ q.
Define λk “ minAPΓ tΦΠk

pAqu and ωk “ maxBRΓ tΦΠk
pBqu. Since λk and ωk

respectively converge to 1 and 0, we have δk “ λk´ωk ą 0 for sufficiently large k.
This shows that Πk is a partial class-C secret sharing scheme for Γ with partial
convec cvpΠkq{δk. By assumption, there exists a convec-converging family of
class-C total schemes tΠ 1

kjujPN for Γ with limjÑ8 cvpΠ 1
kjq “ cvpΠkq{δk. Let

Π 1
k “ Π 1

kk. Clearly, F 1 “ tΠ 1
kukPN is a family of class-C total schemes for Γ with

cvpF 1q “ cvpFq since δk Ñ 1, proving (i) and (ii). [\

One of the main consequences of properties of partial security (Proposi-
tion 4.5), together with the above proposition, provides the following non-trivial
corollary.

Corollary 7.5 (ΣL
qt “ ΣL

t ) For any access structure Γ and any prime p, we

have Σp
qtpΓ q “ Σp

t pΓ q and, consequently, ΣL
qtpΓ q “ ΣL

t pΓ q.

It remains open if the claim of Corollary 7.5 holds for a class substantially
larger than linear schemes. Even if it turns out that the partial and total convec
sets do not coincide on some class larger than linear ones (e.g., the abelian ones
which we guess to be the case and will discuss in Section 6), it does not provide
sufficient evidence that this is also the case for total and quasi-total security
notions. Therefore, we believe that proving coincidence/separation for larger
classes demands innovative ideas and more advanced techniques.

8 On decomposition theorems

The pλ, ωq-weighted-decomposition theorem of [23] (as well as its predecessor
[47]) has the following limitation. They require that in the linear sub-schemes
every subset of participants fully recovers a certain subset of the secret elements
and nothing more; in other words, recovering a non-trivial linear combination of
the secret elements is not allowed.
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In Section 8.1, we show that the above strong requirement on the pλ, ωq-
weighted-decomposition can be removed. The main tool that allows us to do
this is the notion of partial secret sharing and the result of Section 4 on the
equality of partial and total linear information ratios.

In Section 8.2, we present a unified decomposition theorem, that we re-
fer to as the δ-decomposition, which captures the advantages of the pλ, ωq-
decomposition [17, 49] and the pλ, ωq-weighted-decomposition [23] at one place.
The theorem is essentially a restatement of known and folklore results. We in-
troduce the notion of δ-decomposition, first, for the sake of completeness and,
second, to provide the intuition behind the definition of partial security (Defi-
nition 3.1) and partial convec (Definition 3.2). The reader may compare those
definitions with Definition 8.3.

Notation. In this section, we use the simplified notation Σ for total convec
set and Λ (resp. Λp) for its restrictions to the class of all linear (resp. p-linear)
schemes. We remark that the linear convec set of a (rational-valued) access
function Φ is defined as the set of all convecs of all linear secret sharing schemes
whose access function is Φ.

8.1 pλ, ωq-weighted-decomposition revisited

The following definition is a restatement of Definition 3.4 in [23].

Definition 8.1 ((λ, ωq–weighted decomposition) Let λ, ω,N,m1, ¨ ¨ ¨ ,mN ,
be non-negative integers, with 0 ď ω ă λ. Let Γ be an access structure and
Φ1, . . . , ΦN be (rational) access functions all defined on the same participants set
and further assume that mjΦj is an integer-valued function for every j P rN s.
We call pm1, Φ1q, . . . , pmN , ΦN q a pλ, ωq-weighted-decomposition for Γ if the fol-
lowing two hold:

–
řN

j“1 mjΦjpAq ě λ, for every qualified set A P Γ ,

–
řN

j“1 mjΦjpBq ď ω, for every unqualified set B P Γ c.

The following decomposition theorem is an extension of Theorem 3.2 in [23],
which was stated for a subclass of linear schemes. The proof essentially relies on
Proposition 4.5

Theorem 8.2 ((λ, ωq–weighted decomposition) Let p be a prime. Consider
a pλ, ωq-weighted-decomposition pm1, Φ1q, . . . , pmN , ΦN q for an access structure

Γ and let σj P ΛppΦjq, j P rN s. Then, 1
λ´ω

řN
j“1 mjσj P ΛppΓ q.

Proof. Let Πj “ pTijqiPP be a p-linear secret sharing scheme for Φj with convec
σj , for j P rN s. Without loss of generality, we assume that all sub-schemes are
F-linear for a common finite field F with characteristic p. Let T 1

i “ ‘jPrNsTij ,
for every i P P . For every i P P , we have dimT 1

i “
ř

jPrNs dimTij which implies
that
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`

dimT 1
i

˘

iPP
“

řN
j“1 mjσj .

Also, for every subset A of participants, it holds that:

dimpT 1
A X T 1

0q “
ř

jPrNs dimpTA X T0q

“
ř

jPrNs mjΦΠj pAq

“
ř

jPrNs mjΦjpAq .

By definition of the (λ, ωq–weighted decomposition, we have

∆ “ min
APΓ

dimpT 1
A X T 1

0q ´ max
BPΓ c

dimpT 1
B X T 1

0q ě λ ´ ω .

Consequently, Π 1 “ pT 1
i qiPP is an F-linear partial secret sharing scheme for

Γ with the following partial convec:

pcvpΠ 1q “
1

∆

N
ÿ

j“1

mjσj .

Then, by Proposition 4.5, there exists a finite extension K of F, such that Γ
has a total K-linear scheme Π with the above convec. It is straightforward to
modify the scheme to have a scheme with the convec 1

λ´ω

řN
j“1 mjσj . [\

8.2 δ-decomposition

We present the notion of δ-decomposition, which captures all the weighted [23,47]
and non-weighted [17, 45] decompositions simultaneously, and even in a more
general form. It also justifies the intuition behind the definition of partial security
(Definition 3.1) and partial convec (Definition 3.2).

Definition 8.3 (δ-decomposition) Let N be an integer and δ, h1, . . . , hN be
positive real numbers. Let Γ be an access structure and Φ1, . . . , ΦN be access
functions all on participants set P . We say that ph1, Φ1q, . . . , phN , ΦN q is a δ–
decomposition for Γ if

δ “ min
APΓ

N
ÿ

j“1

hjΦjpAq ´ max
BPΓ c

N
ÿ

j“1

hjΦjpBq .

The proof of the following theorem is easy and we leave it to the reader.

Theorem 8.4 (δ-decomposition) Let Γ be an access structure and consider
a δ–decomposition ph1, Φ1q, . . . , phN , ΦN q for it. Then, the followings hold:

(i) (Rational sub-access functions) Let p be a prime, Φj be rational and

σj P ΛppΦjq, for every j P rN s. Then σ “ 1
δ

řN
j“1 hjσj P ΛppΓ q.

(ii) (Total sub-access functions) Let Φj be total and σj P ΣpΦjq, for every

j P rN s. Then, σ “ 1
δ

řN
j“1 hjσj P ΣpΓ q.



22 Jafari-Kaboli-Khazaei

9 Conclusion

In this paper, we introduced a new relaxed security notion for secret sharing
schemes, called partial security. Even though, partial security may not be suit-
able for practical applications, it turned out to be useful to close some gaps in
our knowledge about secret sharing schemes. In particular, partial security was
the missing ingredient for proving coincidence of quasi-total and total linear in-
formation ratios. Also, it helped us to remove a strong requirement that were
needed for the linear sub-schemes in the weighted decompositions.

It remains challengingly an open problem that for which classes of schemes
the partial (resp. quasi-total) and total information ratios coincide. It also re-
mains open for which classes of information inequalities, the lower bound on
partial and total information ratios coincide. We proved that partial and to-
tal information ratios coincide with respect to linear upper-bound and Shannon
lower-bound. We conjecture that the partial and total information ratios proba-
bly do not coincide for the class of abelian schemes and provided some evidence
to support our conjecture. However, it remains much harder to say something
about separation/coincidence of quasi-total and total information ratios with
respect to abelian schemes.
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m ´ w there are exactly qm´w´1
q´1 lines in S through the origin. For a given ran-

dom line, the probability that it lies inside a subspace Ei of dimension w is
pqw ´ 1q{pqm ´ 1q. Therefore, by the union bound, the probability that at least
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qm´w ´ 1
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qw ´ 1

qm ´ 1
.
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of Lemma 4.3 is better in general, the difference is negligible (the maximum
happens at w “ m{2).

B Abelian and linear secret sharing

A group-characterizable scheme [14] is defined as follows.

Definition B.1 (Group-characterizable scheme [14]) A tuple Π “ pG :
G0, G1, . . . , Gnq is called a group-characterizable secret sharing scheme if G is a
finite group, Gi is a subgroup of G, for each i P rns, and |G|{|G0| ě 2.

A group-characterizable scheme Π “ pG : G0, G1, . . . , Gnq induces a secret
sharing scheme pS0,S1, . . . ,Snq by letting Si “ XGi, where X is a uniform
random variable on G; hence, the support of Si is the left cosets of Gi.

A group-characterizable scheme Π “ pG : G0, G1, . . . , Gnq is called abelian if
its main group G is abelian. It is easy to show that (e.g., see [27]) every abelian
scheme Π “ pG : G0, G1, . . . , Gnq, with respect to this definition induces an
abelian scheme Π 1 “ pG1;G1

0, G1, . . . , G
1
nq, with respect to the following defini-

tion, and vice versa, with the same access function and convec.

Definition B.2 (Abelian scheme) A tuple Π “ pG;G0, G1, . . . , Gnq is called
an abelian secret sharing scheme if G is a finite abelian group, Gi is a subgroup
of G, for each i P rns, and |G0| ě 2. When there is no confusion, we simply
write Π “ pGiqiPPYt0u.

Definition B.3 (Linear scheme) When T is a finite dimensional vector space
on some finite field and T0, T1, . . . , Tn are sup-spaces of T , the abelian secret
sharing scheme Π “ pT ;T0, T1, . . . , Tnq is called linear.

Table 2 shows the simplified access functions and convecs for different types
of schemes.

type Π ΦΠpAq cvpΠq notation

group
char.

pG : G0, G1, . . . , Gnq
log

`

|G|{|GA ˚ G0|
˘

log
`

|G|{|G0|
˘

´ log
`

|G|{|Gi|
˘

log
`

|G|{|G0|
˘

¯

iPrns
GA “

Ş

iPA Gi

abelian pG;G0, G1, . . . , Gnq
log |G0 X GA|

log |G0|

´ log |Gi|

log |G0|

¯

iPrns
GA “

ř

iPA Gi

linear pT ;T0, T1, . . . , Tnq
dimpT0 X TAq

dimpT0q

´ dimpTiq

dimpT0q

¯

iPrns
TA “

ř

iPA Ti

Table 2: The access function and convec of different scheme types.
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