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Abstract

We study leakage-resilient continuously non-malleable secret sharing, as recently intro-
duced by Faonio and Venturi (CRYPTO 2019). In this setting, an attacker can continuously
tamper and leak from a target secret sharing of some message, with the goal of producing a
modified set of shares that reconstructs to a message related to the originally shared value.
Our contributions are two fold.

• In the plain model, assuming one-to-one one-way functions, we show how to obtain
noisy-leakage-resilient continuous non-malleability for arbitrary access structures, in
case the attacker can continuously leak from and tamper with all of the shares inde-
pendently.

• In the common reference string model, we show how to obtain a new flavor of secu-
rity which we dub bounded-leakage-resilient continuous non-malleability under joint
k-selective partitioning. In this model, the attacker is allowed to partition the target n
shares into k non-overlapping subsets, and then can continuously leak from and tamper
with the shares within each subset jointly. Our construction works for arbitrary ac-
cess structures, and assuming (doubly enhanced) trapdoor permutations and collision-
resistant hash functions, we achieve a concrete instantiation for k ∈ O(n/ log n).

Prior to our work, there was no secret sharing scheme achieving continuous non-malleability
against joint tampering, and the only known scheme for independent tampering was tailored
to threshold access structures.

Keywords: Secret sharing, Non-malleability, Leakage resilience.
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1 Introduction

A non-malleable secret sharing for an access structure A over n parties allows to share a secret
message m into n shares s = (s1, . . . , sn), in such a way that the following properties are
guaranteed.

Privacy: No attacker given the shares belonging to an arbitrary unauthorized subset U 6∈ A
of the players can infer any information on m.

Non-malleability: No attacker tampering with all of the shares via some function f ∈ F
within some family of allowed1 modifications can generate a mauled secret sharing s̃ = f(s)
that reconstructs to m̃ 6= m related to m.

Sometimes, non-malleability is considered together with leakage resilience. This means that the
attacker can additionally leak partial information g(s) from all of the shares (via functions g ∈ G)
before launching a tampering attack. Leakage resilience typically comes in one of two flavors:
bounded leakage (i.e,. there is a fixed upper bound on the maximum amount of information
retrieved from the shares) or noisy leakage (i.e., the length of the retrieved information is
arbitrary as long as it does not decrease the entropy of the shares by too much).

In this work we focus on leakage-resilient continuous non-malleability with adaptive con-
current reconstruction, as recently introduced by Faonio and Venturi [FV19].2 Here, the at-
tacker can (leak from and) tamper poly-many times with a target secret sharing using functions
f (q) ∈ F as above, and for each tampering query q it can also choose adaptively the reconstruc-
tion set T (q) ∈ A used to determine the reconstructed message. There are only two limitations:
First, the attacker is computationally bounded; second, the experiment stops (we say it “self-
destructs”) after the first tampering query yielding an invalid set of shares. Both limitations
are inherent for continuous non-malleability [FMNV14, BS18, FV19].

The only known scheme achieving such a strong flavor of non-malleability is the one by
Faonio and Venturi, which tolerates the families F and G of independent tampering/leakage,

i.e. for each query q we have f (q) = (f
(q)
1 , . . . , f

(q)
n ) ∈ F where f

(q)
i gets as input the i-th

share (and similarly g(q) = (g
(q)
1 , . . . , g

(q)
n ) ∈ G). The access structure A supported by their

construction is the τ -threshold access structure—i.e., any subset of at most τ players has no
information about the message—with the caveat that reconstruction works with at least τ + 2
shares, namely a ramp secret sharing, thus leaving a minimal gap between the reconstruction
and privacy threshold. The following natural question arise:

Problem 1. Can we obtain leakage-resilient continuously non-malleable secret sharing against
independent leakage/tampering, for general access structures?

Another open question is whether leakage-resilient continuous non-malleability is achievable
for stronger tampering and leakage families F ,G, e.g. in case the attacker can leak from and
manipulate subsets of the shares jointly.

Problem 2. Can we obtain leakage-resilient continuously non-malleable secret sharing against
joint leakage/tampering?

1.1 Our Contributions

We make significant progress towards solving the above problems. In particular, our first con-
tribution is a positive answer to Problem 1:

1It is easy to see that non-malleability is impossible for arbitrary (polynomial-time) tampering.
2From now on, we omit to explicitly mention the feature of adaptive concurrent reconstruction and simply

talk about continuous non-malleability.
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Theorem 1 (Informal). Assuming one-to-one one-way functions, for any access structure A
over n parties there exists a noisy-leakage-resilient continuously non-malleable secret sharing
scheme realizing A against independent leakage and tampering, in the plain model.

Our second contribution is a positive answer to Problem 2 assuming trusted setup, in the
form of a common reference string (CRS). More in details, we put forward a new security notion
for secret sharing dubbed continuous non-malleability under joint k-selective partitioning. This
roughly means that the attacker, after seeing the CRS, must commit to a partition of the set [n]
into k (non-overlapping) subsets (B1, . . . ,Bk); hence, the adversary can jointly, and continuously,
tamper with and leak from each collection sBi of the shares.3

Theorem 2 (Informal). Assuming (doubly-enhanced) trapdoor permutations and collision-resistant
hash functions, for any access structure A over n parties there exists a bounded-leakage-resilient
continuously non-malleable secret sharing scheme realizing A against joint leakage and tamper-
ing under O(n/ log n)-selective partitioning, in the CRS model.

1.2 Related Work

Non-malleable secret sharing was introduced by Goyal and Kumar [GK18a]. For any τ ≤ n,
they showed how to realize τ -threshold access structures, against one-time tampering with
either all of the shares independently, or jointly after partitioning the players into two non-
overlapping subsets of size at most4 τ−1. In a subsequent work [GK18b], the same authors show
how to extend the result for independent tampering to the case of arbitrary access structures;
additionally, for the case of joint tampering, they provide a new scheme realizing the n-threshold
access structure (i.e., an n-out-of-n secret sharing) in a stronger model where the attacker can
partition the players into two possibly overlapping subsets of size at most n − 1. Srinivasan
and Vasudevan [SV18] built the first non-malleable secret sharing schemes for general access
structures against independent tampering, with non-zero rate5 (in fact, even constant rate
in case of threshold access structures). Chattopadhyay et al. [CL18] construct non-malleable
secret sharing for threshold access structures, against affine tampering composed with joint
split-state tampering. Lin et al. [LCG+19] consider non-malleability against affine tampering in
an adaptive setting where the adversary gets to see an unauthorized subset of the shares before
launching a single tampering attack.

Badrinarayanan and Srinivasan [BS18] generalize non-malleability to p-time tampering at-
tacks, where p is an a-priori upper bound on the number of tampering queries the adversary
can ask. For each attempt, however, the reconstruction set T must be chosen in advance at the
beginning of the experiment. In this model, they show how to realize arbitrary access struc-
tures against independent tampering with all of the shares. Aggarwal et al. [ADN+18] were the
first to consider p-time non-malleability under non-adaptive concurrent reconstruction, i.e. the
attacker now can specify a different reconstruction set T (q) during the q-th tampering query,
although the sequence of subsets T (1), . . . , T (p) must be chosen non-adaptively. Kumar, Meka,
and Sahai [KMS18] pioneered bounded-leakage-resilient one-time non-malleable secret sharing
for general access structures, against independent leakage and tampering with all of the shares.

In the special case of 2-threshold access structures over n = 2 parties, the notion of (leakage-
resilient) non-malleable secret sharing collapses to that of split-state (leakage-resilient) non-

3The only restriction is that no subset in the partition can contain an authorized set of players, otherwise
trivial attacks are possible.

4An additional (artificial) requirement is that the size of the two subsets must be different in order for their
technique to work.

5The rate refers to the asymptotic ratio between the maximal length of a share and that of the message.
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malleable codes [DPW10, LL12, DKO13, ADL14, CG14, FMNV14, ADKO15b, ADKO15a,
AAG+16, Li17, FNSV18, OPVV18, CFV19].

1.3 Organization

In §2 we recall the definition of secret sharing schemes for general access structure; all our
constructions rely on standard cryptographic primitives, which we recall in §A (together with
some basic notation). The new model of continuous tampering under selective partitioning is
presented in §3.

Our main constructions appear in §4 (for joint tampering in the CRS model) and §5–§6
(for independent tampering in the plain model), respectively; there, we also explain how to
instantiate these constructions with concrete building blocks, thus establishing Thm. 1 and
Thm. 2. Finally, in §7, we conclude the paper with a list of open problems and interesting
directions for further research.

2 Secret Sharing Schemes

An n-party secret sharing scheme Σ in the common reference string (CRS) model consists of
polynomial-time algorithms (Init, Share,Rec) specified as follows: (i) The randomized initializa-
tion algorithm Init takes as input the security parameter 1λ, and outputs a CRS ω ∈ {0, 1}∗;
(ii) The randomized sharing algorithm Share takes as input a CRS ω ∈ {0, 1}∗ and a message
m ∈ M, and outputs n shares s1, . . . , sn where each si ∈ Si; (iii) The deterministic algorithm
Rec takes as input a CRS ω ∈ {0, 1}∗ and a certain number of candidate shares, and outputs a
value inM∪{⊥}. Given s = (s1, . . . , sn) and a subset I ⊆ [n], we often write sI to denote the
shares (si)i∈I .

The subset of parties allowed to reconstruct the secrets by pulling their shares together form
the so-called access structure.

Definition 1 (Access structure). We sayA is an access structure for n parties ifA is a monotone
class of subsets of [n], i.e., if I1 ∈ A and I1 ⊆ I2, then I2 ∈ A. We call sets I ∈ A authorized
or qualified, and unauthorized or unqualified otherwise.

Intuitively, a secure secret sharing scheme must be such that all qualified subsets of play-
ers can efficiently reconstruct the secret, whereas all unqualified subset have no information
(possibly in a computational sense) about the secret.

Definition 2 (Secret sharing scheme). Let n ∈ N, and A be an access structure for n parties.
We say that Σ = (Init, Share,Rec) is a secret sharing scheme realizing access structure A in the
CRS model, with message spaceM and share space S = S1× · · · ×Sn, if it is an n-party secret
sharing in the CRS model with the following properties.

(i) Correctness: For all λ ∈ N, all ω ∈ Init(1λ), all messages m ∈ M, and for all subsets
I ∈ A, we have that Rec(ω, (Share(ω,m))I) = m, with overwhelming probability over the
randomness of the sharing algorithm.

(ii) Privacy: For all PPT adversaries A = (A1,A2), we have

{PrivacyΣ,A(λ, 0)}λ∈N ≈c {PrivacyΣ,A(λ, 1)}λ∈N,

where the experiment PrivacyΣ,A(λ, b) is defined by

PrivacyΣ,A(λ, b) :=

{
ω←$ Init(1λ); (m0,m1,U 6∈ A, α1)←$ A1(ω)

s←$ Share(ω,mb); b
′←$ A2(α1, sU )

}
.
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If the above ensembles are statistically close (resp. identically distributed), we speak of
statistical (resp. perfect) privacy.

Moreover, we say that Σ is a secret sharing scheme realizing access structure A in the plain
model, if for all λ ∈ N algorithm Init simply returns ω = 1λ.

Remark 1. In the plain model, the above definition of privacy is equivalent to saying that for
all pairs of messages m0,m1 ∈M, and for all unqualified subsets U 6∈ A, it holds that

{(Share(1λ,m0))U}λ∈N ≈c {(Share(1λ,m1))U}λ∈N.

3 Continuous Tampering under Selective Partitioning

In this section we define a new notion of non-malleability against joint memory tampering and
leakage for secret sharing. Our definition generalizes the one in [FV19] which was tailored to
threshold access structures and to individual leakage/tampering from the shares.

Very roughly, in our model the attacker is allowed to partition the set of share holders in k,
non-overlapping, subsets covering the entire set [n]. This is formalized through the notion of a
k-partition.

Definition 3 (k-partition). Let n, k ∈ N. We call B = (B1, . . . ,Bk) a k-partition of [n] when:

(i)
⋃k
i=1 Bi = [n];

(ii) ∀i1, i2 ∈ [k], with i1 6= i2, we have Bi1 ∩ Bi2 = ∅.

3.1 The Definition

To define non-malleability, we consider an attacker A playing the following game. At the
beginning of the experiment, A chooses two messages m0,m1 possibly depending on the CRS
ω of the underlying secret sharing scheme, and a k-partition (B1, . . . ,Bk) of the set [n]. Hence,
the adversary interacts with a target secret sharing s = (s1, . . . , sn) of either m0 or m1, via the
following queries:

• Leakage queries. For each j ∈ [k], the attacker can leak jointly from the shares sBj .
This can be done repeatedly and in an adaptive fashion, the only limitation being that
the overall amount of leakage on each subset is at most ` ∈ N bits.
• Tampering queries. For each j ∈ [k], the attacker can tamper jointly the shares sBj .

Each such query yields mauled shares (s̃1, . . . , s̃n), for which the adversary is allowed to
see the corresponding reconstructed message w.r.t. an arbitrary reconstruction set T ∈ A
that is also chosen adversarially. This can be done for at most p ∈ N times, and in an
adaptive fashion.

The above naturally yields a notion of bounded-leakage and joint-tampering admissible adver-
sary, as defined below. Note that, in order to rule out trivial attacks, we must require that the
partition B chosen by the attacker be such that no subset of the partition is an authorized set
for the underlying access structure.

Definition 4 (Joint bounded leakage and selective tampering admissible adversaries). Let
n, k, `, p ∈ N, and fix an arbitrary message space M, sharing domain S = S1 × · · · × Sn and
access structure A for n parties. We say that a (possibly unbounded) adversary A = (A1,A2) is
`-bounded-leakage (k, p)-joint-tampering admissible ((k, `, p)-BLTA for short) if it satisfies the
following conditions:
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JSTamperΣ,A(λ, b):

ω←$ Init(1λ)
(B = (B1, . . . ,Bk),m0,m1, α1)←$ A1(ω)
s := (s1, . . . , sn)←$ Share(ω,mb)

stop← false

(α2, i
∗ ∈ [k])←$ A

Onmss(s,·,·),Oleak(s,·)
2 (α1)

Return A3(α2, sBi∗ )
Oracle Oleak(s, (g1, . . . , gk)):

Return g1(sB1), . . . , gk(sBk)

Oracle Onmss(s, T , (f1, . . . , fk)):

If stop = true

Return ⊥
Else
∀i ∈ [k] : s̃Bi := fi(sBi)
s̃ = (s̃1, . . . , s̃n)
m̃ = Rec(ω, s̃T )
If m̃ ∈ {m0,m1}

Return
If m̃ = ⊥

Return ⊥
stop← true

Else return m̃

Figure 1: Experiment defining leakage-resilient (continuously) non-malleable secret sharing un-
der adaptive concurrent reconstruction. The instructions boxed in red are considered only for
continuous non-malleability, in which case the oracle Onmss is implicitly parameterized by the
flag stop.

(i) A1 outputs two messages m0,m1 ∈M and a k-partition B = (B1, . . . ,Bk) of [n] such that
∀j ∈ [k] we have Bj 6∈ A.

(ii) A2 outputs a sequence of poly-many leakage queries, chosen adaptively, (g
(q)
1 , . . . , g

(q)
k )q∈poly(λ)

such that ∀j ∈ [k] it holds that
∑

q |g
(q)
j (·)| ≤ `, where g

(q)
j :×i∈Bj Si → {0, 1}

∗.

(iii) A2 outputs a sequence of p tampering queries, chosen adaptively, (T (q), (f
(q)
1 , . . . , f

(q)
k ))q∈[p]

such that T (q) ∈ A, and ∀j ∈ [k] it holds that f
(q)
j :×i∈Bj Si →×i∈Bj Si.

Very roughly, leakage-resilient non-malleability states that no admissible adversary as de-
fined above can distinguish whether it is interacting with a secret sharing of m0 or of m1. In the
definition below, the attacker is further allowed to obtain in full the shares belonging to one of
the partitions, at the end of the experiment. This is reminiscent of augmented (leakage-resilient)
non-malleability, as considered in [FMNV14, AAG+16, GPR16, CFV19].

Definition 5 (Leakage-resilient non-malleability under selective partitioning). Let n, k, `, p ∈ N
be parameters, and A be an access structure for n parties. We say that Σ = (Init,Share,Rec) is
an augmented `-bounded leakage-resilient p-time non-malleable secret sharing scheme realizing
A under joint k-selective partitioning in the CRS model (resp., in the plain model)—augmented
(k, `, p)-BLR-CNMSS for short—if it is an n-party secret sharing scheme realizing A in the
CRS model (resp., in the plain model) as per Def. 2, and additionally for all (k, `, p)-BLTA
adversaries A = (A1,A2) we have:{

JSTamperΣ,A(λ, 0)
}
λ∈N ≈s

{
JSTamperΣ,A(λ, 1)

}
λ∈N ,

where, for b ∈ {0, 1}, experiment JSTamperΣ,A(λ, b) is depicted in Fig. 1.

In case the above definition holds for all p(λ) ∈ poly(λ), but w.r.t. all PPT adversaries A
(i.e., ≈s is replaced with ≈c in the above equation), we call Σ (augmented, bounded leakage-
resilient) continuously non-malleable. As shown by [FV19], already for the simpler case of
independent tampering, it is impossible to achieve this notion without assuming self-destruct
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(i.e., the oracle Onmss must stop answering tampering queries after the first such query yielding
an invalid reconstructed message).

It is also well-known that computational security is inherent for obtaining continuously non-
malleable secret sharing realizing threshold access structures [BS18]. Unless stated otherwise,
when we refer to non-malleable secret sharing in this paper we implicitly assume security holds
in the computational setting (both for privacy and non-malleability).

3.2 On Augmented Non-Malleability

When dropping the adversary A3 from the above definition, we obtain the standard (non-
augmented) notion of (leakage-resilient, continuous) non-malleability. The theorem below, how-
ever, says that augmented security is essentially for free whenever non-malleability is considered
together with leakage resilience.6 Intuitively, this is because in the reduction we can simply sim-
ulate all leakage queries, and then ask a final leakage query which reveals the output guess of
an hypothetical distinguisher attacking augmented non-malleability.

Theorem 3. Let Σ be a (k, `+ 1, p)-BLR-CNMSS realizing access structure A for n parties in
the CRS model (resp. plain model). Then, Σ is an augmented (k, `, p)-BLR-CNMSS realizing
A in the CRS model (resp. plain model).

Proof. Without loss of generality, we prove the statement in the CRS model. Let A+ =
(A+

1 ,A
+
2 ,A

+
3 ) be a (k, `, p)-BLTA attacker violating Def. 5 for Σ; we construct an adversary

A = (A1,A2) breaking the non-augmented variant of Def. 5 for Σ. Attacker A works as follows:

• Upon receiving ω from the challenger, A1(ω) outputs the same tuple (B,m0,m1) as re-
turned by A+

1 (ω).
• Upon input a leakage query (g1, . . . , gk) from A+

2 , forward the same query to the target
leakage oracle and return the answer to A+

2 .
• Upon input a tampering query (T , (f1, . . . , fk)) from A+

2 , forward the same query to the
target tampering oracle and return the answer to A+

2 .

• Let (α2, i
∗) be the final output of A+

2 . Define the leakage function ĝ
α2,A

+
3

i∗ which hard-wires
α2 and a description of A+

3 , takes as input the shares sBi∗ , and returns the decision bit
b′←$ A+

3 (α2, sBi∗ ).

• Forward (ε, . . . , ĝ
α2,A

+
3

i∗ , ε, . . . , ε) to the target leakage oracle, obtaining a bit b′ which is
then sent to the challenger.

The statement follows by observing that A’s simulation to A+’s leakage/tampering queries is
perfect, and moreover A2 leaks a total of at most `+1 bits from each partition of the shares.

3.3 Related Notions

We finally argue that known definitions from the literature can be cast by either restricting, or
slightly tweaking, Def. 5.

Individual leakage and tampering. The definition below restricts the adversary to leak/-
tamper from/with each of the shares individually; this is sometimes known as local or inde-
pendent leakage/tampering. The condition on leakage admissibility, though, is more general,
in that the attacker can leak an arbitrary amount of information as long as the total leakage
reduces the uncertainty on each share (conditioned on the other shares) by at most ` bits.

6While we state the theorem for the case of bounded leakage, an identical statement holds in the noisy-leakage
setting.
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Definition 6 (Independent noisy leakage and tampering admissible adversaries). Let n, `, p ∈
N, and fix an arbitrary message space M, sharing domain S = S1 × · · · × Sn and access
structure A for n parties. We say that a (possibly unbounded) adversary A = (A1,A2) is
`-noisy-leakage independent-tampering admissible ((n, `, p)-NLTA for short) if it satisfies the
following conditions:

(i) A1 outputs two messages m0,m1 ∈M and the partition B = ({1}, . . . , {n}).
(ii) A2 outputs a sequence of poly-many leakage queries (chosen adaptively) (g

(q)
1 , . . . , g

(q)
n )q∈poly(λ)

such that ∀i ∈ [n] we have g
(q)
i : Si → {0, 1}∗, and ∀m ∈M it holds that:

H̃∞
(
Si|(Sj)j 6=i, g

(1)
i (Si), · · · , g(p)

i (Si)
)
≥ H̃∞(Si|(Sj)j 6=i)− `,

where (S1, . . . ,Sn) is the random variable corresponding to Share(Init(1λ),m).

(iii) A2 outputs a sequence of tampering queries (chosen adaptively) (T (q), (f
(q)
1 , . . . , f

(q)
n ))q∈[p]

such that T (q) ∈ A, and ∀i ∈ [n] it holds that f
(q)
i : Si → Si.

When restricting Def. 5 to all PPT (n, `, poly(λ))-NLTA adversaries, we obtain the notion
of (augmented) `-noisy leakage-resilient continuously non-malleable secret sharing against indi-
vidual leakage and tampering (with adaptive concurrent reconstructions) [FV19]. Finally, if we
consider n = 2 and the threshold access structure with reconstruction parameter % = 2 (i.e., both
shares are required in order to reconstruct the message), we immediately obtain noisy leakage-
resilient continuously non-malleable codes in the split-state model [FMNV14, OPVV18]. In
what follows, we write Tamper(λ, b) to denote the random variable in the security experiment
of Def. 5 with an (n, `, p)-NLTA adversary.

Leakage-resilient secret sharing. Further, when no tampering is allowed (i.e., p = 0), we
obtain the notion of leakage-resilient secret sharing [DDV10, KMS18, SV18, ADN+18, NS19]
as a special case. In particular, we write JSLeak(λ, b) to denote the random variable in the
security experiment of Def. 5 with a (k, `, 0)-BLTA adversary, and Leak(λ, b) to denote the
random variable in the security experiment of Def. 5 with an (n, `, 0)-NLTA adversary.

Recall that, by Theorem 3, the augmented variant is without loss of generality as long as
leakage resilience holds for ` ≥ 2.

4 Construction in the CRS Model

4.1 Description of the Scheme

We show how to obtain leakage-resilient continuously non-malleable secret sharing for arbitrary
access structures in the CRS model, with security against joint selective partitioning. Our
construction combines a commitment scheme (Gen,Com) (cf. §A.2), a non-interactive proof
system (CRSGen,Prove,Ver) of knowledge of a committed value that supports labels (cf. §A.3),
and an auxiliary n-party secret sharing scheme Σ = (Share,Rec), as depicted in Fig. 2.

The main idea behind the scheme is as follows. The CRS includes the CRS ω for the proof
system and the public key pk for the commitment scheme. Given a message m ∈M, the sharing
procedure first shares m using Share, obtaining shares (s1, . . . , sn). Then, it commits to the i-th
share si along with the position i using randomness ri, and finally generates n−1 proofs (πij)j 6=i
for the statement ci using each time the value cj = Com(pk , j||sj ; rj) as label. The final share
of player i consists of si, along with the randomness ri used to obtain ci and all the values
(cj)j 6=i and (πij)j 6=i. The reconstruction procedure, given a set of shares s∗I , first checks that
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for each i ∈ I the commits (cj)j 6=i contained in each share are all equal, and moreover each ci
is indeed obtained by committing i||si with the randomness ri; further, it checks that all the
proofs verify correctly w.r.t. the corresponding statement and label. If any of the above checks
fails, the algorithm returns ⊥ and otherwise it outputs the same as Rec(sI).

Intuitively, our scheme can be seen as a generalization of the original construction of con-
tinuously non-malleable codes in the split-state model from [FMNV14]. In particular, when
n = 2, the two constructions are identical except for two differences: (i) We commit to each
share, whereas [FMNV14] uses a collision-resistant hash function; (ii) We include the position of
each share in the commitment. Roughly speaking, the first modification is necessary in order to
prove privacy (as hash functions do not necessarily hide their inputs). The second modification
is needed in order to avoid that an attacker can permute the shares within one of the partitions,
which was not possible in the setting of independent tampering. We establish the following
result.

Theorem 4. Let n, k ∈ N, and A be any access structure for n parties. Assume that:

(i) Σ is an n-party augmented `-bounded leakage-resilient secret sharing scheme realizing ac-
cess structure A under k-selective joint leakage in the plain model;

(ii) (Gen,Com) is a statistically hiding and computationally binding commitment scheme with
commitment length γ = O(λ);

(iii) (CRSGen,Prove,Ver) is a true-simulation extractable non-interactive zero-knowledge argu-

ment system for the language Lpkcom = {c ∈ {0, 1}γ : ∃i ∈ [n], s ∈ Si, r ∈ R s.t. Com(pk , i||s;
r) = c}.

Then, the secret sharing scheme Σ∗ described in Fig. 2 is an n-party augmented `∗-bounded

Let Σ = (Share,Rec) be an auxiliary secret sharing scheme realizing access structure A, with
message spaceM and share space S = S1× · · · × Sn. Let (Gen,Com) be a commitment scheme
with domain {0, 1}∗, and (CRSGen,Prove,Ver) be a non-interactive argument system for the

language Lpkcom = {c ∈ {0, 1}γ : ∃i ∈ [n], s ∈ Si, r ∈ R s.t. Com(pk , i||s; r) = c} that supports
labels in {0, 1}γ . Define the following secret sharing scheme Σ∗ = (Init∗,Share∗,Rec∗) in the
CRS model.

Initialization algorithm Init∗: Sample ω←$ CRSGen(1λ) and pk ←$ Gen(1λ), and return
ω∗ = (ω, pk).

Sharing algorithm Share∗: Upon input ω∗ = (ω, pk) and a value m ∈ M, compute
(s1, . . . , sn)←$ Share(m). For each i ∈ [n], generate ri←$R and define ci =
Com(pk , i||si; ri). For each i, j ∈ [n] such that i 6= j, define πji ←$ Prove(ω, cj , (ci, i||si, ri)).
Return the shares s∗ = (s∗1, . . . , s

∗
n), where for each i ∈ [n] we set s∗i =

(si, ri, (cj)j 6=i, (π
i
j)j 6=i).

Reconstruction algorithm Rec∗: Upon input ω∗ = (ω, pk) and shares (s∗i )i∈I parse s∗i =
(si, ri, (c

i
j)j 6=i, (π

i
j)j 6=i) for each i ∈ I. Hence, proceed as follows:

(a) If ∃i1, i2 ∈ I and j ∈ [n] such that ci1j 6= ci2j , output ⊥; else let the input shares be

s∗i = (si, ri, (cj)j 6=i, (π
i
j)j 6=i) for each i ∈ I.

(b) If ∃i ∈ I such that Com(pk , i||si; ri) 6= ci, output ⊥.
(c) If ∃i, j ∈ I such that i 6= j and Ver(ω, cj , (ci, π

j
i )) = 0, output ⊥.

(d) Else, output Rec((si)i∈I).

Figure 2: Leakage-resilient continuously non-malleable secret sharing for arbitrary access struc-
tures against selective joint leakage/tampering, in the CRS model.
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leakage-resilient continuously non-malleable secret sharing scheme realizing access structure A
under k-selective partitioning with concurrent reconstruction in the CRS model, as long as
` = 2`∗ + nγ +O(λ log λ).

4.2 Proof Overview

Before coming to the proof, we discuss the main intuition behind privacy and continuous non-
malleability.

Privacy. In order to show privacy, we need to prove that no PPT attacker A can distinguish
between PrivacyΣ∗,A(1λ, 0) and PrivacyΣ∗,A(1λ, 1) (cf. Def. 2). Recall that in this experiment,
after seeing the CRS, the attacker can select an unauthorized subset U along with messages
(m0,m1), after which it is given the shares s∗U (either corresponding to message m0 or to m1).

Consider a game hop in which we generate the CRS together with a simulation trapdoor,
and we replace the proofs πji in the target secret sharing s∗ with simulated proofs. A reduction
to adaptive multi-theorem zero knowledge of the NIZK (cf. Def. 13 in §A.3) shows that no
attacker can distinguish this modified experiment from the original game. Next, we replace
the values ci with commitments to dummy values. A simple hybrid argument, relying on the
statistical hiding property of the commitment (cf. Def. 12 in §A.2), shows that this experiment
is statistically close to the previous one.

Finally, we reduce to the privacy of Σ. In particular, note that the reduction can locally
sample the CRS and compute the values ci (with exactly the same distribution as in the final
experiment).

Non-malleability. The goal is to show that no PPT attacker A can distinguish the experi-
ments JSTamperΣ∗,A(λ, 0) and JSTamperΣ∗,A(λ, 1) (cf. Def. 5). Recall that A, after seeing
the CRS, can selectively partition the set [n] into k blocks B1, . . . ,Bk, and then jointly leak from
and tamper with the shares within each block. The proof proceeds via a hybrid argument, as
outlined below.

Hyb1
Σ∗,A(λ, b): In the first hybrid, we modify the distribution of the target secret sharing s∗ =
(s1, . . . , sn). In particular, we first let the NIZK simulator S0 program the CRS ω yielding
simulation trapdoor ζ and extraction trapdoor ξ, and then we compute each of the proofs
πji by running the NIZK simulator S1 upon input ζ, statement ci and label cj .

Hyb2
Σ∗,A(λ, b): In the second hybrid, we modify the way tampering queries are answered. In
particular, let (T , (f1, . . . , fk)) be a generic tampering query, and s̃∗ = (s̃∗1, . . . , s̃

∗
n) be

the mauled secret sharing after tampering jointly with the shares; here, each s̃∗i can be
parsed7 as s̃∗i = (s̃i, (c̃j)j 6=i, (π̃

i
j)j 6=i).

The tampering oracle proceeds as follows: (a) In case the set of mauled commitments
(c̃)i∈[n] is equal to the set of initial commitments (ci)i∈[n] considered in their order, the
answer is ; (b) In case there exist at least two distinct indices i1, i2 such that c̃i1 = ci2 ,
abort; (c) Otherwise, there exists at least one commitment c̃i∗ that is different from all
the initial commitments (ci)i∈[n]. In the latter case, we can use the extraction trapdoor
and the knowledge extractor of the NIZK to extract8 from each set s̃∗Bi of tampered shares

7As in the original experiment, the tampering oracle first checks that the commitments in each of the shares
are all equal, that the NIZK proofs are accepting, and that each c̃j is indeed a valid commitment of j||s̃j ; in case
any of these checks fails, the oracle self-destructs.

8More in details, the extraction procedure extracts the missing shares from the proofs whose statement or
label corresponds to one of the mauled commitments; since we might extract one of the shares from more than
one proof, the procedure further checks that those the extracted shares are all consistent. Cf. Fig. 4 on page 18
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the missing shares s̃∗T \Bi , which yields a candidate answer for the attacker’s tampering
query: In case the answers are all consistent for each of the k subsets in the partition, the
oracle returns this value, and otherwise it outputs ⊥ and self-destructs.

As a first step, we argue that JSTamperΣ∗,A(λ, b) and Hyb1
Σ∗,A(λ, b) are computationally

close. This follows readily from adaptive multi-theorem zero knowledge of the NIZK (cf. Def. 13
in §A.3), as the only difference between the two experiments is the fact that in the latter the
proofs πij are simulated. As a second step, we prove that Hyb1

Σ∗,A(λ, b) and Hyb2
Σ∗,A(λ, b) are

also computationally indistinguishable. More in details, we show how to bound the probability
that the output of the tampering oracle in the two experiments differs in the above described
cases (a), (b) and (c). In case (a), we rely on computational binding (cf. Def. 11 in §A.2) of
(Gen,Com) to argue that if the mauled shares are equal to the original, the underlying sharing
is also unchanged. In case (b), we rely again on computational binding of (Gen,Com) using the
fact that each value ci is obtained by committing to both the share si and the position i ∈ [n],
so that permuting the commitments within a given subset of the partition B yields an invalid
output. In case (c), we rely on simulation extractability (cf. Def. 14 in §A.3) to argue that
whenever the outcome of a tampering query in the first hybrid is a valid message m̃ ∈M, this
value must be the same that can be extracted from the proofs associated to the commitments
that have been modified; here is where we exploit the fact that the NIZK supports labels, since
the extractor works as long as either the statement or the label mauled by the adversary are
fresh.

Next, we show that no PPT attacker A can distinguish between Hyb2
Σ∗,A(λ, 0) and Hyb2

Σ∗,A(λ,

1) with better than negligible probability. To this end, we build a reduction Â to leakage re-
silience of the underlying secret sharing Σ. In order to keep the exposition simple, let us first
assume that A is not allowed to ask leakage queries. Very roughly, the reduction works as
follows.

• (Simulate the CRS.) At the beginning, Â receives the challenge CRS ω, samples
the public key pk , and runs A upon (ω, pk) with fresh randomness r. Upon receiving
(B,m0,m1), then Â forwards the same tuple to the challenger.
• (Learn the self-destruct index.) Note that in the last hybrid, the tampering oracle

computes the answers to A’s tampering queries by computing a candidate answer for each
set Bi of the partition, and then this value is returned if the candidate values are all
consistent (and otherwise a self-destruct is triggered). Since Â outputs the same partition
B chosen by A, it can compute the different candidates by running A with hard-wired
randomness r inside the leakage oracle,9 and then use a pairwise independent hash function
to determine using a binary search the first index where the candidates differ. By pairwise
independence, this strategy yields the index of the query p∗ in which A provokes a self-
destruct with overwhelming probability, and by leaking at most O(λ log λ) bits from each
subset.
• (Play the game.) Once the self-destruct index p∗ is known, the idea is that now Â can

restart A outside the leakage oracle, with the same randomness r, and answer to the first
p∗− 1 tampering queries given the shares s̃Bi within one of the partitions, after which the
answer to all remaining tampering queries is set to be ⊥, so that Â can output the same
guess of A and keep its advantage. Here, we rely on the fact that Σ is augmented leakage
resilient, i.e. leakage resilience still holds even if Â is given the shares belonging to one of

for a precise description.
9To be more precise, this also requires to leak the initial commitments to each share, to simulate the NIZK

proofs as done in the last hybrid, and to hard-wire those values in each leakage query. However, the latter can
be done easily by the reduction.
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the partitions after the leakage is done. By Thm. 3 (cf. §3.2), this assumption is without
loss of generality.

Finally, we show how to remove the simplifying assumption that A cannot leak from the
shares. The difficulty when considering leakage is that we cannot run anymore the entire
experiment with A inside the leakage oracle, as the answer to A’s leakage queries depends on
the shares outside a given partition. However, note that in this case we can stop the execution
whenever A asks a leakage query and inform the reduction to leak from the other shares whatever
information is needed to continue the execution of each copy of A inside the leakage oracle.

This allows to obtain the answers to all leakage queries of A up to a self-destruct occurs.
In order to obtain the answers to the remaining queries, we must re-run A inside the leakage
oracle and adjust the simulation consistently with the self-destruct index being p∗. In the
worst case, this requires 2`∗ bits of leakage from the shares, yielding the final bound of 2`∗ +
nγ + O(λ log λ). At the end, the reduction knows the answer to all leakage queries of A with
hard-wired randomness r, and can thus win the game with the challenger in the same way as
explained above.

4.3 Security Analysis

Correctness w.r.t. access structure A is immediate. We thus need to prove that Σ∗ satisfies
privacy and continuous non-malleability.

Privacy. We need to show that

{PrivacyΣ∗,A(λ, 0)}λ∈N ≈c {PrivacyΣ∗,A(λ, 1)}λ∈N.

Below, we describe the experiment PrivacyΣ∗,A(λ, b) after expanding the specification of
Init∗ and Share∗.

• Generate ω∗←$ Init∗(1λ), where Init∗ is computed as follows:

– upon receiving 1λ, compute ω←$ CRSGen(1λ), pk ←$ Gen(1λ);
– output ω∗ = (ω, pk).

• Run (α1,m0,m1,U /∈ A)←$ A1(ω∗).
• Compute (s∗1, . . . , s

∗
n)←$ Share∗(ω∗,mb), where Share∗ is defined as follows:

– upon receiving (ω∗,m), parse ω∗ = (ω, pk) and compute (s1, . . . , sn)←$ Share(m);
– for all i ∈ [n], generate ri←$R and compute ci = Com(pk , i||si; ri) and, for all j ∈ [n]

such that j 6= i, compute πji = Prove(ω, cj , (ci, i||si, ri));
– for all i ∈ [n], write s∗i = (si, ri, (cj)j 6=i, (π

i
j)j 6=i);

– output (s∗1, . . . , s
∗
n).

• Run b′←$ A2(α1, (s
∗
u)u∈U ).

Let S = (S0, S1) be the simulator for the adaptive multi-theorem zero-knowledge property of
Π, and consider the hybrid experiment HybΣ∗,A(λ, b) in which the algorithms Init∗ and Share∗

are replaced by Init′ and Share′, defined below.

• Algorithm Init′:

– upon receiving 1λ, compute (ω, ζ)←$ S0(1λ), pk ←$ Gen(1λ);
– output ω∗ = (ω, pk).

• Algorithm Share′ (with hard-wired ζ):
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– upon receiving (ω∗,m), parse ω∗ = (ω, pk) and compute (s1, . . . , sn)←$ Share(m);
– for all i ∈ [n], generate ri←$R, compute ci = Com(pk , i||si; ri), and for all j ∈ [n]

with j 6= i let πji ←$ S1(ζ, cj , ci);
– for all i ∈ [n], write s∗i = (si, ri, (cj)j 6=i, (π

i
j)j 6=i);

– output (s∗1, . . . , s
∗
n).

Finally, consider the experiment HybtΣ∗,A(λ, b), defined below.

• Generate (ω∗, ζ)←$ Init′(1λ).
• Run (α1,m0,m1,U /∈ A)←$ A1(ω∗).
• Compute (s1, . . . , sn)←$ Share(mb).
• Generate m̂←$M and compute (ŝ1, . . . , ŝn)←$ Share(m̂).
• For all i ∈ [n], generate ri←$R and compute ci as follows. If i ∈ U or i > t, compute
ci = Com(pk , i||si, ri); else, compute ci = Com(pk , i||ŝi, ri).
• For all i, j ∈ [n] such that i 6= j, compute πji ←$ S1(ζ, cj , ci).
• For all i ∈ U , write s∗i = (si, ri, (cj)j 6=i, (π

i
j)j 6=i).

• Run b′←$ A2(α1, (s
∗
u)u∈U ).

Note that, for t = 0, the condition i > t is true for all i ∈ [n], thus all the commitments
are computed using the shares from the message mb and the experiments HybΣ∗,A(λ, b) and

Hyb0
Σ∗,A(λ, b) are equivalent.

We now prove that the original experiment is computationally close to the first hybrid
experiment and, for fixed b ∈ {0, 1}, all the hybrid experiments defined above are statistically
close. Finally we prove that, for t = n, the experiments with b = 0 and b = 1 are computationally
close.

Lemma 1. ∀b ∈ {0, 1}: {PrivacyΣ∗,A(λ, b)}λ∈N ≈c {HybΣ∗,A(λ, b)}λ∈N.

Proof. The proof is down to the adaptive multi-theorem zero-knowledge property of the under-
lying non-interactive zero-knowledge argument system Π = (CRSGen,Prove,Ver). By contra-
diction, assume that there exists a PPT attacker A = (A1,A2) that, for any fixed b ∈ {0, 1},
can distinguish between {PrivacyΣ∗,A(λ, b)}λ∈N and {HybΣ∗,A(λ, b)}λ∈N with noticeable ad-
vantage. Consider the following PPT distinguisher D attacking the zero-knowledge property of
Π.

• Upon receiving a CRS ω generated either by CRSGen(1λ) or by the simulator S0(1λ)
(depending on the experiment that D is currently playing), generate pk ←$ Gen(1λ) and
write ω∗ = (ω, pk).
• Run (α1,m0,m1,U)←$ A1(ω∗) and compute s = (s1, . . . , sn)←$ Share(mb).
• For each i ∈ [n], generate ri←$R and compute ci = Com(pk , i||si; ri).
• For each i, j ∈ [n] such that i 6= j, query the challenger with (cj , (ci, i||si, ri)), obtaining

either πji ←$ Prove(ω, cj , (ci, i||si, ri)) or πji ←$ S1(ζ, cj , ci) (depending on the experiment
that D is currently playing).
• For each i ∈ [n], write s∗i = (si, ri, (cj)j 6=i, (π

i
j)j 6=i).

• Write s∗ = (s∗1, . . . , s
∗
n) .

• Run b′←$ A2(α1, (s
∗
i )i∈U ).

• Output b′.

For the analysis, note that the simulation done by D is perfect. Thus, D distinguishes with
noticeable advantage. The lemma follows.

Lemma 2. ∀t ∈ [n]: {Hybt−1
Σ∗,A(λ, b)}λ∈N ≈s {HybtΣ∗,A(λ, b)}λ∈N.
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Proof. The proof is down to the statistical hiding property of the underlying commitment
scheme. Fix t ∈ [n]. By contradiction, assume that there exists a computationally unbounded
adversary A that can distinguish between the two experiments with noticeable advantage.
Consider the following unbounded adversary Â attacking the statistical hiding property of
(Gen,Com).

• Upon receiving pk ←$ Gen(1λ), generate (ω, ζ)←$ S0(1λ) and write ω∗ = (ω, pk).
• Run (α1,m0,m1,U /∈ A)←$ A1(ω∗).
• Generate m̂←$M and compute (ŝ1, . . . , ŝn)←$ Share(m̂).
• Send the pair (t||st, t||ŝt) to the challenger, receiving a commitment ct.
• For all i ∈ [n] such that i 6= t, generate ri←$R and compute ci as follows. If i ∈ U or
i > t, compute ci = Com(pk , i||si; ri); else, compute ci = Com(pk , i||ŝi; ri).
• For all i, j ∈ [n] such that i 6= j, compute πji ←$ S1(ζ, cj , ci).
• For all i ∈ U , write s∗i = (si, ri, (cj)j 6=i, (π

i
j)j 6=i).

• Run b′←$ A2(α1, (s
∗
u)u∈U ).

• Output b′.

Note that the only difference between the two experiments is how the commitment ct is com-
puted. In particular, in case t ∈ U the two experiments are identical and thus we can assume
wlog. that t 6∈ U . Furthermore, the simulation performed by Â is perfect, so that if A tells apart
the two experiments, Â distinguishes if the commitment ct comes from t||st or from t||ŝt, thus
breaking the statistical hiding property of (Gen,Com). The lemma follows.

Lemma 3. {HybnΣ∗,A(λ, 0)}λ∈N ≈c {HybnΣ∗,A(λ, 1)}λ∈N.

Proof. The proof is down to the privacy of the underlying secret sharing scheme Σ. By contradic-
tion, assume that there exists a PPT adversary A that can distinguish between the experiment
with b = 0 and b = 1 with noticeable advantage. Consider the following PPT adversary Â
attacking the privacy of Σ.

• Run (ω, ζ)←$ S0(1λ) and pk ←$ Gen(1λ) and write ω∗ = (ω, pk).
• Run (α1,m0,m1,U /∈ A)←$ A1(ω∗).
• Output (m0,m1,U) to the challenger, receiving the shares (si)i∈U .
• Generate m̂←$M and compute (ŝ1, . . . , ŝn)←$ Share(m̂).
• For all i ∈ [n], generate ri←$R and compute ci as follows. If i ∈ U , compute ci =

Com(pk , i||si; ri); otherwise, compute ci = Com(pk , i||ŝi; ri).
• For all i, j ∈ [n] such that i 6= j, compute πji ←$ S1(ζ, cj , ci).
• For all i ∈ U , write s∗i = (si, ri, (cj)j 6=i, (π

i
j)j 6=i).

• Run b′←$ A2(α1, (s
∗
u)u∈U ).

• Output b′.

For the analysis, note that the reduction is perfect. Therefore, if A distinguishes between the two
experiments with noticeable advantage, Â distinguishes the two messages using the unauthorized
set of shares with noticeable advantage, thus breaking privacy for Σ. This concludes the proof.

Continuous non-malleability. Recall the experiment JSTamperΣ∗,A(λ, b) defining contin-
uous non-malleability for Σ∗. In particular, expanding the definitions of Init∗ and Share∗:

JSTamperΣ∗,A(λ, b):

ω←$ CRSGen(1λ), pk ←$ Gen(1λ), ω∗ := (ω, pk)
(B = (B1, . . . ,Bk),m0,m1, α1)←$ A1(ω∗)
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Oracle O′nmss(s
∗, T , (f1, . . . , fk)):

If stop = true return ⊥
∀i ∈ [k] : s̃∗Bi := fi(s

∗
Bi)

s̃∗ = (s̃∗1, . . . , s̃
∗
n)

If CheckT (ω∗, s̃∗) = 0
Return ⊥ and stop← true

∀t ∈ T :
s∗t = (st, rt, (cj)j 6=t, (π

t
j)j 6=t)

s̃∗t = (s̃t, r̃t, (c̃j)j 6=t, (π̃
t
j)j 6=t)

If ∀j ∈ [n], c̃j = cj , return
If ∃j1, j2 ∈ [n] : c̃ji = cj2 , abort

Ĩ = {i ∈ [n] : c̃i /∈ (cj)j∈[n]}
∀i ∈ [k] : m̃i←$ ExtractT ,Ĩ(ξ, s̃

∗
Bi)

If ∃i, j ∈ [k] : m̃i 6= m̃j or m̃i = ⊥:
Return ⊥ and stop← true

m̃ = m̃i

If m̃ ∈ {m0,m1}
Return

Else return m̃

Algorithm CheckT (ω∗, (s̃∗i )i∈I):

∀i ∈ T ∩ I : s̃∗i = (s̃i, r̃i, (c̃
i
j)j 6=i, (π̃

i
j)j 6=i)

If ∃i1, i2 ∈ T , j ∈ [n] : c̃i1j 6= c̃i2j
Return 0

∀i ∈ T ∩ I : s̃∗i = (s̃i, (c̃j)j 6=i, (π̃
i
j)j 6=i)

If ∃i ∈ T ∩ I : c̃i 6= Com(pk , i||s̃i; r̃i)
Return 0

If ∃j ∈ T , i ∈ [n] : Ver(ω, c̃j , (c̃i, π̃
j
i )) = 0

Return 0
Return 1

Algorithm ExtractT ,Ĩ(ξ, (s̃
∗
i )i∈I):

∀i ∈ T ∩ I : s̃∗i = (s̃i, r̃i(c̃j)j 6=i, (π̃
i
j)j 6=i)

∀t ∈ T :

If t ∈ Ĩ:
∀j ∈ [n], j 6= t :

(posjt ||s̃
j
t , r

j
t )←$ K(ξ, c̃j , (c̃t, π̃

j
t ))

Else:

∀j ∈ Ĩ :

(posjt ||s̃
j
t , r

j
t )←$ K(ξ, c̃j , (ct, π̃

j
t ))

If ∃j, j1, j2 : s̃j1t 6= s̃j2t or rj1t 6= rj2t
or posjt 6= t

Return ⊥
Write s̃t = s̃jt for any j

Return Rec((s̃t)t∈T )

Figure 3: Construction of the oracle O′nmss used in the experiment Hyb2
Σ∗,A(λ, b).

(s1, . . . , sn)←$ Share(mb)
∀i ∈ [n] : ri←$R, ci = Com(pk , i||si; ri)
∀i, j ∈ [n], i 6= j : πji ←$ Prove(ω, cj , (ci, i||si, ri))
∀i ∈ [n] : s∗i := (si, ri, (cj)j 6=i, (π

i
j)j 6=i)

stop← false

(α2, i
∗ ∈ [k])←$ A

Onmss(s∗,·,·),Oleak(s
∗,·)

2 (α1)
Return A3(α2, sBi∗ )

Consider the following hybrid experiments:

• Hyb1
Σ∗,A(λ, b): consider the simulator S = (S0, S1) for the NIZK and replace the in-

structions ω←$ CRSGen(1λ) and πji ←$ Prove(ω, cj , (ci, i||si)) with (ω, ζ, ξ)←$ S0(1λ) and

πji ←$ S1(ζ, cj , ci) respectively.
• Hyb2

Σ∗,A(λ, b): replace the oracle Onmss with O′nmss described in Fig. 3.

We first prove that the above experiments are computationally close, i.e. for all b ∈ {0, 1},{
JSTamperΣ∗,A(λ, b)

}
λ∈N ≈c

{
Hyb1

Σ∗,A(λ, b)
}
λ∈N ≈c

{
Hyb2

Σ∗,A(λ, b)
}
λ∈N .

Then, we prove that {
Hyb2

Σ∗,A(λ, 0)
}
λ∈N ≈c

{
Hyb2

Σ∗,A(λ, 1)
}
λ∈N
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by reduction to the underlying LRSS scheme Σ, thus proving continuous non-malleability:{
JSTamperΣ∗,A(λ, 0)

}
λ∈N ≈c

{
JSTamperΣ∗,A(λ, 1)

}
λ∈N .

Lemma 4. ∀b ∈ {0, 1}: {JSTamperΣ∗,A(λ, b)}λ∈N ≈c {Hyb1
Σ∗,A(λ, b)}λ∈N.

Proof. The proof is down to the adaptive multi-theorem zero-knowledge property of the un-
derlying non-interactive zero-knowledge argument system Π = (CRSGen,Prove,Ver). By con-
tradiction, assume that there exists a PPT distinguisher A = (A1,A2,A3) that, for any fixed
b ∈ {0, 1}, can distinguish between {JSTamperΣ∗,A(λ, b)}λ∈N and {Hyb1

Σ∗,A(λ, b)}λ∈N with no-
ticeable advantage. Consider the following PPT distinguisher D attacking the zero-knowledge
property of Π.

• Upon receiving a CRS ω that is generated either from CRSGen(1λ) or from the simulator
S0(1λ) (depending on the experiment that D is currently playing), generate pk ←$ Gen(1λ)
and write ω∗ = (ω, pk).
• Run (B,m0,m1, α1)←$ A1(ω∗) and compute s = (s1, . . . , sn)←$ Share(mb).
• For each i ∈ [n], generate ri←$R and compute ci = Com(pk , i||si; ri).
• For each i, j ∈ [n] such that i 6= j, query the challenger with (cj , (ci, i||si, ri)), obtaining

either πji ←$ Prove(ω, cj , (ci, i||si, ri)) or πji ←$ S1(ζ, cj , ci) (depending on the experiment
that D is currently playing).
• For each i ∈ [n], write s∗i = (si, ri, (cj)j 6=i, (π

i
j)j 6=i).

• Write s∗ = (s∗1, . . . , s
∗
n) and set stop← false.

• Run (α2, i
∗)←$ A

Onmss(s∗,·,·),Oleak(s
∗,·)

2 (α1).
• Return the same as A3(α2, sBi∗ ).

For the analysis, note that the simulation done by D is perfect. In particular, D can impersonate
the oracles Onmss and Oleak and can answer all the queries. Thus, D distinguishes with noticeable
probability. The lemma follows.

Lemma 5. ∀b ∈ {0, 1}: {Hyb1
Σ∗,A(λ, b)}λ∈N ≈c {Hyb2

Σ∗,A(λ, b)}λ∈N.

Proof. The only difference between the two experiments is how the oracle answers the tampering
queries. In both experiments the following checks are performed:

• if there exist indices i1, i2 ∈ T , j ∈ [n] such that ci1j 6= ci2j , self-destruct;
• if there exist an index i ∈ T such that Com(pk , i||si; ri) 6= ci, self-destruct;
• if there exist indices i, j ∈ T such that Ver(ω, cj , (ci, π

j
i )) = 0, self-destruct.

In particular, the check phase is perfectly simulated. Then, the oracle O′nmss finds the indices
in which a mauled commitment appears.

• If ∀j ∈ [n], c̃j = cj , then Com(pk , j||s̃j ; r̃j) = Com(pk , j||sj ; rj); call Bad1 the event that
s̃j 6= sj . If Bad1 does not happen, the adversary didn’t modify any of the shares, and
thus the reconstructed message also remains the same mb ∈ {m0,m1}.
• If there exist two distinct j1, j2 ∈ [n] such that c̃j2 = cj1 , abort the experiment; call this

event Bad2.
• If none of the above holds, then there exists at least one fresh commitment c̃j , namely a

commitment c̃j 6∈ (ci)i∈[n]; call Ĩ the set of indices for which the commitment is fresh.

Next, the oracle O′nmss reconstructs a message for each subset Bi by extracting the needed
shares from the proofs. In particular, for all t ∈ T , the oracle extracts the pair (posjt ||s̃

j
t , r

j
t )

from (c̃t, π̃
j
t ) using c̃j as label, and this happens for all j ∈ [n] if c̃t is fresh and for all j ∈ Ĩ
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otherwise. At this point of the execution, all proofs verify (otherwise, the oracle would have
already provoked a self-destruct during the check phase) and all tuples (c̃j , (c̃t, π̃

j
t )) with the

above condition on j are fresh, so that the extractor K can extract the pair (posjt ||s̃
j
t , r̃

j
t ). Call

Bad3 the event that Com(pk , posjt ||s̃
j
t ; r̃

j
t ) 6= c̃t = Com(pk , t||s̃t; r̃t) and Bad4 the event that

posjt ||s̃
j
t 6= t||s̃t for any j. If neither Bad3 nor Bad4 happen, the algorithm Extract managed to

extract all the shares (s̃t)t∈T and can reconstruct the message. In fact, if Bad3 does not happen,
the extracted shares are consistent with the mauled commits and, if Bad4 does not happen,
for all j1, j2, posj1t ||s̃

j1
t = posj2t ||s̃

j2
t = t||s̃t. Finally, the oracle computes m̃i = Rec((s̃t)t∈T ) and,

since Rec((s̃t)t∈T ) does not depend on the set Bi chosen to extract the shares, we can simply
write m̃ = m̃i.

The last part of the reconstruction is identical to the one performed in the original oracle:
if m̃ = ⊥, self-destruct; if m̃ ∈ {m0,m1}, output ; otherwise, output m̃. Call Bad =
Bad1 ∪Bad2 ∪Bad3 ∪Bad4. If Bad does not happen, the two oracles Onmss and O′nmss are
equivalent. It remains to show that the event Bad happens with negligible probability.

• The event Bad1 happens when Com(pk , j||s̃j ; r̃j) = Com(pk , j||sj ; rj) but s̃j 6= sj . A
straightforward reduction to the computational binding property of (Gen,Com) shows that
this event happens with negligible probability. By contradiction, suppose that there exists
an adversary A that triggers Bad1 with noticeable probability. Then, we can construct an
algorithm Â that, upon receiving a setup string pk ←$ Gen(1λ), emulates the experiment
Hyb1

Σ∗,A(λ, b) and, upon receiving a tampering query by A that triggers the event Bad1,
halts the execution of A and outputs the values (j||s̃j , r̃j) and (j||sj , rj) that result in the
same commitment cj , thus breaking the computational binding property of (Gen,Com).
• The event Bad2 happens when Com(pk , j1||s̃j1 ; r̃j1) = Com(pk , j2||sj2 ; rj2) but j1||s̃j1 6=
j2||sj2 . Again, a straightforward reduction to the computational binding property of
(Gen,Com) shows that this event happens with negligible probability. The proof is iden-
tical to the previous one and thus omitted.
• The event Bad3 happens when the pair of commitments (c̃j , c̃i) is fresh and Ver(ω, c̃j , (c̃i,

πji )) = 1, but the relation over Lpkcom does not hold for (c̃i, (i||s̃i, r̃i)), i.e. Com(pk , i||s̃i; r̃i) 6=
c̃i. A reduction to the true simulation extractability of (CRSGen,Prove,Ver) shows that
this event happens with negligible probability. By contradiction, suppose that there exists
an adversary A that triggers Bad3 with noticeable probability. Then, we can construct
the following algorithm Â.

– Upon receiving ω such that (ω, ζ, ξ)←$ S0(1λ), generate pk ←$ Gen(1λ) and run
(B,m0,m1, α1)←$ A1((ω, pk)).

– Compute (s1, . . . , sn)←$ Share(mb) and, for all i ∈ [n], generate ri←$R and compute
ci = Com(pk , i||si; ri).

– For all i, j ∈ [n], i 6= j, query the challenger with (cj , (ci, i||si, ri)), receiving πji ←$ S1(ζ,
cj , ci).

– For all i ∈ [n], s∗i = (si, ri, (cj)j 6=i, (π
i
j)j 6=i).

– Run A2(α1), answering to all its leakage queries as in the original experiment. Upon
receiving a tampering query:

∗ perform the same steps of Onmss;
∗ upon mauling s∗t , for all t ∈ T , j ∈ [n], j 6= t, if (c̃t, c̃j) is fresh, the commitments

are correct and the proof π̃tj verifies, save for later the tuple (c̃t, c̃j , π̃
t
j).

– Randomly choose and output one of the tuples (c̃t, c̃j , π̃
t
j).

For the analysis, we next prove that the reduction breaks true simulation extractability
with noticeable probability. Note first that all the proofs simulated by S0 are relative to
true statements, thus we can apply true simulation extractability. Call p the total number
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of tampering queries asked by A and call q the query from which Â chooses the output. If
Bad3 happens, the probability of Â guessing the right query is at least 1

p ; call p∗ one of

such queries. Furthermore, if Bad3 happens in query p∗ = q, Â can choose among up to
n2 − n tuples; call (j∗, t∗) the indices referring to one of the tuples in query p∗ triggering
the event Bad3 and (j, t) the indices referring to the tuple chosen by Â. The probability
of Â breaking true simulation extractability is

P
[
Â wins

]
≥ P [Bad3 ∧ q = p∗ ∧ (j, t) = (j∗, t∗)]

≥ P [Bad3]P [q = p∗|Bad3]P [(j, t) = (j∗, t∗)|Bad3 ∧ q = p∗] .

Since P [(j, t) = (j∗, t∗)|Bad3 ∧ q = p∗] = 1
n2−n and n is polynomial in λ, the third factor is

1
poly(λ) . Similarly, P [q = p∗|Bad3] = 1

p(λ) = 1
poly(λ) , being p(λ) polynomial in λ. Finally,

if Bad3 happens with noticeable probability, all the three factors are 1
poly(λ) and their

product is 1
poly(λ) . This concludes the reduction.

• The event Bad4 happens when the extractor K successfully extracts a pair (posjt ||s̃
j
t , r̃

j
t )

that verifies the relation with c̃t (i.e. Com(pk , posjt ||s̃
j
t ; r̃

j
t ) = c̃t), but posjt ||s̃

j
t 6= t||s̃t. Since

c̃t = Com(pk , t||s̃t; r̃t), a straightforward reduction to the computational binding property
of (Gen,Com) shows that this event happens with negligible probability. The proof is
similar to the ones about Bad1 and Bad2 and thus omitted.

Finally, since Bad is the union of the above events, its probability is less than or equal to the
sum of the probabilities of the Badi, thus negligible. The lemma follows.

Lemma 6. {Hyb2
Σ∗,A(λ, 0)}λ∈N ≈c {Hyb2

Σ∗,A(λ, 1)}λ∈N.

Proof. The proof is down to the `-bounded leakage-resilience property of Σ. Here we consider
an auxiliary family of weakly universal hash functions10 Ψ. By contradiction, assume that there
exists a PPT adversary A that can tell apart if the scheme has been applied on m0 or on m1.
Consider the following PPT adversary Â attacking `-bounded leakage-resilience of Σ.

1. Run pk ←$ Gen(1λ) and (ω, ζ, ξ)←$ S0(1λ) and write ω∗ = (ω, pk).
2. Generate rA = (rA1 , r

A
2 , r

A
3 )←$RA and run (B,m0,m1, α1)← A1(ω∗; rA1 ).

3. Output (B,m0,m1), obtaining access to the leakage oracle.
4. For all i ∈ [n], generate ri←$R.
5. Query (ĝcomi (pk , r, ·))i∈[k] to the leakage oracle, obtaining (c1, . . . , cn).

6. Simulate the proofs (πji )j 6=i←$ S1(ζ, cj , ci).

7. Initialize the values rcp = ((ri)i∈[n], (ci)i∈[n], (π
j
i )j 6=i), adv = (A2, α1, r

A
2 ) and state =

(ω∗, ξ, adv, rcp) and the empty string Λ← ε.
8. Run the following loop:

• In step q, query (ĝsdi (state,⊥,Λ, 0, ·))i∈[k] to the leakage oracle, obtaining, for all i ∈
[k], either (leak,Λiq) or (done, qitamper). Furthermore, for each i ∈ [k], after receiving

(done, qitamper), we can replace ĝsdi with a function returning ε in order to save leakage
bits.
• If the result of the query contains at least an element of the form (leak,Λiq), replace

any missing Λiq with ε, write Λq = (Λ1
q , . . . ,Λ

k
q ) and set Λ← Λ||Λq;

10A family of hash functions Ψ = {ψ : {0, 1}∗ → {0, 1}λ} is weakly universal if for all x, y ∈ {0, 1}∗ such that
x 6= y, P [ψ(x) = ψ(y)|ψ←$ Ψ] ≤ 1

2λ
.
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Function ĝcomi (pk , r, (sj)j∈Bi):

Parse r = (r1, . . . , rn)
∀j ∈ Bi : cj = Com(pk , j||sj ; rj)
Return (cj)j∈Bi

Function ĝsdi (state, ψ,Λ, q∗, (sj)j∈Bi):

Parse state = (ω∗, ξ, adv, rcp)
Parse ω∗ = (ω, pk) and adv = (A, α, rA)
Parse rcp = ((rj)j∈[n], (cj)j∈[n], (π

i
j)j 6=i)

Parse Λ = (Λ1,Λ2, . . .)

∀j ∈ Bi : s∗j = (sj , rj , (cβ)β 6=j , (π
j
β)β 6=j)

qleak ← 0, qtamper ← 0
stop← false

xi ← ε
Run A(α, r) as follows:

Upon leak query (g1, . . . , gk):
qleak ← qleak + 1
If Λ contains Λqleak , answer Λqleak
Else, quit and return (leak, gi(s

∗
Bi))

Upon tamper query (T , (f1, . . . , fk)):
qtamper ← qtamper + 1

(m̃, c̃)←$ f̂i(state, T , fi, (sj)j∈Bi)
xi ← xi||(m̃, c̃)
If qtamper = q∗

yi ← ψ(xi)
Quit and return (hash, yi)

Else, answer m̃.
If q∗ = 0 return (done, qtamper)
Else return (done)

Function f̂i(state, T , fi, (sj)j∈Bi):
If stop = true return ⊥
Parse state, rcp as in ĝsdi
∀j ∈ Bi : s∗j := (sj , rj , (cβ)β 6=j , (π

j
β)β 6=j)

s̃∗Bi := fi(s
∗
Bi)

If CheckT (ω∗, s̃∗Bi) = 0

Return ⊥ and stop← true

∀t ∈ T : s̃∗t = (s̃t, r̃t, (c̃j)j 6=t, (π̃
t
j)j 6=t)

c̃ := (c̃j)j∈[n]

If ∀j ∈ [n], c̃j = cj , return ( , c̃)
If ∃j1, j2 ∈ [n] : c̃ji = cj2 , abort

Ĩ = {i ∈ [n] : c̃i /∈ (cj)j∈[n]}
m̃←$ ExtractT ,Ĩ(ξ, s̃

∗
Bi)

If m̃ = ⊥ return ⊥ and stop← true

If m̃ ∈ {m0,m1}, return ( , c̃)
Else return (m̃, c̃)

Algorithm ĝleaki (state,Λ, p∗, (sj)j∈Bi):

Parse state, adv, rcp,Λ as in ĝsdi
∀j ∈ Bi : s∗j := (sj , rj , (cβ)β 6=j , (π

j
β)β 6=j)

qleak ← 0, qtamper ← 0, stop← false

Run (α2, iaug)← A(α, r) as follows:
Upon leak query (g1, . . . , gk):
qleak ← qleak + 1
If Λ contains Λqleak , answer Λqleak
Else, quit and return (leak, gi(s

∗
Bi))

Upon tamper query (T , (f1, . . . , fk)):
qtamper ← qtamper + 1
If qtamper ≥ p∗, answer ⊥
Else:

(m̃, c̃)←$ f̂i(state, T , fi, (sj)j∈Bi)
Answer m̃

Return (done, iaug)

Figure 4: Construction of the functions used by the reduction to emulate tampering with
leakage.

• else, break the loop, obtaining the string Λ and the (temporary) number of tamper
queries qtamper = mini{qitamper}.

9. Set range = (q0, q1) = (0, qtamper).
10. Run the following loop:

• If q0 = q1, break the loop obtaining p∗ ← q0 = q1; else, set qm = b q0+q1
2 c.

• Sample ψ←$ Ψ.
• Query (ĝsdi (state, ψ,Λ, qm, ·))i∈[k] to the leakage oracle, obtaining, for all i ∈ [k], either

(hash, yi) or (done).
• If there exist some i, i1, i2 ∈ [k] such that either yi1 6= yi2 or the i-th result of the

query is (done), replace (q0, q1)← (q0, qm);

18



• else, replace (q0, q1)← (qm + 1, q1).

11. Set Λ← ε (i.e. discard all the leakage queries).
12. Run the following loop:

• In step q, query (ĝleaki (state,Λ, p∗, ·))i∈[k] to the leakage oracle, obtaining, for all
i ∈ [k], either (leak,Λiq) or (done, iaug).

• If the result of the query contains (leak,Λiq)i∈[k], write Λq = (Λ1
q , . . . ,Λ

k
q ) and set

Λ← Λ||Λq;
• else, break the loop, obtaining the string Λ and the index iaug of the chosen subset.

13. Tell the leakage oracle that there are no more queries and obtain the shares sBiaug .

14. Write, for all j ∈ Biaug , s∗j = (sj , rj , (cβ)β 6=j , (π
j
β)β 6=j)

15. Run (α2, iaug)← AÂ
2 (α1; rA2 ), answering as follows.

• Upon receiving the q-th leakage query, write Λ = (Λ1, . . . ,Λq, . . .) and return Λq.
• Upon receiving the q-th tampering query (T , f1, . . . , fk): if q ≥ p∗, return ⊥; else,

compute s̃∗Biaug = fiaug(s
∗
Biaug

) and (m̃, c̃)←$ f̂iaug(state, T , fiaug , sBiaug ) and return m̃.

16. Run b′←$ A3(α2, sBiaug ; rA3 ).
17. Return b′.

For the analysis, we must show that Â is `-admissible and that the reduction is correct. Â
makes leakage queries in steps 5, 8, 10 and 12. The leakage amount in step 5 is γ = O(λ)
bits per share. The leakage amount in step 8 is bounded11 by the `∗-admissibility of A. In
step 10, the reduction Â uses the binary search algorithm to find the first index p∗ in which
the mauled commitments or messages from two different subsets differ, thus making up to
log(qtamper) = O(log(λ)) queries; in each query, the information obtained amounts to γ = O(λ)
bits, therefore the overall leakage amount in step 10 is O(λ log(λ)). The leakage amount in step
12 is bounded again by the `∗-admissibility of A.

Summing up the above, the overall leakage amount made by Â from the subset Bi is

|Bi|γ + 2`∗ +O(λ log(λ)) ≤ nγ + 2`∗ +O(λ log(λ)) = `,

therefore Â is `-admissible.
Now it remains to show that the reduction Â behaves, with overwhelming probability, exactly

like the challenger in the experiment Hyb2
Σ∗,A(λ, b). First of all, call Abort the event in which

the computation of f̂i aborts. This event is similar to the event Bad2 in proof to Lemma and
happens when A manages to break the binding property of the underlying commitment scheme
(Gen,Com), hence happening with negligible probability.

• In steps 1-6, the reduction Â determines the randomness of the algorithm A and perfectly
simulates the challenger. On the other side, generates the needed randomness, obtains
the commitments of the shares from the leakage oracle and simulates the proofs.
• In step 7, the reduction gradually acquires the results of the leakage queries and the

number of tamper queries made by A. Since each ĝsdi has only access to the set Bi, at
some point may exist i, j ∈ [k] such that the result of a tampering query made by A in ĝsdi
differs from the result of the same tampering query in ĝsdj , thus the next leakage queries

may also differ. In particular, A may query two different leakage functions for Bi in ĝsdi
and ĝsdj , resulting in an inconsistent answer. However, this is not a problem since the

11We should also consider O(log(λ)) bits given by the indices qitamper. Since O(log(λ)) + O(λ log(λ)) =
O(λ log(λ)), they are irrelevant and thus omitted. The same situation appears in step 12.
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adversary receiving inconsistent answers is the one simulated in the leakage oracle and
such inconsistent answers are discarded in the next steps; in particular, different answers
from the same tampering query q should result in a self-destruct only, thus the tampering
answers should remain the same before the query q and ⊥ (thus, again, the same) from q
onwards. Finally, note that, since q∗ = 0 in ĝsdi , the condition qtamper = q∗ never verifies,
thus there’s no need to specify an hash function ψ ∈ Ψ.
• In steps 8-9, the reduction uses the binary search to find the first query p∗ in which

either the mauled commitments or the resulting reconstructions differ. In particular,
the reduction samples ψ←$ Ψ and the leakage oracle runs up to qm tampering queries,
collecting, for each i ∈ [k], all the relative commitments and reconstructed messages in
a string xi; then, the leakage oracle halts A, computes the hash yi of xi through ψ and
outputs yi. Now the reduction compares all these hashes and halves the search range
accordingly. Call Bad the event in which there exist two different xi 6= xj that generate
the same yi = yj .
• In steps 10-11, the reduction discards all the Λi and queries them again. In particular,

now Â knows when A receives two different answers to the same tampering query (unless
Bad happens) and repeats the leakage acquisition similarly to the one performed in step
7; however, the new function ĝleaki is programmed to answer normally to tamper queries
until the p∗-th query, after which the answer is always ⊥. If Bad does not happen, the
algorithm A asks the same leakage and tampering queries for all i ∈ [k] and the results
remain the same. At the end of the run, ĝleaki returns the index iaug of the subset chosen
by A (that, again, is the same for all ĝleaki unless Bad happens).
• In steps 12-13, the reduction has no more leakage queries to do and can ask for the shares

in the subset Biaug .
• In step 14, the reduction Â finally runs A, answering the leakage and tampering queries

as in ĝleakiaug
. Again, if Bad does not happen, this is a perfect simulation of the challenger:

the answers for the leakage queries have been previously computed and the answers for
the tampering queries remain the same for every subset Bi in which they are computed
(so, in particular, in Biaug).
• Finally, in steps 15-16, the reduction Â obtains the distinguishing bit b′ from A and outputs

the same bit.

The simulation made by Â is perfect unless the event Bad ∪Abort happens; in particular, if
Bad does not happen, the commitments and the reconstructed messages are the same in all
subsets until a self-destruct happens, therefore the check is equivalent to the one performed in the
original experiment. The event Bad happens with negligible probability by weak universality
of Ψ and the event Abort happens with negligible probability by computational binding of
(Gen,Com). Therefore, if A exists, the reduction Â breaks the leakage resilience of Σ by querying
up to ` bits of leakage and telling apart if the scheme has been applied on m0 or on m1 with
noticeable probability. This concludes the proof.

4.4 Concrete Instantiation

Finally, we show how to instantiate Thm. 4 from generic assumptions, thus yielding the state-
ment of Thm. 2 as a corollary. It is well known that true-simulation extractable NIZKs
can be obtained from (doubly-enhanced) trapdoor permutations [FLS90, SCO+01, DHLW10],
whereas statistically hiding non-interactive commitments—with commitment size O(λ) and
2−Ω(λ)-statistical hiding—can be instantiated from collision-resistant hash functions [HM96].

As for the underlying leakage-resilient secret sharing, we can use the recent construction
from [KMS18] which achieves information-theoretic security in the stronger setting where the
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attacker can adaptively leak from subsets of shares of size at most O(log n), in a joint manner.
The latter clearly implies leakage resilience under joint O(n/ log n)-selective partitioning.

5 Construction in the Plain Model

5.1 Description of the Scheme

We show how to obtain leakage-resilient continuously non-malleable secret sharing for arbitrary
access structures in the plain model, with security against individual leakage and tampering
attacks. Our construction combines a non-interactive commitment scheme Com with an auxil-
iary n-party secret sharing scheme Σ = (Share,Rec), as depicted in Fig. 5. The basic idea is to
compute a commitment c to the message m being shared, using random coins r; hence, we secret
share the string m||r using the underlying sharing function Share, yielding shares (s1, . . . , sn).
Hence, the final share of the i-th player is s∗i = (c, si).

We establish the following result. Note that when n = 2, we get as a special case the con-
struction of split-state continuously non-malleable codes in the plain model that was originally
proposed in [OPVV18], and later simplified in [FV19] by relying on noisy leakage. Our proof
can be seen as a generalization of the proof strategy in [FV19] to the case n > 2.

Theorem 5. Let n ∈ N, and let A be an arbitrary access structure for n parties without
singletons. Assume that:

(i) Com is a perfectly binding and computationally hiding non-interactive commitment;
(ii) Σ is an n-party `-noisy leakage-resilient one-time non-malleable secret sharing scheme

realizing access structure A against individual leakage and tampering in the plain model,
with information-theoretic security and with message spaceM such that |M| ∈ ω(log(λ)).

Then, the secret sharing scheme Σ∗ described in Fig. 5 is an n-party `∗-noisy leakage-resilient
continuously non-malleable secret sharing scheme realizing access structure A under individual
leakage and tampering with computational security in the plain model, as long as ` = `∗ + 1 +
γ +O(log λ) where γ = log |C| is the size of a commitment.

Let Com be a non-interactive commitment scheme with message spaceM, randomness space R,
and commitment space C. Let Σ = (Share,Rec) be an auxiliary secret sharing scheme realizing
access structure A, with message space M×R and share space S = S1 × · · · × Sn. Define the
following secret sharing scheme Σ∗ = (Share∗,Rec∗), with message space M and share space
S∗ = S∗1 × · · · × S∗n where for each i ∈ [n] we have S∗i = C × Si.

Sharing algorithm Share∗: Upon input a value m ∈ M, sample random coins r←$R
and compute c = Com(m; r) and (s1, . . . , sn)←$ Share(m||r). Return the shares s∗ =
(s∗1, . . . , s

∗
n), where for each i ∈ [n] we set s∗i = (c, si).

Reconstruction algorithm Rec∗: Upon input shares (s∗i )i∈I parse s∗i = (si, ci) for each i ∈ I.
Hence, proceed as follows:
(a) If ∃i1, i2 ∈ I for which ci1 6= ci2 , return ⊥; else, let the input shares be s∗i = (si, c).
(b) Run m||r = Rec((si)i∈I); if the outcome equals ⊥ return ⊥.
(c) If c = Com(m; r) return m, else return ⊥.

Figure 5: Leakage-resilient continuously non-malleable secret sharing for arbitrary access struc-
tures against individual leakage/tampering in the plain model.
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5.2 Proof Overview

Before coming to the proof, we discuss the main intuition behind privacy and continuous non-
malleability.

Privacy. In order to show privacy, we need to prove that no PPT attacker can distinguish the
distribution of Share∗(1λ,m0)U from Share∗(1λ,m1)U , for any choice of messages m0,m1 ∈ M,
as well as unauthorized subset U 6∈ A. Towards this, consider a modified sharing algorithm
Share′(1λ,m) that is identical to Share(1λ,m), except that the shares (s1, . . . , sn) are now ob-
tained by secret sharing (via Share) an independent (uniformly random) string m̂||r̂.

The proof of privacy then proceeds in two steps. In the first step, we show that for
any message m ∈ M and unauthorized subset U 6∈ A the distributions Share∗(1λ,m)U and
Share′(1λ,m)U are computationally close; this follows by privacy of Σ, as we can easily turn a
distinguisher D telling apart Share∗(1λ,m)U and Share′(1λ,m)U into a distinguisher D̂ telling
apart Share(1λ,m||r)U and Share(1λ, m̂||r)U , for random r.12

In the second step, we show that for all messages m0,m1 ∈ M, and for all unauthorized
subset U 6∈ A, the distributions Share′(1λ,m0)U and Share′(1λ,m1)U are computationally close;
this is because in Share′ the input to the sharing algorithm Share is decoupled from the input
to the commitment Com, which immediately yields a reduction from a distinguisher telling
apart Share′(1λ,m0)U and Share′(1λ,m1)U to a distinguisher telling apart Com(1λ,m0) and
Com(1λ,m1). The latter contradicts computational hiding of the commitment.

Non-malleability. The proof of non-malleability follows along the same lines of the proof
in [OPVV18, FV19]. The goal is to show that no PPT attacker A can distinguish the experiments
TamperΣ∗,A(λ, 0) and TamperΣ∗,A(λ, 1) (cf. Def. 5). Towards this, we consider a hybrid
experiment HybΣ∗,A(λ, b) which is obtained from TamperΣ∗,A(λ, b) by making two changes:
(i) The target secret sharing s∗ is computed using the modified algorithm Share′ considered
already in the proof of privacy; (ii) Whenever the message m̃ reconstructed inside the tampering
oracle Onmss equals the dummy message m̂, we return as long as the mauled commitment
c̃1 = . . . = c̃n equals to the original commitment c, and otherwise we return ⊥ leading to
self-destruct.13

The first step is to show that, for any b, the distributions TamperΣ∗,A(λ, b) and HybΣ∗,A(λ, b)
are statistically close. The proof is by induction on the number of tampering queries p asked
by the attacker A to the target Onmss oracle.

Induction basis. Assume we have an unbounded attacker A telling apart the experiments
TamperΣ∗,A(λ, b) and HybΣ∗,A(λ, b) using a single tampering query (T , (f1, . . . , fn)) to the

target Onmss(s
∗, ·, ·) oracle. We build an unbounded attacker Â whose goal is to distinguish

TamperΣ,Â(λ, 0) and TamperΣ,Â(λ, 1). Roughly, the reduction works as follows. When A

outputs m0,m1 ∈ M, we pick uniformly m̂, r, r̂ and forward m̂0 = mb||r and m̂1 = m̂||r̂ to the
challenger. Denote by s the target secret sharing. Note that the above choice of the messages
m̂0, m̂1 yields a perfectly distributed copy of s∗ inside the target leakage and tampering oracles
Oleak(s, ·) and Onmss(s, ·, ·), by hard-wiring to each query the value c = Com(mb; r). This allows
to trivially simulate all the leakage queries asked by A.

12In particular, upon receiving (ŝu)u∈U , distinguisher D̂ simply appends c = Com(m; r) to each share su, and
finally runs D upon input the resulting set of shares.

13The second change is needed as otherwise an attacker could easily distinguish between the original experiment
and the hybrid by tampering with the identity function.
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In order to simulate A’s tampering query (T , (f1, . . . , fn)), we proceed as follows. We first
leak the mauled commitments (c̃t)t∈T via the target leakage oracle. Hence, we use the target
tampering oracle to obtain the mauled reconstructed value m̃||r̃ corresponding to s̃∗T . Finally, we
can use knowledge of m̃||r̃ and (c̃t)t∈T to simulate the output of A’s tampering query correctly,
with all but a negligible14 probability.

Inductive step. Assume now that the real experiment and the hybrid are indistinguishable
for any unbounded attacker asking at most p tampering queries, but there exists an unbounded
adversary A that can tell them apart using p+1 tampering queries. We construct an unbounded
attacker Â attacking leakage-resilient one-time non-malleability of Σ as in the proof for the
induction basis. The main idea is to simulate the answer to A’s first p tampering queries via
limited leakage; assuming this can be done, we can then use A’s last tampering query in order
to define Â’s unique tampering query exactly as in the previous case.

In particular, for each tampering query (T (q), (f q1 ), . . . , f
(q)
n ) asked by A, the strategy of the

reduction is to leak the mauled commitments (c̃t)t∈T (q) . Hence, if the commitments are all equal

to a single value c̃, attacker Â finds by brute force the corresponding15 opening m̃ and uses this
value to answer A’s query, and otherwise it sets m̃ = ⊥ with consequent self-destruct. To show
that this strategy is sound, we need to overcome two challenges:

1. (Adjusting the final guess.) Note that by answering the first p tampering queries
by inverting the mauled commitment c̃ (when this is possible and such value is uniquely
determined), the reduction neglects the possibility that the answer to one of tampering
queries could be ⊥ (with consequent self-destruct) due to the fact that the inner mauled
secret sharing s̃ encodes an invalid message.
This might cause an inconsistency in the simulation. However, as originally shown
in [OPVV18], the latter problem can be overcome (in the information-theoretic setting) by
having the reduction asking an additional leakage query indicating whether the simulation
of the first p tampering queries was correct or not. Since by the induction hypothesis the
event that A does not provoke a self-destruct within the first p tampering queries must be
noticeable, the extra leakage allows to maintain simulation and in particular preserve the
advantage of A in the reduction.

2. (Bounding the entropy loss.) In order to conclude the proof, we still have to argue
that the reduction did not leak too much information. In fact, note that Â for each
tampering query leaks from the i-th share the mauled commitment c̃i. Since the number
of tampering queries p is an arbitrary polynomial, we cannot simply bound the entropy
loss on each share by the length of a commitment, as this would result in too much leakage.
Instead, we borrow a trick from [FNSV18] which allows to bound the entropy loss on each
share by the size of a single commitment plus O(log λ). Intuitively, this holds because
as long as the commitments c̃i leaked from each share are all equal, we can interpret the
leakage on the si as a function of the other shares (sj)j 6=i. On the other hand, if the
mauled commitments are not all equal, the leakage query does reveal information, but
that accounts to the size of a single commitment and moreover happens at most once,
since the reduction self-destructs afterwards.

14When m̃ = m̂, the reduction returns as long as c̃ = (c̃t)t∈T = c; this is a perfect simulation as long as the
real experiment never outputs m̂, which however happens with overwhelming probability if the message length
is super-logarithmic in the security parameter.

15Note that this value is unique, by perfect binding.
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Concluding the proof. Finally, we show that HybΣ∗,A(λ, 0) and HybΣ∗,A(λ, 1) are compu-
tationally close. Here, we rely on the computational hiding property of the commitment.

In particular, given a PPT attacker A telling apart the experiments HybΣ∗,A(λ, 0) and

HybΣ∗,A(λ, 1) we construct a PPT distinguisher D̂ distinguishing Com(1λ,m0) from Com(1λ,m1).
This is straightforward because in the hybrid experiment the input to the inner secret sharing
algorithm Share is detached from the input to the commitment. Thus, the reduction can com-
pute s = (s1, . . . , sn) as a secret sharing of a random and independent string m̂||r̂, and use the
challenge commitment ĉ to answer all of A’s leakage and tampering queries locally.

5.3 Security Analysis

Correctness w.r.t. access structure A is immediate. We thus need to prove that Σ∗ satisfies
both privacy and continuous non-malleability.

Privacy. We need to prove that for all pairs of messages m0,m1 ∈M, and for all unqualified
subsets U 6∈ A, we have that

{(Share(1λ,m0))U}λ∈N ≈c {(Share(1λ,m1))U}λ∈N.

Consider a modified sharing algorithm Share′ where we let c = Com(m, r), for r←$R, as in
the original scheme, but (s1, . . . , sn) are now defined by secret sharing an independent random
string m̂||r̂←$M×R; the final shares are set to s′i = (c, si) for all i ∈ [n].

Lemma 7. ∀m ∈M, ∀U 6∈ A : {(Share∗(1λ,m))U}λ∈N ≈c {(Share′(1λ,m))U}λ∈N.

Proof. The proof is down to the privacy property of the underlying secret sharing scheme Σ.
By contradiction, assume that there exists a PPT distinguisher D, a message m ∈ M, and an
unauthorized subset U 6∈ A, such that∣∣∣P [D((Share∗(1λ,m))U ) = 1

]
− P

[
D((Share′(1λ,m))U ) = 1

]∣∣∣ ≥ 1

poly(λ)
.

Consider the following PPT distinguisher D̂ attacking privacy of Σ.

• Output messages m̂0 = m||r and m̂1 = m̂||r̂, where m̂←$M and r, r̂←$R.
• Upon receiving a set of shares (ŝu)u∈U , compute c = Com(m; r) and set ŝ∗u = (c, ŝu) for

each u ∈ U .
• Return the same as D((ŝ∗u)u∈U ).

For the analysis, note that in case the values (ŝu)u∈U are distributed like a secret sharing of m̂0,
the distribution of (ŝ∗1, . . . , ŝ

∗
n) is identical to that of Share∗(1λ,m), whereas in case the values

(ŝu)u∈U are distributed like a secret sharing of m̂1, the distribution of (ŝ∗1, . . . , ŝ
∗
n) is identical

to that of Share′(1λ,m). The lemma follows.

Lemma 8. ∀m0,m1 ∈M,∀U 6∈ A : {(Share′(1λ,m0))U}λ∈N ≈c {(Share′(1λ,m1))U}λ∈N.

Proof. The proof is down to the computational hiding property of the non-interactive commit-
ment scheme Com. By contradiction, assume that there exists a PPT distinguisher D, a pair of
messages m0,m1 ∈M, and an unauthorized subset U 6∈ A, such that∣∣∣P [D((Share′(1λ,m0))U ) = 1

]
− P

[
D((Share′(1λ,m1))U ) = 1

]∣∣∣ ≥ 1

poly(λ)
.

Consider the following PPT distinguisher D̂, attacking the hiding property of Com.
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TamperΣ∗,A(λ, b) HybΣ∗,A(λ, b) :

(m0,m1, α1)←$ A1(ω)
r←$R; c = Com(mb; r)
(s1, . . . , sn)←$ Share(mb||r)
m̂||r̂←$M×R; (s1, . . . , sn)←$ Share(m̂||r̂)
(s∗1, . . . , s

∗
n) = ((c, s1), . . . , (c, sn))

stop← false

Return α2←$ A
Onmss(s,·,·),Oleak(s,·)
2 (α1)

Oracle Oleak(s, (g1, . . . , gn)):

Return g1(s1), . . . , gn(sn)

Oracle Onmss(s, T , (f1, . . . , fn)):

If stop = true

Return ⊥
Else
∀i ∈ [n] : s̃∗i := fi(si∗) = (c̃i, s̃i)
m̃||r̃ = Rec(s̃T )
If ∃t1, t2 ∈ T s.t. c̃t1 6= c̃t2

Return ⊥ and stop← true

If m̃ = ⊥ or c̃1 6= Com(m̃; r̃)
Return ⊥ and stop← true

If m̃ ∈ {m0,m1}
Return

If m̃ = m̂

If c̃1 = c, return

Else

Return ⊥
stop← true

Else, return m̃

Figure 6: Hybrid experiments in the proof of Theorem 5.

• Upon receiving a target commitment ĉ that is either a commitment to m0 or a commitment
to m1, sample m̂←$M and r̂←$R, and let (s1, . . . , sn)←$ Share(m̂||r̂).
• Define ŝ∗i = (ĉ, si) for each i ∈ [n].
• Return the same as D((ŝ∗u)u∈U ).

For the analysis, note that in case the value ĉ is distributed like a commitment to m0, the
distribution of (ŝ∗1, . . . , ŝ

∗
n) is identical to that of Share′(1λ,m0), whereas in case the value ĉ

is distributed like a commitment to m1, the distribution of (ŝ∗1, . . . , ŝ
∗
n) is identical to that of

Share′(1λ,m1). The lemma follows.

Fix arbitrary messages m0,m1 ∈M and U 6∈ A. Combining the two lemmas above, we have
obtained:{

(Share∗(1λ,m0))U

}
λ∈N
≈c
{

(Share′(1λ,m0))U

}
λ∈N

≈c
{

(Share′(1λ,m1))U

}
λ∈N
≈c
{

(Share∗(1λ,m1))U

}
λ∈N

.

Continuous non-malleability. Let TamperΣ∗,A(λ, b) be the original experiment defining
continuous non-malleability of Σ∗. Consider a modified experiment HybΣ∗,A(λ, b), where we
replace (s1, . . . , sn) with a secret sharing of a random and independent value m̂||r̂←$M×R;
when answering tampering queries, the experiment returns in case the mauled message m̃
happens to be equal to m̂. See Fig. 6 for a more formal description.

We first prove that the above experiments are computationally close by induction over the
number of tampering queries p ∈ poly(λ) asked by adversary A. Towards this, let us denote
by TamperΣ∗,A(λ, p, b) (resp. HybΣ∗,A(λ, p, b)) the original (resp. hybrid) experiment where

25



adversary A is limited to ask exactly p queries to oracle Onmss. The lemma below constitutes
the basis of the induction.

Lemma 9. ∀b ∈ {0, 1} :
{
TamperΣ∗,A(λ, 1, b)

}
λ∈N ≈s

{
HybΣ∗,A(λ, 1, b)

}
λ∈N.

Proof. The proof is down to the statistical leakage-resilient one-time non-malleability of Σ. Fix
b = 0 (the proof for the other case being identical). Assume that there exists an unbounded
adversary A = (A1,A2) which can distinguish TamperΣ∗,A(λ, 1, 0) and HybΣ∗,A(λ, 1, 0) with
non-negligible probability. By an averaging argument, this means that there must exist values
r ∈ R and m̂||r̂ ∈ M × R such that A distinguishes the two experiments when we fix these
particular values of r and m̂||r̂. Let s = (s1, . . . , sn) be the target encoding in the tampering
experiment relative to (Share,Rec). Consider the following adversary Â attacking Σ, given as
input the above fixed values r, m̂, r̂.

1. Run A1(1λ), obtaining a pair of messages (m0,m1) and auxiliary state α1; send m̂0 = m0||r
and m̂1 = m̂||r̂ to the challenger, and compute c := Com(m0; r). Run A2(α1).

2. For each leakage query (g1, . . . , gn) asked by A2, define the leakage function ĝi that hard-
wires (a description of) gi, c, and returns the same as gi(c, si). Forward (ĝ1, . . . , ĝn) to the
target leakage oracle.

3. Upon input the only tampering query (T , (f1, . . . , fn)) from A2, proceed as follows.

(a) For each t ∈ T , define the leakage function ĥt that hard-wires (a description of) ft,
and returns the commitment c̃t such that ft(c, st) = (c̃t, s̃t).

(b) Forward (ĥt)t∈T to the target leakage oracle,16 obtaining values (c̃t)t∈T .
(c) Define the tampering function f̂i that hard-wires c and (a description of) fi, and,

upon input si, returns the value s̃i specified by fi(c, si) = (c̃i, s̃i).
(d) Forward (T , (f̂1, . . . , f̂n)) to the target tampering oracle, obtaining m̃||r̃ ∈M×R∪
{⊥, }. Hence:

• If there exist t1, t2 ∈ T such that c̃t1 6= c̃t2 , return ⊥ to A; else, let c̃ be the
unique commitment returned by the leakage oracle.
• If m̃||r̃ = ⊥ or is not a valid opening of c̃, return ⊥ to A.
• If m̃||r̃ = , in case c̃ = c return to A (and otherwise ⊥).
• If m̃ ∈ {m0,m1}, return to A. Else, if m̃ = m̂ return to A in case c̃ = c,

and otherwise return ⊥ to A.
• Else, return m̃ to A.

4. Output the same guess as that of A2.

For the analysis, we next prove that the simulation performed by the above reduction is perfect
with overwhelming probability. First, depending on the target (s1, . . . , sn) being either a secret
sharing of m̂0 or of m̂1, for every i ∈ [n] the input to the tampering function fi (resp. leakage
function gi) emulated inside f̂i (resp. ĝi) is identically distributed to the i-th share of the target
secret sharing in either experiment TamperΣ∗,A(λ, 0, 1) or Hyb(λ, 0, 1), with our fixed choice
of r, m̂, r̂. Second, the answer to A2’s tampering query is simulated correctly, with all but a
negligible probability. Indeed:

• If Rec(s̃T ) yields ⊥, both the real and the hybrid experiment would return ⊥, which is
perfectly emulated by the reduction.
• If Rec(s̃T ) yields , it means that the inner secret sharing reconstructs to either m̂0 =
m0||r or to m̂1 = m̂||r̂. Without loss of generality, assume further that the commitments

16More precisely, the leakage oracle takes as input n functions (one for each of the shares), but we can simply
assume that ĥi equals the empty string ε for each i 6∈ T .
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in the tampered shares are all equal to a single value c̃.17 There are 4 possible cases:
either both experiments output m̂0, or both experiments output m̂1, or one experiment
outputs m̂0 while the other outputs m̂1. However, since the view in the real experiment is
independent of the value m̂, except with negligible probability 2−ω(log(λ)), we can condition
on the event that the real experiment does not output this value. Thus, there are only
two cases to consider:

(i) Both the real and the hybrid experiment return m̂0 = m0||r.
(ii) The real experiment returns m̂0 = m0||r, whereas the hybrid returns m̂1 = m̂||r̂.

In both cases, the output of the two experiments is equal to in case c̃ = c, and otherwise
both experiments return⊥. This is exactly what the reduction does. Hence, the simulation
is perfect except with negligible probability.
• If Rec(s̃T ) yields some value m̃||r̃ 6∈ { ,⊥}, it means in particular that m̃||r̃ 6∈ {m̂0, m̂1}.

In such a case both experiments return ⊥ in case the modified commitment c̃ does not
match the opening m̃, r̃. Otherwise, it means that the modified shares produced by A lead
to a valid message m̃ ∈ M. Thus, the output of both experiments would either be or
m̃ (depending on m̃ being equal to one of the two messages m0,m1 or not).

Finally, note that as long as A is `∗-admissible, Â is ˆ̀-admissible for ˆ̀ = `∗ + γ, and since
ˆ̀< `, attacker Â is `-admissible. Thus, we can conclude that the distinguishing advantage of Â
is the same as that of A which concludes the proof of the lemma.

The lemma below constitutes the inductive step.

Lemma 10. Fix any p ∈ poly(λ). Assume that for all b ∈ {0, 1},{
TamperΣ∗,A(λ, p, b)

}
λ∈N ≈s

{
HybΣ∗,A(λ, p, b)

}
λ∈N .

Then:
{
TamperΣ∗,A(λ, p+ 1, b)

}
λ∈N ≈s

{
HybΣ∗,A(λ, p+ 1, b)

}
λ∈N, for all b ∈ {0, 1}.

Proof. The proof is down to the statistical leakage-resilient one-time non-malleability of Σ. Fix
b = 0 (the proof for the other case being identical). Assume that there exists an unbounded
adversary A = (A1,A2) which can distinguish TamperΣ∗,A(λ, p+ 1, 0) and HybΣ∗,A(λ, p+ 1, 0)
with non-negligible probability. By an averaging argument, this means that there must exist
values r ∈ R and m̂||r̂ ∈M×R such that A distinguishes the two experiments when we fix these
particular values of r and m̂||r̂. Let s = (s1, . . . , sn) be the target encoding in the tampering
experiment relative to (Share,Rec). Consider the following adversary Â attacking Σ, given as
input the above fixed values r, m̂, r̂.

1. Run A1(1λ), obtaining a pair of messages (m0,m1) and auxiliary state α1; send m̂0 = m0||r
and m̂1 = m̂||r̂ to the challenger, and compute c := Com(m0; r). Run A2(α1).

2. The reduction keeps a list of all possible secret sharing of the messages m̂0, m̂1; let

Ŝ(1)
1 , . . . , Ŝ(1)

n be the initial sets.
3. For each leakage query (g1, . . . , gn) asked by A2, define the leakage function ĝi that hard-

wires (a description of) gi, c, and returns the same as gi(c, si). Forward (ĝ1, . . . , ĝn) to the
target leakage oracle.

4. For each q ∈ [p], upon input the q-th tampering query (T (q), (f
(q)
1 , . . . , f

(q)
n )), proceed as

follows.

17In fact, if this is not the case, both experiments return ⊥, which is once again perfectly emulated by the
reduction.
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(a) For each t ∈ T (q), define the leakage function ĥ
(q)
t that hard-wires (a description of)

f
(q)
t , and returns the commitment c̃

(q)
t such that f

(q)
t (c, st) = (c̃

(q)
t , s̃t).

(b) Forward (ĥ
(q)
t )t∈T (q) to the target leakage oracle,18 obtaining values (c̃

(q)
t )t∈T (q) . Hence:

• If there exist t1, t2 ∈ T (q) such that c̃
(q)
t1
6= c̃

(q)
t2

, set m̃(q) = ⊥ and self-destruct;

else, let c̃(q) be the unique commitment returned by the leakage oracle.
• Find by brute force the opening m̃(q) (i.e., c̃(q) = Com(m̃(q); r̃(q)) for some r̃(q) ∈
R); if no such value is found, set m̃(q) = ⊥ and self-destruct.
• If m̃(q) ∈ {m0,m1}, re-define m̃(q) := . Else, if m̃(q) = m̂ re-define m̃(q) :=

in case c̃(q) = c, and otherwise m̃(q) := ⊥ and self-destruct.
• Return m̃(q) to A.
• For each i ∈ [n], define Ŝ(q+1)

i ⊆ Ŝ(q)
i the set of shares for the i-th player that

are compatible with the answer to the q-th tampering query being m̃(q), i.e.

(ŝ1, . . . , ŝn) ∈ Ŝ(q+1)
1 × . . .×Ŝ(q+1)

n if and only if m̃(q) is the output corresponding

to (T (q), (f
(q)
1 , . . . , f

(q)
n )) in the hybrid experiment.

5. Upon input the last tampering query (T (p+1), (f
(p+1)
1 , . . . , f

(p+1)
n )), proceed as follows.

(a) Define the same functions ĥ
(p+1)
t considered in step 4a, and forward (ĥ

(p+1)
t )t∈T (p+1)

to the target leakage oracle, obtaining values (c̃
(p+1)
t )t∈T (p+1) .

(b) Define the tampering function f̂i that hard-wires c and (a description of) f
(p+1)
i , and,

upon input si, returns the value s̃
(p+1)
i specified by f

(p+1)
i (c, si) = (c̃

(p+1)
i , s̃

(p+1)
i ).

(c) Forward (T (p+1), (f̂1, . . . , f̂n)) to the target tampering oracle, obtaining m̃(p+1)||r̃(p+1)

∈M×R∪ {⊥, }. Hence:

• If there exist t1, t2 ∈ T (p+1) such that c̃
(p+1)
t1

6= c̃
(p+1)
t2

, return ⊥ to A; else, let

c̃(p+1) be the unique commitment returned by the leakage oracle.
• If m̃(p+1)||r̃(p+1) = ⊥ or is not a valid opening of c̃(p+1), return ⊥ to A.
• If m̃(p+1)||r̃(p+1) = , in case c̃(p+1) = c return to A (and otherwise ⊥).
• If m̃(p+1) ∈ {m0,m1}, return to A. Else, if m̃(p+1) = m̂ return to A in case
c̃(p+1) = c, and otherwise return ⊥ to A.
• Else, return m̃(p+1) to A.

6. Check that the simulation up to the first p queries did not cause any inconsistency, due
to the fact that the outcome of the q-th tampering queries should have been ⊥ because
(s̃t)t∈T (q) was not a valid secret sharing.

(a) Without loss of generality, assume that the output of A2 is equal to 0 whenever A
believes that the target secret sharing is distributed as in the real experiment.

(b) Define the following special leakage function ĥcheck : S1 → {0, 1}.
• The function hard-wires a description of A2, the values (c,m0,m1), a description

of the final tampering query (T (p+1), (f
(p+1)
1 , . . . , f

(p+1)
n )), the answer to previous

tampering queries (m̃(1), . . . , m̃(p)), the answer to all leakage queries on each of

the shares Λ := (Λ1, . . . ,Λn), and the sets Ŝ(p+1)
2 , . . . , Ŝ(p+1)

n .
• Let ŝ∗ = ((c, s1), (c, ŝ2), . . . , (c, ŝn)) be the target secret sharing for each possible

remaining set of compatible shares (ŝ2, . . . , ŝn) ∈ Ŝ(p+1)
2 × · · · × Ŝ(p+1)

n .
• The output of the function is a bit b̃ such that b̃ = 1 if and only if A2(m̃(1), . . . ,
m̃(p), m̃∗,Λ) = 0 more often when ŝ∗ is a valid secret sharing of message m0,

18More precisely, the leakage oracle takes as input n functions (one for each of the shares), but we can simply

assume that ĥ
(q)
i equals the empty string ε for each i 6∈ T (q).
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where m̃∗ is the output of the Onmss oracle in the hybrid experiment upon input

(T (p+1), (f
(p+1)
1 , . . . , f

(p+1)
n )) with target secret sharing ŝ∗.

(c) Forward (hcheck, ε, . . . , ε) to the target leakage oracle, obtaining a bit b̃.

7. Upon receiving a bit b′ from A2, in case b̃ = 1 output b′, and else return a random guess.

Attacker Â runs in exponential time. We now show that its distinguishing advantage is
negligibly close to that of A. Indeed:∣∣∣P [TamperΣ,Â(λ, 1, 0) = 1

]
− P

[
TamperΣ,Â(λ, 1, 1) = 1

]∣∣∣
=
∣∣∣P [TamperΣ,Â(λ, 1, 0) = 1 ∧ b̃ = 1

]
− P

[
TamperΣ,Â(λ, 1, 1) = 1 ∧ b̃ = 1

]∣∣∣ (1)

≥ 1

poly(λ)
·
∣∣∣P [TamperΣ,Â(λ, 1, 0) = 1|b̃ = 1

]
− P

[
HybΣ,Â(λ, 1, 1) = 1|b̃ = 1

]∣∣∣ (2)

≥ 1

poly(λ)
·
(

1

poly(λ)
− negl(λ)

)
, (3)

where Eq. (1) follows because when b̃ = 0, the reduction Â returns a random guess, and thus its
distinguishing advantage is zero; Eq. (2) holds as the induction hypothesis implies that b̃ = 1
with non-negligible probability, otherwise A generates an invalid secret sharing (s̃∗1, . . . , s̃

∗
n)

within the first p tampering queries with overwhelming probability, which in turn means that A
can distinguish using less than p+ 1 outputs from the decoding. Finally, Eq. (2) holds because
an analysis identical to that of Lemma 9 shows that the view of A is perfectly simulated (except
with negligible probability) conditioned on b̃ = 1, and thus in this case Â retains essentially the
same advantage as that of A.

In order to conclude the proof, it remains to show that Â is `-admissible, for ` as in the
statement of the theorem. Note that adversary Â makes leakage queries at steps 3, 4b, 5a,
and 6c, but the leakage queries of step 6c is executed only once, and for a total of at most 1
bit of leakage. Let q∗ ∈ N be the index of the tampering query, if any, where the commitments
retrieved in step 4b happen to be different, and set q∗ = p+ 1 in case that never happens; note
that q∗ is a random variable, which we denote by q∗. Clearly, the leakage queries of step 4b
are executed exactly min{q∗, p} times. For each i ∈ [n], denote by Λi the random variable
corresponding to the leakage performed by the reduction on the i-th share of the target secret
sharing (S1, . . . ,Sn). We can write:

H̃∞(Si|(Sj)j 6=i,Λi) ≥ H̃∞(Si|(Sj)j 6=i, ĥ
(1)
i (Si), . . . , ĥ

(q∗)
i (Si), ĥ

(p+1)
i (Si))− `∗ − 1 (4)

= H̃∞(Si|(Sj)j 6=i,q∗, ĥ
(q∗)
i (Si), ĥ

(p+1)
i (Si))− `∗ − 1 (5)

≥ H̃∞(Si|(Sj)j 6=i)− `∗ − 1− γ −O(log λ) (6)

In the above derivation, Eq. (4) follows by definition of Λi, and because the adversary A is `∗-
admissible and furthermore the leakage performed in step 6c consists of at most 1 bit; Eq. (5)
follows by the fact that, for each q < q∗, the commitments leaked in step 5a are all identical and
thus can be computed as a function of (Sj)j 6=i and q∗; Eq. (6) follows because either q∗ = p+1,

and then the min-entropy drop due to the leakage ĥ
(q∗)
i (Si), ĥ

(p+1)
i (Si) is bounded by the size

γ of a commitment, or q∗ < p + 1, in which case the adversary Â self-destructs and only the

value ĥ
(q∗)
i (Si) is leaked (causing a drop of at most γ in the min-entropy bound). The lemma

follows.

Combining Lemma 9 and Lemma 10, we get that for all b ∈ {0, 1}:{
TamperΣ∗,A(λ, b)

}
λ∈N ≈s

{
HybΣ∗,A(λ, b)

}
λ∈N.
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The lemma below concludes the proof.

Lemma 11.
{
HybΣ∗,A(λ, 0)

}
λ∈N ≈c

{
HybΣ∗,A(λ, 1)

}
λ∈N.

Proof. Assume that there exists a PPT adversary A = (A1,A2) telling apart HybΣ∗,A(λ, 0) and
HybΣ∗,A(λ, 1) with non-negligible probability. We build a PPT distinguisher D such that∣∣∣∣∣P [D(1λ, ĉ)) = 1 : ĉ := Com(m0; r); r←$R

]
− P

[
D(1λ, ĉ) = 1 : ĉ := Com(m1; r); r←$R

] ∣∣∣∣∣ ≥ 1/poly(λ),

where (m0,m1) are the messages output by A1(1λ). This contradicts the computational hiding
property of the non-interactive commitment scheme, and thus concludes the proof of the lemma.

Distinguisher D, with black-box access to A2, and with input ĉ ∈ C, is described below:

• Sample (s1, . . . , sn)←$ Share(m̂||r̂), for m̂||r̂←$M×R.
• Upon input a leakage query (g1, . . . , gn) from A2, return (g1(ĉ, s1), . . . , gn(ĉ, sn)).

• Upon input the q-th tampering query (T (q), (f
(q)
1 , . . . , f

(q)
n )) from A2, proceed as follows:

– For each i ∈ [n], compute

s̃∗i := f
(q)
i (ĉ, si) = (c̃i, s̃i)

and let m̃(q)||r̃(q) = Rec(s̃T (q)) where s̃ = (s̃1, . . . , s̃n).
– If ∃t1, t2 ∈ T (q) s.t. c̃t1 6= c̃t2 , return ⊥ to A2 and self-destruct.
– If m̃(q) = ⊥ or c̃1 6= Com(m̃(q); r̃(q)), return ⊥ to A2 and self-destruct.
– If m̃(q) ∈ {m0,m1}, return to A2.
– If m̃(q) = m̂, return to A2 in case c̃1 = ĉ and otherwise return ⊥ to A2 and

self-destruct.
– Else, return m̃(q) to A2.

• Return the same guess as A2.

For the analysis, note that the simulation done by D is perfect. In particular, depending on the
value ĉ being either a commitment to m0 or a commitment to m1, the view of A2 is identical
to the view in either experiment HybΣ∗,A(λ, 0) or HybΣ∗,A(λ, 1). Thus, D distinguishes with
non-negligible probability. This finishes the proof.

6 Statistical One-Time Non-Malleability with Noisy Leakage

Since non-interactive, perfectly binding, commitments can be obtained in the plain model as-
suming one-to-one one-way functions [GMW87], all that remains in order to derive Thm. 1
as a corollary of Thm. 5 is an unconditional construction of noisy-leakage resilient one-time
non-malleable secret sharing for arbitrary access structures. The only known scheme achieving
all these properties unconditionally is the one in [KMS18], but unfortunately that scheme only
tolerates bounded leakage, and it is unclear how to generalize the proof to the setting of noisy
leakage.19 Hence, we take a different approach and we instead show how to generalize a recent
transformation from [BGW19], which is tailored to the case n = 2.

19This is because [KMS18] relies on lower bounds in communication complexity.
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6.1 Asymmetric Noisy-Leakage-Resilient Secret Sharing

Our construction exploits so-called leakage-resilient encryption, as recently introduced by Ball,
Guo, and Wichs [BGW19]. To keep the exposition more uniform, we cast their definition in
terms of a special 2-out-of-2 leakage-resilient secret sharing satisfying three additional properties:
(i) One of the shares is uniformly random, and can be sampled independently from the message;
(ii) The shares are almost uncorrelated, namely the distribution of one share in isolation and
conditioned on the other share have very similar min-entropy; (iii) The size of the shares are
asymmetric, namely one share is substantially larger than the other share. Given a 2-out-of-2
secret sharing scheme Σ = (Share,Rec), abusing notation, for any fixed s1 ∈ S1 and m ∈ M,
we write s2←$ Share(m, s1) for the sharing algorithm that computes share s2 subject to (s1, s2)
being a valid sharingof m.

Definition 7 (Asymmetric secret sharing). Let Σ = (Share,Rec) be a 2-out-of-2 secret sharing
scheme. We call Σ (α, σ1, σ2)-asymmetric, if it satisfies the following properties:

(i) For any s1 ∈ S1, and any m ∈M, it holds that Rec(s1,Share(m, s1)) = m;
(ii) For any message m ∈ M, and for all i ∈ {1, 2}, it holds that H̃∞(Si|S3−i) ≥ log |Si| −

α, where S1,S2 are the random variables corresponding to sampling s1←$ S1 and s2

←$ Share(m, s1);
(iii) It holds that log |S1| = σ1 and log |S2| = σ2.

As for security we consider the same security experiment of a leakage-resilient secret sharing,
however, we consider a more general class of admissible adversaries:

Definition 8 (Noisy admissibility for asymmetric secret sharing). Let Σ = (Share,Rec) be
a 2-out-of-2 secret sharing scheme. We say that an unbounded adversary A = (A1,A2) is
(`1, `2)-asymmetric noisy-leakage admissible ((`1, `2)-NLA for short) if it satisfies Def. 6 without
property (iii), and using the following variant of property (ii):

(ii) A2 outputs a sequence of leakage queries (chosen adaptively) (g(q))q∈[p], with p(λ) ∈
poly(λ), such that for all i ∈ {1, 2}, and for all m ∈M:

H̃∞
(
Si
∣∣S3−i, g

(1)
i (Si), · · · , g(p)

i (Si)
)
≥ H̃∞(Si|S3−i)− `i,

where S1 is uniformly random over S1 and S2 is the random variable corresponding to
Share(m,S1).

Finally, we say that a 2-out-of-2 secret sharing is augmented (`1, `2)-noisy-leakage resilient
if it is secure as per Def. 5, against the class of all unbounded adversaries that are (`1, `2)-NLA.
The theorem below says that there is an unconditional construction of such a leakage-resilient
secret sharing that is also asymmetric as per Def. 7. The proof appears in §B.

Theorem 6. For any α ∈ N, and for any large enough `1, `2 ∈ poly(λ, α), there exists σ1, σ2 ∈
poly(λ, α) and an (α, σ1, σ2)-asymmetric secret sharing scheme Σ with message space {0, 1}α.

6.2 Construction

Before presenting our scheme, we establish some notation. Given a reconstruction set I =
{i1, . . . , ik}, we always assume that ij ≤ ij+1 for j ∈ [k]. further, we define the function
nxtI : I → I as:

nxtI(ij) :=

{
ij+1 j < k
i1 otherwise
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Let Σ′ = (Share′,Rec′) be a secret sharing scheme realizing access structure A, with message
spaceM and share space S ′ = S ′1×· · ·×S ′n where S ′i ⊆M′′. Let Σ′′ = (Share′′,Rec′′) be a 2-out-
of-2 asymmetric secret sharing scheme with message space M′′ and share space S ′′ = S ′′1 × S ′′2 .
Define the following secret sharing scheme Σ = (Share,Rec), with message space M and share
space S = S1 × · · · × Sn, where for each i ∈ [n] we have Si ⊆ (S ′′1 )n−1 × (S ′′2 )n−1.

Sharing algorithm Share: Upon input a value m ∈ M, compute (s′1, . . . , s
′
n)←$ Share′(m).

For each i ∈ [n] and j ∈ [n] \ {i}, sample a random share s′′i,j,1←$ S ′′1 and compute
s′′i,j,2←$ Share′′(s′i, s

′′
i,j,1). Return the shares s = (s1, . . . , sn), where for each i ∈ [n] we set

si = ((s′′j,i,1)j 6=i, (s
′′
i,j,2)j 6=i).

Reconstruction algorithm Rec: Upon input shares (si)i∈I with I ∈ A, parse si =
((s′′j,i,1)j 6=i, (s

′′
i,j,2)j 6=i). Hence, proceed as follows:

(a) Compute s′i = Rec′′(s′′i,nxt(i),1, s
′′
i,nxt(i),2) for i ∈ I;

(b) Return Rec′((s′i)i∈I).

Figure 7: Noisy-leakage-resilient one-time statistically non-malleable secret sharing for arbitrary
access structures against individual leakage/tampering in the plain model.

and the function prvI to be the inverse of nxtI . Whenever it is clear from the context we omit
the reconstruction set I and simply write nxt and prv.

Intuitively, our construction (cf. Fig. 7) relies on a one-time non-malleable (but not leakage
resilient) secret sharing Σ′, and on an asymmetric leakage-resilient secret sharing Σ′. The sharing
of a message m is obtained by first sharing m under Σ′, obtaining n shares (s′1, . . . , s

′
n), and then

sharing each si independently n − 1 times under Σ′′, obtaining pairs of shares (s′′i,j,1, s
′′
i,j,2)j 6=i;

the final share of party i is then set to be the collection of right shares corresponding to i and
all the left shares corresponding to the parties j 6= i. We can now state the main theorem of
this section.

Theorem 7. Let n ∈ N, and let A be an arbitrary access structure for n parties without
singletons. Assume that:

(i) Σ′ is an n-party one-time non-malleable secret sharing scheme realizing access structure
A against individual tampering in the plain model, with information-theoretic security;

(ii) Σ′′ is an (α, σ1, σ2)-asymmetric augmented (`1, `2)-noisy-leakage-resilient secret sharing
scheme.

Then, the secret sharing scheme Σ described in Fig. 7 is an n-party `-noisy leakage-resilient one-
time non-malleable secret sharing scheme realizing access structure A under individual leakage
and tampering with statistical security in the plain model, as long as `1 = ` + (2n − 3)α and
`2 = `+ (2n− 3)α+ σ1.

6.3 Proof Overview

Privacy of Σ follows in a fairly straightforward manner from privacy of Σ′. In fact, recall that the
shares s′′i,j,1, with i, j ∈ [n] and i 6= j, are sampled uniformly at random and independently of s′.
Thus, in the reduction we can sample these values locally and then define the shares (su)u∈U as
a function of the shares (s′u)u∈U . As for the proof of leakage-resilient one-time non-malleability,
the idea is to reduce to the one-time non-malleability of Σ′ and simulate the leakage by sampling
dummy values for the shares s′′i,j,1, s

′′
i,j,2.

The main challenge is to make sure that the answer to tampering query f = (f1, . . . , fn) is
consistent with the simulated leakage. To this end, in the reduction we define the tampering
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function f ′ = (f ′1, . . . , f
′
n), acting on the shares s′ = (s′1, . . . , s

′
n), as follows. Each function f ′i ,

upon input s′i and given the values (s′′i,j,1)j 6=i, samples (ŝi,j,2)j 6=i in such a way that for any j the
reconstruction Rec′′(si,j,1, ŝi,j,2) yields a share s′i that is consistent with the simulated leakage
using the dummy values. Noisy-leakage resilience of Σ′′ guarantees that the function f ′i samples
from a valid distribution (namely, a non-empty one). Note that the function f ′i might not be
efficiently computable; however, as we are reducing to statistical non-malleability, this is not a
problem.

An additional difficulty is that the functions (f ′t)t∈T need to communicate in order to produce
their outputs. In fact, for any t ∈ T , the function f ′t returns a tampered share for Σ′ that
depends on the mauled share s̃prv(t),t,1 (generated by fprv(t)). To overcome this problem, we
let the reduction perform an additional leakage query on the dummy values before tampering.
Thanks to this extra leakage, the reduction learns the values s̃prv(t),t,1 for all t ∈ T , which can
be hard-coded in the description of (f ′t)t∈T . Here is where we rely on the asymmetric property
of Σ′′, which allows us to leak σ1 bits from the second share.

At this point, a reader familiar with [BGW19] might notice that the two proofs proceed
very similarly. However, our proof requires extra care when bounding the amount of leakage
performed by the reduction. The key ideas are that: (i) Each of the shares under Σ′ is shared
using n− 1 independent invocations of Σ′′; and (ii) our reconstruction procedure depends only
on one of those (chosen as function of the reconstruction set). Property (i) allows to reduce
independent leakage on n shares under Σ to independent leakage on 2 shares under Σ′′ by
sampling locally the missing n − 2 shares when reducing to noisy-leakage resilience of Σ′′.
Property (ii) allows to bound the amount of information the reduction needs to simulate the
tampering query to a single short leakage from each of the shares (i.e., the value s̃prv(t),t,1 for
t ∈ T ).

6.4 Security Analysis

The proof relies on the following technical lemma.

Lemma 12. Let Σ be a 2-out-of-2 secret sharing scheme with message space M. If there exists
σ̃ ∈ R such that for all m ∈ M we have H̃∞(Sa|S3−a) ≥ σ̃, where S1,S2 are the random
variables corresponding to Share(m), then for all k ∈ N, any a1, . . . , ak ∈ {1, 2}k and any
distribution D over Mk, we have:

H̃∞((Saj ,j)j∈[k]|(S3−aj ,j)j∈[k]) ≥ H̃∞((Saj ,j)j∈[k−1]|(S3−aj ,j)j∈[k−1]) + σ̃,

where S1,j ,S2,j are the random variables corresponding to Share(Mj) and M = M1, . . . ,Mk←$ D.

Proof. Let S̄a = (Saj ,j)j∈[k−1], S̄3−a = (S3−aj ,j)j∈[k−1], and similarly let S̄′a = (Saj ,j)j∈[k] and
S̄′3−a = (S3−aj ,j)j∈[k]. By definition of conditional average min-entropy, we need to show that:

max
P

P
[
P(S̄3−a,S3−ak,k) = S̄a,Sak,k

]
≤ 2−σ̃ max

P
P
[
P(S̄3−a) = S̄a

]
.

Given a predictor P for the left-side of the equation above, let P′ be the predictor that runs
as P but outputs only the first k − 1 values, and let P′′ be the predictor that runs as P but
outputs only the last value. As we can wlog. assume that P is deterministic, we have that
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P(·) = P′(·)||P′′(·). We can write:

max
P

P
[
P(S̄′3−a) = S̄a,Sak,k

]
=

max
P

Em
[
P
[
P(S̄′3−a) = S̄a,Sak,k | M = m

] ]
=

max
P

Em
[
P
[
P′(S̄′3−a) = S̄a | M = m, P′′(S̄′3−a) = Sak,k

]
· P
[
P′′(S̄′3−a) = Sak,k|M = m

] ]
=

max
P′,P′′

Em
[
P
[
P′(S̄3−a) = S̄a | M = m, P′′(S3−ak,k) = Sak,k

]
· P
[
P′′(S3−ak,k) = Sak,k|M = m

] ]
=

max
P′

Em
[
P
[
P′(S̄3−a) = S̄a | M = m, P′′(S3−ak,k) = Sak,k

] ]
· 2−σ̃,

where in the third equality we used the fact that, once we fix M = m, the random variables
(S1,j ,S2,j) for any j are independently distributed, and in the last equality we used the hypoth-
esis of the lemma.

of Thm. 7. We use a hybrid argument. Recall that the experiment TamperΣ,A(λ, b) computes
the target secret sharing by first sampling s′1, . . . , s

′
n←$ Share′(mb), and s′′i,j,1, s

′′
i,j,2 for i, j ∈ [n]

and j 6= i, and finally defines s1, . . . , sn by arranging the shares as described in Fig 7.

First hybrid. Let Hyb1
Σ,A(λ, b) be the same as TamperΣ,A(λ, b), with the following differ-

ences.

1. The hybrid records all answers to A’s leakage queries. In particular, let τ be the transcript
containing all such answers; we can parse τ as τ1, . . . , τn, where τi is the leakage obtained
from the share si.

2. When A outputs its tampering query (T , (f1, . . . , fn)):

(a) For t ∈ T , compute the value s̃t = ((s̃′′i,j,1)j 6=i, (s̃
′′
j,i,2)j 6=i) = ft(st), and set τt ←

τt‖s̃′′prv(t),t,1.

(b) For t ∈ T , sample (ŝt,j,2)j 6=t conditioned on:

i. Rec(s′′t,j,1, ŝt,j,2) = s′t for any j, where s′t is the value computed by the sharing
algorithm;

ii. The values (ŝt,j,2)j 6=i being consistent with the leakage transcript τt, namely,
let ŝt := ((s′′j,i,1)j 6=i, (ŝi,j,2)j 6=i), by applying all the leakage functions to ŝt =
((s′′j,i,1)j 6=i, (ŝi,j,2)j 6=i) we obtain the value τt.

(c) Output Rec((ft(ŝt))t∈T ) (instead of Rec((ft(st))t∈T )).

Lemma 13. ∀b ∈ {0, 1}: {TamperΣ,A(λ, b)}λ∈N ≡ {Hyb1
Σ,A(λ, b)}λ∈N.

Proof. Notice that the hybrid samples (ŝt)t∈T from exactly the same conditional distribution
where the shares (st)t∈T are picked. Thus the output of the tampering oracle is distributed
identically in the two experiments.

Formally, let Z be the random variable describing the tuple (s′i, (s
′′
i,j,1)j 6=i, τi)i∈[n], let S be

the random variable (s′′t,j,2)t∈T ,j 6=t, and let Ŝ be the random variable (ŝt,j,2)t∈T ,j 6=t. We can think
of Z being the output of a randomized function of S: let F be such function, then Z = F (S).
Notice that the two hybrids are equivalent if the distributions (S, F (S)) and (Ŝ, F (S)) are
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equivalent. To prove this, we observe that for any assignments z and s = ((st,j)j 6=t)t∈T the
following holds:

Pr[S = s|Z = z] =
∏
t

P
[
(S′′t,j,2)j 6=t = (st,j)j 6=t|Z = z

]
(7)

=
∏
t

P
[
(Ŝt,j,2)j 6=t = (st,j)j 6=t|Z = z

]
(8)

= Pr[Ŝ = s|Z = z]. (9)

Eq. (7) follows because for any i ∈ [n], and for any assignments of s′ = s′1, . . . , s
′
n and (s′′i,j,1)j 6=i,

the random variables ((S′′i,j,2)j 6=i|S′ = s′, (S′′i,j,1)j 6=i = (s′′i,j,1)j 6=i) are independent, and thus by
Lemma 16 the random variables ((S′′i,j,2)j 6=i|Z = z) for any i ∈ [n] are independent too. Eq. (8)

uses the fact that, once we fix Z, for any t the random variables (S′′t,j,2)j 6=t and (Ŝt,j,2)j 6=i
are chosen from the same distribution. Finally, Eq. (9) follows because for any t the random
variables (Ŝt,j,2)j 6=t are independently sampled.

Second hybrid. Let Hyb2
Σ,A(λ, b) be the same as Hyb1

Σ,A(λ, b), except that:

1. The hybrid additionally samples for any i ∈ [n] and j ∈ [n]\{i} the share s∗i,j,2←$ Share(0µ,
s′′i,j,1), and sets s∗i = ((s′′j,i,1)j 6=i, (s

∗
i,j,2)j 6=i).

2. The answers to A’s leakage queries are answered using the shares s∗1, . . . , s
∗
n.

Lemma 14. ∀b ∈ {0, 1}: {Hyb1
Σ,A(λ, b)}λ∈N ≈s {Hyb2

Σ,A(λ, b)}λ∈N.

Proof. We use a hybrid argument over all indices i, j, where j 6= i and i, j ∈ N. To simplify no-

tation, let N =
(
n
2

)
and define

(
[n]
2

)
:= {H1, . . . ,HN}. Set Hyb

(0)
Σ,A := Hyb2

Σ,A, and for any l > 0

consider the hybrid Hyb
(l)
Σ,A to be the same as Hyb

(l−1)
Σ,A but where s∗h1,h2,2←$ Share(s′h1 , s

′′
h1,h2,1

)

for Hl = {h1, h2}. It is clear that Hyb
(N)
Σ,A is distributed exactly as Hyb1

Σ,A. We prove that

Hyb
(l)
Σ,A and Hyb

(l−1)
Σ,A are statistically close via a reduction to leakage resilience of Σ′′. Consider

the adversary B = (B1,B2,B3) defined below.

Adversary B1(1λ):

1. Sample (s′1, . . . , s
′
n)←$ Share′(mb);

2. Return state α1 = (s′1, . . . , s
′
n), and challenge messages (s′h1 , 0

µ).

Adversary B
Oleak((s

′′
h1,h2,1

,s∗h1,h2,2
),·)

2 (α1):

3. Sample s′′h′1,h′2,1
and s∗h′1,h′2,2

for any {h′1, h′2} 6= Hl, as described in Hyb
(l)
Σ,A.

4. Run A and answer to its leakage queries. In particular, upon input (g1, . . . , gn), for any
index k 6∈ Hl the output of leakage function gk can be computed without the help of the
leakage oracle. Let zk be this output. Hence:

• Let ḡ1(s′′h1,h2,1) be the function that first defines sh1 by plugging s′′h1,h2,1 and hard-
coding the remaining values, and then outputs gh1(sh1).
• Let ḡ2(s′′h1,h2,2) be the function that first defines sh2 by plugging s′′h1,h2,2 and hard-

coding the remaining values, and then outputs gh2(sh2).

Forward the leakage query (ḡ1, ḡ2) to the challenger, and denote by zh1 , zh2 the corre-
sponding answer. Forward the values z1, . . . , zn to A, and update the transcript τ ←
τ‖(z1, . . . , zn).
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5. Eventually the adversary A outputs a tampering query (T , (f1, . . . , fn))
6. Consider the leakage function g∗2(s′′h1,h2,2) that first defines sh2 by plugging s′′h1,h2,2 and

hard-coding the remaining values, then lets s̃h2 = fh2(sh2), and finally outputs s̃′′
prv(h2),h2,1

.

Forward the leakage query (ε, g∗2) to the challenger, and let (ε, s̃′′
prv(h2),h2,1

) be the corre-

sponding answer. Set τh2 ← τh2‖s̃′′prv(h2),h2,1
.

7. Let α2 be the full state of B up to this point, including the transcript τ , and the state αA

of attacker A.

Adversary B3(α2, s
′′
h1,h2,1

):

8. Compute s̃′′
prv(t),t,1 for t ∈ T \{h2}, as described in Hyb1

Σ,A; in particular, τt ← τt‖s̃′′prv(t),t,1.

9. Sample (ŝt,j,2)j 6=t for t ∈ T , conditioned on the knowledge of s′t, (s
′′
t,j,1)j 6=t and τ , as

described in Hyb1
Σ,A.

10. Set ŝt for t ∈ T , as described in step 2b of Hyb1
Σ,A, and compute the tampered message

m̃ using these shares.
11. Resume A using αA, forward to A the tampered message m̃, and output whatever A does.

Claim 1. The following holds ∀b ∈ {0, 1}:

{LeakΣ′′,B(λ, 0)}λ∈N ≡ {Hyb
(l−1)
Σ,A (λ, b)}λ∈N

{LeakΣ′′,B(λ, 1)}λ∈N ≡ {Hyb
(l)
Σ,A(λ, b)}λ∈N.

Proof. The proof of the claim holds by inspection of adversary B.

Claim 2. If Σ′′ has α-correlated shares and adversary A is `-NLA, then adversary B is (` +
(2n− 3)α, `+ (2n− 3)α+ σ1)-NLA.

Proof. We analyze the leakage performed by B2 on s′′h1,h2,1 and s∗h1,h2,2. Let S′′1 be the ran-
dom variable describing the value s′′h1,h2,1, let S′′2 be the random variable describing the value

s′′h1,h2,2, let g(q) := (g
(q)
1 , . . . , ḡ

(q)
n ) be the q-th leakage leakage query output by A, and (ḡ

(q)
1 , ḡ

(q)
2 )

be the q-th leakage query output by B in the reduction. For each a ∈ {1, 2}, let Λa :=

(ḡ
(1)
a (S′′a), . . . , ḡ

(p)
a (S′′a)) be the complete transcript containing all answers to leakage queries,

and let Λ∗2 := (Λ2, g
∗
2(S′′2)). Finally, for k ∈ [n], let Sk be the random variable describing the

share s∗k as sampled by B, and let S∗h1 (resp. S∗h2) be the part of share s∗h1 (resp. s∗h2) which does
not include s∗h1,h2,2 (resp. s′′h1,h2,1). First, observe that:

H̃∞(S′′2 | S′′1, Λ∗1) ≥ H̃∞(S′′2 | S′′1, Λ1)− σ1, (10)

which holds by Lemma 17. Moreover, for a ∈ {1, 2}, the following holds:

H̃∞(S′′a | S′′3−a, Λa)

≥ H̃∞(S′′a | S′′3−a, S∗h3−a , (Sk)k∈[n]\Hl , Λa)

= H̃∞(S′′a | (Sk)k 6=ha , Λa)

≥ H̃∞(S′′a,S
∗
ha | (Sk)k 6=ha , Λa)− ((n− 1)σ3−a + (n− 2)σa) (11)

≥ H̃∞(S′′a,S
∗
ha | (Sk)k 6=ha)− ((n− 1)σ3−a + (n− 2)σa)− `. (12)

Eq. (11) follows by Lemma 17, whereas Eq. (12) follows by admissibility of A. For any k 6= ha,

we can split Sk into two pieces: the random variable S
(1)
k corresponding (s′′k,ha,1, s

′′
ha,k,2

), and
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the random variable S
(2)
k corresponding to (s′′k,j,1)j 6=k,j 6=ha , (s

∗
j,k,2)j 6=k,j 6=ha . Recall that Σ has

α-correlated shares; for convenience, we define σ̃i = σi − α. Let S′ be the random variable
associated to the output of Share′(m). For any assignments of s′ = (s′1, . . . , s

′
n)←$ Share(m),

we can write:

H̃∞(S′′a,S
∗
ha | (S

(1)
k ,S

(2)
k )k 6=ha , S′=s′)

= H̃∞(S′′a,S
∗
ha | (S

(1)
k )k 6=ha , S′=s′) (13)

≥ H̃∞(S′′a | S′′3−a, S′=s′) + (n− 1)σ̃3−a + (n− 2)σ̃a. (14)

Eq. (13) follows because, once the value s′ is fixed, then the random variables S
(2)
k are indepen-

dent, whereas Eq. (14) follows by Lemma 12. Finally, by averaging over all possible assignments
of s′, we get:

H̃∞(S′′a,S
∗
ha | (S

(1)
k ,S

(2)
k )k 6=ha) ≥ H̃∞(S′′a | S′′3−a) + (n− 1)σ̃3−a + (n− 2)σ̃a,

which together with Eq. (12) and Eq. (10) proves the claim.

Lemma 15. {Hyb2
Σ,A(λ, 0)}λ∈N ≈s {Hyb2

Σ,A(λ, 1)}λ∈N.

Proof. Consider the following adversary B against the non-malleability of Σ′ given black-box
access to an attacker A playing in Hyb2

Σ,A(λ, b).

1. At the beginning B runs A1(1λ), and outputs the same values (m0,m1, αA) returned by
A1.

2. Sample s′′i,j,1←$ S ′′1 and s∗i,j,2←$ Share(0µ, s′′i,j,1), for i, j ∈ [n] and i 6= j, and set s∗i ←
((s′′j,i,1)j 6=i, (s

∗
i,j,2)j 6=i).

3. Resume the adversary A by running A2(αA), and reply to its leakage queries using the
shares s∗1, . . . , s

∗
n.

4. Eventually, A2 outputs (T , (f1, . . . , fn)). Sample the values s̃′′
prv(t),t,1 for t ∈ T , as de-

scribed in Hyb1
Σ,A, and consider the tampering function f ′t(s

′
t) that samples (ŝt,j,2)j 6=t

conditioned on: (i) Rec(si,j,1, ŝi,j,2) = s′i for all j 6= i; and (ii) the leakage transcript
τt‖s̃′′prv(t),t,1 being consistent with (ŝi,j,2)j 6=i. The function sets ŝi := ((s′′j,i,1)j 6=i, (ŝi,j,2)j 6=i),

computes s̃i ← f(ŝi), and outputs Rec(s̃′′i,nxt(i),1, s̃
′′
i,nxt(i),2).

5. Forward (T , (f ′1, . . . , f ′n)) to the challenger, and send the answer back to A.
6. Output whatever A outputs.

We claim that for any b ∈ {0, 1}, we have TamperΣ′,B(λ, b) ≡ Hyb2
Σ,A(λ, b). In fact, the

adversary B runs exactly as in Hyb2
Σ,A(λ, b). The only (syntactical) difference is that B samples

the values (ŝi,j,2)j 6=i and uses the target tampering oracle to answer A’s tampering query. The
lemma then follows by statistical non-malleability of Σ′.

The statement of the theorem follows by putting together the above lemmas, and applying
the triangular inequality.
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7 Conclusions and Open Problems

We have shown new constructions of leakage-resilient continuously non-malleable secret sharing
schemes, for general access structures. Our first scheme is in the plain model, and guarantees
security against noisy leakage and independent tampering with all of the shares. Our sec-
ond scheme is in the CRS model, and guarantees security against bounded leakage and joint
tampering with a fixed partition of the n shares into non-overlapping subsets of size O(log n).

The two major questions left over by our work are whether continuous non-malleability
against joint tampering is achievable in the plain model, or against adaptive (rather than selec-
tive) joint tampering with the shares. Interestingly, our proof strategy breaks down in the case
of adaptive tampering, and this holds true even assuming that the inner leakage-resilient secret
sharing is secure in the presence of adaptive joint leakage. Intuitively, the reason is that in the
reduction we must run different copies of the adversary inside the leakage oracle; in particular,
we use a fixed subset of the shares in order to simulate the answer to all tampering queries
asked by each copy of the attacker, and this is clearly possible only if the adversary does not
change the partition within each query.

It would also be interesting to achieve continuous non-malleability under joint selective
partitioning for better values of the parameter k (namely, the attacker can tamper jointly with
subsets of size super-logarithmic in n). Note that this would follow immediately by our result if
we plug in our construction a leakage-resilient secret sharing scheme tolerating joint leakage from
subsets of shares with size more than O(log n). Unfortunately, the only known such scheme is
the one in [KMS18], and as the authors explain improving the parameters in their construction
would lead to progress on longstanding open problems in complexity theory. We leave it open
to establish whether this holds true even in the case of selective partitioning (recall that the
scheme of [KMS18] achieves adaptive leakage resilience), or whether the current state of affairs
can be improved in the computational setting (with or without trusted setup).

A further open question is to improve the rate of our constructions. Note that by applying
the rate compiler of [FV19], we do get rate-one continuously non-malleable secret sharing for
general access structures, against independent tampering in the plain model. However, this
is well-known to be sub-optimal in the computational setting, where the optimal share size
would be O(µ/n), where µ is the size of the message [Kra93]. Note that it is unclear whether
the same rate compiler works also for our construction against joint tampering under selective
partitioning. This is because the analysis in [FV19] crucially relies on the resilience of the
initial rate-zero non-malleable secret sharing against noisy leakage, whereas our construction
only achieves security in the bounded-leakage model.

References

[AAG+16] Divesh Aggarwal, Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant
Pandey, and Manoj Prabhakaran. Optimal computational split-state non-malleable
codes. In TCC, pages 393–417, 2016.

[ADKO15a] Divesh Aggarwal, Yevgeniy Dodis, Tomasz Kazana, and Maciej Obremski. Non-
malleable reductions and applications. In STOC, pages 459–468, 2015.

[ADKO15b] Divesh Aggarwal, Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski.
Leakage-resilient non-malleable codes. In TCC, pages 398–426, 2015.

[ADL14] Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes from
additive combinatorics. In STOC, pages 774–783, 2014.

38



[ADN+18] Divesh Aggarwal, Ivan Damgaard, Jesper Buus Nielsen, Maciej Obremski, Erick
Purwanto, Joao Ribeiro, and Mark Simkin. Stronger leakage-resilient and non-
malleable secret-sharing schemes for general access structures. Cryptology ePrint
Archive, Report 2018/1147, 2018. https://ia.cr/2018/1147.

[BGW19] Marshall Ball, Siyao Guo, and Daniel Wichs. Non-malleable codes for decision
trees. Cryptology ePrint Archive, Report 2019/379, 2019. https://eprint.iacr.
org/2019/379.

[BS18] Saikrishna Badrinarayanan and Akshayaram Srinivasan. Revisiting non-malleable
secret sharing. Cryptology ePrint Archive, Report 2018/1144, 2018. https://ia.
cr/2018/1144.

[CFV19] Sandro Coretti, Antonio Faonio, and Daniele Venturi. Rate-optimizing compil-
ers for continuously non-malleable codes. Cryptology ePrint Archive, Report
2019/055, 2019. https://ia.cr/2019/055.

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness
and probabilistic communication complexity. SIAM J. Comput., 17(2):230–261,
1988.

[CG14] Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding against bit-
wise and split-state tampering. In TCC, pages 440–464, 2014.

[CL18] Eshan Chattopadhyay and Xin Li. Non-malleable codes, extractors and secret
sharing for interleaved tampering and composition of tampering. Cryptology ePrint
Archive, Report 2018/1069, 2018. https://eprint.iacr.org/2018/1069.

[DDV10] Francesco Dav̀ı, Stefan Dziembowski, and Daniele Venturi. Leakage-resilient stor-
age. In SCN, pages 121–137, 2010.

[DHLW10] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel Wichs.
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A Standard Definitions

Basic notation. For a string x, we denote its length by |x|; if X is a set, |X | represents the
number of elements in X . When x is chosen randomly in X , we write x←$ X . When A is a
randomized algorithm, we write y←$ A(x) to denote a run of A on input x (and implicit random
coins r) and output y; the value y is a random variable, and A(x; r) denotes a run of A on input
x and randomness r. An algorithm A is probabilistic polynomial-time (PPT) if A is randomized
and for any input x, r ∈ {0, 1}∗ the computation of A(x; r) terminates in a polynomial number
of steps (in the size of the input).

Negligible functions. We denote with λ ∈ N the security parameter. A function p is a
polynomial, denoted p(λ) ∈ poly(λ), if p(λ) ∈ O(λc) for some constant c > 0. A function
ν : N → [0, 1] is negligible in the security parameter (or simply negligible) if it vanishes faster
than the inverse of any polynomial in λ, i.e. ν(λ) ∈ O(1/p(λ)) for all positive polynomials p(λ).
We often write ν(λ) ∈ negl(λ) to denote that ν(λ) is negligible.

Unless stated otherwise, throughout the paper, we implicitly assume that the security pa-
rameter is given as input (in unary) to all algorithms.

Random variables. For a random variable X, we write P [X = x] for the probability that X
takes on a particular value x ∈ X (with X being the set where X is defined). The statistical
distance between two random variables X and X′ defined over the same set X is defined as
SD (X; X′) = 1

2

∑
x∈X |P [X = x]− P [X′ = x] |.

Given two ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N, we write X ≡ Y to denote that they
are identically distributed, X ≈s Y to denote that they are statistically close, i.e. SD (Xλ; X′λ) ∈
negl(λ), and X ≈c Y to denote that they are computationally indistinguishable, i.e., for all
PPT distinguishers D:

|P [D(Xλ) = 1]− P [D(Yλ) = 1]| ∈ negl(λ).

We extend the notion of computational indistinguishability to the case of interactive ex-
periments (a.k.a. games) featuring an adversary A. In particular, let GA(λ) be the random
variable corresponding to the output of A at the end of the experiment, where wlog. we may
assume A outputs a decision bit. Given two experiments GA(λ, 0) and GA(λ, 1), we write
{GA(λ, 0)}λ∈N ≈c {GA(λ, 1)}λ∈N as a shorthand for

|P [GA(λ, 0) = 1]− P [GA(λ, 1) = 1]| ∈ negl(λ).

The above naturally generalizes to statistical distance (in case of unbounded adversaries). We
recall a useful lemma from [DP07, DDV10].

Lemma 16 ([DDV10], Lemma 4). Let Oleak(x, g) be an oracle that upon input a value x and
a function g outputs g(x), and let X and Y be two independently distributed random variables.
For any adversary A, and for any value z, the distributions

(
X|z = AOleak(X,·),Oleak(Y,·)

)
and(

Y|z = AOleak(X,·),Oleak(Y,·)
)

are independently distributed.

Average min-entropy. The min-entropy of a random variable X with domain X is H∞(X) :=
− log maxx∈X P [X = x], and intuitively it measures the best chance to predict X (by a com-
putationally unbounded algorithm). For conditional distributions, unpredictability is measured
by the conditional average min-entropy [DORS08]: H̃∞(X|Y) := − logEy[2−H∞(X|Y=y)]. The
lemma below is sometimes known as the “chain rule” for conditional average min-entropy.
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Lemma 17 ([DORS08], Lemma 2.2). Let X,Y,Z be random variables. If Y has at most
2` possible values, then H̃∞(X|Y,Z) ≥ H̃∞(X,Y|Z) − ` ≥ H̃∞(X|Z) − `. In particular,
H̃∞(X|Y) ≥ H̃∞(X,Y)− ` ≥ H̃∞(X)− `.

A.1 Randomness Extractors

An (average-case, strong) seeded extractor is a polynomial-time deterministic algorithm Ext :
{0, 1}d × {0, 1}ρ → {0, 1}α taking as input a source x and a seed r, and outputting an α-bit
string.

Definition 9 (Seeded extractors). Let κ ∈ N and ε ∈ [0, 1]. We say that Ext is (κ, ε)-secure,
if for any random variable Λ such that H̃∞(X|Λ) ≥ κ the statistical distance between the
distribution (R,Ext(X,R),Λ) and (R,A,Λ) is at most ε, where R ≡ Uρ and A ≡ Uα.

An (average-case) two-source extractor is a deterministic polynomial-time algorithm 2Ext :
{0, 1}d × {0, 1}d → {0, 1}α taking as input two sources x and y and outputting an α-bit string.

Definition 10 (Two-source extractors). Let κ1, κ2 ∈ N and ε ∈ [0, 1]. We say that 2Ext is
(κ1, κ2, ε)-secure if for any random variable Λ such that H̃∞(X|Λ) ≥ κ1, H̃∞(Y|Λ) ≥ κ2, and
(X|Λ), (Y|Λ) are independent, the statistical distance between the distribution (X, 2Ext(X,Y),
Λ) and (X,A,Λ) is at most ε, where A ≡ Uα.

A.2 Non-Interactive Commitments

A non-interactive commitment scheme Π = (Gen,Com) is a pair of polynomial-time algorithms
specified as follows: (i) The randomized algorithm Gen takes as input 1λ and outputs a public
key pk ∈ K; (ii) The randomized algorithm Com takes as input the public key pk and a message
m ∈ M, and outputs a commitment c = Com(pk ,m; r) ∈ C using random coins r ∈ R. The
pair (m, r) is called the opening. In the plain model, we omit the algorithm Gen and simply set
pk = 1λ.

Intuitively, a secure commitment satisfies two properties called binding and hiding. The first
property says that it is hard to open a commitment in two different ways. The second property
says that a commitment hides the underlying message. The formal definitions follow.

Definition 11 (Binding). We say that a non-interactive commitment scheme Π = (Gen,Com)
is computationally binding if the following probability is negligible for all PPT adversaries A:

P
[
m0 6= m1 ∧ Com(pk ,m0; r0) = Com(pk ,m1; r1) :

pk ←$ Gen(1λ)
(m0, r0,m1, r1)←$ A(pk)

]
.

In case the above definition holds for all unbounded adversaries, we say that Π is statistically
binding. Finally, in case the above probability is exactly 0 (i.e., each commitment can be opened
to at most a single message), then we say that Π is perfectly binding.

Definition 12 (Hiding). We say that a non-interactive commitment scheme Π = (Gen,Com)
is computationally hiding if the following holds for all PPT adversaries A:{

pk ←$ Gen(1λ); (m0,m1, α1)←$ A1(pk)

c←$ Com(pk ,m0); b′←$ A2(α1, c)

}

≈c

{
pk ←$ Gen(1λ); (m0,m1, α1)←$ A1(pk)

c←$ Com(pk ,m1); b′←$ A2(α1, c)

}
.

In case the above ensembles are statistically close (resp. identically distributed), we speak of
statistical (resp. perfect) hiding.
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Note that in the plain model the above definition of hiding is equivalent to saying that for
all pairs of messages m0,m1 ∈M the following holds:{

c : c←$ Com(1λ,m0)
}
λ∈N
≈c
{
c : c←$ Com(1λ,m1)

}
λ∈N

.

A.3 Non-Interactive Zero Knowledge

Let R be a relation, corresponding to an NP language L. A non-interactive zero-knowledge
(NIZK) proof system for R is a tuple of efficient algorithms Π = (CRSGen,Prove,Ver) speci-
fied as follows. (i) The randomized algorithm CRSGen takes as input the security parameter
and outputs a common reference string ω; (ii) The randomized algorithm Prove(ω, φ, (x,w)),
given (x,w) ∈ R and a label φ ∈ {0, 1}∗, outputs a proof π; (iii) The deterministic algorithm
Ver(ω, φ, (x, π)), given an instance x, a proof π, and a label φ ∈ {0, 1}∗, outputs either 0
(for “reject”) or 1 (for “accept”). We say that a NIZK for relation R is correct if for every
λ ∈ N, all ω as output by Init(1λ), any label φ ∈ {0, 1}∗, and any (x,w) ∈ R, we have that
Ver(ω, φ, (x,Prove(ω, φ, (x,w)))) = 1.

We define two properties of a NIZK proof system. The first property says that honest proofs
do not reveal anything beyond the fact that x ∈ L.

Definition 13 (Adaptive multi-theorem zero-knowledge). A NIZK with labels Π for a relation
R satisfies adaptive multi-theorem zero-knowledge if there exists a PPT simulator S := (S0,S1)
such that the following holds:

(i) S0 outputs ω, a simulation trapdoor ζ and an extraction trapdoor ξ.
(ii) For all PPT distinguishers D, we have that∣∣∣P [DProve(ω,·,(·,·))(ω) = 1 : ω←$ Init(1λ)

]
− P

[
DOsim(ζ,·,·,·)(ω) = 1 : (ω, ζ)←$ S0(1λ)

] ∣∣∣
is negligible in λ, where the oracle Osim(ζ, ·, ·, ·) takes as input a tuple (φ, x,w) and returns
S1(ζ, φ, x) iff R(x,w) = 1 (and otherwise it returns ⊥).

Groth [Gro06] introduced the concept of simulation-extractable NIZK, which informally
states that knowledge soundness should hold even if the adversary can see simulated proofs for
possibly false statements of its choice. For our purpose, it will suffice to consider the weaker
notion of true simulation extractability, as defined by Dodis et al. [DHLW10].

Definition 14 (True simulation extractability). Let Π be a NIZK proof systems for a relation
R, that satisfies adaptive multi-theorem zero-knowledge w.r.t. a simulator S := (S0, S1). We say
that Π is true simulation extractable if there exists a PPT algorithm K such that every PPT
adversary A has a negligible probability of winning in the following game:

• The challenger runs (ω, ζ, ξ)←$ S0(1λ), and gives ω to A.
• Adversary A can ask polynomially many queries of the form (φ, x,w), upon which the

challenger returns S1(ζ, φ, x) if (x,w) ∈ R and ⊥ otherwise.
• Adversary A outputs a tuple (φ∗, x∗, π∗).
• The challenger runs w←$ K(ξ, φ∗, (x∗, π∗)).

We say that A wins iff: (a) (φ∗, x∗) was not queried in the second step; (b) Ver(ω, φ∗, (x∗, π∗)) =
1; (c) (x∗, w) 6∈ R.
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B Construction of Asymmetric Secret Sharing

We show that the construction of [BGW19] is secure in the noisy-leakage model. Let Ext
be a seeded extractor with d-bit source, ρ-bit seed, and µ-bit output (cf. Def. 9 in §A.1).
Let 2Ext be a two-source extractor with σ1-bit source and ρ-bit output (cf. Def. 10 in §A.1).
Consider the following 2-out-of-2 secret sharing scheme Σ = (Share,Rec), with S1 = {0, 1}σ1 ,
S2 = {0, 1}d+σ1+µ, and M = {0, 1}µ.

• Algorithm Share(m) samples s1←$ {0, 1}σ1 , x←$ {0, 1}d, y←$ {0, 1}σ1 , computes r =
2Ext(s1, y) and z = Ext(x, r)⊕m, and finally outputs s1 and s2 = (x, y, z);
• Algorithm Rec(s1, s2) parses s2 = (x, y, z), and returns z ⊕ Ext(x, 2Ext(s1, y)).

Claim 3. The above secret sharing scheme Σ is (α, σ1, σ2)-asymmetric, for α = µ, and σ2 =
d+ σ1 + µ.

Proof. The size of the shares follows by inspection. Moreover, the share s1 is sampled uniformly
at random and used as the first source for the two-source extractor. As for the conditional min-
entropy, we have:

H̃∞(S1|S2) = H̃∞((X,Y,Z)|S1) ≥ H̃∞(X,Y|S1) ≥ |X|+ |Y| = σ2 − µ

H̃∞(S2|S1) = H̃∞(S1|(X,Y,Z)) ≥ H̃∞(S1|X,Y)− |Z| ≥ σ1 − µ.

Following [BGW19, DDV10], we define a slightly different game Leak′A,Σ(λ, b) which is the
same as LeakA,Σ but where the leakage oracle is instantiated with s1, (x, y) instead of s1, s2,
and at the end of the experiment the adversary A additionally receives z in full.

Claim 4. Assume that for all (`1, `2)-NLA adversaries A′, we have∣∣P [Leak′A′,Σ(λ, 0) = 1
]
− P

[
Leak′A′,Σ(λ, 1) = 1

]∣∣ ≤ ε,
for some ε′ ∈ [0, 1]. Then, for all (`1, `2 − µ)-NLA adversaries A we have:

|P [LeakA,Σ(λ, 0) = 1]− P [LeakA,Σ(λ, 1) = 1]| ≤ ε · 2µ.

Proof. By contradiction, let A be an (`1, `2 − µ)-NLA adversary for the original game with
advantage ε · 2µ. We build an attacker A′ in the modified game Leak′A,Σ(λ, b). The reduction
A′ samples z′ uniformly at random, and simply runs A by forwarding its leakage queries to its
own leakage oracle with hard-wired value z′. Eventually, A′ receives the real value z. If z = z′,
then A′ continues running A, and else it aborts outputting a random bit. It is easy to see that
the winning probability of A′ equals the probability that z = z′ times the winning probability
of A, which yields the bound in the claim.

Note that conditioned on z = z′, the adversary A′ is (`1, `2−µ)-NLA (and thus (`1, `2)-NLA)
since z is a deterministic function of the target shares. On the other hand, when z 6= z′, we can
write:

H̃∞((X,Y)|S1,Λ) ≥ H̃∞((X,Y,Z)|S1,Λ)− |Z| ≥ H̃∞((X,Y)|S1)− `2.

Claim 5. If 2Ext is a (σ1− `1, σ1− `2, ε2)-secure two-source extractor, and Ext is a (d− `2, ε1)-
secure seeded extractor, then for all (`1, `2)-NLA adversaries A:∣∣P [Leak′A,Σ(λ, 0) = 1

]
− P

[
Leak′A,Σ(λ, 1) = 1

]∣∣ ≤ 2(ε1 + ε2).
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Proof. We proceed with a hybrid argument.

• Let Hyb1
A,Σ(λ, b) be the same as Leak′A,Σ(λ, b), except that we pick r←$ {0, 1}ρ in-

stead of computing r = 2Ext(s1, y). The statistical distance between Leak′A,Σ(λ, b) and

Hyb1
A,Σ(λ, b) is at most ε2. To see this, let Λ be the leakage performed by A. By

Lemma 16, the random variables Y|Λ and S1|Λ are independently distributed. More-
over, since A is (`1, `2)-NLA, we have:

H̃∞(S1|Λ) ≥ σ1 − `1
H̃∞(Y|Λ) ≥ H̃∞(X,Y|S1,Λ)− |X|

≥ H̃∞(X,Y|S1)− `2 − d = σ1 − `2,

so that we can apply the security of the two-source extractor 2Ext.
• Let Hyb2

A,Σ(λ, b) be the same as Hyb1
A,Σ(λ, b), except that we now pick z←$ {0, 1}µ. The

statistical distance between Hyb1
A,Σ(λ, b) and Hyb2

A,Σ(λ, b) is at most ε1. In fact, neither
the seed r nor the output z of Ext are in the view of the adversary during the leakage
phase. Furthermore, a derivation similar to the one above shows that the random variable
X|Λ has conditional average min-entropy at least d−`2, so that we can apply the security
of the seeded extractor Ext.

The claim now follows by noting that for all (`1, `2)-NLA attackers A we must have Hyb2
A,Σ(λ,

0) ≡ Hyb2
A,Σ(λ, 1), as the view of the adversary in the last hybrid is independent of b.

Invoking the result of [CG88, DORS08], for any `1, `2, any α = µ, and any ε1, ε2, we
can always find ρ, d, σ1 polynomial in `1, `2, α and log(1/ε1), log(1/ε2) such that Ext is a (d −
`2, ε1)-secure seeded extractor and 2Ext is a (σ1− `1, σ1− `2, ε2)-secure two-source extractor By
combining the above claims and setting ε1 = ε2 = 2−α−λ−2, we obtain that Σ is a noisy-leakage-
resilient secret sharing scheme.

45


	Introduction
	Our Contributions
	Related Work
	Organization

	Secret Sharing Schemes
	Continuous Tampering under Selective Partitioning
	The Definition
	On Augmented Non-Malleability
	Related Notions

	Construction in the CRS Model
	Description of the Scheme
	Proof Overview
	Security Analysis
	Concrete Instantiation

	Construction in the Plain Model
	Description of the Scheme
	Proof Overview
	Security Analysis

	Statistical One-Time Non-Malleability with Noisy Leakage
	Asymmetric Noisy-Leakage-Resilient Secret Sharing
	Construction
	Proof Overview
	Security Analysis

	Conclusions and Open Problems
	Standard Definitions
	Randomness Extractors
	Non-Interactive Commitments
	Non-Interactive Zero Knowledge

	Construction of Asymmetric Secret Sharing

