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Abstract. The Modular Inversion Hidden Number Problem (MIHNP), introduced by Boneh,
Halevi and Howgrave-Graham in Asiacrypt 2001, is briefly described as follows: Let MSBδ(z)
refer to the δ most significant bits of z. Given many samples

(
ti,MSBδ((α+ ti)

−1 mod p)
)

for random ti ∈ Zp, the goal is to recover the hidden number α ∈ Zp. MIHNP is an important
class of Hidden Number Problem.

In this paper, we revisit the Coppersmith technique for solving a class of modular polynomial
equations, which is respectively derived from the recovering problem of the hidden number α
in MIHNP. For any positive integer constant d, let integer n = d3+o(1). Given a sufficiently
large modulus p, n + 1 samples of MIHNP, we present a heuristic algorithm to recover the
hidden number α with a probability close to 1 when δ/ log2 p >

1
d+1

+ o( 1
d
). The overall

time complexity of attack is polynomial in log2 p, where the complexity of the LLL algorithm

grows as dO(d) and the complexity of the Gröbner basis computation grows as (2d)O(n2).
When d > 2, this asymptotic bound outperforms δ/ log2 p > 1

3
which is the asymptotic

bound proposed by Boneh, Halevi and Howgrave-Graham in Asiacrypt 2001. It is the first
time that a better bound for solving MIHNP is given, which implies that the conjecture that
MIHNP is hard whenever δ/ log2 p <

1
3

is broken. Moreover, we also get the best result for
attacking the Inversive Congruential Generator (ICG) up to now.

Keywords: Modular inversion hidden number problem, inversive congruential generator,
lattice, LLL algorithm, the Coppersmith technique.



1 Introduction

1.1 Background

In cryptography research, one focuses on whether a mathematical problem is computationally hard,
as the hard mathematical problem is the foundation of constructing cryptographic secure schemes.
In [4], Boneh, Halevi and Howgrave-Graham introduced an algebraic complexity assumption called
the Modular Inversion Hidden Number Problem (MIHNP) in order to design a pseudorandom
number generator and message authentication code.

Definition 1 (Modular Inversion Hidden Number Problem(MIHNP)). For a given prime
p, consider a secret α ∈ Zp and n+ 1 elements t0, t1, . . . , tn ∈ Zp \ {−α}, chosen independently and
uniformly at random. Given n+ 1 samples{ (

ti,MSBδ((α+ ti)
−1 mod p)

) }n
i=0

where MSBδ(z) refers to the δ most significant bits of z, the goal is to recover the hidden number
α.

MIHNP is closely related to Hidden Number Problem (HNP), which was introduced in [5]
by Boneh and Venkatesan to prove the bit security of the Diffie-Hellman key-exchange in Zp.
Shparlinski [28] revealed that the primary motivation of studying MIHNP is to expect the bit
security result of the Elliptic Curve Diffie-Hellman key-exchange. In PKC 2017, Shani [27] used
ideas [4,20] of solving MIHNP to get the first rigorous result about the bit security of the Elliptic
Curve Diffie-Hellman key-exchange.

1.2 Cryptanalysis

In Asiacrypt 2001, Boneh, Halevi and Howgrave-Graham gave two heuristic lattice methods to
solve MIHNP [4]. Let δ denote the given number of most significant bits of (α + ti)

−1 mod p’s.
The first method works if δ > 2

3 log2 p. The second method solves MIHNP if δ > 1
3 log2 p, i.e., the

knowledge of significantly fewer bits is needed. Moreover, Boneh, Halevi and Howgrave-Graham [4]
conjectured that MIHNP is hard whenever δ < 1

3 log2 p. In 2012, Ling et al. presented a rigorous
polynomial time algorithm for solving MIHNP [20]. The obtained asymptotic result is δ > 2

3 log2 p,
which is the same as that of the first method in [4]. In 2014, Xu et al. [34] gave a heuristic lattice
approach based on the Coppersmith technique, which has certain advantages when the number of
samples is sufficiently small. However, the corresponding asymptotic result is δ > 1

2 log2 p which is
still weaker than the second method in [4]. On the other hand, recently Xu et al. [35] obtained the
explicit lattice construction of the second method in [4] and achieved the same asymptotic result
δ > 1

3 log2 p.
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1.3 Our Contribution

We revisit the Coppersmith technique to solve the following system of multivariate modular poly-
nomial equations

f0j(x0, xj) := a0j + b0jx0 + c0jxj + x0xj = 0 (mod p) for 1 ≤ j ≤ n,

which is obtained from the recovering problem of the hidden number in MIHNP [35]. In the poly-
nomial selection strategy for the Coppersmith lattice, we use the idea on helpful polynomials in
[21,29] (see Section 2.2). The diagonals of helpful polynomials in the basis matrix are smaller than
the involved modulo. This criterion enables helpful polynomials to facilitate the solution of modular
equations. Therefore, we should try our best to add helpful polynomials into the involved lattice.

Based on the lattice construction of [4,35], we find that new linearly independent polynomials can
still be added into the lattice by making full use of the linear combination of multiplies of several
f0j(x0, xj) with common monomials. These newly added polynomials are helpful because their
diagonal elements are smaller than modulo. Because the number of newly added helpful polynomials
dominates the number of all the selected polynomials, it makes the Coppersmith technique search
the desired small roots much efficiently.

In this paper, we obtain the following results. For any positive integer constant d, let integer

n = d3+o(1). For a given sufficiently large modulus p = 2ω(d
3d+2), and n + 1 given samples of

MIHNP, we present a heuristic algorithm to recover the hidden number α with a probability close
to 1 when δ/ log2 p >

1
d+1 + o( 1

d ). The overall time complexity of attack is polynomial in log2 p,

where the complexity of the LLL algorithm grows as dO(d) and the complexity of the Gröbner
basis computation grows as (2d)O(n2). When d = 2, our asymptotic result of δ/log2 p is equal to 1

3 ,
which is same as the previous best result [4,35]. When d > 2, the corresponding asymptotic bound
is 1

d+1 <
1
3 . This implies that our result is beyond the bound given by the second method in [4].

Hence, we disprove the conjecture proposed by Boneh, Halevi and Howgrave-Graham in [4]. This
attack also applies to ICG, as in prior work [35].

In Table 1, we compare new bound of δ/log2 p and the corresponding time complexity with
the existing works (see Appendix A and Remark 4). Our results show that new bound of δ/log2 p
is equal to 0 in the asymptotic sense. This is to say that MIHNP can be heuristically solved in
polynomial time when δ is a constant fraction of log2 p. However, for the practical solutions, it

requires a huge lattice dimension O
(

( log2 p
δ )O(

log2 p
δ )

)
in order to ensure that δ/ log2 p is close to 0.

1.4 Organization of the Paper

The rest of this paper is organized as follows. In Section 2, we recall some terminologies and
preliminaries. In Section 3, we present a strategy for solving modular polynomial equations and
give the result for attacking MIHNP. Section 4 presents the proof of triangle basis matrix. Section
5 gives the experimental result. Section 6 concludes the paper. In Appendices, we respectively give
asymptotic time complexities in previous works, the computation of lattice determinant and the
analysis of bound of the desired small root.
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Table 1. Comparison of lower bounds of δ/ log2 p and corresponding time complexities, where ρ := δ/ log2 p
and k := log2 p.

MIHNP Lower Bound Asymptotic Time Complexities
ICG of δ/log2 p LLL Gröbner basis SVP

[3] 3/4 − − kO(1)

[20] 2/3 − − kO(1)2
O( 1

ρ− 2
3

)

[1] 1/2 O
(
kO(1)(log2

1

ρ− 1
2

)
O(log2

1

ρ− 1
2

)) (
log2

1

ρ− 1
2

)O((log2 1

ρ− 1
2

)2
)

−

[34] 1/2 O
(
kO(1)( 1

ρ− 1
2

)O(1)
) (

1

ρ− 1
2

)o( log2
1

ρ− 1
2

)
−

[4] 1/3 − − kO(1)2
O
(
( 2
3ρ−1

)

O( 1
ρ− 1

3

))
[35] 1/3 O

(
kO(1)( 2

3ρ−1
)
O( 1

ρ− 1
3

))
( 4
3ρ−1

)
O(( 1

ρ− 1
3

)
O(1)

)

−

This paper 0 O
(
kO(1)( 1

ρ
)
O( 1

ρ
))

( 2
ρ
)
O(( 1

ρ
)
O(1)

) −

2 Preliminaries

2.1 Lattices

Let vectors b1, . . . ,bw be linearly independent in Rn. The set

L =
{ w∑
i=1

kibi, ki ∈ Z
}

is called a lattice with basis vectors b1, · · · ,bw. In this paper, the basis vectors involved are row
vectors. The dimension and determinant of L are respectively dim(L) = w,det(L) =

√
det(BBT ),

where B = [bT1 , · · · ,bTw]T is a basis matrix. If B is a square matrix, then det(L) = |det(B)|.
In 1982, Lenstra, Lenstra and Lovász presented a deterministic polynomial-time algorithm [19]

in order to find a reduced basis of the lattice.

Lemma 1 ([19]). Let L be a lattice. Within polynomial time, the LLL algorithm outputs reduced
basis vectors v1, . . . ,vw that satisfy

‖v1‖ ≤ ‖v2‖ ≤ · · · ≤ ‖vi‖ ≤ 2
w(w−1)

4(w+1−i) det(L)
1

w+1−i , 1 ≤ i ≤ w.

2.2 The Coppersmith Technique

In 1996, Coppersmith proposed lattice-based techniques [7,8,9] for finding the small solution of
univariate modular polynomials and bivariate integer polynomials. In 2006, May et al. presented
heuristic strategies for solving multivariate polynomials [15]. The Coppersmith technique has been
widely used in the field of cryptanalysis such as attacking RSA and its variants (see the survey [21]
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and recent results such as [16,30,31,25]) and analyzing pseudorandom number generators as well as
computationally hard mathematical problems such as [14,11,12,1,32,6,2,35].

We explain briefly how one can utilize the idea of the Coppersmith technique to solve multivariate
modular polynomials.

Definition of the Problem. Let f1(x0, x1, · · · , xn), · · · , fm(x0, x1, · · · , xn) bem irreducible multi-
variate polynomials defined over Z, which have a common root (x̃0, x̃1, · · · , x̃n) modulo a known inte-
ger p such that |x̃0| < X0, · · · , |x̃n| < Xn. The question is to recover the desired root (x̃0, x̃1, · · · , x̃n)
in polynomial time. The analysis needs to establish bounds Xi’s to ensure recovery.

Step 1: Collection of Polynomials. One generates a collection of polynomials g1(x0, x1, · · · , xn),
· · · , gw(x0, x1, · · · , xn) such that (x̃0, x̃1, · · · , x̃n) is a common modular root. For example, gi’s

can be constructed as follows: gi(x0, x1, . . . , xn) = pd−(β
i
1+···+β

i
m)x

αi0
0 x

αi1
1 · · ·x

αin
n f

βi1
1 · · · f

βim
m for i =

1, · · · , w, where d ∈ Z+, αi0, α
i
1, · · · , αin, βi1, · · · , βim are nonnegative integers and 0 ≤ βi1+· · ·+βim ≤

d. It is easy to see that gi(x̃0, x̃1, · · · , x̃n) ≡ 0 mod pd for every i ∈ [1, · · · , w].

Step 2: Construction of Lattice. Let bi be the coefficient vector of the polynomial gi(x0X0,

x1X1, . . . , xnXn) for all 1 ≤ i ≤ w. Then one generates the lattice L =
{ w∑
i=1

kibi, ki ∈ Z
}

.

Step 3: Generation of Reduced Basis. One runs a lattice reduction algorithm, such as LLL algo-
rithm, to obtain the n+1 reduced basis vectors v1, . . . ,vn+1 such that the corresponding polynomi-
als h1(x0, x1, · · · , xn), · · · , hn+1(x0, x1, · · · , xn) have the desired common root (x̃0, x̃1, · · · , x̃n) over
Z, where vi is the coefficient vector of the polynomial hi(x0X0, x1X1, . . . , xnXn) for i = 1, · · · , n+1.
Note that hi(x0, x1, . . . , xn) is a linear combination of g1(x0, x1, . . . , xn), · · · , gw(x0, x1, . . . , xn).
Hence, we have hi(x̃0, x̃1, · · · , x̃n) = 0 (mod pd) for every i ∈ [1, · · · , n + 1]. In order to obtain
hi(x̃0, x̃1, · · · , x̃n) = 0 for all 1 ≤ i ≤ n, we need the following lemma in this process.

Lemma 2 ([13]). Let h(x0, x1, . . . , xn) be an integer polynomial that consists of at most w mono-
mials. Let d be a positive integer and the integers Xi be the upper bound of |x̃i| for i = 0, 1, · · · , n.
Let ‖h(x0X0, x1X1, . . . , xnXn)‖ be the Euclidean norm of the coefficient vector of the polynomial
h(x0X0, x1X1, . . . , xnXn) with variables x0, x1, . . . , xn. Suppose that

1. h(x̃0, x̃1, · · · , x̃n) = 0 (mod pd),

2. ‖h(x0X0, x1X1, . . . , xnXn)‖ < pd√
w

,

then h(x̃0, x̃1, · · · , x̃n) = 0 holds over Z.

To get the above n + 1 polynomials h1(x0, x1, · · · , xn), · · · hn+1(x0, x1, · · · , xn), from Lemma
1 and Lemma 2, one needs the Euclidean lengths of the n + 1 reduced basis vectors v1, . . . ,vn+1

satisfy the condition

2
w(w−1)
4(w−n) ·

(
det(L)

) 1
w−n <

pd√
w
, (1)

where w = dim(L).
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Based on Condition (1), one can determine the bounds Xi for i = 0, · · · , n. In order to make
the bounds Xi as large as possible, the polynomials g1(x0, x1, · · · , xn), · · · , gw(x0, x1, · · · , xn) in
Step 1 need to be constructed carefully. It is a difficult step in the Coppersmith technique.

The strategy of choosing polynomials for our lattice construction is based on the idea of help-
ful polynomials [21,29]. Neglecting low-order terms in (1), we can rewrite condition (1) and obtain
the simplified condition as follows:

(det(L))
1
w < pd.

For a triangular basis matrix, the left side of this simplified condition is regarded as the geometric
mean of all diagonals of the basis matrix. The polynomials whose diagonals are less than pd are called
helpful polynomials. For a polynomial, for example, h(x0, · · · , xn), the diagonal of h(x0, · · · , xn)
means the leading coefficient of h(x0X0, · · · , xnXn). A helpful polynomial contributes to the de-
terminant with a factor less than pd. The more helpful polynomials are added to the lattice, the
better the condition for solving modular equations becomes. This means that the Coppersmith
technique of finding the wanted small root becomes more and more effective, and the above bounds
Xi become larger and larger. Therefore, we should choose as many helpful polynomials as possible.
In this paper, our method can significantly improve previous results because the number of helpful
polynomials dominates the number of all selected polynomials.

Step 4: Recovering the Desired Root. We have no assurance that the n+1 obtained polynomials
h1, · · · , hn+1 are algebraically independent. Under the following heuristic assumption that the n+1
polynomials define an algebraic variety of dimension zero, the corresponding equations can be
solved using elimination techniques such as the Gröbner basis computation, and then the desired
root (x̃0, x̃1, · · · , x̃n) is recovered. In this paper, we justify the validity of our heuristic attack by
computer experiments.

Assumption 1. Let h1, · · · , hn+1 ∈ Z[x0, x1, · · · , xn] be the polynomials that are found by the
Coppersmith technique. Then the ideal generated by the polynomial equations h1(x0, x1, · · · , xn) = 0,
· · · , hn+1(x0, x1, · · · , xn) = 0 has dimension zero.

2.3 A Class of Modular Polynomial Equations

In this subsection, we translate the problem of recovering the hidden number in MIHNP into solving
modular polynomial equations with small root.

For a given prime p, consider a hidden number α ∈ Zp and n + 1 elements t0, t1, . . . , tn ∈
Zp \ {−α}, chosen independently and uniformly at random. The goal is to recover α, given n + 1
samples

(
ti,MSBδ((α+ ti)

−1 mod p)
)
.

Denote ui = MSBδ
(
(α + ti)

−1 mod p)
)

and x̃i =
(
(α + ti)

−1 mod p
)
− ui, where unknown x̃i

satisfies 0 ≤ x̃i ≤ p
2δ

for all 0 ≤ i ≤ n. Hence, we obtain (α + ti)(ui + x̃i) = 1 mod p, eliminate α
from these equations and get the following relations

a0i + b0ix̃0 + c0ix̃i + x̃0x̃i = 0 mod p, 1 ≤ i ≤ n, (2)
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where

a0i = u0ui + (u0 − ui)(t0 − ti)−1 mod p,
b0i = ui + (t0 − ti)−1 mod p,
c0i = u0 − (t0 − ti)−1 mod p.

(3)

If the corresponding x̃0, x̃1, · · · , x̃n are found out, then the hidden number α can be recovered.
Hence, our goal is to find the desired root (x̃0, x̃1, · · · , x̃n) of the following modular polynomial
equations

f0i(x0, xi) := a0i + b0ix0 + c0ixi + x0xi = 0 mod p, 1 ≤ i ≤ n, (4)

where n < p and |x̃0|, |x̃1|, · · · , |x̃n| are bounded by X. We take X = p
2δ

where δ is the number of
known MSBs. Moreover, in the following analysis, we need that all c01, · · · , c0n ∈ Zp are distinct.

According to (3), we get c0i = u0 − (t0 − ti)
−1 mod p for i = 1, · · · , n. Note that elements

t0, t1, . . . , tn ∈ Zp \ {−α}, chosen independently and uniformly, where α is the hidden number. The

probability that all c0i are distinct is equal to
n−1∏
k=1

(1− k
p ) ≈ e

−
n−1∑
k=1

k
p

= e−
n(n−1)

2p ≈ 1− n2−n
2p , which

is close to 1 for a sufficiently large p.

2.4 Order of Monomials

First, we describe reverse lexicographic order and graded lexicographic reverse order respectively.
Please refer to [33, Section 21.2] for more details of these orders. Let (i1, · · · , in) and (i′1, · · · , i′n)
be integer vectors, where im ≥ 0, i′m ≥ 0 for all 1 ≤ m ≤ n.

Reverse Lexicographic Order: (i′1, · · · , i′n) ≺revlex (i1, · · · , in) ⇔ the rightmost nonzero entry
in (i′1 − i1, · · · , i′n − in) is negative.

Graded Reverse Lexicographic Order: (i′1, · · · , i′n) ≺grevlex (i1, · · · , in) ⇔
n∑

m=1
i′m <

n∑
m=1

im or
( n∑
m=1

i′m =
n∑

m=1
im and (i′1, · · · , i′n) ≺revlex (i1, · · · , in)

)
.

Next, we consider the following order of monomials.

x
i′0
0 x

i′1
1 · · ·x

i′n
n ≺ xi00 xi11 · · ·xinn ⇔

(i′1, · · · , i′n) ≺grevlex (i1, · · · , in) or
(
(i′1, · · · , i′n) = (i1, · · · , in) and i′0 < i0

)
.

(5)

It is worth noting that we treat i0 differently than i1, · · · , in for vector (i0, i1, · · · , in).

2.5 Elementary Symmetric Polynomials and Matrix

In this section, we first describe the definition of elementary symmetric polynomials. Please refer
to [26, Section 3.1] for more details.
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The elementary symmetric polynomials on m variables {y1, · · · , ym}, written as σk(y1, · · · , ym)
for k = 0, 1, · · · ,m, are defined by

σ0(y1, · · · , ym) = 1,

σ1(y1, · · · , ym) =
∑

1≤i≤m
yi,

σ2(y1, · · · , ym) =
∑

1≤i<j≤m
yiyj ,

σ3(y1, · · · , ym) =
∑

1≤i<j<k≤m
yiyjyk,

...

σm(y1, · · · , ym) =
∏

1≤i≤m
yi.

From the above formulas, we can see that σk(y1, · · · , ym) is the sum of all products of exactly k
distinct yi’s.

Next, we define the following s × s matrix whose entries depend on elementary symmetric
polynomials, which will be used in Sections 3 and 4. Consider the matrix

Mj1,··· ,js :=


σs−1(∧0) · · · σ1(∧0) σ0(∧0)
σs−1(∧1) · · · σ1(∧1) σ0(∧1)

· · ·
σs−1(∧s−1) · · · σ1(∧s−1) σ0(∧s−1)

 ,

where σi(∧l) is the i-th elementary symmetric polynomial on

∧l := {c0,j1 , · · · , c0,js} \ {c0,jl+1
} with 0 ≤ i ≤ s− 1, 0 ≤ l ≤ s− 1.

Here 1 ≤ j1 < · · · < js ≤ n and c0,jl+1
is the coefficient of variable xjl+1

in the polynomial f0,jl+1

in (4).
For indexes j1, · · · , js, row u and column v of matrix Mj1,··· ,js is the evaluation of σs−v on all the

variables c0,ji except c0,ju , where 1 ≤ u, v ≤ s. From another perspective, we first let polynomials

Gu(x) := (x+ c0,j1) · · · (x+ c0,ju−1
)(x+ c0,ju+1

) · · · (x+ c0,js) for all 1 ≤ u ≤ s.

For 1 ≤ v ≤ s, we have that the coefficient of Gu(x) on monomial xs−v is the evaluation of σs−v
on all the variables c0,ji except c0,ju . In other words, row u and column v of matrix Mj1,··· ,js is the
coefficient of Gu(x) on monomial xs−v.

Lemma 3. For a given prime p and any integer s ≥ 2, define matrix Mj1,··· ,js as above. Then
Mj1,··· ,js is invertible over Zps−1 if c0,j1 , · · · , c0,js are distinct in Zp.

Proof. Since p is a prime number, we get that Mj1,··· ,js is invertible over Zps−1 if and only if Mj1,··· ,js
is invertible over Zp. Note that row u of matrix Mj1,··· ,js is the coefficient vector of polynomial Gu(x)
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on the basis (1, x, · · · , xs−1) for all 1 ≤ u ≤ s. Hence, Mj1,··· ,js is invertible over Zp if and only if
polynomials G1(x), · · · , Gs(x) are linearly independent over Zp.

Suppose that there exist integers c1, · · · , cs satisfying

c1G1(x) + · · ·+ csGs(x) = 0. (6)

Note that Gu(x) = (x+c0,j1) · · · (x+c0,ju−1
)(x+c0,ju+1

) · · · (x+c0,js) for 1 ≤ u ≤ s. Taking modulo
x+ c0,ju on both sides of (6), we obtain that

cuGu(x) ≡ 0 mod (x+ c0,ju) for u = 1, · · · , s.

If c0,j1 , · · · , c0,js are distinct in Zp, then the polynomials x+c0,j1 , · · · , x+c0,js are pairwise coprime.
Furthermore, we have gcd(x+ c0,ju , Gu(x)) = 1. Combining this relation with the above equations,
we deduce that c1 = · · · = cs = 0. Based on (6), we have that the polynomials G1(x), · · · , Gs(x)
are linearly independent over Zp. In other words, Mj1,··· ,js is invertible over Zps−1 if c0,j1 , · · · , c0,js
are distinct in Zp.

Note that the indexes j1, · · · , js satisfy 1 ≤ j1 < · · · < js ≤ n. We always have that elements
c0,j1 , · · · , c0,js are from c01, · · · , c0n. According to the analysis of Section 2.3, we know that c01, · · · ,
c0n are distinct with a probability close to 1 for a sufficiently large p. Hence, from Lemma 3, matrix
Mj1,··· ,js is invertible over Zps−1 with a probability close to 1 for a sufficiently large p.

3 The Strategy for Solving a Class of Modular Polynomial Equations

In this section, we first present theorems to solve the equation system (4), and then give the
corresponding results for solving MIHNP.

Theorem 1. For any given positive integer d, take positive integer n = d3+o(1). Given a sufficiently

large prime p = 2ω(d
3d+2), and polynomials f0j(x0, xj) with 1 ≤ j ≤ n in (4), under Assumption 1,

one can compute the desired root (x̃0, x̃1, · · · , x̃n) with a probability close to 1, if the bound X of
|x̃0|, |x̃1|, · · · , |x̃n| satisfies

X < p1−
1
d+1−o(

1
d ). (7)

The corresponding time complexity is polynomial in log2 p for any constant d, where the complexity
of the LLL algorithm grows as dO(d) and the complexity of the Gröbner basis computation grows as
(2d)O(n2).

Proof. For any given positive integer d, and integers n, t satisfying n ≥ d + 1, 0 ≤ t ≤ d, we first
construct the polynomials Fi0,i1,...,in(x0, x1, · · · , xn) for all vectors (i0, i1, · · · , in) ∈ I(n, d, t), where

I(n, d, t) = {(i0, i1, · · · , in) | 0 ≤ i0 ≤ d, 0 ≤ i1, · · · , in ≤ 1, 0 ≤ i1 + · · ·+ in ≤ d}
∪ {(i0, i1, · · · , in) | 0 ≤ i0 ≤ t, 0 ≤ i1, · · · , in ≤ 1, i1 + · · ·+ in = d+ 1}.

We will optimize integers n, t later. Denote the level s := i1 + · · ·+ in, where 0 ≤ s ≤ d+ 1.
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When s = 0, we construct Fi0,i1,...,in(x0, x1, · · · , xn) = pdxi00 for i0 = 0, 1, · · · , d.

When s = 1, we construct

Fi0,i1,...,in(x0, x1, · · · , xn) =

{
pdxi11 · · ·xinn for i0 = 0,

pd−1xi0−10 f i101 · · · f in0n for 1 ≤ i0 ≤ d.

When 2 ≤ s ≤ d+ 1, if s ≤ i0 ≤ d, we construct the polynomials

Fi0,i1,...,in(x0, x1, · · · , xn) = pd−sxi0−s0 f i101 · · · f in0n.

If 0 ≤ i0 < s, we construct the polynomials Fi0,i1,...,in(x0, x1, · · · , xn) as follows.
Notice that all integers i1, · · · , in are equal to 0 or 1. We can rewrite f i101 · · · f in0n = f0,j1 · · · f0,js ,

where j1, · · · , js are some integers satisfying 1 ≤ j1 < · · · < js ≤ n. Define Mj1,··· ,js as Section
2.5. Based on Lemma 3, we have that Mj1,··· ,js is invertible in Zps−1 with a probability close to 1

for a sufficiently large p. Let M−1j1,··· ,js be the inverse of Mj1,··· ,js modulo ps−1. Then we generate
s polynomials g0(x0, xj1 , . . . , xjs), g1(x0, xj1 , . . . , xjs), · · · , gs−1(x0, xj1 , . . . , xjs) according to the
following way:

g0(x0, xj1 , . . . , xjs)
g1(x0, xj1 , . . . , xjs)

...
gs−1(x0, xj1 , . . . , xjs)

 = M−1j1,··· ,js ·


xj1f0,j2 · · · f0,js
f0,j1xj2 · · · f0,js

...
f0,j1 · · · f0,js−1

xjs

 mod ps−1. (8)

Here, g0(x0, xj1 , . . . , xjs), g1(x0, xj1 , . . . , xjs), · · · , gs−1(x0, xj1 , . . . , xjs) are treated as the corre-
sponding polynomials over Z.

Further, we define

Fi0,i1,...,in(x0, x1, · · · , xn) = pd+1−s · gi0(x0, xj1 , . . . , xjs), (9)

where {
0 ≤ i0 ≤ s− 1 for 0 ≤ s ≤ d,
0 ≤ i0 ≤ t for s = d+ 1.

Note that gi0(x̃0, x̃1, · · · , x̃n) = 0 mod ps−1. The corresponding

Fi0,i1,··· ,in(x̃0, x̃1, · · · , x̃n) = 0 mod pd.

In fact, for all tuples (i0, i1, · · · , in) ∈ I(n, d, t), we always get

Fi0,i1,··· ,in(x̃0, x̃1, · · · , x̃n) = 0 mod pd.

Next, we present the following lemma in order to construct a triangular lattice basis matrix.
The corresponding proof is given in Section 4.
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Lemma 4. Define polynomials Fi0,i1,...,in(x0, x1, · · · , xn) as above, where the corresponding mono-
mials are arranged according to the order (5). Let L(n, d, t) be a lattice spanned by the coefficient
vectors of polynomials

Fi0,i1,··· ,in(x0X,x1X, · · · , xnX),

for all (i0, i1, · · · , in) ∈ I(n, d, t). Then the basis matrix becomes triangular if these coefficient vectors
are arranged according to the leading monomial of the corresponding Fi0,i1,··· ,in(x0, x1, · · · , xn) from
low to high. Moreover, diagonal elements of the triangular basis matrix of L(n, d, t) are as follows:{

pd−sXi0+s for i0 ≥ s,
pd+1−sXi0+s for i0 < s,

(10)

where s = i1 + · · ·+ in.

We will provide an example for lattice L(n, d, t) in full version. It is easy to see that the dimension
of L(n, d, t) is equal to

dim(L(n, d, t)) = (d+ 1)

d∑
s=0

(
n

s

)
+ (t+ 1)

(
n

d+ 1

)
. (11)

We compute the determinant of L(n, d, t) as

det(L(n, d, t)) = pα(n,d) ·Xβ(n,d,t), (12)

where

α(n, d) = d(d+ 1)
d∑
s=0

(
n
s

)
− d

d∑
s=0

s
(
n
s

)
,

β(n, d, t) = d(d+1)
2

d∑
s=0

(
n
s

)
+ (d+ 1)

d∑
s=0

s
(
n
s

)
+ (2d+t+2)(t+1)

2

(
n
d+1

)
.

The detailed computation is left in Appendix B. By the property of LLL algorithm and Howgrave-
Graham’s lemma, if Condition (1) is satisfied, namely,

2
w(w−1)
4(w−n) · det(L(n, d, t))

1
w−n <

pd√
w
, (13)

where w = dim(L(n, d, t)), after reduction of lattice we get n + 1 polynomials which contain the
root (x̃0, x̃1, · · · , x̃n) over integers. Under Assumption 1, we can find x̃0, x̃1, · · · , x̃n.

Plugging (11) and (12) into (13), we obtain the condition

X <
(
2−

w(w−1)
4β(n,d,t)w−

w−n
2β(n,d,t)

)
· pλ(n,d,t), (14)

where

λ(n, d, t) :=
d(w − n)− α(n, d)

β(n, d, t)
=

2d(t+ 1)
(
n
d+1

)
+ 2d

d∑
s=2

s
(
n
s

)
(2d+ 2 + t)(t+ 1)

(
n
d+1

)
+ d(d+ 1)

d∑
s=0

(
n
s

)
+ 2(d+ 1)

d∑
s=0

s
(
n
s

) .
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For a sufficiently large p = 2ω(d
3d+2), the above condition reduces to X < pλ(n,d,t). By taking the

optimal t = 0 and n = d3+o(1), this condition further becomes

X < p1−
1
d+1−o(

1
d ).

The detailed analysis is presented in Appendix C.
Finally, we analyze the time complexity of our algorithm. Note that the running time of the

LLL algorithm depends on the dimension and the maximal bit size of input basis matrix. For the
optimal case that t = 0 and n = d3+o(1), the dimension of L(n, d, 0) is

(d+ 1)

d∑
s=0

(
n

s

)
+

(
n

d+ 1

)
= O(nd+1) = O(dO(d)).

The bit size of the entries in the basis matrix can be bounded by 2d log2 p based on (10). Hence,
according to [24], the time complexity of the LLL algorithm is equal to

poly
(
2d log2 p,O(dO(d))) = O((log2 p)

O(1)
dO(d)). (15)

Moreover, we use the Gröbner basis computation to solve the polynomials obtained from the LLL
algorithm. The running time of the Gröbner basis computation relies on degrees of the polynomials
in the Gröbner basis and the number of variables in these polynomials [18,10]. Under Assumption
1, these polynomials generate a zero-dimensional ideal. Note that the maximal degree is 2d and the
number of variables is n + 1. Based on [10], we get that the time complexity of the Gröbner basis
computation is

poly((2d)(n+1)2) = (2d)O(n2). (16)

Therefore, the overall time complexity is equal to O((log2 p)
O(1)

dO(d)) + (2d)O(n2), which is poly-
nomial in log2 p for any constant d, where the complexity of the LLL algorithm grows as dO(d) and

the complexity of the Gröbner basis computation grows as (2d)O(n2).

Remark 1. Similar to [4,35], we choose the same polynomials Fi0,i1,...,in(x0, x1, · · · , xn) where any
(i0, i1, · · · , in) lies in the set {(i0, i1, · · · , in) | 0 ≤ i0 ≤ d, 0 ≤ i1, · · · , in ≤ 1, 0 ≤ i1 + · · ·+ in ≤ d}.
The difference from [4,35] is that we add new polynomials Fi0,i1,...,in(x0, x1, · · · , xn) where any
(i0, i1, · · · , in) belongs to the set {(i0, i1, · · · , in) | 0 ≤ i0 ≤ t, 0 ≤ i1, · · · , in ≤ 1, i1+· · ·+in = d+1},
where 0 ≤ t ≤ d. This corresponds to the case of s = d+ 1 in the proof of Theorem 1. When t = 0,
the involved lattice L(n, d, t) is optimized.

According to (8) and (9), we get that newly added polynomials Fi0,i1,...,in(x0, x1, · · · , xn) are
linear combinations of d+1 polynomials xj1f0,j2 · · · f0,jd+1

, f0,j1xj2 · · · f0,jd+1
, · · · , f0,j1 · · · f0,jdxjd+1

,
which have common monomials. Concretely speaking,

Fi0,i1,...,in(x0, x1, · · · , xn) = gi0(x0, xj1 , . . . , xjd+1
),

where 1 ≤ j1, · · · , jd+1 ≤ n satisfying xi11 · · ·xinn = xj1 · · ·xjd+1
. These newly added polynomials

Fi0,i1,...,in(x0, x1, · · · , xn) are linearly independent of previous Fi0,i1,...,in(x0, x1, · · · , xn) according
to the analysis of Lemma 4.

12



Finally, we explain why this method can work efficiently. Consider the optimized case of t = 0,
we have i0 = 0 according to 0 ≤ i0 ≤ t. Note that i1, · · · , in satisfy 0 ≤ i1, · · · , in ≤ 1, i1 +
· · · + in = d + 1. It implies that we added

(
n
d+1

)
such polynomials Fi0,i1,...,in(x0, x1, · · · , xn) into

the involved lattice L(n, d, t). Based on (7) and (10), we get that every newly added polynomial
Fi0,i1,...,in(x0, x1, · · · , xn) contributes to a diagonal element Xd+1 (i1 = 0 and s = d + 1 in (10)),
which is smaller than modulo pd. Such a Fi0,i1,...,in(x0, x1, · · · , xn) is called a helpful polynomial
[21,29]. Hence, we have

(
n
d+1

)
helpful polynomials for lattice L(n, d, t). Since dim(L(n, d, t)) =(

n
d+1

)
(1 + o(1)) for the optimized case of t = 0, we get that the number of all selected polynomials

for lattice L(n, d, t) is
(
n
d+1

)
(1 + o(1)). It implies that newly added

(
n
d+1

)
helpful polynomials are

dominant. This is the fundamental reason behind the effectiveness of our approach.

Since X = p
2δ

in the case of MIHNP, we give the following result.

Corollary 1. For any given positive integer d, let positive integer n = d3+o(1). For a given suffi-

ciently large prime p = 2ω(d
3d+2) and n + 1 given samples in MIHNP, the hidden number can be

recovered with a probability close to 1 under Assumption 1 if the number δ of known MSBs satisfies

δ

log2 p
≥ 1

d+ 1
+ o(

1

d
). (17)

The involved time complexity is polynomial in log2 p for any constant d, where the complexity of
the LLL algorithm grows as dO(d) and the complexity of the Gröbner basis computation grows as
(2d)O(n2).

Remark 2. The algorithm in Theorem 1 can be also applied to the attack case of ICG, as described
in prior work [35].

Remark 3. Taking d = 2, the asymptotic result of δ/log2 p is equal to 1
3 , which is the same as the

previous best result [4,35]. When d > 2, our asymptotic bound is 1
d+1 <

1
3 , resulting in the best

asymptotic result known so far.

Remark 4. Similar to Appendix A, we also use notations ρ = δ/log2 p and k = log2 p, where
0 < ρ < 1. According to (17), namely, ρ ≥ 1

d+1 + o( 1
d ). In the asymptotic sense, we have ρ > 1

d+1 ,

i.e., d > 1
ρ −1. Hence, we can take d = 1/ρ asymptotically. Then, (15) and (16) respectively become

O
(
kO(1)( 1

ρ )
O( 1

ρ )
)

and
(
2
ρ

)O(( 1
ρ )
O(1))

. Hence, the overall time complexity is polynomial in log2 p for

any constant ρ (i.e., δ is a constant fraction of log2 p). Note that ρ = δ/log2 p tends to 0 as d
becomes large. It implies that the asymptotic lower bound of δ/log2 p is equal to 0. However, in
order to ensure that δ/log2 p is close to 0, a huge lattice dimension is required, which is because

that the dimension of the involved lattice is equal to O(dO(d)) = O
(
( 1
ρ )
O( 1

ρ )
)

= O
(
( log2 p

δ )
O(

log2 p
δ ))

.

Figure 1 shows that the theoretical values of δ/log2 p for different lattice dimension, where
the smallest dimension is calculated among different n, d, t for the fixed δ/log2 p. One can achieve
δ/log2 p <

1
3 by using a lattice of dimension 209899. Theoretical value of the involved λ(n, d, t) in

this case is 0.671. Corresponding parameters are n = 45, d = 3, t = 0.
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Fig. 1. Theoretical bound of δ/log2 p for different dimensions.

4 Proof of Lemma 4

Proof. First, we will show that the leading term of Fi0,i1,··· ,in(x0, x1, · · · , xn) according to the order
(5) is as follows:

– pd−sxi00 x
i1
1 · · ·xinn i0 ≥ s,

– pd+1−sxi00 x
i1
1 · · ·xinn i0 < s,

where s = i1 + · · ·+ in.

For the case of s = 0, Fi0,i1,··· ,in(x0, x1, · · · , xn) = pdxi00 for i0 ≥ 0. Obviously, the corresponding
leading term is pd−sxi00 x

i1
1 · · ·xinn where i0 ≥ s = 0.

For the case of s = 1, we have

Fi0,i1,...,in(x0, x1, · · · , xn) =

{
pdxi11 · · ·xinn for i0 = 0,

pd−1xi0−10 f i101 · · · f in0n for 1 ≤ i0 ≤ d.

For i0 = 0, the leading term of Fi0,i1,...,in(x0, x1, · · · , xn) = pdxi11 · · ·xinn can be rewritten as
pd+1−sxi00 x

i1
1 · · ·xinn since s = 1. For i0 ≥ 1, Fi0,i1,...,in(x0, x1, · · · , xn) = pd−1xi0−10 f i101 · · · f in0n. We
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analyze its leading term as follows. Note that f0j = a0j + b0jx0 + c0jxj +x0xj for 1 ≤ j ≤ n. Based
on the order (5), we get

1 ≺ x0 ≺ xj ≺ x0xj for j = 1, · · · , n.
So the leading term of f0j is x0xj . Furthermore, the leading term of Fi0,i1,...,in(x0, x1, · · · , xn) =
pd−1xi0−10 f i101 · · · f in0n is equal to

pd−1xi0−10 (x0x1)i1 · · · (x0xn)in = pd−sxi00 x
i1
1 · · ·xinn ,

where i0 ≥ s = 1.

For the case of 2 ≤ s ≤ d+ 1, if s ≤ i0 ≤ d, we define

Fi0,i1,...,in(x0, x1, · · · , xn) = pd−sxi0−s0 f i101 · · · f in0n.

In this situation, the leading term of Fi0,i1,...,in(x0, x1, · · · , xn) is

pd−sxi0−s0 (x0x1)i1 · · · (x0xn)in = pd−sxi00 x
i1
1 · · ·xinn .

For the following situations {
0 ≤ i0 ≤ s− 1 for 0 ≤ s ≤ d,
0 ≤ i0 ≤ t for s = d+ 1,

where 0 ≤ t ≤ d, we define

Fi0,i1,...,in(x0, x1, · · · , xn) = pd+1−s · gi0(x0, xj1 , . . . , xjs).

Our goal is to show that pd+1−sxi00 x
i1
1 · · ·xinn is the leading term of the corresponding polynomial

Fi0,i1,...,in(x0, x1, · · · , xn). Note that f i101 · · · f in0n is expressed as f0,j1 · · · f0,js in this situation. It
is easy to deduce that xi11 · · ·xinn = xj1 · · ·xjs by comparing terms of f i101 · · · f in0n and f0,j1 · · · f0,js .
Hence we aim to prove that xi00 xj1 · · ·xjs is the leading term of gi0(x0, xj1 , . . . , xjs).

According to (8), i.e.,
g0(x0, xj1 , . . . , xjs)
g1(x0, xj1 , . . . , xjs)

...
gs−1(x0, xj1 , . . . , xjs)

 = M−1j1,··· ,js ·


xj1f0,j2 · · · f0,js
f0,j1xj2 · · · f0,js

...
f0,j1 · · · f0,js−1

xjs

 mod ps−1,

we get that gi0(x0, xj1 , . . . , xjs) is some linear combination of the following polynomials

xj1f0,j2 · · · f0,js , f0,j1xj2 · · · f0,js , · · · , f0,j1 · · · f0,js−1xjs .

Note that these polynomials have common monomials

xj1 · · ·xjs , x0xj1 · · ·xjs , · · · , xs−10 xj1 · · ·xjs . (18)
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Let the polynomial g∗l (x0, xj1 , . . . , xjs) (0 ≤ l ≤ s− 1) be composed of the terms in the polynomial
f0,j1 · · · f0,jlxjl+1

f0,jl+2
· · · f0,js except the corresponding terms of common monomials in (18). Then

we can rewrite

f0,j1 · · · f0,jlxjl+1
f0,jl+2

· · · f0,js = xjl+1
·
∏
k 6=l+1

(c0,jkxjk + x0xjk) + g∗l (x0, xj1 , . . . , xjs)

= (xj1 · · ·xjs) ·
∏
k 6=l+1

(x0 + c0,jk) + g∗l (x0, xj1 , . . . , xjs)

= (xj1 · · ·xjs) ·
s−1∑
i=0

(
σi(∧l) · xs−1−i0

)
+ g∗l (x0, xj1 , . . . , xjs),

where ∧l = {c0,j1 , · · · , c0,js} \ {c0,jl+1
} and σi is the i-th elementary symmetric polynomial. Fur-

thermore, we express the above equalities for all 0 ≤ l ≤ s − 1 by using the matrix equation as
follows: 

xj1f0,j2 · · · f0,js
f0,j1xj2 · · · f0,js

...
f0,j1 · · · f0,js−1

xjs

 = Mj1,··· ,js ·


xj1 · · ·xjs
x0xj1 · · ·xjs

...
xs−10 xj1 · · ·xjs

+


g∗0(x0, xj1 , . . . , xjs)
g∗1(x0, xj1 , . . . , xjs)

...
g∗s−1(x0, xj1 , . . . , xjs)

 . (19)

Plugging (19) into (8), we obtain

g0(x0, xj1 , . . . , xjs)
...

gi0(x0, xj1 , . . . , xjs)
...

gs−1(x0, xj1 , . . . , xjs)

 =



xj1 · · ·xjs
...

xi00 xj1 · · ·xjs
...

xs−10 xj1 · · ·xjs

+M−1j1,··· ,js



g∗0(x0, xj1 , . . . , xjs)
...

g∗i0(x0, xj1 , . . . , xjs)
...

g∗s−1(x0, xj1 , . . . , xjs)

 (20)

in the sense of modulo ps−1. According to (20), in order to prove that xi00 xj1 · · ·xjs is the lead-
ing monomial of gi0(x0, xj1 , . . . , xjs), we need to analyze that all monomials from the following
polynomials

g∗0(x0, xj1 , . . . , xjs), g
∗
1(x0, xj1 , . . . , xjs), · · · , g∗s−1(x0, xj1 , . . . , xjs)

are lower than xi00 xj1 · · ·xjs based on the order (5).
From (19), we can deduce that the monomial set from these polynomials g∗0 , g

∗
1 , · · · , g∗s−1 is equal

to {
xr00 xk1 · · ·xkm | 0 ≤ r0 ≤ d, {k1, · · · , km} $ {j1, · · · , js}

}
.

It implies that for any monomial xr00 xk1 · · ·xkm from the above monomial set, we have m < s. There-
fore, we get xr00 xk1 · · ·xkm ≺ xi00 xj1 · · ·xjs according to the order (5). In other words, xi00 xj1 · · ·xjs
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is the leading monomial of gi0(x0, xj1 , . . . , xjs). Hence, pd+1−sxi00 x
i1
1 · · ·xinn is the leading term of

Fi0,i1,...,in(x0, x1, · · · , xn) in this situation.
Next, we will show that the basis matrix of L(n, d, t) is triangular based on the leading mono-

mials of the polynomials Fi0,i1,··· ,in(x0, x1, · · · , xn) from low to high. Note that the basis matrix of
L(n, d, t) consists of the coefficient vectors of the polynomials Fi0,i1,··· ,in(x0X,x1X, · · · , xnX). It is
easy to see that there is a one-to-one correspondence between the polynomials Fi0,i1,··· ,in(x0, x1, · · · ,
xn) and Fi0,i1,··· ,in(x0X,x1X, · · · , xnX). So, our goal is to prove that all polynomials Fi0,i1,··· ,in(x0,
x1, · · · , xn) form a triangular matrix according to the corresponding leading monomials from low
to high.

For the case of s = 0, the corresponding polynomial Fi0,i1,··· ,in(x0, x1, · · · , xn) is equal to pdxi00 ,
where i0 = 0, 1, · · · , d. According to the order (5), we have pd ≺ pdx0 ≺ · · · ≺ pdxd0. It is obvious that
all polynomials Fi0,i1,··· ,in(x0, x1, · · · , xn) for the case of s = 0 generate a triangular matrix. The

remaining proof is inductive. Suppose that all Fi′0,i′1,··· ,i′n(x0, x1, · · · , xn) satisfying x
i′0
0 x

i′1
1 · · ·x

i′n
n ≺

xi00 x
i1
1 · · ·xinn produce a triangular matrix as stated in Lemma 4. Then, we show that a matrix is still

triangular with a new polynomial Fi0,i1,··· ,in(x0, x1, · · · , xn). According to the above analysis, we get
that xi00 x

i1
1 · · ·xinn is the leading monomial of Fi0,i1,··· ,in(x0, x1, · · · , xn). Without loss of generality,

let xk00 x
k1
1 · · ·xknn be any monomial of the polynomial Fi0,i1,··· ,in(x0, x1, · · · , xn) except its leading

monomial xi00 x
i1
1 · · ·xinn . Clearly, we have xk00 x

k1
1 · · ·xknn ≺ xi00 xi11 · · ·xinn . Note that xk00 x

k1
1 · · ·xknn is

the leading monomial of the polynomial Fk0,k1,··· ,kn(x0, x1, · · · , xn). It implies that these monomials
except xi00 x

i1
1 · · ·xinn already appeared in the diagonals of a basis matrix. Hence, all polynomials

Fi0,i1,··· ,in(x0, x1, · · · , xn) can produce a triangular matrix. In other words, the corresponding basis
matrix of L(n, d, t) is triangular.

Since the leading term of Fi0,i1,··· ,in(x0, x1, · · · , xn) is as follows:{
pd−sxi00 x

i1
1 · · ·xinn for i0 ≥ s,

pd+1−sxi00 x
i1
1 · · ·xinn for i0 < s,

where s = i1 + · · · + in, the diagonal elements of the triangular basis matrix of L(n, d, t) are as
follows: {

pd−sXi0+i1+···+in = pd−sXi0+s for i0 ≥ s,
pd+1−sXi0+i1+···+in = pd+1−sXi0+s for i0 < s.

5 Experimental Results

We implemented our lattice-based algorithm in SAGE 8.2 on a desktop with Intel(R) Xeon(R)
CPU E5-2670 v3 @ 2.30GHz, 3 GB RAM and 3 MB Cache using the L2 reduction algorithm [23]
from Nguyen and Stehlé. We tested the algorithm up to lattice dimension 291. Table 2 shows the
experimental results for MIHNP with 1000 bit prime p. To confirm the claim that experimental
outcome is better than theoretical bound based on (14), 100 experiments each time have been
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Table 2. Experimental results on low bounds of δ/log2 p for 1000-bit p

n d t Dimension Low bounds of δ/log2 p Total Time (sec.)
Theory Exp. Success LLL Gröbner

3 2 1 23 0.712 0.595 100 11.01 1.22
6 1 0 29 0.699 0.575 100 29.42 13.36
4 2 0 37 0.660 0.560 100 190.41 10.65
4 2 1 41 0.638 0.550 99 636.12 54.36
5 2 0 58 0.614 0.530 100 2555.91 182.38
5 2 1 68 0.592 0.525 100 7889.82 809.49
6 2 0 86 0.582 0.505 100 18896.34 2185.73
6 2 1 106 0.564 0.505 100 33276.93 4974.75
7 2 0 122 0.558 0.495 100 175276.85 29248.29
7 2 1 157 0.546 0.490 100 312450.32 23893.45
8 2 0 167 0.540 0.475 100 872078.62 128818.90
6 3 0 183 0.547 0.485 100 897793.07 14371.18
9 2 0 222 0.528 0.460 100 5440027.10 858799.13
10 2 0 288 0.519 0.450 87 18250890.61 3415266.53
7 3 0 291 0.521 0.465 100 9223260.81 287510.60

carried out. We see that the success rate of each time is 100 percent for most cases. Total time
means that sum of time for 100 experiments of LLL algorithm and Gröbner basis computation
respectively.

We also perform one experiment for n = 11, d = 2 and t = 0. Corresponding lattice dimension is
366. Here theoretical bound of δ

log2 p
is 0.514. As for other parameters, in this case also we get better

experimental bound 0.445. Lattice reduction takes 336895.32 seconds and Gröbner computation
takes 191821.33 seconds.

One may see Figure 2 for a comparison between theoretical and experimental values of δ/log2 p
for different dimensions. One can see from the figure that for smaller lattice dimensions, experimental
values substantially outperform their theoretical values.

6 Conclusion

We presented a heuristic polynomial time algorithm to find the hidden number in the modular
inversion hidden number problem. After more than 15 years, we improved the bound for solving
modular inversion hidden number problem for the first time. We also obtained the best attack result
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on the inversive congruential generator till now.
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A Asymptotic Time Complexities in Previous Works

The running time functions for solving MIHNP or ICG are not fully presented explicitly in previous
works. For the sake of comparison, we analyze the corresponding running time functions according
to the following way. Let ρ = δ/ log2 p and k = log2 p, where 0 < ρ < 1.

In [3, Theorem 1], the bound ρ > 3
4 is shown for solving ICG with known F based on the SVP

assumption. Since the involved lattice is 4-dimensional, the time complexity of the SVP algorithm
is kO(1), which is deterministic polynomial in the bit size of a given basis of the lattice for the fixed
dimension [17].
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In [20, Corollary 1], the bound ρ ≥ 2
3 + ε is presented to solve MIHNP based on the SVP

assumption. By taking ε = ρ− 2
3 , the time complexity using SVP algorithm becomes kO(1)2

O( 1

ρ− 2
3

)

[22].

In [1, Section 3.4 and Theorem 2], the asymptotic bound ρ ≥ 1
2 + 1

2n+3 is obtained to solve
ICG with known F based on the Coppersmith technique, where n + 2 denotes the number of
unknown variables. Let m = nO(1). The involved lattice dimension can be expressed as O(mn),
and the bit size of lattice basis matrix is at most km. Hence, the time complexity of the LLL

algorithm is (O(mn))
O(1) · (km)O(1) = O

(
kO(1)nO(n)

)
. For the Gröbner basis, the maximal degree

of input polynomials is 2m, and the number of unknown variables of input polynomials is n + 2.
Under Assumption 1, these polynomials generate a zero-dimensional Gröbner basis. We have that
the time complexity of Gröbner basis computation is (n + 2)O((2m)2) = nO(n2) [10]. Based on the
above bound ρ ≥ 1

2 + 1
2n+3 , we can take n ≈ log2 ( 1

ρ− 1
2

). Hence, time complexities of the LLL

algorithm and the Gröbner basis computation are reduced to O
(
kO(1)

(
log2

1
ρ− 1

2

)O(log2
1

ρ− 1
2

))
and(

log2
1

ρ− 1
2

)O((log2
1

ρ− 1
2

)2
)

respectively.

In [34, Theorem 1], the asymptotic bound ρ ≥ 1
2 + 1

(n+1)! is obtained to solve MIHNP according

to the Coppersmith technique, where n denotes the number of unknown variables. Similar to the
above analysis, we can also get that time complexities of the LLL algorithm and Gröbner basis
computation are O

(
kO(1)nO(n)

)
and nO(n2) respectively. Further, from the above bound ρ ≥ 1

2 +
1

(n+1)! , we can take n log2 n ≈ log2 ( 1
ρ− 1

2

) by the Stirling formula. Therefore, time complexities

of the LLL algorithm and the Gröbner basis computation are reduced to O
(
kO(1)

(
1

ρ− 1
2

)O(1))
and(

1
ρ− 1

2

)o( log2
1

ρ− 1
2

)
respectively.

In [4, Section 3.2], the asymptotic bound ρ ≥ 1
3 + 2

3d+3 is obtained to solve MIHNP based on the
SVP assumption, where d is an integer satisfying some requirement. Note that the dimension of the

involved lattice is equal to O(dO(d)). Thus, the time complexity to solve MIHNP is kO(1)2O(dO(d))

using the SVP algorithm, such as [22]. According to the above bound ρ ≥ 1
3 + 2

3d+3 , we can take

d ≈ 2
3ρ−1 . Then the above time complexity is reduced to kO(1)2O

(
( 2
3ρ−1 )

O( 1
ρ− 1

3

))
.

In [35, Remark 4], the asymptotic bound ρ ≥ 1
3 + 2

3d+3 is given for solving MIHNP and ICG
based on the Coppersmith technique, where d is the same as that in [4]. Note that the dimension
of the involved lattice is equal to O(dO(d)) and the maximal bit size of lattice basis matrix is
at most 2dk. Hence, the time complexity of the LLL algorithm is (O(dO(d)))O(1) · (2dk)O(1) =
O(kO(1)dO(d)). For the Gröbner basis, the maximal degree of input polynomials is 2d and the
number of variables is equal to dO(1). Thus, under Assumption 1, the time complexity of the

Gröbner basis computation is (2d)O(dO(1)) [10]. Based on the above bound ρ ≥ 1
3 + 2

3d+3 , we can

take d ≈ 2
3ρ−1 . Then, time complexities of the LLL algorithm and Gröbner basis computation are

reduced to O(kO(1)( 2
3ρ−1 )

O( 1

ρ− 1
3

)
) and ( 4

3ρ−1 )
O(( 1

ρ− 1
3

)O(1))
respectively.
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B Computation of the Determinant of L(n, d, t)

Note that the determinant of L(n, d, t) is the product of the diagonal entries. We will consider the
following two cases.

For the case of i0 ≥ s, the contribution of Fi0,i1,··· ,in(x0X,x1X, · · · , xnX) to the determinant
of L(n, d, t) is

d∏
s=0

d∏
i0=s

(
p(d−s)(

n
s) ·X(i0+s)(ns)

)
.

For the case of i0 < s, the contribution of Fi0,i1,··· ,in(x0X,x1X, · · · , xnX) is

d∏
s=1

s−1∏
i0=0

(
p(d+1−s)(ns) ·X(i0+s)(ns)

)
·

t∏
i0=0

X(i0+d+1)( n
d+1).

To sum up, we get
det(L(n, d, t)) = pα(n,d) ·Xβ(n,d,t),

where

α(n, d) = d(d+ 1)
d∑
s=0

(
n
s

)
− d

d∑
s=0

s
(
n
s

)
,

β(n, d, t) = d(d+1)
2

d∑
s=0

(
n
s

)
+ (d+ 1)

d∑
s=0

s
(
n
s

)
+ (2d+t+2)(t+1)

2

(
n
d+1

)
.

C Lower Bound in Theorem 1

Our goal is to derive a lower bound of

2−
w(w−1)
4β(n,d,t)w−

w−n
2β(n,d,t) pλ(n,d,t),

where w is the dimension of L(n, d, t). We now analyze its first two terms. According to the expres-
sions of w and β(n, d, t), i.e.,

w = (t+ 1)
(
n
d+1

)
+ (d+ 1)

d∑
s=0

(
n
s

)
,

β(n, d, t) = (2d+t+2)(t+1)
2

(
n
d+1

)
+ d(d+1)

2

d∑
s=0

(
n
s

)
+ (d+ 1)

d∑
s=0

s
(
n
s

)
,

it is easy to deduce β(n,d,t)
w > d+2

2 . Then we have 2−
w(w−1)
4β(n,d,t) ≥ 2−

w
2(d+2) and w−

w−n
2β(n,d,t) ≥ w−

1
d+2 .

Furthermore, we obtain

2−
w(w−1)
4β(n,d,t)w−

w−n
2β(n,d,t) pλ(n,d,t) ≥ pλ(n,d,t)−

w+2 logw
2(d+2) log2 p .

23



Note that d and w are independent of the modulus p. For a sufficiently large p, the exponent term
− w+2 logw

2(d+2) log2 p
is negligible. In this case, we only consider the exponent term λ(n, d, t). In other words,

the right-hand side of the above condition can be simplified as pλ(n,d,t) for a sufficiently large p.
Next, we further analyze the lower bound of λ(n, d, t). We rewrite

λ(n, d, t) =
2d(t+1)( n

d+1)+2d
d∑
s=2

s(ns)

(2d+2+t)(t+1)( n
d+1)+d(d+1)

d∑
s=0

(ns)+2(d+1)
d∑
s=0

s(ns)

= 2d
2d+2+t (1− ε(n, d, t)),

where

ε(n, d, t) =

d(d+ 1)
d∑
s=0

(
n
s

)
− t

d∑
s=2

s
(
n
s

)
+ 2(d+ 1)

(
n
1

)
(2d+ 2 + t)(t+ 1)

(
n
d+1

)
+ d(d+ 1)

d∑
s=0

(
n
s

)
+ 2(d+ 1)

d∑
s=0

s
(
n
s

) .
Note that we have

ε(n, d, t) < d(d+1)
(2d+2+t)(t+1) ·

d∑
s=0

(ns)

( n
d+1)

+ 2(d+1)
(2d+2+t)(t+1) ·

(n1)
( n
d+1)

< d
2

d∑
s=0

(ns)
( n
d+1)

+
(n1)

( n
d+1)

.

For any 0 ≤ s ≤ d, according to

(ns)
( n
d+1)

= (d+1)!(n−d−1)!
s!(n−s)! = d+1

n−d · d
n−d+1 · · · s+1

n−s ≤ ( d+1
n−d )d−s+1,

we deduce that

ε(n, d, t) <

(
d
2

d∑
s=0

( d+1
n−d )d−s+1

)
+ ( d+1

n−d )d = d(d+1)
2(n−2d−1)

(
1− ( d+1

n−d )d+1
)

+ ( d+1
n−d )d.

Then we obtain that

λ(n, d, t) = 2d
2d+2+t (1− ε(n, d, t)) > 2d

2d+2+t

(
1− d(d+1)

2(n−2d−1)
(
1− ( d+1

n−d )d+1
)
− ( d+1

n−d )d
)
.

By taking the parameter t = 0, λ(n, d, t) is optimized as

λ(n, d, 0) > 1− 1

d+ 1
−
(

d2

2(n− 2d− 1)

(
1− (

d+ 1

n− d )d+1
)

+
d

d+ 1
(
d+ 1

n− d )d
)
.

Further, by taking the parameter n = d3+o(1), the above relation is expressed as

λ(n, d, 0) > 1− 1

d+ 1
− o
(1

d

)
.
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Finally, we explicitly present how big the modulus p is in the asymptotic sense. Based on the above
analysis, we need that the term − w+2 logw

2(d+2) log2 p
is negligible. For the case of t = 0 and n = d3+o(1),

we have that the dimension of L(n, d, t) is equal to w = (d+ 1)
∑d
s=0

(
n
s

)
+
(
n
d+1

)
= d3d+3(1 + o(1)).

Hence, when log2 p = ω(d3d+2), i.e., p = 2ω(d
3d+2), the term − w+2 logw

2(d+2) log2 p
is negligible.
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