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2 École normale supérieure, CNRS, PSL University, Inria, Paris, France
3 Thales, Gennevilliers, France

melissa.rossi@ens.fr

Abstract. Now that the NIST’s post-quantum cryptography competition has entered in its second
phase, the time has come to focus more closely on practical aspects of the candidates. While efficient
implementations of the proposed schemes are somewhat included in the submission packages, certain
issues like the threat of side-channel attacks are often lightly touched upon by the authors. Hence, the
community is encouraged by the NIST to join the war effort to treat those peripheral, but nonetheless
crucial, topics. In this paper, we study the lattice-based signature scheme qTESLA in the context of
the masking countermeasure. Continuing a line of research opened by Barthe et al. at Eurocrypt 2018
with the masking of the GLP signature scheme, we extend and modify their work to mask qTESLA. The
masking can be done at any order and specialized gadgets are used to get maximal efficiency at order
1. We implemented our countermeasure in the original code of the submission and did tests at different
orders to assess the feasibility of our technique.

1 Introduction

Following NIST’s call for proposals a few years ago, the practical aspects of post-quantum cryptography
have lately been studied more closely in the scientific literature. Many researchers tried to optimize param-
eters of cryptosystems to achieve reasonable practicality while still resisting state-of-the-art cryptanalysis.
Once the design phase was over, a lot of implementations flourished on various platforms, proving that those
cryptosystems can hope to achieve something useful outside of academia. Nevertheless, everyone is now well
aware that having a fast and correct implementation of some functionality is seldom sufficient to get a secure
system. In practice, side-channel attacks should not be overlooked and the capability of a cryptosystem to
be easily protected against this kind of threats may be a strong argument to decide what will be the reigning
algorithm in a post-quantum world.

In this work we focus on applying the masking countermeasure to qTESLA [2], a Fiat-Shamir lattice-
based signature derived from the original work of Lyubashevsky [30]. This signature is, with Dilithium [22],
one of the most recent iteration of this line of research and a candidate for the NIST’s competition. In
2018, Barthe et al. [7] described and implemented a proof of concept for a masked version of an ancestor of
Dilithium/qTESLA called GLP [26]. Their goal was to prove that it is possible to mask the signature procedure
at any order. This work led to a concrete masked implementation of Dilithium with experimental leakage
tests [32]. Our work is in the same spirit. As in [32], we slightly modify the signature and parameters to ease
the addition of the countermeasure while keeping the original security. In addition, we provide a detailed
proof of masking for the whole signature process taking public outputs into account. Indeed, similarly to the
masking of GLP in [7], several elements of qTESLA may be securely unmasked, like, for example, the number of
rejections. Besides, we propose an implementation for which we have focused on performance and reusability.
Our masked signature implementation still keeps the property of being compatible with the original verifying
procedure of qTESLA and has been directly implemented within the code of the submission. Even if we target
high order masking, we also implemented specialized gadgets for order 1 masking to provide a lightweight
version of the masking scheme with reasonable performances fitting nicely on embedded systems. We finally
provide extensive performance data and show that the cost of provable masking can be reasonable at least
for small orders.
Our code is publicly available at https://github.com/fragerar/Masked_qTESLA

https://github.com/fragerar/Masked_qTESLA


2 Preliminaries

2.1 Notations

Rings. For any integers q, n and Zq = Z/qZ, we denote by Rq the ring Zq[X]/(Xn + 1). Polynomials are
written with bold lower case, e.g. y ∈ Rq. Let B be an integer, we write Rq,[B] to denote the subset of
polynomials in Rq with coefficients in [−B,B].

Norms. The usual norm operators are extended to polynomials by interpreting them as a vector of their
coefficients. For a polynomial v =

∑n−1
i=0 vi · xi, ||v||1 =

∑n−1
i=0 |vi| and ||v||∞ = maxi|vi|.

Representative. For a modulus q and an integer x, we write x mod q to denote the unique integer xcn ∈
[0, . . . , q− 1] such that xcn ≡ x (mod q). We call this integer the canonical representative of x modulo q. We
also write x mod±q to denote the unique integer xct ∈ (−q/2, . . . , q/2] (where the lower bound is included if
q is odd) such that xct ≡ x (mod q). We call this integer the centered representative of x modulo q.

Rounding. For integers w, d, the function [·]L : Z→ Z, w 7→ w mod±2d denotes the signed extraction of the
d last bits of w. We use this function to define [·]M : Z→ Z, w 7→ (w mod±q− [w]L)/2d. Those two functions
are extended to polynomials by applying them separately on each coefficient.

2.2 Masking

Side channel attacks are a family of cryptanalytic attacks where the adversary is able access several physical
parameters of the device running the algorithm. These physical attacks include, for instance, cache attacks,
simple and correlation electromagnetic analysis or fault injections. Modelling and protecting the information
leaked though physical parameters has been an important research challenge since the original attack warn-
ing in [28].

The probing model or ISW model from its inventors [27] is the most studied leakage model. It has been
introduced in order to theoretically define the vulnerability of implementations exposed to side-channel at-
tacks. In a nutshell, a cryptographic implementation is N -probing secure iff any set of at most N intermediate
variables is statisctically independent of the secrets. This model can be applied to practical leakages with
the reduction established in [21] and tightened in [25].

The masking countermeasure performs computations on secret-shared data. It is the most deployed
countermeasure in this landscape. Basically, each input secret x is split into N + 1 variables (xi)0≤i≤N
referred to as shares. N of them are generated uniformly at random whereas the last one is computed such
that their combination reveals the secret value x. The integer N is called masking order and represents the
security level of an implementation with respect to side channels. Let us introduce two types of additive
combination in the following definition.

Definition 1 (Arithmetic and Boolean masking). A sensitive value x is shared with mod q arithmetic
masking if it is split into N + 1 shares (xi)0≤i≤N such that

x = x0 + · · ·+ xN (mod q). (Arithmetic masking mod q)

It is shared with Boolean masking if it is split into N + 1 shares (xi)0≤i≤N such that

x = x0 ⊕ · · · ⊕ xN . (Boolean masking)

For lattice-based cryptography where most operations are linear for mod q addition, arithmetic masking
seems the best choice. However, for certain operations like the randomness generation and comparisons,
Boolean masking are better fit. Fortunatly, some conversions exist [17,13,7] and allow to switch from one
masking to another.
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Proofs by composition. While the conceptual idea behind the masking countermeasure is pretty simple,
implementing it efficiently to achieve N -probing security has been shown to be a complex task. On one
hand, it is straightforward on linear operations on which masking is equivalent to applying the original
operation on each share of the sensitive data. On the other hand, the procedure is much more complicated
on non-linear functions. In the latter, the mix of shares to compute the result makes it mandatory to introduce
random variables and the bigger the program is, the more dependencies to be considered. This is why Barthe
et al. formally defined in [6] two security properties, namely non-interference and strong non-interference,
which (1) ease the security proofs for small gadgets (see Definition 2), and (2) allows to securely combine
secure gadgets by inserting refreshing gadgets (which refresh sharings using fresh randomness) at carefully
chosen locations4.

Definition 2. A (u, v)-gadget is a probabilistic algorithm that takes as inputs u shared values, and returns
distributions over v-tuples of shared values.

We first introduce the affine property for gadgets as introduced in [6].

Definition 3. A gadget is affine iff it manipulates its input share by share.

In other words, one observation in an affine gadget can be simulated with only one share of its input. This
property will be used for compositions. We now formally introduce the NI and SNI properties (as defined in
[6]).

Definition 4. A gadget is N -non-interfering (N -NI) iff any set of at most N observations can be perfectly
simulated from at most N shares of each input.

Definition 5. A gadget is N -strong non-interfering (N -SNI) iff any set of at most N observations whose
Nint observations on the internal data and Nout observations on the outputs can be perfectly simulated from
at most Nint shares of each input.

It is easy to check that N -SNI implies N -NI which implies N -probing security. An additional notion was
introduced in [7] to reason on the security of lattice-based schemes in which some intermediate variables may
be revealed to the adversary.

Definition 6. A gadget with public outputs X is N -non-interfering with public outputs (N -NIo) iff every
set of at most N intermediate variables can be perfectly simulated with the public outputs and at most N
shares of each input.

2.3 Ring learning with errors

While not necessary to understand our work, we briefly recall, for completeness, the security assumption
on which qTESLA is based: the hardness of Ring Learning With Errors (RLWE) [31]. The RLWE problem
is believed to be hard for a quantum adversary and comes in two versions : Search-RLWE and Decisional-
RLWE. Let χ be a narrow zero mean distribution over Z.

Definition 7. ( Search-RLWE) for a secret s ∈ Rq and a (polynomially bounded) number of samples ai · s+

ei ∈ Rq with ai
r←− Rq and ei ∈ R with coefficients sampled from χ, find s.

Definition 8. ( Decisional-RLWE) for a secret s ∈ Rq and a (polynomially bounded) number of samples
ti = ai · s + ei ∈ Rq with ai and ei sampled as above, distinguish, with non-negligible probability, the
distribution of the ti from the uniform distribution over Rq.

In qTESLA, the distribution used is a centered gaussian of standard deviation σ.

4Notice that non-interference was already used in practice [36,19] to prove probing security of implementations.
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2.4 The qTESLA signature

Let us now describe qTESLA [2], a (family of) lattice-based signature based on the RLWE problem and round
2 candidate for the NIST’s post-quantum competition. The signature stems from several iterations of im-
provements over the original scheme of Lyubashevsky [30]. It is in fact a concrete instantiation of the scheme
of Bai and Galbraith [4,20] over ideal lattices. Several variants appeared in the litterature in the past [1,5] but
a flaw in the security reduction of the underlying scheme led to a reset of the line of research in [3]. Its direct
contender in the competition is Dilithium [22] which is also based on this same idea of having a lattice variant
of Schnorr signature. The security of Dilithium rely on problems over module lattices instead of ideal lattices,
in the hope of increasing security by reducing algebraic structure, at the cost of a slight performance penalty.

To avoid overloading the paper, we will not describe in details all the subroutines and subtleties of qTESLA
and sometime simplify some aspects of the signature not required to understand our work.

2.5 Parameters

Here is a set of selected parameters that are relevant for the rest of the paper:

– n: Dimension of the ring
– q: Modulus
– σ: Standard deviation of the discrete gaussian
– h: Number of nonzero entries of the polynomial c
– E and S: Rejection parameters
– B: Bounds for the coefficients of the hiding polynomial y
– d: Number of bits dropped in rounding (used in the computation of [·]M )

For the sake of practicability, we focus on the heuristic version of qTESLA in this work. More specifically,
we implement our countermeasure in qTESLA-I and qTESLA-III even though the techniques we used are not
specific to any parameter set.

Parameters qTESLA-I qTESLA-III

n 512 1024
q 4 205 569 ≈ 222 8 404 993 ≈ 223

σ 22.93 10.2
h 30 48
E 1586 1147
S 1586 1233
B 220 − 1 221 − 1
d 21 22

Table 1. Parameters for qTESLA-I and qTESLA-III

2.6 Scheme

Hereunder will be explicitly described the main algorithms, namely key generation, sign and verify. Before-
hand, let us briefly recall the functionality of each of the subroutines for completeness. We redirect the
interested reader to [2] or the NIST submission for a detailed description.

– PRF: Pseudorandom function, used to expand a seed into arbitrary size randomness.
– GenA: Generates a uniformly random polynomial a ∈ Rq.
– GaussSampler: Sample a polynomial according to a gaussian distribution, parameters of the distribution

are fixed in the sampler.
– CheckS: Verify that the secret polynomial s does not have too large coefficients.
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– CheckE: Verify that the secret polynomial e does not have too large coefficients.

– ySampler: Sample a uniformly random polynomial y ∈ Rq,[B].

– H: Collision resistant hash function.

– Enc: Encode a bitstring into a sparse polynomial c ∈ Rq,[1] with ||c||1 = h

Key generation (Alg 1). The key generation will output a RLWE sample together with some seeds
used to generate public parameters and to add a deterministic component to the signing procedure. The
algorithm starts by expanding some randomness into a collection of seeds and generates the public polyno-
mial a before moving on to the two secret values s and e. Those two values are sampled from a gaussian
distribution and have to pass some checks to ensure that the products s · c and e · c do not have too large
coefficients. After that, the main component t of the public key is computed as t = a · s + e. The output
consists of the secret key sk = (s, e, seeda, seedy) and the public key pk = (seeda, t).

Sign(Alg 2). The sign procedures takes as input a message m and the secret key sk and outputs a
signature Σ = (z, c). First, in order to generate the randomness needed in the algorithm, a seed is derived
from a fresh random value r, seedy and m. Next, a polynomial y ∈ Rq,[B] is sampled to compute the value

v = a·y mod±q. The algorithm will now hash the rounded version of v together with the message and encode
the result in a sparse polynomial c with only h entries in {−1, 1}. The candidate signature is computed as
z = y + s · c. Before outputting the result, two additional checks must be performed: we must ensure that
z is in Rq,[B−S] and that w = v − e · c mod±q is well rounded, meaning that ||[w]L||∞ < 2d−1 − E and
||w||∞ < bq/2c−E should hold. When one of the check fails, the signing procedure is restarted by sampling
a new y. When eventually both checks pass, the signature Σ = (z, c) is output.

Verify(Alg 3). Signature verification is pretty lightweight and straightforward for this type of signature.
Taking as input the message m, signature Σ = (z, c) and public key pk = (seeda, t), it works as follow: First,
it generates the public parameter a, then computes w = a · z − t · c and accepts the signature if the two
following conditions hold:

1. z ∈ Rq,[B−S]

2. c 6= Enc(H([w]M ,m))

Algorithm 1 qTESLA key generation

Result: Secret key sk = (s, e, seeda, seedy), public key pk = (seeda, t)

1: counter ← 1
2: pre-seed

r←− {0, 1}κ
3: seeds, seede, seeda, seedy ← PRF(pre-seed)
4: a← GenA(seeda)
5: do
6: s← GaussSampler(seeds,counter)
7: counter ← counter + 1
8: while (CheckS 6= 0)
9: do

10: e← GaussSampler(seeds,counter)
11: counter ← counter + 1
12: while (CheckE 6= 0)
13: t← a · s + e mod q
14: sk ← (s, e, seeda, seedy)
15: pk ← (seeda, t)
16: return sk, pk
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Algorithm 2 qTESLA sign

Data: Secret key sk = (s, e, seeda, seedy)
Result: Signature Σ = (z, c)

1: counter ← 1
2: r

r←− {0, 1}κ
3: rand ← PRF(seedy, r,H(m))
4: y← ySampler(rand, counter)
5: a← GenA(seeda)
6: v← a · y mod±q
7: c← Enc(H([v]M ,m))
8: z← y + s · c
9: if z 6∈ Rq,[B−S] then

10: counter ← counter + 1
11: goto 4
12: end if
13: w← v − e · c mod±q
14: if ||[w]L||∞ ≥ 2d−1 − E or ||w||∞ ≥ bq/2c − E then
15: counter ← counter + 1
16: goto 4
17: end if
18: return (z, c)

Algorithm 3 qTESLA verify

Data: message m, signature Σ = (z, c) and public key pk = (seeda, t)
Result: 0 if the signature is accepted else -1

1: a← GenA(seeda)
2: w← a · z− t · c mod±q
3: if z 6∈ Rq,[B−S] or c 6= Enc(H([w]M ,m)) then
4: return -1
5: end if
6: return 0
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3 Masked qTESLA

3.1 Masking-friendly design

In the process of masking qTESLA, we decided to make slight modifications in the signing procedure in
order to facilitate masking. The idea is that some design elements providing small efficiency gains may be
really hard to carry on to the masked version and actually do even more harm than good. Our two main
modifications are the modulus which is chosen as the closest power of two of the original parameter set and
the removal of the PRF to generate the polynomial y.

Power of two modulus. Modular arithmetic is one of the core component of plenty of cryptographic schemes.
While, in general, it is reasonably fast for any modulus (but not necessarily straightforward to do in constant
time), modular arithmetic in masked form is very inefficient and one of the bottleneck in term of running
time. In [8], a gadget SecAddModp is defined to add two integers in boolean masked form modulo p. The idea
is to naively perform the addition over the integers and to subtract p if the value is larger than p. While this
works completely fine, the computational overhead is large in practice and avoiding those reductions would
drastically enhance execution time. The ideal case is to work over Z2n . In this case, almost no reductions are
needed throughout the execution of the algorithm and, when needed, can be simply performed by applying
a mask on boolean shares. The reason why working with a power of two modulus is not the standard way to
instanciate lattice-based cryptography is that it removes the possibility to use the number theoretic transform
(NTT) to perform efficient polynomial multiplication in O(n log n). Instead, multiplication of polynomial
has now to be computed using the Karatsuba/Toom-cook algorithm which is slower for parameters used
in state-of-the-art algorithms. Nevertheless, in our case, not having to use the heavy SecAddModp gadget
largely overshadows the penalty of switching from NTT to Karatsuba. Since modulus for both parameter
sets were already close to a power of two, we rounded up to the closest one, i.e. 222 for qTESLA-I and 223

for qTESLA-III. This modification does not change the security of the scheme. Indeed, security-wise, for
the heuristic version of the scheme that we study, we need a q such that q > 4B 5 and the corresponding
decisional LWE instance is still hard. Yet, the form of q does not impact the hardness of the problem as
shown in [29] and, since q was already extremely close to a power of two for both parameters sets, the
practical bit hardness of the corresponding instance is not sensibly changed.

Removal of the PRF. It is well known that in Schnorr-like signatures, a devastating attack is possible if
the adversary gets two different signatures using the same y. Indeed, they can simply compute the secret
s = z−z′

c−c′ . While such a situation is very unlikely due to the large size of y, a technique to create a deterministic
version of the signature was introduced in [33]. The idea is to compute y as PRF(secret seed,m) such that
each message will have a different value for y unless a collision is found in PRF. This modification act as a
protection against very weak entropy sources but is not necessary to the security of the signature and was
not present in ancestors of qTESLA. Unfortunately, adding this determinism also enabled some side-channel
attacks [34,11]. Hence, the authors of qTESLA decided to take the middle ground by keeping the deterministic
design but also seeding the oracle with a fresh random value r 6.
While those small safety measures certainly make sense if they do not incur a significant performance penalty,
we decided to drop it and simply sample y at random at the beginning of the signing procedure. The reason
is twofold. First, keeping deterministic generation of y implied masking the hash function evaluation itself
which is really inefficient if not needed and would unnecessarily complicate the masking scheme. Second,
implementing a masking countermeasure is, in general, making the hypothesis that a reasonable source of
randomness (or at least not weak to the point of having a nonce reuse on something as large as y) is available
to generate shares and thus can be also used for the signature itself.

3.2 Existing gadgets

First, let us describe gadgets already existing in the literature. Since they are not part of our contribution,
we decided to only recall their functionalities without formally describing them.

5The other condition on q in the parameters table of the submission is to enable the NTT
6Note that the fault attacks is still possible in case of failure of the RNG picking r
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– SecAnd: Computes the logical and between two values given in boolean masked form, output also in
boolean masked form. Order 1 algorithm: [16]. Order n algorithm [8].

– SecAdd: Computes the arithmetic add between two values given in boolean masked form, output also in
boolean masked form. Order 1 algorithm: [16]. Order n algorithm [8].

– SecArithBoolModq: Converts a value in arithmetic masked form to a value in boolean masked form. Order
1 algorithm: [23]. Order n: [18]. We slightly modify it to an algorithm denoted GenSecArithBoolModq
taking into account non power of two number of shares. It can be found in Algorithm 4. When a masked
value composed of an odd number of shares t is presented to the algorithm, it first splits them in two
uneven parts of size bt/2c+ 1 and bt/2c before proceeding to the recursive call. The subroutine Expand
takes as input an arbitrary number of shares t′ and expand them in 2t′ shares. Applying Expand to both
parts, we end up with a part p1 of size t+ 1 and a part p2 of size t− 1. We merge the two last shares of
p1 and append a zero to p2 to get two size t masking that are finally added together to yield the final
boolean masking. Note that in practice, the top level call is done from another (non recursive) function
that reduces the result in order to have a conversion modulo q. We recall that thanks to our power of
two modulus, this can be done by simply keeping log2 q bits of each shares.

– SecBoolArith: Converts a value in boolean masked form to a value in arithmetic masked form. Order 1
algorithm: [23]. Order n algorithm: [14]. This gadget does not explicitly appears in the following but is
used inside DataGen.

– DataGen: Takes as input an integer B and outputs a polynomial y ∈ Rq,[B] in arithmetic masked form.
Uses the boolean to arithmetic conversion.

– FullXor: Merges shares of a value in boolean masked form and output the unmasked value.
– FullAdd: Merges shares of a value in arithmetic masked form and output the unmasked value.
– DataGen: Takes as input an integer B and outputs a polynomial y ∈ Rq,[B] in arithmetic masked form.

Uses the boolean to arithmetic conversion.
– Refresh: Refreshes a boolean sharing using fresh randomness [27]. We use its N -SNI version, sometimes

denoted FullRefresh ([12] Algorithm 4), which is made of a succession of N + 1 linear refresh operations.

Algorithm 4 GenSecArithBoolModq

Data: An arithmetic masking (ai)0≤i≤N of some integer x
Result: A boolean masking (bi)0≤i≤N of the same integer x

1: if N = 0 then
2: b0 ← a0
3: return (bi)0≤i≤N
4: end if
5: HALF← bN/2c
6: (xi)0≤i≤HALF ← GenSecArithBoolModq((ai)0≤i≤HALF)
7: (x′i)0≤i≤2∗HALF ← Expand((xi)0≤i≤HALF)
8: (yi)0≤i≤b(N−1)/2c ← GenSecArithBoolModq((ai)HALF+1≤i≤N )
9: (y′i)0≤i≤2∗b(N−1)/2c ← Expand((yi)0≤i≤b(N+1)/2c)

10: if N is even then
11: y′2∗b(N−1)/2c ← 0
12: x′2∗HALF−1 ← x′2∗HALF−1 ⊕ x′2∗HALF
13: end if
14: (bi)0≤i≤N ← SecAdd((x′i)0≤i≤N , (y

′
i)0≤i≤N )

3.3 New gadgets

To comply with the specifications of qTESLA, our signature scheme includes new components to be masked
that were not covered or different than in [8,32]. In all the following, RADIX refers to the size of the integer
datatype used to store the shares.

Absolute value (Alg. 5): The three checks during the signing procedure are : z 6∈ Rq,[B−S], ||[w]L||∞ ≥
2d−1−E and ||w||∞ ≥ bq/2c−E. They all involve going through individual coefficients (or their low bits) of
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Algorithm 5 Absolute Value - AbsVal

Data: A boolean masking (xi)0≤i≤N of some integer x and an integer k
Result: A boolean masking (|x|i)0≤i≤N corresponding to the absolute value of x mod±2k

1: (maski)0≤i≤N ← ((xi)0≤i≤N << (RADIX− k)) >> (RADIX− 1))
2: (x′i)0≤i≤N ← Refresh((xi)0≤i≤N )
3: (xi)0≤i≤N ← SecAdd((x′i)0≤i≤N , (maski)0≤i≤N ))
4: (|x|i)0≤i≤N ← ((xi)0≤i≤N ⊕ (maski)0≤i≤N ) ∧ (2k − 1)

a polynomial and checking a bound on their absolute value. In the first version of our work, we were actually
making two comparisons on each signed coefficients before realizing that it was actually less intensive to
explicitly compute the absolute value and do only one comparison. The gadget takes as input any integer
x masked in boolean form and outputs |x mod±2k|. Since computers are performing two’s complement
arithmetic, the absolute value of x can be computed as follows:

1. m← x >> RADIX − 1
2. |x| ← (x+m)⊕m

As we work on signed integers, one can note that the >> in the first step is an arithmetic shift and actually
writes the sign bit in the whole register. If x is negative then m = −1 (all ones in the register) and if x
is positive then m = 0. The gadget AbsVal is using the same technique to compute |x mod±2k|. The small
difference is that the sign bit is in position k instead of position RADIX. This is why line 6 is moving the
sign bit (modulo 2k) in first position before extending it to the whole register to compute the mask.

Algorithm 6 Masked rounding - MaskedRound

Data: An arithmetic masking (ai)0≤i≤N of some integer a
Result: An integer r corresponding to the modular rounding of a

1: (MINUS Q HALFi)0≤i≤N ← (−q/2− 1, 0, ..., 0)
2: (CONSTi)0≤i≤N ← (2d−1 − 1, 0, ..., 0)
3: (a′i)0≤i≤N ← GenSecArithBoolModq(ai)0≤i≤N
4: (bi)0≤i≤N ← SecAdd((a′i)0≤i≤N , (MINUS Q HALFi)0≤i≤N )
5: b0 = ¬b0
6: (bi)0≤i≤N ← ((bi)0≤i≤N >> RADIX− 1) << log2 q
7: (a′i)0≤i≤N ← (a′i)0≤i≤N ⊕ (bi)0≤i≤N
8: (a′i)0≤i≤N ← SecAdd((a′i)0≤i≤N , (CONSTi)0≤i≤N )
9: (a′i)0≤i≤N ← (a′i)0≤i≤N >> d

10: return t := FullXor((a′i)0≤i≤N )

Masked rounding (Alg. 6): In [4], a compression technique was introduced to reduce the size of the
signature. It implies rounding coefficients of a polynomial. Revealing the polynomial before rounding would
allow an adversary to get extra information on secret values and thus, this operation has to be done on the
masked polynomial. Recall that the operation to compute is [v]M = (v mod±q − [v]L)/2d.
The first step is to compute the centered representative of v, i.e. subtract q to v if v > q/2. Taking advantage
of our power of two modulus, this operation would be really easy to do if the centered representative was
defined as the integer congruent to v in the range [−q/2, q/2) since it would be equivalent to copying the
qth bit of v in the most significant part, which can be performed with simple shift operations on shares.
Unfortunately, the rounding function of qTESLA works with representatives in (−q/2, q/2]. As we wanted
compatibility with the original scheme, we decided to stick with their design. Nevertheless, we were still
able to exploit our power of two modulus. Indeed, in this context, switching from positive to negative
representative modulo q is merely setting all the high bits to one. Hence, we subtract q/2 + 1 from v, extract
the sign bit b and copy ¬b to all the high bits of v.
The second step is the computation of (v − [v]L)/2d. We used a small trick here. Subtracting the centered
representative modulo 2d is actually equivalent to the application of a rounding to the closest multiple of 2d
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with ties rounded down. Hence we first computed v+ 2d−1− 1 and dropped the d least significant bits. This
is analogous to computing bxe = bx+ 0.499 . . . c to find the closest integer to a real value.

Algorithm 7 Masked well-rounded - MaskedWR

Data: Integer a ∈ Zq in arithmetic masked form (ai)0≤i≤N
Result: A boolean masking r of (‖a‖ ≤ q/2− E) ∧ (‖[a]L‖ ≤ 2d−1 − E)

1: (SUP Qi)0≤i≤N ← (−q/2 + E, 0, ..., 0)
2: (SUP Di)0≤i≤N ← (−2d−1 + E, 0, ..., 0)
3: (a′i)0≤i≤N ← GenSecArithBoolModq(ai)0≤i≤N
4: (xi)0≤i≤N ← AbsVal((a′i)0≤i≤N , log2 q)
5: (xi)0≤i≤N ← SecAdd((xi)0≤i≤N , (SUP Qi)0≤i≤N ))
6: (bi)0≤i≤N ← (xi)0≤i≤N >> (RADIX− 1)
7: (a′i)0≤i≤N ← Refresh((a′i)0≤i≤N )
8: (a′i)0≤i≤N ← (a′i)0≤i≤N ∧ 2d − 1
9: (yi)0≤i≤N ← AbsVal((a′i)0≤i≤N , d)

10: (yi)0≤i≤N ← SecAdd((yi)0≤i≤N , (SUP Di)0≤i≤N ))
11: (b′i)0≤i≤N ← (yi)0≤i≤N >> (RADIX− 1)
12: (bi)0≤i≤N ← SecAnd((bi)0≤i≤N , (b

′
i)0≤i≤N )

13: return r := FullXor((bi)0≤i≤N )

Masked well-rounded (Alg. 7): Unlike GLP, the signature scheme can fail to verify and may have
to be restarted even if the rejection sampling test has been successful. This results from the fact that the
signature acts has a proof of knowledge only on the s part of the secret key and not on the error. Nonetheless,
thanks to rounding, the verifier will be able to feed correct input to the hash function if the commitment
is so called ’well-rounded’. Since not well-rounded signatures would leak information on the secret key, this
verification has to be performed in masked form.
The MaskedWR gadget has to perform the two checks ||[w]L||∞ < 2d−1−E and ||w||∞ < bq/2c−E. While the
cost of this rather simple operation is negligible compared to polynomial multiplication in the unprotected
signature, this test is fairly expensive in masked form. Indeed, it requires four comparisons in addition to
the extraction of the low bits of w.
After trying the four comparisons method, we realized that the best strategy was actually to compute both
absolute values with the AbsVal gadget. While comparisons only require one SecAdd and one shift, which
is less than AbsVal, the cost of all SecAnd operations between the results of those comparisons makes our
approach of computing the absolute value slightly better.

Algorithm 8 Rejection Sampling - MaskedRS

Data: A value a to check, in arithmetic masked form (ai)0≤i≤N
Result: 1 if |a| ≤ B − S else 0

1: (SUPi)0≤i≤N ← (−B + S − 1, 0, ..., 0)
2: (a′i)0≤i≤N ← GenSecArithBoolModq((ai)0≤i≤N )
3: (xi)0≤i≤N ← AbsVal((a′i)0≤i≤N , log2 q)
4: (xi)0≤i≤N ← SecAdd((xi)0≤i≤N , (SUPi)0≤i≤N )
5: (bi)0≤i≤N ← ((xi)0≤i≤N >> RADIX− 1)
6: return rs := FullXor((bi)0≤i≤N )

Rejection sampling (Alg. 8) The rejection sampling procedure consists in ensuring that the absolute
value of all coefficients of a polynomial z are smaller than a bound B. In [8], a gadget verifying that the
centered representative of a masked integer is greater than −B was applied to both z and −z. In [32], a less
computationally intensive approach was taken: their rejection sampling gadget takes as input an arithmetic
masking of a coefficient a ∈ Zq identified by its canonical representative and check directly that either a−B
is negative or a− q + B is positive. This can be easily done using precomputed constants (−B − 1, 0, ..., 0)
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and (−q + B, 0, ..., 0). Our approach is similar but we use instead the same technique as in the MaskedWR
algorithm, that is to first compute the absolute value of a and perform the masked test ||a|| ≤ B. This saves
the need for a masked operation to aggregate both tests.

3.4 Masked scheme

In all signature schemes, two algorithms can leak the secret key through side channels: the key generation
algorithm and the signing algorithm. This work focuses exclusively on the signing algorithm, as the number
of signature queries per private key can be high (up to 264 as required by the NIST competition), whereas
the key generation algorithm is typically only executed once per private key. Its vulnerability to side channel
attacks is therefore much higher. The masking of the key generation is left for futur work.

The masked signature can be found in Algorithm 9. It uses all the gadgets described in section 3.3 in
order to compute a valid qTESLA signature in masked form at order N . Beside the removal of the PRNG for
y, its structure follows closely the unmasked version of the signature. After generating the public parameter
a with the original GenA procedure, the gadget DataGen is used to get polynomials yi such that y =

∑N
i=0 yi

belongs to Rq,[B]. Then, thanks to the distributive property of the multiplication of ring elements, we can

compute v = a · y =
∑N

i=0 a · yi using regular polynomial multiplication, without relying on any complex
gadget. The polynomial c is computed using the subroutine MaskedHash which is using the MaskedRounding
gadget to compute qTESLA’s rounding and hashing on a masked polynomial. In the sequel (see Section 4.2),
we explain that the computation of the hash function does not have to be performed in masked form since
the knowledge of its inputs does not impact the security. Once c has been computed, the candidate signature
can be computed directly on shares with the masked secret key as z = y + s · c =

∑N
i=0 yi + si · c. Writing

FullRS and FullWR to denote the extension of the MaskedRS and MaskedWR gadgets to all the coefficients of
a polynomial, the security and correctness parts of the signature follow trivially. Once all checks have been
passed, the signature can be safely unmasked using FullAdd and the signature output.

Algorithm 9 Masked signature

Data: message m, secret key sk = ((si)0≤i≤N , (ei)0≤i≤N ), seed sd
Result: Signature (zunmasked, c)

1: a← GenA(sd)
2: (yi)0≤i≤N ← DataGen(B)
3: for i = 0, . . . , N do
4: vi ← a · yi
5: end for
6: c← MaskedHash((vi)0≤i≤N ,m)
7: c← Encode(c)
8: for i = 0, . . . , N do
9: zi ← yi + si · c

10: end for
11: if rs := FullRS((zi)0≤i≤N) = 0 then
12: goto 2
13: end if
14: for i = 0, . . . , N do
15: wi ← vi − ei · c
16: end for
17: if r := FullWR((wi)0≤i≤N) = 0 then
18: goto 2
19: end if
20: zunmasked ← FullAdd((zi)0≤i≤N )
21: return (zunmasked, c)
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Algorithm 10 MaskedHash

Data: The n coefficients a(j) to hash, in arithmetic masked form (a
(j)
i )0≤i≤N and the message to sign m

Result: Hash of the polynomial c

1: Let t be a byte array of size n
2: for j = 1 to n do
3: tj ← MaskedRound((a

(j)
i )0≤i≤N )

4: end for
5: c← H(t,m)
6: return

4 Proof of masking

We first list all the known gadgets and new gadgets introduced together with their security properties. They
can be found in Table 2.

Table 2. Security properties of the known and new gadgets.

Gadget Property Reference order N

SecAnd N -NI [16], [7]
SecAdd N -NI [16], [7]

SecArithBoolModq N -SNI [24], [17]
SecBoolArith N -NI [24], [17]

FullXor N -NIo [7]
FullAdd N -NIo [7]
DataGen N -NIo [7]
MultAdd N -NI [7], denoted H1

Refresh N -SNI [27]
Hash none
Enc none
GenA none

GenSecArithBoolModq N -NI Lemma 1
AbsVal N -NI Lemma 2

MaskedRound N -NIo Lemma 3
FullRound N -NIo Corollary 1
MaskedWR N -NIo Lemma 4
FullWR N -NIo Corollary 2

MaskedRS N -NIo Lemma 5
FullRS N -NIo Corollary 3

4.1 Main masking theorem

In the following, we introduce a theorem that proves the N -NI property of our masked signature. For
simplicity and without losing generality, the theorem only considers one iteration for the signature: the
signing algorithm outputs ⊥ if one of the tests in Steps 12 or 18 in Algorithm 9 has failed. We also as-
sume that the properties of Table 2 are satisfied and refer to Section 4.3 for the proofs. We denote by(
r(j)
)
0≤j<n

,
(
rs(j)

)
0≤j<n

and
(
t(j)
)
0≤j<n

the outputs of FullRS, FullWR and FullRound (the values for each

coefficient j ∈ [0, n− 1]).
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Theorem 1. Each iteration of the masked signature in Algorithm 9 is N -NIo secure with public outputs{(
r(j)
)
0≤j<n

,
(
rs(j)

)
0≤j<n

,
(
t(j)
)
0≤j<n

}
7 (and the signature if returned).

Proof. The overall gadget decomposition of the signature is in Figure 1.

DG ×a

Gena

FullRound Hash Enc

MultAdd

MultAdd

FullRS

FullWR

End
(yi) (vi)

a

t = [v]M

c

c

c

(zi)

(zi)

(wi)

rs

r

(yi)

(vi)

(c, z) or ⊥

(si)

(ei)

Fig. 1. Masked Signature structure (The white (resp. blue, red) gadgets are proved N -NI (resp. N -NIo,
unmasked))

Gadgets. The gadget ×a multiplies each share of the polynomial y by the public value a. By linearity, it
is N -NI. We divide the gadget MaskedHash into two subgadgets FullRound and Hash. The gadget FullRound
denotes the extension of the MaskedRound to all coefficients of v and is proved N -NI below in Corollary 1.
The gadget MultAdd takes (yi)0≤i≤N , (si)0≤i≤N and c (resp. (vi)0≤i≤N , (ei)0≤i≤N and c) and computes
(zi)0≤i≤N = (yi)0≤i≤N −c · (si)0≤i≤N (resp. (wi)0≤i≤N = (vi)0≤i≤N −c(ei)0≤i≤N ). The gadget End simply
outputs (FullAdd((zi)0≤i≤N ), c) if rs and r are true; and ⊥ otherwise. By the N -NIo security of FullAdd, this
gadget is also N -NIo secure.

Thus, all the subgadgets involved are either N -NI secure, N -SNI secure, N -NIo secure or they do not
manipulate sensitive data (see Table 2 for the recap and Section 4.3 for the proofs). We prove that the final
composition of all gadgets is N -NIo. We assume that an attacker has access to δ ≤ N observations. Our goal
is to prove that all these δ observations can be perfectly simulated with at most δ shares of (si)0≤i≤N and
(ei)0≤i≤N and the knowledge of the outputs.
In the following, we consider the following distribution of the attacker’s δ observations: δ1 observed dur-
ing the computations of DG that produces shares of (yi)0≤i≤N , δ2 observed during the computations of
the gadget ×a that produces the shares of (vi)0≤i≤N , δ3 observed during the computations of FullRound,
δ4 observed during the computations of the upper MultAdd gadget that produces (zi)0≤i≤N , δ5 observed
during the computations of the lowerer MultAdd gadget that produces (wi)0≤i≤N , δ6 observed during the
FullRS, δ7 observed during the FullWR, δ8 observed during the End. Some observations may be done on the
unmasked gadgets (GenA, Hash and Enc) but their amount will not matter during the proof. Finally, we have∑8

i=1 δi ≤ δ.

7To ease the notations, the number of iterations of the gadget DG is ommited as a public output. It has been
proved in [7] that its knowledge do not impact the power of the attacker.
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We build the proof from right to left. The gadgets End, FullRS, FullRound and FullWR are N -NIo secure
with the output (z, c) or ⊥ (resp.

(
rs(j)

)
0≤j<n

,
(
t(j)
)
0≤j<n

,
(
rs(j)

)
0≤j<n

). As a consequence, all the obser-

vations from their call can be perfectly simulated with at most δ8 (resp. δ6, δ7) shares of z (resp. z, w). For
the upper MultAdd gadget, there are at most δ8 + δ6 observations on the outputs and δ4 local observations.
The total is still lower than δ and thus they can be simulated with at most δ4 + δ6 + δ8 ≤ δ shares of y and
s.
Concerning the lower MultAdd gadget, there are at most δ7 observations on w and δ5 made locally. Thus
they can be simulated with at most δ5 + δ7 ≤ δ shares of v and e.
The gadget MaskedRounding is N -NIo so all the observations from its call can be simulated with at most
δ3 shares of v. Thus, there are δ3 + δ5 + δ7 observations on the output of gadget ×a. And then, they
can be simulated with at most δ3 + δ5 + δ7 + δ2 shares of y. Summing up all the observations of y gives
(δ3 + δ5 + δ7 + δ2) + (δ4 + δ6 + δ8) ≤ δ. This allows to conlcude the proof by applying the N -NIo security of
DG. All the observations on the algorithm can be perfectly simulated with at most δ4 + δ6 + δ8 ≤ δ shares
of s, δ5 + δ7 ≤ δ shares of e and the knowledge of the public ouputs.

4.2 EUF-CMA security in the N-probing model

We recall the EUF-CMA security in the N -probing model. For the complete game description, we refer to
[7].

Definition 9. A signature scheme is EUF-CMA-secure in the N -probing model if any PPT adversary has
a negligible probability to forge a signature after a polynomial number of queries to a leaky signature oracle.
By leaky signature oracle, we mean that the signature oracle will 1) update the shares of the secret key with
a refresh algorithm 2) output a signature together with the leakage of the signature computation.

Definition 10. We denote by (r, rs, t)-qTESLA a variant of qTESLA where all the values{(
r(j)
)
0≤j<n

,
(
rs(j)

)
0≤j<n

,
(
t(j)
)
0≤j<n

}
are outputted for each iteration during the signing algorithm.

Theorem 1 allows to reduce the EUF-CMA security of our masked qTESLA signature at order N in the
N -probing model to the EUF-CMA security of (r, rs, t)-qTESLA. The security of (r, rs, t)-qTESLA is actually
not fully supported by the security proof of qTESLA because the adversary is not supposed to see these
values for the failed attempts of signing. However, based on the work of [7], we can prove that, under some
computational assumptions, outputting

(
t(j)
)
0≤j<n

for each iteration does not affect the security. We redirect

the reader to [7] for further discussions on this issue. The values
{(
r(j)
)
0≤j<n

,
(
rs(j)

)
0≤j<n

}
correspond to

the conditions of rejection, and more precisely, the positions of the coefficients of the polynomials that do
not pass the rejections. Such a knowledge do not impact the security of the scheme because the rejection
probability does not depend on the position of the coefficients.

4.3 Security proof for the gadgets

Lemma 1. The gadget GenSecArithBoolModq in Algorithm 4 is N -NI secure.

Indeed, by construction, the security of this gadget is the same as for SecArithBoolModq (proved N -SNI
in [15]). The only difference is that we generalize it for N being arbitrary (i.e. non power of two). This still
keeps the N -SNI property. In the following, we only need the N -NI property which is automatically implied
by N -SNI. We write ABMq to denote GenSecArithBoolModq for short.

Lemma 2. The gadget AbsVal in Algorithm 5 is N -NI secure.
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Fig. 2. Masked AbsVal structure (The green (resp. white, blue) gadgets are proved N -SNI (resp. N -NI,
N -NIo))

Proof. A graphical representation of AbsVal is in Figure 2.
We consider that the attacker made δ ≤ N observations. In the following, we prove that all these δ

observations can be perfectly simulated with at most δ shares of (xi)0≤i≤N .
In the following, we consider the following distribution of the attacker’s δ observations: δ1 observed during
the computations of the shift that produces shares of (maski)0≤i≤N , δ2 observed during the computations
of the Resfresh that produces (x′i)0≤i≤N , δ3 observed during the Secadd, and δ4 observed during the final ⊕
and ∧ step. Finally, we have

∑4
i=1 δi ≤ δ.

We build the proof classically from right to left. By linearity for Boolean masking, the final ⊕ and ∧ step
is N -NI. It is also an affine gadget. In other words, each observation can be simulated with either one share
of x or one share of mask. Thus, all the observations from its call can be simulated with at most δ4 shares
among all the shares of x and mask. Then it can be simulated with at most x1 shares of x and x2 shares of
mask with x1 + x2 = δ4.The gadget SecAdd is N -NI then all the observations from its call can be simulated
with at most x1 + δ3 shares of mask and x′. Identically, the shift is N -NI (by linearity), so the observations
from its call can be simulated with at most δ1 + (x1 + δ3) + x2 = δ1 + δ3 + δ4 shares of x. By N -SNI security
of the lower Resfresh, all the observations from its call can be simulated with at most δ2 shares of x. Finally,
all the observations during the computations of AbsVal can be simulated with at most δ1 + δ2 + δ3 + δ4 ≤ δ
shares of x.

Lemma 3. The gadget MaskedRound in Algorithm 6 is N -NIo with public output t.

ABMq SecAdd ¬, >> ⊕ SecAdd >> d FullX
(a

(j)
i ) (a′

i)

(MINUS Q HALFi)

(bi)

(a′
i)

(bi) (a′
i)

(CONSTi)

(a′
i) (a′

i) t

Fig. 3. Masked Rounding structure (The green (resp. white, blue) gadgets are proved N -SNI (resp. N -NI,
N -NIo))

Proof. A graphical representation of Algorithm 6 is in Figure 3. Let δ ≤ N be the number of observations
made by the attacker. Our goal is to prove that all these δ observations can be perfectly simulated with at
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most δ shares of (ai)0≤i≤N and the knowledge of t.
In the following, we consider the following distribution of the attacker’s δ observations: δ1 observed during the
computations of ABMq that produces shares of (a′i)0≤i≤N , δ2 observed during the computations of SecAdd
that produces (bi)0≤i≤N , δ3 observed during the switch and shift steps (steps 5 and 6), δ4 observed during the
⊕ operation, δ5 observed during the computations of SecAdd that produces (a′i)0≤i≤N , δ6 observed during

the final shift step, and δ7 observed during the final FullXor step. Finally, we have
∑7

i=1 δi ≤ δ.

We build the proof from right to left. The algorithm FullXor is N -NIo with public output t. As a conse-
quence, all the observations from its call can be perfectly simulated with at most δ7 ≤ δ shares of a′ and with
the knowledge of t. The shift algorithm is a linear operation and thus it is N -NI secure. Thus, all observations
from its call can be perfectly simulated with at most δ6 + δ7 ≤ δ shares of a′ and the knowledge of t. The
algorithm SecAdd is N -NI secure and then, similarly, all the observations from its call can be simulated with
at most δ5 + δ6 + δ7 ≤ δ shares of a′ and CONST (but the latter is a public constant). The ⊕ operation
is also linear, so it is N -NI. Then, all the observations made from its call can be simulated with at most
δ4 + δ5 + δ6 + δ7 ≤ δ shares of a′ and b, and with the knowledge of t. Actually, we remark that ⊕ is also
a affine gadget. Thus, all the observations can be exactly simulated with at most x1 shares of a′ and x2
shares of b such that x1 + x2 = δ4 + δ5 + δ6 + δ7. Let us consider now the switch and shift operations.
They are linear so N -NI secure and thus all observations made from its call can be simulated with at most
δ3+x2 ≤ δ observations on b. Considering the first instance of SecAdd, its N−NI security implies that all the
observations from its call can be simulated with at most δ2 + δ3 + x2 ≤ δ shares of a′ and MINUS Q HALF
(but the latter is a public constant). Finally, we consider the algorithm ABMq which is N -NI secure. There

are at most x1 + (δ2 + δ3 + x2) =
∑7

i=2 δi observations made on the ouputs and δ1 made locally. Then, all

the observations during Algorithm 6 can be simulated with at most
∑8

i=1 δi ≤ δ ≤ N shares of the input
a(j) and the knowledge of t.

With Lemma 3, one can directly derive the security of FullRound from the security of MaskedRound on
each of the polynomial coefficients. Recall that we denote by tj the application of MaskedRound to the j-th
coefficient of the input v and obtain the following corollary.

Corollary 1. The gadget FullRound is N -NIo secure with public output
(
t(j)
)
0≤j<n

.

Lemma 4. The gadget MaskedWR in Algorithm 7 is N -NIo secure with public output r.

Proof.

ABMq

AbsVal SecAdd >>

SecAnd

Refresh ∧,AbsVal SecAdd >>

FullX
(a

(j)
i )

(SUP Qi)

(SUP Di)

(a′
i)

(a′
i)

(a′
i)

(xi)

(yi) (yi)

(xi) (bi)

(b′i)

(bi) r

Fig. 4. Masked Well-Rounded structure (The green (resp. white, blue) gadgets are proved N -SNI (resp.
N -NI, N -NIo))

A graphical representation of Algorithm 7 is in Figure 4. Let δ ≤ N be the number of observations made
by the attacker. Our goal is to prove that all these δ observations can be perfectly simulated with at most δ
shares of (ai)0≤i≤N and the knowledge of the output r.
In the following, we consider the following distribution of the attacker’s δ observations: δ1 observed during
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the computation of ABMq that produces shares of (a′i)0≤i≤N , δ2 observed during the computation of the
upper AbsVal that produces the shares of (xi)0≤i≤N , δ3 observed during the Refresh, δ4 observed during the
computations of the ∧ and AbsVal that produces the shares of (yi)0≤i≤N , δ5 observed during the SecAdd
that produces (xi)0≤i≤N , δ6 observed during the SecAdd that produces (yi)0≤i≤N , δ7 observed during the
shift step that produces (bi)0≤i≤N , δ8 observed during the shift step that produces (b′i)0≤i≤N , δ9 observed

during the SecAnd, and finally δ10 observed during the final FullXor step. Finally, we have
∑10

i=1 δi ≤ δ.

We build the proof from right to left. The algorithm FullXor is N -NIo with public output r. As a conse-
quence, all the observations from its call can be perfectly simulated with at most δ10 ≤ δ shares of b and the
knowledge of r. The SecAnd algorithm is N -NI secure. So, all the observations from its call can be perfectly
simulated with at most δ9 +δ10 ≤ δ shares of b and b′ and the knowledge of r. If we look at the lower gadgets
of the figure, let us consider the shift that creates b′, the SecAdd that creates y and the ∧,AbsVal. All three
gadgets are N -NI secure, so all observations at the right side of ∧,AbsVal can be simulated with at most
δ4 +δ6 +δ8 +δ9 +δ10 ≤ δ share of a′ and the knowledge of r. We now consider the Refresh algorithm. Since it
is N -SNI secure and since the output and local observations are still less than δ, all observations from its call
can be perfectly simulated with at most δ3 ≤ δ shares of a′. Now let us consider the upper gadgets. The shift
that creates b, the SecAdd that creates x and the AbsVal are N -NI secure, so all observations at the right side
of AbsVal can be simulated with at most δ2+δ5+δ7+δ9+δ10 ≤ δ shares of a′ and the knowledge of r. Finally,
we consider the algorithm ABMq which is N -NI secure. There are at most δ3 + (δ2 + δ5 + δ7 + δ9 + δ10) ≤ δ
observations made on the ouputs and δ1 made locally. Thus, all the observations during MaskedWR can be
simulated with at most δ1 + δ2 + δ3 + δ5 + δ7 + δ9 + δ10 ≤ δ ≤ N shares of the input a(j) and the knowledge
of r.

Similarly to FullRound, recall that we denote by rj the application of MaskedWR to the j-th coefficient
of the input w and get the following corollary.

Corollary 2. The gadget FullWR is N -NIo secure with public output
(
r(j)
)
0≤j<n

.

Lemma 5. The gadget MaskedRS in Algorithm 8 is N -NIo secure with public output rs.

Proof. The rejection sampling is a succession of gadgets without cycle. Thus, prooving its N -NIo security
remains to prove the N -NIo or N -NI security of each of its gadgets : ABMq, AbsVal, SecAdd, >> and FullXor.
As it is seen in Table 2, ABMq, AbsVal and SecAdd are N -NI. The >> is linear for Boolean masking so it is
N -NI. With 2, Table FullXor is N -NIo. Thus, rejection sampling is N -NIo.

Again, recall that we denote by rsj the application of MaskedRS to the j-th coefficient the input z and
obtain the following corollary.

Corollary 3. The gadget FullRS is N -NIo secure with public output
(
rs(j)

)
0≤j<n

.

5 Practical aspects

5.1 Implementation details

Our masking scheme has been implemented inside the reference code of qTESLA available on the repository
of their project [35]. We added two new files called base gadgets.c and sign gadgets.c containing all the
algorithms manipulating masked values. The actual masked signature (Algorithm 9) is available in sign.c.
Beside, some modifications related to the new modulus have been made in various places but the overall
structure of the code is the same as before. The random oracle of the signature is implemented with cSHAKE.

Randomness. The generation of random numbers plays an important role in the performances of the scheme
since most of the basic gadgets need fresh randomness in the form of unsigned 32-bit integers. Our function
retrieving randomness is called rand uint32(). It is defined as a macro in params.h in order to easily be
disabled for testing purpose. Our tests with the randomness enabled were performed using xoshiro128**
[9], a really fast PRNG that has been recently used to speed-up public parameters generation in a lattice-
based cryptosystem [10]. One looking for real life application of our technique would maybe want to use a
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cryptographically secure PRNG instead. Another option could be to expand a seed with the already available
cSHAKE function but as we will see in the next section, it might be pretty expensive as the number of random
bytes required grows very fast with the number of shares.

5.2 Performances

We benchmarked our code on a laptop with a CPU Intel Core i7-6700HQ running at 2.60GHz as well as on
a cortex-M4 microcontroller for the masking of order 1.

Individual gadgets. The result for individual gadgets over 1 000 000 executions can be found in Table 3.
The table is divided in two parts: the top part contains measurements for the signing gadgets implementing
functionalities of the signature and the bottom part contains measurements for the base gadgets implementing
elementary operations. Unsurprisingly, we see that the most expensive signing gadget is MaskedWR. Indeed,
it has to perform two absolute value computations in addition to two comparisons. Nevertheless, an actual
substantial overall gain of performances would rather come from an improvement of the conversion from
arithmetic to boolean masking since it the slowest base gadget and is used in all signing gadgets. Furthermore,
it should be also pointed out that most gadgets have a non negligible dependency on the speed of SecAnd
since it is called multiple times in SecAdd which itself appears multiple times in signing gadgets.

Signing procedure. The results for the full signature are given in Tables 4 and 5. Since a large portion of
the execution time is spent in calls to the random number generator, we decided to benchmark with and
without the PRNG. The mention RNG off means that rand uint32() was set to return 0. The mention
RNG on means that rand uint32() was set to return the next value of xoshiro128**. The purpose is to give
an idea of how the algorithm itself is scaling, regardless of the speed at which the device is able to provide
randomness. At the same time, the discrepancy between the values with and without the RNG underlines
how masking schemes of this magnitude are sensitive to randomness sampling. In table 7, we also computed
the average number of calls to rand uint32() to see how much randomness is needed for each order. Each
call is retrieving a uniformly random 32-bit integer. As expected, this number is growing fast when the
masking order is increased. The results for the masked signature at order 1 on cortex-M4 microcontroller
are given in Table 6. Furthermore, we can see that qTESLA-III is scaling better than qTESLA-I. Beside the
natural variance of the experiments, we explain this result by the fact that increasing the masking order
reduces the impact of the polynomial multiplication on the timing of the whole signature in favor of masking
operations. Factoring out polynomial operations, qTESLA-III is scaling better because the probability of
rejection for this parameters set is lower than for qTESLA-I. Hence, even if n is twice as large, less than twice
the masking operations are performed overall.

Table 3. Median speed of principal gadgets in clock cycles over 1000000 executions

Masking order Order 1 Order 2 Order 3 Order 4 Order 5

RG 98 410 840 1 328 2 416

MaskedRound 164 1 400 2 454 4 314 6 142

MaskedWR 280 2 080 3 914 6 432 9 034

MaskedRS 178 1 440 2 496 4 432 6 254

SecAdd 44 294 592 870 1 192

SecAnd 20 28 44 70 96

GenSecArithBoolModQ 96 786 1 152 3 148 3 500

SecBoolArith 20 42 108 288 884
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Table 4. Median speed of masked signature in clock cycles over 10000 executions for qTESLA-I

Masking order Unmasked Order 1 Order 2 Order 3 Order 4 Order 5

qTESLA-I (RNG off) 660 530 2 394 085 7 000 117 9 219 826 16 577 823 24 375 359

qTESLA-I (RNG on) 645 269 2 504 204 13 878 830 24 582 943 39 967 191 59 551 027

qTESLA-I (RNG on)
Scaling

1 ×4 ×22 ×38 ×62 ×92

Table 5. Median speed of masked signature in clock cycles over 10000 executions qTESLA-III

Masking order Unmasked Order 1 Order 2 Order 3 Order 4 Order 5

qTESLA-III (RNG off) 1 252 645 4 511 179 9 941 571 14 484 664 25 351 066 34 415 499

qTESLA-III (RNG on) 1 318 868 4 138 907 21 932 379 33 520 922 59 668 280 83 289 124

qTESLA-III (RNG on)
Scaling

1 ×3 ×17 ×25 ×45 ×63

Table 6. Median speed of masked signature in clock cycles over 1000 executions for qTESLA-I on cortex-M4
microcontroller

Masking order Unmasked Order 1

qTESLA-I CortexM4 11 304 025 23 519 583

As noted in [32], the power of two modulus allows to get a reasonable penalty factor for low masking
orders. Without such a modification, the scheme would have been way slower. Besides, our implementation
seems to outperform the masked implementation of Dilithium as given in [32]. The timing of our order 1
masking for qTESLA-I is around 1.3 ms, and our order 2 is around 7.1 ms. This result comes with no surprise
because the unmasked version of qTESLA already outperformed Dilithium. However, we do not know if our
optimizations on the gadgets could lead to a better performance for a masked Dilithium and we are currently
investigating this issue.

6 Conclusion

In this paper, we described and implemented a provably secure masked version of the signing procedure of
qTESLA. This work is part of a common effort from the community to study different aspects of NIST’s post-
quantum competition candidates. While the masking of qTESLA is naturally similar to other Fiat-Shamir
lattice-based signatures, some specificities had to be taken into consideration in order to get a fully masked
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Table 7. Average number of calls to rand uint32()

Masking order Order 1 Order 2 Order 3 Order 4 Order 5

qTESLA-I 85 810 1 383 459 2 761 525 4 923 709 7 638 422

qTESLA-III 115 392 1 826 545 3 721 800 6 482 130 10 005 714

scheme. Unlike previous work, we used state-of-the-art algorithms for all the gadgets and specialized ones
for masking of order 1. Furthermore, thanks to small modifications to the scheme itself, namely the removal
of the PRF and the usage of a power of two modulus, the cost of masking is reasonable, at least for small
orders. This indicates that some design elements that seem to be a good idea for the unprotected scheme
might be actually problematic in practice. We backed up these claims by providing benchmarks with a C
implementation inside the original code of the designers of the scheme.
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