
Improved Meet-in-the-Middle Preimage Attacks
against AES Hashing Modes

Zhenzhen Bao1,2, Lin Ding3, Jian Guo1, Haoyang Wang1, and Wenying Zhang1,4

1 Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore

{zzbao,guojian}@ntu.edu.sg, wang1153@e.ntu.edu.sg
2 Strategic Centre for Research in Privacy-Preserving Technologies and Systems,

Nanyang Technological University, Singapore
3 Department of Computer Science and Engineering, Shanghai Jiao Tong University,

China
dinglin@sjtu.edu.cn

4 School of Information Science and Engineering, Shandong Normal University, Jinan
250014, China

zhangwenying@sdnu.edu.cn

Abstract. Hashing modes are ways to convert a block cipher into a
hash function, and those with AES as the underlying block cipher are
referred to as AES hashing modes. Sasaki in 2011 introduced the first
preimage attack against AES hashing modes with the AES block cipher
reduced to 7 rounds, by the method of meet-in-the-middle. In his attack,
the key schedules are not taken into account, hence the same attack
applies to all three versions of AES. In this paper, by introducing neutral
bits from key, extra degrees of freedom are gained, which are utilized in
two ways, i.e., to reduce the time complexity and to extend the attack
to more rounds. As an immediate result, the complexities of 7-round
pseudo-preimage attacks are reduced from 2120 to 2112, 296, and 296 for
AES-128, AES-192, and AES-256, respectively. By carefully choosing the
neutral bits from key to cancel those from state, the attack is extended
to 8 rounds for AES-192 and AES-256 with complexities 2120 and 296.
Similar results are obtained for Kiasu-BC, a tweakable block cipher based
on AES-128, and interestingly the additional input tweak helps reduce
the attack complexities further. To the best of our knowledge, these are
the first preimage attacks against 8-round AES hashing modes.

Keywords: AES, MITM, preimage, hashing mode, key schedule

1 Introduction

The Advanced Encryption Standard (AES). Designed by Daemen and
Rijmen in 1998 [1], and later formally standardized by the U.S. National Institute
of Standards and Technology (NIST) in 2001, AES becomes the most widely
deployed block cipher nowadays in the world among both industry and government
agencies, for its long-standing security against massive cryptanalysis and efficiency

in both software and hardwares. There are three variants, and according to the
key sizes and hence security level in bits from the set {128, 192, 256}, they are
named as AES-128, AES-192, and AES-256, respectively.

The PGV Hashing Modes. Hashing modes are ways to convert block ciphers to
compression functions, and then to hash functions under some domain extensions.
Compared with designs from scratch, hashing modes enjoy both inherited security
and performance efficiencies from the underlying block ciphers. Security proofs
of hashing modes, which deduce the security such as collision resistance of a hash
function to the security of the underlying block cipher, ensure that no attack
against the hash function could be possible before an attack against the underlying
block cipher is found. This removes the hassle of intensive cryptanalysis required
by hash functions designed from scratch, when the hashing mode is instantiated
by a secure block cipher such as AES. For environments like resource constrained
hardware where a block cipher is already implemented, a hashing mode could be
the most economic way to achieve a hash function for purposes like digest and
signature, since in most of the cases implementing a hashing mode on top of an
existing block cipher costs much lesser than that of a standalone hash function.

In [23], Preneel, Govaerts, and Vandewalle summarized that there are 12 secure
ways to convert a block cipher to a compression function, and these constructions
are referred as PGV modes nowadays after the name of the authors. Out of
them, there are three modes named Davies-Meyer (DM), Matyas-Meyer-Oseas
(MMO), Miyaguchi-Preneel (MP) commonly used in practice. For instance, all
the hash functions in the MD-SHA hash family including MD4, MD5, SHA-1,
and SHA-2, can be viewed as DM modes.

The MITM Preimage Attack. The preimage attack against a hash function
is to find a message whose digest equals to the given value. The most naive way is
to randomly select message, evaluate its digest and check against the given value.
This bruteforce method costs 2n hash evaluations for an n-bit hash function.
A method running faster than 2n is considered as an attack. Sasaki and Aoki
introduced the Meet-in-the-Middle (MITM) preimage attack in 2008 [25], and
the technique was extended and used to break the theoretical preimage security
claims of MD4 [10], MD5 [26], Tiger [10,27], HAVAL [12,25] and round-reduced
variants of many other hash functions such as SHA-0 and SHA-1 [5, 9, 18], SHA-
2 [4], BLAKE [9], HAS-160 [13], RIPEMD and RIPEMD-160 [28], Stribog [2], and
Whilwind [3]. It is interesting to see that the idea of MITM preimage attack also
leads to progress of collision attack against reduced SHA-2 [21].

MITM Preimage Attack against AES Hashing Modes. AES hashing
modes refer to the hashing modes instantiated by AES block cipher. In 2011,
Sasaki [24] introduced the first attack against AES hashing modes with the
underlying AES reduced to 7 rounds and the last round without the MixColumn
operation. The complexity of the attack was sightly improved by Wu et al. [29]

2

Target # Rounds Time-1 Time-2 Memory (d1, d2, m) Source

AES-128
7 2120 2125 28 (8, 8, 32) [24]
7 2120−min(t,24) 2123 28+min(t,24) (8, 32, 32) [29]
7 2112−min(t,8) 2117 216+min(t,8) (16, 32, 24) Section 4.3

AES-192
7 2120 2125 28 (8, 8, 32) [24]
7 296 2113 232 (32, 32, 32) Section 4.4
8 2120−min(t,24) 2123 28+min(t,8) (8, 32, 32) Section 5.3

AES-256
7 2120 2125 28 (8, 8, 32) [24]
8 296 2113 232 (32, 32, 32) Section 5.2

Kiasu-BC
7 2104 2117 224 (24, 32, 24) Section 4.5
8 2120−min(t,24) 2123 28+min(t,8) (8, 32, 32) Section 5.4

Table 1: Summary of our improved pseudo-preimage attacks against the round-reduced
compression function of AES hashing modes, compared with previous works. Here 2t is
the number of available targets for preimage attacks or the number of blocks of given
message for second-preimage attacks, and Time-1 is the complexity for pseudo-preimage,
second-preimages, or preimages which require no additional conversion from pseudo-
preimage such as MMO and MP modes; Time-2 is the complexity of preimages which
require a conversion and here a single target is given (t = 0).

in 2012. To the best of our knowledge, there is no more public progress on this
topic since then.

The general idea of MITM preimage attack is to split the cipher (or compres-
sion function) into two independent chunks, which can be computed independently
from each other with respective to some neutral bits. Technically, the source of
neutral bits of most previous works is the key bits of block cipher or the message
bits of compression function. However, in [24], the neutral bits are chosen from
the state while the key bits are not used and fixed to some random constants.
The key bits are not used because finding neural bits in key is difficult due to the
key schedule which diffuses all key bits quickly. It is then natural to ask whether
it is possible to eventually find neutral bits from key to either improve the attack
complexity or to extend the number of attacked rounds. In this paper, we achieve
both.

Our Contributions. On one hand, additional neutral bits from key improves
the attack in two direction, i.e., improving the time complexity directly due to
more neutral bits and extending the attack to more rounds since local collisions
of neutral bits from the state and key are possible. On the other hand, to avoid
dealing with the quick diffusion of the key schedule of AES, we choose neutral
bits from key for one chunk v.s. for both chunks. This is possible thanks to the
improvement of the attack in [29], where the unbalanced 8 and 32 bits neutral
bits are found for the two chunks. The additional neutral bits from key makes it

3

closer to the balanced 32 and 32 bits, which improves the time complexity of the
final attack by a factor of at most 232−8 = 224.

Larger key sizes allow more degrees of freedom for the choices of neutral bits,
and also AES with larger key size comes with a slower key diffusion. These factors
lead us to a higher attacked rounds and lower time complexities for AES-192 and
AES-256, compared with the previous attacks against AES-128 in [24,29]. The
details of attacks, including the number of attacked rounds and time/memory
complexities, compared with the previous works, are summarized in Table 1.

Organization. The rest of the paper is organized as follows. Section 2 gives
the preliminaries of AES and the PGV hashing modes, followed by a general
description of the MITM preimage attack in Section 3. Results of 7 and 8 rounds
are given in Section 4 and 5, respectively. Section 6 concludes the paper. Some
details of the attacks are postponed to Appendix.

2 Preliminaries

2.1 Description of AES

The Advanced Encryption Standard (AES) is an iterated block cipher which
encrypts 128-bit plaintext with secret key of sizes 128, 192, and 256 bits. AES
with 128-bit (192, 256) master keys is denoted by AES-128 (192, 256). AES-128,
AES-192, and AES-256 share the same round function with different number of
rounds: 10, 12, and 14, respectively. The rounds are numbered 0, · · · , Nr−1, where
Nr ∈ {10, 12, 14} is the number of rounds. Its internal state can be represented as
a 4× 4 matrix whose elements are byte value (8 bits) in a finite field of GF (28).
The round function consists of four basic transformations in the following order:

- SubBytes (SB) is a nonlinear substitution that applies the same S-box to
each byte of the internal state.

- ShiftRows (SR) is a cyclic rotation of i-th row by i bytes to the left, for
i = 0, 1, 2, 3.

- MixColumns (MC) is a multiplication of each column with a Maximum
Distance Separable (MDS) matrix over GF (28).

- AddRoundKey (AK) is an exclusive-or with the round-dependent key.

MDS guarantees that the sum of active bytes (a.k.a. non-zero bytes) in the
input and output of the MixColumns operation is at least 5 unless all bytes are
non-active (a.k.a. zeros). The matrices for the encryption and decryption are
shown below. Note that X[j] is the input value and Y [j] is the updated value.
Numbers in typewritter font, e, b, d, and 9, are in hexadecimal.

Y [0]
Y [1]
Y [2]
Y [3]

 =

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

X[0]
X[1]
X[2]
X[3]

 ,

X[0]
X[1]
X[2]
X[3]

 =

e b d 9
9 e b d
d 9 e b
b d 9 e

Y [0]
Y [1]
Y [2]
Y [3]

4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(a) Byte order

SB
0
1
2
3

0 1 2 3

S
S
S
S

S
S
S
S

S
S
S
S

S
S
S
S

SR MC AK

(b) AES round function

Figure 1: AES byte order and AES round function

One round of AES is depicted in Figure 1 as follows:
At the very beginning of the encryption, an additional whitening key addition

is performed, and the last round does not contain MixColumns.
The key schedule of AES transforms the master key into Nr +1 subkeys of 128

bits each. The master key is divided into Nk 32-bit words (W [0], W [1], ..., W [Nk−
1]), then W [i] for i = Nk, · · · , 4 ·Nr + 3 is computed as

W [i] =

W [i−Nk]⊕ SB(RotByte(W [i− 1]))⊕Rcon[i/Nk], i ≡ 0 mod Nk;
W [i− 8]⊕ SB(W [i− 1]), Nk = 8 and i ≡ 4 mod 8;
W [i−Nk]⊕W [i− 1], otherwise.

<<S

<<S

<<S

S

Figure 2: Round functions of key schedule of AES-128, AES-192, and AES-256 [15]

The i-th round key is the concatenation of 4 words W [4i] ‖ W [4i+1] ‖ W [4i+
2] ‖ W [4i + 3]. RotByte is a cyclic shift by one byte to the left, and Rcon is the
round constant, for which we refer to [1] for details. The graphic representation
of the key schedules is depicted in Figure 2.

2.2 Description of Kiasu-BC

Kiasu-BC is the underlying tweakable block cipher (TBC) used in the authen-
ticated encryption scheme Kiasu proposed by Jean et al. [16] alongside their

5

TWEAKEY framework [17] at ASIACRYPT 2014. The TBC is almost identi-
cal to the AES-128 except for the additional input tweak, which renders it an
attractive primitive for various modes of operation and applications requiring
tweakable block ciphers. Therefore, studying how the additional tweak input
affects the security strength compared to that of AES is highly valuable to gain
trust for more adoptions.

K AES KS AES KS ...

P
⊕

F
⊕

F
⊕

...
⊕

C

T ...

AES-128

Figure 3: The Kiasu-BC tweakable block cipher based on AES-128

The TBC Kiasu-BC takes three inputs: a 64-bit tweak T , a 128-bit key K
and a 128-bit plaintext P . It outputs a 128-bit ciphertext C = EK(T, P) as the
encryption of P under the key K for the tweak value T . As depicted in Figure 3,
Kiasu-BC is exactly the AES-128 cipher, but with a 64-bit tweak value XOR-ed
to the first two rows of the internal state after each round key addition in the
round function of the encryption, including after the pre-whitening key addition.
There is no tweak schedule, i.e., the same T is used every time in its original
form. Kiasu-BC can actually be viewed as one of the simplest instances of the
TWEAKEY framework based on AES.

3 The MITM Preimage Attack

The MITM Attack. In its early stages of development, the meet-in-the-middle
approach proposed by Diffie and Hellman in [8] is mainly used as a generic
time-memory trade-off technique to attack against encryption schemes with clear
separations, e.g., Double DES. That is because, it is straightforward to divided
the whole computation into two or multiple independent computational chunks.
Thus, the whole ‘for’ loop in a brute force attack can be separated into two or
multiple independent ‘for’ loops, which have quite smaller and mutually balanced
amount of computations, and which independently generate lists of candidates
(of partial solutions). The independence between the smaller ‘for’ loops makes
each element in one list be able to make a pair with any element in other lists to
form a candidate solution. Such effect of taking cartesian product between two
sets, enlarges the number of candidates of the correct computation dramatically.
Then, according to the birthday paradox, say for two lists of 2` entries of n-bit
values, to find a match with high probability, it is required 2(`+`) ≥ 2n, i.e.,
` ≥ n/2. Thus, the minimum time complexity of a simple MITM attack is 2n/2,
together with 2n/2 memory.

6

3.1 Application to Pseudo-Preimage Attacks

Using the MITM approach in preimage finding on hash function can be seen
in [7, 14,20]. Aoki and Sasaki in [25] for the first time combined the MITM and
local-collision approaches to devise preimage attacks on hash function HAVAL.
Whereas, before that local-collision approach is mainly used in collision attacks
on hash functions. Based on these primary works, the MITM-based preimage
attack on hash functions developed in a series of papers and advanced further.

Techniques Developed for MITM Preimage Attacks. Several important
techniques are invented along the development and the application of the attacks
are as follows.

Splice-and-cut and neutral words. Aoki and Sasaki in [6] invented the
splice-and-cut MITM attack and proposed the concept of “neutral word”. In the
splice-and-cut MITM attack as depicted in Figure 4, the first and last steps of the
attack target can be spliced to be consecutive steps by feed-forward mechanisms
in the compression function of hashing modes (e.g., DM-mode) or by querying
the decryption in encryption schemes. The chain of computational steps of the
attack target is cut starting from an internal step (named starting point), such
that the chain is divided into two chunks of steps. Conventionally, the chunk of
steps, which need to be computed forward (resp. backward) to reach the matching
point, is named forward chunk (resp. backward chunk). The starting point is
chosen so that each chunk includes at least one message (or key) word that is
independent from the other chunk, where such message (or key) words are called
“neutral words”.

Initial-structure technique [26]: Initial-structure is a generalization of the
local-collision technique that enables to skip several steps at the beginning of
chunks.

“Initial structure is a few consecutive steps including at least two neutral
words named m2nd and m1st, where steps after the initial structure (2nd
chunk) can be computed independently of m1st and steps before the initial
structure (1st chunk) can be computed independently of m2nd [26].”

Partial matching [6, 26]: In primary MITM approach, the final phase of the
attack involves matching between all-word in two states computed independently.
Whereas, by executing only one-word (or several-words) matching instead of
all-word matching, the required independent computations can be expanded by
more steps, thus enables to attack more steps of the target.

Partial-fixing [6, 26]: fixing a part of the neutral words enables to partially
compute more steps within a chunk even if in company with a neutral word for
the other chunk.

7

Multi-targets [10]: when incorporating multi-target scenarios into the MITM
framework, the available multiple targets can directly provide additional freedoms
to one computation chunk without influencing the other.

Forward
chunk

Backward
chunk

Initial
structure

Forward
chunk

Target

Splice

CutPartial match

Message/key schedule

ma ma ma mambmb mb

ML ma mb

Let the space for both neutral words ma and mb be 2`, the time complexity is 2n−`,
and memory complexity is 2`.

Figure 4: The advanced MITM pseudo-preimage attack on DM-mode [24]

The attack framework. As depicted in Figure 4, the attack framework of
the splice-and-cut MITM attack using initial structure and partial match is as
follows. Before the execution of the attack procedure, the configuration of the
attack should be set up, which involves:

1. Chunk separation: by splicing and cutting, decide where the computation
be the starting point of the forward/backward computation, and at which
state, be the matching point. The principle of the chunk separation is to find
the best balance between freedom degrees and the size of the matching point
that the freedom degrees are fully used. That requires one to decide:

2. The neutral bytes for each chunk – the selection on the neutral bytes will
determine the freedom degrees.

3. The bytes for match – the derivation on the bytes for match also depends on
the selection of neutral bytes and the computation rule of the attack target.

Having decided the above configurations, the attack procedure goes as follows
(Figure 4 illustrates the MITM pseudo-preimage attack integrating with these
advanced techniques on Davies-Meyer mode): Denote the neutral words for the
forward chunk and backward chunk by Nf and Nb, respectively:

1. Fix all other words except for the neutral words Nf and Nb in the initial
structure to arbitrary values.

8

2. For all possible values of Nf, forward compute from the starting point to the
matching point at the terminal state of forward chunk to get a list Lfor of
candidate values indexed by the value of Nf.

3. For all possible values of Nb, backward compute from the starting point to
the matching point at the terminal state of backward chunk to get a list
Lback of candidate values indexed by the value of Nb.

4. Sorting the two lists Lfor and Lback using hash tables, check whether there
is a match/partial-match between them.

5. In case of partial-matching used in the above step, for the surviving pairs,
check for full match.

6. Repeat the whole procedure to find full state matches by changing values of
fixed words.

The Complexity Analysis. Denote the size of the internal state by n, the
freedom degrees in the forward and backward directions by d1 and d2 respectively,
and the number of bits for match by m.
1. forward computing to get a list Lfor of size 2d1 requires 2d1 computations

of the forward chunk.
2. backward computing to get a list Lback of size 2d2 requires 2d2 computations

of the backward chunk.
3. matching between Lfor and Lback requires 2max(d1,d2) memory access which

is usually ignored, compared with the 2max(d1,d2) computations of the com-
pression function of the target in above steps.

4. 2d1+d2−m pairs are left after partial matching, hence the same complexity is
required for full-match checking.

5. finding a full match requires 2m−(d1+d2) × 2n−m = 2n−(d1+d2) repetitions.
When d1, d2 are different, i.e., unbalanced, we use max(2d1 , 2d2) to denote the
sum of complexities for computing the two chunks. Note, when d1 = d2, the
computation complexity is 2d1 full target (= forward chunk + backward chunk).
Hence max(2d1 , 2d2) is used for all cases. The above complexity analysis gives

2n−(d1+d2) · (2max(d1,d2) + 2d1+d2−m) = 2n−min(d1,d2) + 2n−m ' 2n−min(d1,d2,m).
(1)

From this formula, it can be seen that, the critical point for the attack being
optimized is to reach a balance between the freedom degrees for forward chunk
and backward chunk. Because at last, it will only depend on the minimum between
the two freedom degrees. Besides, the memory complexity can be 2min(d1,d2) by
only storing the list computed by the direction with less freedom and make a
match at once a candidate for the other direction being available. Accordingly,
the larger the min(d1, d2) the lesser the time complexity and at the same time
the larger the memory complexity. However, generally, in such MITM preimage
attack on hash function, the min(d1, d2) is less than n/2, thus, compared with
memory complexity, time complexity is the bottleneck. Therefore, generally, the
larger the min(d1, d2) the better the attack. The second term 2n−m is usually
minor when m > min(d1, d2), i.e., the number of matching bits is more than that
of neutral bits.

9

3.2 Conversion from Pseudo-Preimages to Preimages

Note that, the above MITM attack only gives pseudo-preimage. Below we consider
the methods to convert pseudo-preimages to preimages.

Converting pseudo-preimages to a preimage [22, Fact9.99]: for n-bit
narrow-pipe iterated hash function, using the unbalanced meet-in-the-middle
approach, a pseudo-preimage attack with computational complexity of 2` where
` < n−2 can be converted into a preimage attack with computational complexity
of 2 n+`

2 +1, by finding 2 n−l
2 pseudo-preimages and 2 n+`

2 +1 links, among which one
will lead to one of the psuedo-preimages and form a preimage. Figure 5 depicts
how to convert pseudo-preimage attacks to preimage attacks using a higher layer
of MITM procedure, and how to use an unbalanced-tree and an expandable
message to convert a multi-target pseudo-preimage to preimage attack [19]. The
time complexity for the latter is

((n− `) · ln(2) + 1) · 2` = (min(d1, d2) · ln(2) + 1) · 2n−min(d1,d2), (2)

where a single pseudo-preimage attack costs 2`−t (` = n − min(d1, d2) in our
notation) computations when 2t targets are given. This is possible when target
can be used as the additional source of neutral words. Without loss of generality,
let us assume targets can be used as part of forward chunk, hence the size of
Lfor list is increased from 2d1 to 2d1+t, then Eq. (1) gives complexities

Time: 2n−min(d1+t,d2,m); Memory: 2min(d1+t,d2,m) (3)

In other words, the complexity of psuedo-preimage attack reduces linearly with
respective to the amount of targets available, as long as d1 + t < d2 and m >
min(d1 + t, d2). When these conditions could not be met, the complexity of
pseudo-preimage attack remains as

2n−max(d1,d2) + 2n−m ' 2n−min(max(d1,d2),m) (4)

for d1 + t ≥ d2 (i.e., t ≥ d2 − d1), for which the time complexity of preimage
conversion will follow the original unbalanced MITM

2n+1−min(max(d1,d2),m)/2. (5)

3.3 Converting Block cipher to Compression Function

In [23], Preneel et al. summarized 17 mode-of-operations to build a compression
function for hash from a block cipher. Twelve of them are shown to be secure.

Denote the compression function composed of a hash function by CF and
denote the block cipher E with a key K by EK . Then, the twelve secure PGV
constructions of CF can be expressed by formulas in Table 2, where Hi denote
the state value (chaining value), Mi denote the message block, and Xi denote
the XOR of the state Hi−1 and the message block Mi.

10

t...

IV
link

(a) Traditional Conver-
sion

t

...
link

IV
Expandable Message

(b) Multi-Target Pseudo-Preimage

Figure 5: Converting Pseudo-Preimages to Preimages: circle denotes state, arrow
denotes message block [11]

Table 2: Twelve secure PGV constructions [23,24].
No. Computation No. Computation No. Computation No. Computation

Class 1 1 EHi−1 (Mi)⊕Mi 2 EHi−1 (Xi)⊕Xi 3 EHi−1 (Mi)⊕Xi 4 EHi−1 (Xi)⊕Mi

Class 2 5 EMi
(Hi−1)⊕Hi−1 6 EMi

(Xi)⊕Xi 7 EMi
(Hi−1)⊕Xi 8 EMi

(Xi)⊕Hi−1

Class 3 9 EXi
(Mi)⊕Mi 10 EXi

(Hi−1)⊕Hi−1 11 EXi
(Mi)⊕Hi−1 12 EXi

(Hi−1)⊕Mi

Xi represents Hi−1 ⊕Mi.

These 12 PGV constructions of CF can be classified according to the material
fed in through the key into three classes: Class 1 – chaining values are fed in
through the key (row 1 in Table 2); Class 2 – messages are fed in through the
key (row 2 in Table 2); Class 3 – XOR sum of message and the chaining values
are fed in through the key (row 3 in Table 2). Among those PGV schemes,
three of them are used in practice, which are named Davies-Meyer (DM)-mode,
Matyas-Meyer-Oseas (MMO)-mode, and Miyaguchi-Preneel (MP)-mode (see
Figure 6)

EHi−1 Hi

Mi

(a) DM-mode
Hi = EMi (Hi−1) ⊕ Hi−1

EMi Hi

Hi−1

(b) MMO-mode
Hi = EHi−1 (Mi) ⊕ Mi

EMi Hi

Hi−1

(c) MP-mode
Hi = EHi−1 (Mi) ⊕ Mi ⊕
Hi−1

Figure 6: Illustrations for DM, MMO, and MP modes [15,24]

In the original attack by Sasaki [24], the key is preset to random constants,
which can be used by attacker, and the input state is determined by the attack,
hence such psuedo-preimage can be converted into preimages for modes in Class
1 such as MMO and MP with the same complexity as pseudo-preimage. Other
modes in Class 2 and 3 requires conversion, and hence result in higher complexities
for preimages as discussed in the subsection above.

11

Converting TBC to Compression Function. The tweakable block cipher,
denoted here as Ẽ(Kt, Tt, P), has an additional input tweak T , compared with
block ciphers E(K, P). We consider here converting a TBC to a block cipher, then
to a compression function through the modes above. The TBC-to-BC conversion
can be divided into 3 types:

– Type-I: E(K, P) = Ẽ(Kt = K, Tt = C, P), where C is a constant.
– Type-II: E(K, P) = Ẽ(Kt = C, Tt = K, P), where C is a constant.
– Type-III: E(K, P) = Ẽ(Kt = K1, Tt = K2, P), where K = K1||K2, i.e., both

key and tweak of Ẽ are used as the key of the block cipher.

From cryptanalyst’s point of view, Type-III gives additional input to the attacker,
hence it is likely more rounds could be attacked for Type-III, compared with the
other two types.

4 Improving the Complexities of 7-Round Attacks

4.1 The Original 7-Round Attack by Sasaki

Following the framework of splice-and-cut MITM preimage attack depicted in
Figure 4, Sasaki [24] invented a MITM preimage attack on AES hashing mode.
Different with previous MITM preimage attacks on hash functions such as MD5
and Tiger, neutral words in the attack on AES hashing mode in [24] are not
chosen from message, instead, they are from the internal state values of the
compression function. This choice is mainly due to the fast diffusion of the AES
key schedule, i.e., the key schedule quickly diffuses any choice of key byte (as
the neutral word) to all other key bytes in just a few rounds. As a result, in [24]
the key-input/message-input are fixed to arbitrary constant values. Although
the number of round of AES is much smaller than that of many dedicated hash
functions such as MD5 and SHA-1, the round function is relatively heavier and
the computation has faster diffusion, which prevents the MITM attacks from
penetrating many rounds. Thus, more techniques were invented for attacking
more rounds (yet the results are still not for the full rounds, and currently leaves
comfortable margins).

There are two main techniques used for attacking more rounds in [24]. In a
nutshell, the first is carefully crafted initial structure, and the second is matching
through indirect but efficiently computable MixColumns relations.

Initial Structure (IS). Concretely, when constructing initial structure, by
restricting the values of neutral bytes to a special set, the initial structure can
be extended by one more round. These special set of values for the neutral
bytes are chosen in such a way that their influences on particular output bytes
of the MixColumns (or InverseMixColumns) are known constants, i.e., have no
influence. This reduces the number of unknown bytes after (resp. before) the first
MixColumns (resp. InverseMixColumns) in each chunk, which is the starting
point of each chunk. For example, when 4 bytes Bb[0, 1, 2, 3], i.e., the bytes in

12

the first column of the state Bb, are chosen as the neutral bytes for the forward
chunk, there are 232 possible values. Among them, we can choose a small subset
of size 28 in the following way: first fix an arbitrary constant Cneut of 3 bytes,
then impose the restriction of Bf = MC−1(Bb[0, 1, 2, 3]) and Bf[1, 2, 3] = Cneut.
Since Cneut is of 24 bits and Bb[0, 1, 2, 3] is of 32 bits , there will be 28 solutions
for Bb[0, 1, 2, 3], which can be obtained by enumerating all possible values of
Bb[0] and for each computing the unique value of the other 3 bytes according to
the restriction imposed through Cneut.

Matching Through MixColumns (MTM). In the second technique, when
matching at the meeting point, properties of the MixColumns are used again:
instead of directly matching values of the same bytes in a state, matching via
deterministic relations between bytes in different states (specifically, the states
immediately before and after the MixColumns). This can extend the attack by
one more round. Concretely, the AES MixColumns has the following feature:
knowledge of any 4 out of the 8 input/output bytes to the MC will determine all
other bytes, and knowledge of any additional byte(s) (i.e., more than 4 bytes) can
be used as a 8 · (x− 4)-bit filter when a total of x bytes are known for 4 < x ≤ 8.
With an example below, we demonstrate how this can be done in a way of meet
in the middle.

To efficiently check whether the paired values in the two lists match through
the MixColumns operation, one can test the consistence between the bytes column-
wise, individually for each column in sequence. Suppose the two states before and
after the MixColumns are Bf and Bb, of which some bytes have been obtained
independently via the forward and backward chunks, and the candidate values
have been stored in two lists, e.g., Bf[0, 2] and Bb[1, 2, 3] in the first column.
These bytes are related through MC as follows:

Bf[0] = (e, b, d, 9) · (Bb[0], Bb[1], Bb[2], Bb[3])T ,

Bf[2] = (d, 9, e, b) · (Bb[0], Bb[1], Bb[2], Bb[3])T .

Let us denote by g′(Bb[1, 2, 3]) = (b, d, 9) · (Bb[1], Bb[2], Bb[3])T a linear mapping
from 3 bytes to 1 byte, and by g′′(Bb[1, 2, 3]) = (9, e, b) · (Bb[1], Bb[2], Bb[3])T

another linear mapping. Then

Bf[0] = e ·Bb[0]⊕ g′(Bb[1, 2, 3]) and Bf[2] = d ·Bb[0]⊕ g′′(Bb[1, 2, 3]).

Cancelling out Bb[0] implies

d ·Bf[0]⊕ e ·Bf[2] = d · g′(Bb[1, 2, 3])⊕ e · g′′(Bb[1, 2, 3]).

For the sake of simplicity, denote by Mf = f(Bf[0, 2]) = d · Bf[0] ⊕ e · Bf[2]
a linear mapping from 2 bytes to 1 byte, and by Mb = g(Bb[1, 2, 3]) = d ·
g′(Bb[1, 2, 3])⊕ e · g′′(Bb[1, 2, 3]) another linear mapping from 3 bytes to 1 byte.
Then find matches with Mf = Mb, which can be computed independently and
stored in hash tables, then matched in the way of MITM. To be more general,

13

k0

AK

#0

KS

k1

AK
#1

SB

#2

SR

#3

MC

#4

KS

k2

AK
#5

SB

#6

SR

#7

MC

Match #8

KS

k3

AK
#9

SB

#10

SR

#11

MC

#12

KS

k4

AK
#13

SB

#14

SR

#15

MC

#16

Initial Structure

KS

k5

AK
#17

SB

#18

SR

#19

MC

#20

KS

k6

AK
#21

SB

#22

SR

#23

MC

#24

k7

AK
#25

SB

#26

SR

#27

#28

T

forward backward constant uncertain

Figure 7: The 7-round MITM preimage attack on AES in [24]

Property 1. When x out of the 8 input and output bytes of the MixColumns are
known, there is a filter of (x− 4) bytes (= 8 · (x− 4) bits), and such filtering can
be done in the way of meet in the middle.

This property is used in the matching of all attacks to be given in the rest of the
paper, and for the sake of simplicity, the explicit expressions of Mf and Mb, i.e.,
the derived matching functions f and g from the input Bf and Bb, are omitted.
The total bits of filtering m is then the sum of 4 independent columns.

Sasaki’s Attack. As depicted in the Figure 7, details of the pseudo-preimage
attack in [24] are as follows.

Attack 1: The original pseudo-preimage attack on 7-round AES
hashing mode [24]

Attack configuration

14

1. Initial structure:
– Neutral bytes for forward: 28 possible values of #16[0, 1, 2, 3],

s.t., #15[1, 2, 3] equals predefined constant Cneut
0 ,

i.e., MC−1(#16[0, 1, 2, 3])[1, 2, 3] = Cneut
0 .

– Neutral bytes for backward: 28 possible values of #19[12, 14, 15],
s.t., their impacts on #20[13, 15] equal predefined constant Cneut

1 ,
i.e., MC(#19[12, 13, 14, 15])[13, 15] = Cneut

1 .
2. Chunk separation:

– Forward chunk: the computation following #20 – #28 – #0 – #7
– Backward chunk: the computation following #15 – #8

3. Bytes for match:
– Bf = #7[0, 2; 5, 7; 8, 10; 13, 15]
– Bb = #8[1, 2, 3; 4, 6, 7; 8, 9, 11; 12, 13, 14]

Attack procedure

1. Fix constants:
– key-input
– Cinit: 9 bytes values for #16[4, 5, 7, 8, 9, 10, 13, 14, 15]
– Cneut

0 : 3 bytes values for #15[1, 2, 3]
– Cneut

1 : 2 bytes values for impacts on #20[13, 15].
2. Forward computation: for 28 values of the neutral bytes for forward –

#16[0, 1, 2, 3] s.t. #15[1, 2, 3] = Cneut
0

– compute in forward from #20 – #28 – #0 – #7
– compute Mf from Bf, store the results in the hash table Lf

3. Backward computation: for 28 values of the neutral bytes for backward
– #19[12, 14, 15] s.t. #20[13, 15] = Cneut

1
– compute in backward from #15 – #8
– compute Mb from Bb, store the results in the hash table Lb

4. Matching: match between Lf and Lb, for each such match of partial
state, all bytes at the initial structure are fixed, and hence the full states
of #7 and #8 can be tested for full-state matching. Output (HN−1, MN)
if full match is found, otherwise, go back to step 1 with some other
values for the fixed constants at initial structure and repeat.

Attack complexity. The formula in Eq. (1) can be directly applied for the com-
plexity analysis of Attack 1. In the setting of Attack 1, freedom degrees for both
of the forward and the backward chunks are 8 bits, i.e., d1 = d2 = 8, the number
of bits for match come from 4 bytes, i.e., m = 32 (for each column, there are
x = 2 + 3 = 5 know bytes, resulting in a filter of x − 4 = 1 byte according to
Property 1). Plugging (d1 = 8, d2 = 8, m = 32) into Eq. (1) obtains the time
complexity 2128−8 = 2120. The memory complexity is 28 which comes from the
cost for storing Lf and Lb.

Attack features. Attack 1 has the following features:

15

– Advantage: it is general because it is independent with key schedule algo-
rithms and fixes keys as constant. Thus, it is applicable for AES-128/192/256
simultaneously and applicable for all PGV hash modes in [23].

– Disadvantage: the freedom degrees of neutral bytes for backward chunk are
not fully exploited; freedom degrees from the key/message are not utilized.
Thus, the computational complexity is not optimal.

4.2 The improved 7-Round Attack by Wu et al.

By exploiting the additional degrees of freedom of neutral bytes from the internal
states for backward chunk and assuming multiple targets, the attack in [24] was
improved to be a more efficient multi-target pseudo-preimage attack in [29].

In the multi-target preimage attack, it is assumed there are 2t available
target T ’s. As depicted in Figure 13, details of the improved multi-target pseudo-
preimage attack in [29] are as follows:

Attack 2: The improved multi-target pseudo-preimage attack on
7-round AES hashing mode [29]

Attack configuration

1. Initial structure:
– Neutral bytes for forward: same with Attack 1
– Neutral bytes for backward: (28)4 = 232 possible values of

#19[1, 2, 3], #19[4, 5, 6], #19[8, 9, 11], #19[12, 14, 15],
s.t., their impacts on #20[0, 2], #20[5, 7], #20[8, 10], #20[13, 15] equal
to predefined constants Cneut

1 = Cneut
1,0 ‖Cneut

1,1 ‖Cneut
1,2 ‖Cneut

1,3 .
2. Chunk separation: same with Attack 1
3. Bytes for match: same with Attack 1

Attack procedure: Given 2t values of target T

1. Fix constants:
– key-input: same with Attack 1
– Cneut

0 : same with Attack 1
– Cneut

1 : 8 bytes values for impacts on #20[0, 2, 5, 7, 8, 10, 13, 15].
2. Forward computation: for 28 values of the neutral bytes for forward –

#16[0, 1, 2, 3] s.t. #15[1, 2, 3] = Cneut
0

– compute in forward from #20 – #28, for each of the 2t given values
of the target T
• xor state #28 with the value of the target T , and compute #0 –

#7
• compute Mf from Bf, store results in Lf

16

3. Backward computation: for each of the 232 values of the neutral bytes
for backward –
#19[1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15] s.t. their impact on bytes #20[0, 2, 5, 7, 8, 10, 13, 15] =
Cneut

1
– compute in backward from #15 – #8
– compute Mb from Bb, store results in Lb

4. Matching: same with Attack 1.

Attack complexity. Attack 2 fits the multi-target setting discussed in Sect. 3.2,
thus the complexity can be analyzed using Eq. (3) directly. In the setting of
this attack, n = 128, d1 = 8, and m = 32 which are all same with that in
Attack 1. Whereas, d2 = 32 is much larger than that in Attack 1. Additionally,
we assume there are 2t targets. Thus, plugging these values to Eq. (3) obtains
the time complexity 2128−min(8+t,32) = 2120−min(t,24) and the memory complexity
is 28+min(t,24).

It is easy to see from here that the improvement only applies when the pseudo-
preimages are converted into preimages, where multiple targets (k > 0) are
possible. When only one single target (t = 0) is available, the attack complexities
of [29] remain the same as in [24].

Attack features. Attack 2 has the following features:

– Advantage: it fully exploits the freedom that lies in neutral bytes for backward
chunk, which increases the candidates for matching from 28 to 232.

– Disadvantage: it has to assume that there are more available target values to
obtain the balanced freedom for forward chunk; freedom from the key/message
are not utilized.

4.3 Introducing Neutral Bytes in Key

Sasaki in [24] has already discussed the possibility to improve the attack described
in Sect. 4.1 in chosen-key setting, i.e., introduce neutral bytes from key values.
However, the conclusion is negative in consideration of the difficulties in adopting
splice-and-cut technique in the key schedule function.

However, in this attack, neutral bytes from key are introduced and used
as part of the forward chunk only, i.e., none is used for backward chunk. This
enables us to avoid separating the key bytes in every round key generated by
the key schedule function, and at the meantime to exploit freedom from the
key/message to balance the computations of forward and backward.

Explicitly, we introduce neutral bytes in key state in addition to the original
neutral bytes in the encryption state. Those neutral bytes are all for forward
chunk, while the effect of neutral bytes in the encryption state and those in the
key state are different: neutral bytes in the encryption state affect the candidate
values at the matching point through the AES round functions in each direction,
and neutral bytes in the key state affect through all subsequent round keys
(via key schedule). Thus, although they both affect on the same bytes at the

17

matching point, they both provide possible candidate values for the matching
bytes. Moreover, because the independent constructions between the AES round
function and the AES key schedule, even the values chosen for the neutral bytes
in encryption state and key state are within the same algebraic structure, e.g.,
the same linear subspace, their effect on the matching values can be seen as
independent.

Next, we present an attack exploiting freedom in the key input, which achieves
better complexities when there are less available targets compared with the attack
in [29].

Suppose there are 2t available target T , details of our improved multi-target
pseudo-preimage attack are as follows (which is illustrated in Figure 8):

Attack 3: Our improved multi-target pseudo-preimage attack on
7-round AES hashing mode [new]

Attack configuration

1. Initial structure:
– Neutral bytes for forward (in state): same with Attack 1 and 2.
– Neutral bytes for forward (in key): unlike in Attack 1 and 2, compute

28 possible values of k4[0, 1, 2, 3],
s.t., their impacts on #15[1, 2, 3] (when computing backward) equals
predefined constant Cneut

2 .
Other bytes in k4 equals predefined constant Ckey.
According to the key schedule algorithm of AES-128, (k4[0, 1, 2, 3]⊕
k3[4, 5, 6, 7]) equals to k4[4, 5, 6, 7] which is a constant (i.e., part of
Ckey) and (k4[0, 1, 2, 3] ⊕ k3[0, 1, 2, 3]) equals to a constant. Thus,
(k3[0, 1, 2, 3]⊕k3[4, 5, 6, 7]) equals to a constant. Thus, their impacts
on #11[1, 2, 3] and #11[5, 6, 7] are also constants when computing
backward. Denote the constant influence on #11[5, 6, 7] by Cneut

2
′′

which can be deduced from Cneut
2 and Ckey and will be used during

backward computations.
As a result, for the forward chunk, the 28 additional degrees of
freedom from neutral bytes k4[0, 1, 2, 3] are obtained.

– Neutral bytes for backward: same with Attack 2.
2. Chunk separation: same with Attack 1 and 2.
3. Bytes for match: unlike in Attack 1 and 2, there are equivalently 8× 3

bits for match: Denote the equivalent sub-key of k2 by uk2, which can
be computed via MC−1(k2):
– Bf = (#7 ⊕ uk2)[0, 2; 8, 10; 13, 15], note the second column is not

ulitized.
– Bb = #8[1, 2, 3; 8, 9, 10; 12, 13, 14], note the second column is not

ulitized either.

Attack procedure.

18

1. Fix constants:
– Ckey: a value for 12-byte k4[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15];
– Cneut

0 and Cneut
1 : same with Attack 2;

– Cneut
2 : a value for 3-byte impact from neutral bytes in k4 on #15[1, 2, 3];

from Cneut
2 and key schedule, compute the constant impact Cneut

2
′′

from k3[4, 5, 6, 7] on #11[5, 6, 7].
2. Forward computation: for 28 values of neutral bytes for forward –

#16[0, 1, 2, 3] s.t. their impacts on #15[1, 2, 3] = Cneut
0 and

for 28 values of neutral bytes in key k4[0, 1, 2, 3] s.t. their impacts on
#15[1, 2, 3] = Cneut

2
– compute all required sub-key bytes from k4[0, 1, 2, 3] and Ckey.
– compute in forward from #20 – #28 (blue cells in Figure 8),

for each of the 28 given values of the target T
• xor state #28 with T , and compute #0 – #7 (blue cells in
Figure 8)

• compute Mf from Bf, store results in Lf

3. Backward computation: for each of the 232 values of the neutral bytes
for backward –
#19[1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15] s.t. their impact on bytes #20[0, 2, 5, 7, 8, 10, 13, 15] =
Cneut

1 :
– compute in backward from #15 – #8 (red cells in Figure 8)
– compute Mb from Bb, store the results in Lb

4. Matching: same with Attack 1 and 2.

Attack complexity. Compared with Attack 2, this attack introduces one more
neutral byte from the key, at the cost of losing one byte for matching. Thus, when
using Eq. (3) to analysis the complexity, one has d1 = 8 + 8 = 16, d2 = 32, and
m = 24. Thus, supposing there are 2t targets, the time complexity of this attack
is 2128−min(16+t,24) = 2112−min(t,8) and the memory complexity is 216+min(t,8).

Attack features. Attack 3 has the following features:

– Advantage: freedom degrees of neutral bytes for backward chunk are fully
exploited; freedom degrees therefrom the key/message are also utilized. Thus,
the computational complexity is better when less target are available.

– Disadvantage: the attack is not quite general because it dependents on key
schedule algorithms. Thus, it cannot be applied without modification for
AES-128/192/256.

4.4 Application to 7-Round AES-192 Hashing Mode

Compared with AES-128, the key schedule of AES-192 has relatively slow diffusion.
Consequently, it is possible to select more neutral bytes from the key to provide
more freedom for the forward chunk without influence on the backward. As a
result, a similar pseudo-preimage attack on 7-round AES-192 hashing mode has

19

k0

AK

#0

KS

KS

k1

AK
#1

SB

#2

SR

#3

MC

#4

KS

k2

MC
AEK#5

SB

#6

SR

#7

MC

Match

#8

KS

k3

MC
AEK#9

SB

#10

SR

#11

MC

#12

KS

k4

AK
#13

SB

#14

SR

#15

MC

#16

Initial Structure

KS

k5

AK
#17

SB

#18

SR

#19

MC

#20

KS

k6

AK
#21

SB

#22

SR

#23

MC

#24

k7

AK
#25

SB

#26

SR

#27

#28

T

forward backward constant uncertain

Figure 8: Introducing free bytes in key to improve the 7-round preimage attack on
AES-128 hashing mode

20

lower computational complexity compared with that of 7-round AES-128 when
there are less than 216 targets.

The main difference compared with the attack on AES-128 hashing mode
lies in the choice of neutral bytes from key state k4. In Attack 3, we restricted
that neutral bytes k4[0, 1, 2, 3] has constant influence on #15[1, 2, 3] such that
k3[4, 5, 6, 7] has constant influence on #11[5, 6, 7] if computing backward. For
AES-192, according to the key schedule, the full key state k3 can be fixed
without dependence on neutral bytes in k4 (as depicted in Figure 9b). Thus, the
propagation of the influence brought by the neutral bytes in k4 will not influence
the backward computation which is relatively short.

Note that there are already 28 candidate values for neutral bytes #16[0, 1, 2, 3]
for forward chunk. There are 232 candidate values for neutral bytes k4[0, 1, 2, 3],
out of which, we need only choose 224 values considering that there are 232

candidate values for neutral bytes for backward chunk. In this way, the number
of candidate values in both Lf and Lb can be 232 without assuming the existence
of multiple targets.

The attack follows the same framework with previous attacks. The main
different part is depicted in Figure 9. Follows the same complexity analysis of
previous attack and applying Eq. (1), we conclude that, for this attack on 7-round
AES-192 hashing mode, the total computational complexity is 2128−32 = 296

computations of 7-round AES. The memory complexity is 232.

KS

k2

MC
AEK

forward

#7

MC

Match

#8

KS

k3

MC
AEK#9

SB

#10

SR

#11

MC

#12

KS

k4

AK
#13

SB

#14

SR

#15

MC

#16

Initial Structure

KS

k5

AK
#17

SB

#18

SR

#19

MC

#20

forward

(a) The attack configuration

k3 k4

k4 k5

<<S

k1 k2

<<S

(b) Neu-
tral bytes
in k4

Figure 9: Introducing free bytes in key to improve the 7-round preimage attack on
AES-192 hashing mode

21

4.5 Application to 7-Round Kiasu-BC Hashing Mode
In the scenario where a teakable block cipher used in the PGV hashing mode
and the tweaks can accept chosen inputs, freedom from this additional input
might be exploited in similar attacks to the above ones.

Take Kiasu-BC for example whose encryption algorithm and key schedule
are exactly that of AES-128. The Attack 2 can be applied and improved by
introducing two additional neutral bytes from the tweak. Specifically, we choose
#tk[0, 1] as the neutral bytes, which can take 216 values and which will not
influence the backward computation (recall Figure 8). In this way, together with
the 28 freedom from neutral byte #16[0, 1, 2, 3], we can finally obtain 28+16=24

candidates in Mf without any cost (which is unlike in Attack 3). Corresponding
to the complexity analysis equation Eq. (1) and compared with that of Attack 2,
the parameter b1 increases from 8 to 24 and leaves all other parameters unchanged.
Note the number of matching bits is already 32, thus, as done in Attack 3, i.e.,
introducing one more neutral byte from the key at the cost of one byte from the
matching bits, there will be no more gain.

Consequently, for 7-round Kiasu-BC hashing mode, a modified attack basing
on Attack 2 and by introducing two neutral bytes from tweak will have a
computational complexity 2128−min(8+16,32) = 2104 (recall Eq. 1). The memory
complexity is 224. Note both key and tweak values are used here, so Type-III
TBC-to-BC conversion is assumed here.

5 Extension to 8-Round Attacks
In this section, we extend the 7-round attacks of the previous section to 8-round
attacks by introducing freedom from the key schedule. We first explain the
technique used in our extension, then provide its application to AES-256, AES-192
and Kiasu-BC.

5.1 Techniques for Attacking 8 Rounds
We add one more round to the backward chunk based on the attack in Figure 13,
and the new chunk separation is shown in Figure 10. Notice that #17[0] is
a neutral byte for the forward computation and can have 28 values, and it is
denoted by x. We regard the whole key schedule as a part of forward chunk and
set the value of k4[0] to be x ⊕ c, where c is a constant value, and the left 15
bytes of k4 equals to predefined constant values. In this way, the forward chunk
is computed with the knowledge on neutral bytes from both key and internal
state. While for the backward computation, the value of #16[0] is fixed to be c,
thus states #13 to #15 can be computed deterministically. As for k3, the neutral
byte k4[0] can only have impact on one column of k3 to ensure a valid matching
between state #7 and #8. And the impact on k5 should not overlap with the
neutral bytes for the backward chunk in state #20. The value of k2 does not
have impact on the backward computation since the MixColumns is linear and
we can instead find the match between #7 ⊕MC−1(k2) and #8 through the
MixColumns.

22

KS

k2

MC
AEK

Forward chunk

#7

MC

Match

#8

KS

k3

AK
#9

SB

#10

SR

#11

MC

#12

KS

k4

AK
#13

SB

#14

SR

#15

MC
c
#16

k5

AK
#17

SB

#18

SR

#19

MC

#20

Initial Structure

#21

SB

#22

SR

#23

Forward chunk

Figure 10: Basic idea of the extended 8-round attack

KS

k2

MC
AEK

Forward

#7

MC

Match

#8

KS

k3

AK
#9

SB

#10

SR

#11

MC

#12

KS

k4

AK
#13

SB

#14

SR

#15

MC

#16

k5

AK
#17

SB

#18

SR

#19

MC

#20

Initial Structure

#21

SB

#22

SR

#23

Forward

#24

MC

(a) The attack configuration

k2 k3

k4 k5

<<S

S

(b) Key states

Figure 11: Introducing free bytes in key to launch a 8-round preimage attack on
AES-256 hashing mode

5.2 The 8-Round Attack against AES-256

Due to the slower diffusion in the key schedule, we can apply the technique of
Section 5.1 to the attack on 8-round AES-256 hashing mode. The key path is

23

initialized from the 256-bit state k4 and k5 in the way that the freedom in k4
could neutralize the randomness in backward chunk, and additional 232 freedom
degrees could be introduced in k5, which is shown in Figure 11.

Attack 4: The pseudo-preimage attack on 8-round AES-256 hash-
ing mode

Attack configuration

1. Initial structure:
– Neutral bytes for forward (in state): 28 possible values of #20[12,13,14,

15], s.t., #19[12,14,15] equals predefined constant Cneut
0 ,

– Neutral bytes for forward (in key): 232 possible values of k5[12, 13, 14,
15], s.t., their impacts on #19[12, 14, 15] equals predefined constant
Cneut

1 .
The value of k4[1] is chosen in the way so that its XOR difference
with #17[1] equals to a predefined constant Cbyte, i.e., k4[1] =
#17[1]⊕ Cbyte.
As a result, for the backward chunk, the states #13 to #16 can be
computed deterministically.
Other bytes in k4 and k5 equal to predefined constant Ckey.

– Neutral bytes for backward: (28)4 = 232 possible values of
#23[0, 1, 2], #23[4, 5, 7], #23[8, 10, 11], #23[13, 14, 15],
s.t., their impacts on #24[0, 2], #24[5, 7], #24[8, 10], #24[13, 15] equal
predefined constant Cneut

2 = Cneut
2,0 ‖Cneut

2,1 ‖Cneut
2,2 ‖Cneut

2,3 .
2. Chunk separation:

– Forward chunk: the computation following #24 - #32 - #0 - #7
– Backward chunk: the computation following #19 - #8

3. Bytes for match: Denote the equivalent sub-key of k2 by uk2, which can
be computed via MC−1(k2):
– Bf = (#7⊕ uk2)[0, 2; 5, 7; 8, 10; 13, 15]
– Bb = #8[0, 2, 3; 4, 5, 7; 8, 9, 10; 13, 14, 15]

Attack procedure

1. Fix constants:
– Cneut

0 : a value for 3-byte impact from neutral bytes in #20 on
#19[12, 14, 15];

– Cneut
1 : a value for 3-byte impact from k5[12, 13, 14, 15] on #19[12, 14,

15];
– Cbyte: a value for byte #16[1];
– Ckey: a 27-byte constant value in k4 and k5;
– Cneut

2 : a value for 8-byte impact from neutral bytes in #23 on
#24[0, 2, 5, 7, 8, 10, 13, 15].

24

2. Forward computation: for 28 values of #20[12, 13, 14, 15] s.t. their impact
on #19[12, 14, 15] equals to Cneut

0 , and for 224 out of 232 values of
k5[12, 13, 14, 15] s.t. their impact on #19[12, 14, 15] equals to Cneut

1 :
– Compute the value of #17[1].
– Determine the value of k4[1]: k4[1] = #17[1]⊕ Cbyte.
– Compute all sub-keys from k4 and k5 through the key schedule.
– Compute the forward chunk from #24 to #32, and from #0 to #7.
– Compute Mf from Bf, and store the results in a table Lf.

3. Backward computation. For 232 values of the neutral bytes #23[0, 1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 15]
s.t. their impact on bytes #24[0, 2, 5, 7, 8, 10, 13, 15] equals to Cneut

2 .
– Compute the backward chunk from #19 to #8. The involved subkey

bytes are constant in the backward computation.
– Compute Mb from Bb, and store the results in a table Lb.

4. Matching: follow the same idea of the Attack 3.

Attack complexity The freedom degrees for both of the forward and backward
chunk are 32, i.e., d1 = d2 = 32, and the number of bits for match comes from
32 bits (m = 32). Thus according to Eq. (1), the time complexity is 296 and the
memory complexity is 232

5.3 The 8-Round Attack against AES-192

The extended part of attack is illustrated in Figure 12a. The data path in the
internal state is similar to the attack on AES-256, only the neutral bytes for the
forward in state #20 is changed to the second column. As for the key state in
Figure 12b, the value of k4[3] equals to the XOR difference between #17[3] and
#16[3], and k3[15] = k4[3]. The left bytes of the 192-bit subkey state are set to
be predefined values, and the next subkey can be computed accordingly.

Note that the forward chunk has 28 freedom degrees that comes from
#20[4,5,6,7], while the backward chunk has 232 freedom degrees that comes
from #23[0,2,3,5,6,7,8,9,10,12,13,15], thus we need multi-target scenario to bal-
ance the number of candidates in Lf and Lb. The attack follows the same
framework with Attack 2, and it requires 2120−min(t,24) computations of 8-round
AES and 28+min(t,24) memory.

5.4 The 8-Round Attack against Kiasu-BC

Since Kiasu-BC adds the same tweak to the first two rows of internal state for
each round, we can introduce neutral bytes from tweak instead of key values,
and the attack configuration in Figure 10 can be directly adopted with the only
modification in the key and the tweak: the key states are set to be constant values,
and the tweak is initialized in such a way that tk[0] = #17[0]⊕ C and the left 7
bytes are constant values. This attack follows the same framework with previous
attacks, the time complexity is 2120−min(t,24) and the memory complexity is

25

KS

k2

MC
AEK

Forward

#7

MC

Match

#8

KS

k3

AK
#9

SB

#10

SR

#11

MC

#12

KS

k4

AK
#13

SB

#14

SR

#15

MC

#16

k5

AK
#17

SB

#18

SR

#19

MC

#20

Initial Structure

#21

SB

#22

SR

#23

Forward

#24

MC

(a) The attack configuration

k3 k4

k4 k5

<<S

(b) Key states

Figure 12: Introducing free bytes in key to launch a 8-round preimage attack on
AES-192 hashing mode

28+min(t,24). Note the tweak values are used here, but not the key values, so both
Type-II and Type-III TBC-to-BC conversions fit the attack setting here.

6 Conclusion

Under the general framework of meet-in-the-middle preimage attack against AES
hashing modes introduced by Sasaki in 2011 and improved by Wu et al. in 2012,
we made two observations: the key bits are not used, and the neutral bits in
the two chunks are not balanced in Wu et al.’s improvement. In this paper, we
introduced neutral bits from key, and to avoid dealing with the fast diffusion of
the AES key schedule, neutral bits from key are introduced for one chunk only.
By carefully choosing the key neutral bits, we found it was indeed possible while
keeping the computation of the other chunk unaffected. Then the additional
degrees of freedom are used in two ways, i.e., to reduce time complexities and to
extend the attack to more rounds. As a result, we improved the MITM preimage
attack complexities for 7-round AES hashing modes under all 3 versions of AES,
and extended the attack to 8 rounds under AES-192 and AES-256. The same was
applied to Kiasu-BC.

Acknowledgements. We thank Lei Wang for helpful discussions. This research
is supported by the National Research Foundation, Prime Minister’s Office,
Singapore under its Strategic Capability Research Centres Funding Initiative,

26

Nanyang Technological University under research grant M4082123, and Singa-
pore’s Ministry of Education under grant M4012049.

References

1. Advanced Encryption Standard (AES). National Institute of Standards and Tech-
nology (NIST), FIPS PUB 197, U.S. Department of Commerce (Nov 2001)

2. AlTawy, R., Youssef, A.M.: Preimage attacks on reduced-round Stribog. In:
Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 14: 7th International Confer-
ence on Cryptology in Africa. Lecture Notes in Computer Science, vol. 8469, pp.
109–125. Springer, Heidelberg, Germany, Marrakesh, Morocco (May 28–30, 2014)

3. AlTawy, R., Youssef, A.M.: Second Preimage Analysis of Whirlwind. In: Lin, D.,
Yung, M., Zhou, J. (eds.) Information Security and Cryptology - 10th International
Conference, Inscrypt 2014, Beijing, China, December 13-15, 2014, Revised Selected
Papers. Lecture Notes in Computer Science, vol. 8957, pp. 311–328. Springer (2014),
https://doi.org/10.1007/978-3-319-16745-9_17

4. Aoki, K., Guo, J., Matusiewicz, K., Sasaki, Y., Wang, L.: Preimages for step-reduced
SHA-2. In: Matsui, M. (ed.) Advances in Cryptology – ASIACRYPT 2009. Lecture
Notes in Computer Science, vol. 5912, pp. 578–597. Springer, Heidelberg, Germany,
Tokyo, Japan (Dec 6–10, 2009)

5. Aoki, K., Sasaki, Y.: Meet-in-the-middle preimage attacks against reduced SHA-0
and SHA-1. In: Halevi, S. (ed.) Advances in Cryptology – CRYPTO 2009. Lecture
Notes in Computer Science, vol. 5677, pp. 70–89. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 16–20, 2009)

6. Aoki, K., Sasaki, Y.: Preimage attacks on one-block MD4, 63-step MD5 and more.
In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008: 15th Annual International
Workshop on Selected Areas in Cryptography. Lecture Notes in Computer Science,
vol. 5381, pp. 103–119. Springer, Heidelberg, Germany, Sackville, New Brunswick,
Canada (Aug 14–15, 2009)

7. Aumasson, J.P., Meier, W., Mendel, F.: Preimage attacks on 3-pass HAVAL and
step-reduced MD5. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008: 15th
Annual International Workshop on Selected Areas in Cryptography. Lecture Notes in
Computer Science, vol. 5381, pp. 120–135. Springer, Heidelberg, Germany, Sackville,
New Brunswick, Canada (Aug 14–15, 2009)

8. Diffie, W., Hellman, M.E.: Special feature exhaustive cryptanalysis of the NBS data
encryption standard. IEEE Computer 10(6), 74–84 (1977), https://doi.org/10.
1109/C-M.1977.217750

9. Espitau, T., Fouque, P.A., Karpman, P.: Higher-order differential meet-in-the-
middle preimage attacks on SHA-1 and BLAKE. In: Gennaro, R., Robshaw, M.J.B.
(eds.) Advances in Cryptology – CRYPTO 2015, Part I. Lecture Notes in Computer
Science, vol. 9215, pp. 683–701. Springer, Heidelberg, Germany, Santa Barbara,
CA, USA (Aug 16–20, 2015)

10. Guo, J., Ling, S., Rechberger, C., Wang, H.: Advanced meet-in-the-middle preimage
attacks: First results on full Tiger, and improved results on MD4 and SHA-2. In:
Abe, M. (ed.) Advances in Cryptology – ASIACRYPT 2010. Lecture Notes in
Computer Science, vol. 6477, pp. 56–75. Springer, Heidelberg, Germany, Singapore
(Dec 5–9, 2010)

11. Guo, J., Ling, S., Rechberger, C., Wang, H.: Advanced meet-in-the-middle preimage
attacks: First results on full tiger, and improved results on MD4 and SHA-2.

27

https://doi.org/10.1007/978-3-319-16745-9_17
https://doi.org/10.1109/C-M.1977.217750
https://doi.org/10.1109/C-M.1977.217750

Cryptology ePrint Archive, Report 2010/016 (2010), http://eprint.iacr.org/
2010/016

12. Guo, J., Su, C., Yap, W.: An improved preimage attack against HAVAL-3. Inf.
Process. Lett. 115(2), 386–393 (2015), https://doi.org/10.1016/j.ipl.2014.10.
016

13. Hong, D., Koo, B., Sasaki, Y.: Improved preimage attack for 68-step HAS-160. In:
Lee, D., Hong, S. (eds.) ICISC 09: 12th International Conference on Information
Security and Cryptology. Lecture Notes in Computer Science, vol. 5984, pp. 332–348.
Springer, Heidelberg, Germany, Seoul, Korea (Dec 2–4, 2010)

14. Indesteege, S., Preneel, B.: Preimages for reduced-round tiger. In: Lucks, S., Sadeghi,
A., Wolf, C. (eds.) Research in Cryptology, Second Western European Workshop,
WEWoRC 2007, Bochum, Germany, July 4-6, 2007, Revised Selected Papers.
Lecture Notes in Computer Science, vol. 4945, pp. 90–99. Springer (2007), https:
//doi.org/10.1007/978-3-540-88353-1_8

15. Jean, J.: TikZ for Cryptographers. https://www.iacr.org/authors/tikz/ (2016)
16. Jean, J., Nikolić, I., Peyrin, T.: KIASU v1. Additional first-round candidates

of CAESAR compeition, https://competitions.cr.yp.to/caesar-submissions.
html (2014)

17. Jean, J., Nikolic, I., Peyrin, T.: Tweaks and keys for block ciphers: The TWEAKEY
framework. In: Sarkar, P., Iwata, T. (eds.) Advances in Cryptology – ASI-
ACRYPT 2014, Part II. Lecture Notes in Computer Science, vol. 8874, pp. 274–288.
Springer, Heidelberg, Germany, Kaoshiung, Taiwan, R.O.C. (Dec 7–11, 2014)

18. Knellwolf, S., Khovratovich, D.: New preimage attacks against reduced SHA-1.
In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology – CRYPTO 2012.
Lecture Notes in Computer Science, vol. 7417, pp. 367–383. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (Aug 19–23, 2012)

19. Leurent, G.: Message freedom in MD4 and MD5 collisions: Application to APOP. In:
Biryukov, A. (ed.) Fast Software Encryption – FSE 2007. Lecture Notes in Computer
Science, vol. 4593, pp. 309–328. Springer, Heidelberg, Germany, Luxembourg,
Luxembourg (Mar 26–28, 2007)

20. Leurent, G.: MD4 is not one-way. In: Nyberg, K. (ed.) Fast Software Encryption –
FSE 2008. Lecture Notes in Computer Science, vol. 5086, pp. 412–428. Springer,
Heidelberg, Germany, Lausanne, Switzerland (Feb 10–13, 2008)

21. Li, J., Isobe, T., Shibutani, K.: Converting meet-in-the-middle preimage attack into
pseudo collision attack: Application to SHA-2. In: Canteaut, A. (ed.) Fast Software
Encryption – FSE 2012. Lecture Notes in Computer Science, vol. 7549, pp. 264–286.
Springer, Heidelberg, Germany, Washington, DC, USA (Mar 19–21, 2012)

22. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. The CRC Press series on discrete mathematics and its applications, CRC
Press, 2000 N.W. Corporate Blvd., Boca Raton, FL 33431-9868, USA (1997)

23. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers: A
synthetic approach. In: Stinson, D.R. (ed.) Advances in Cryptology – CRYPTO’93.
Lecture Notes in Computer Science, vol. 773, pp. 368–378. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (Aug 22–26, 1994)

24. Sasaki, Y.: Meet-in-the-middle preimage attacks on AES hashing modes and an
application to Whirlpool. In: Joux, A. (ed.) Fast Software Encryption – FSE 2011.
Lecture Notes in Computer Science, vol. 6733, pp. 378–396. Springer, Heidelberg,
Germany, Lyngby, Denmark (Feb 13–16, 2011)

25. Sasaki, Y., Aoki, K.: Preimage attacks on 3, 4, and 5-pass HAVAL. In: Pieprzyk, J.
(ed.) Advances in Cryptology – ASIACRYPT 2008. Lecture Notes in Computer Sci-

28

http://eprint.iacr.org/2010/016
http://eprint.iacr.org/2010/016
https://doi.org/10.1016/j.ipl.2014.10.016
https://doi.org/10.1016/j.ipl.2014.10.016
https://doi.org/10.1007/978-3-540-88353-1_8
https://doi.org/10.1007/978-3-540-88353-1_8
https://www.iacr.org/authors/tikz/
https://competitions.cr.yp.to/caesar-submissions.html
https://competitions.cr.yp.to/caesar-submissions.html

ence, vol. 5350, pp. 253–271. Springer, Heidelberg, Germany, Melbourne, Australia
(Dec 7–11, 2008)

26. Sasaki, Y., Aoki, K.: Finding preimages in full MD5 faster than exhaustive search.
In: Joux, A. (ed.) Advances in Cryptology – EUROCRYPT 2009. Lecture Notes in
Computer Science, vol. 5479, pp. 134–152. Springer, Heidelberg, Germany, Cologne,
Germany (Apr 26–30, 2009)

27. Wang, L., Sasaki, Y.: Finding preimages of Tiger up to 23 steps. In: Hong, S., Iwata,
T. (eds.) Fast Software Encryption – FSE 2010. Lecture Notes in Computer Science,
vol. 6147, pp. 116–133. Springer, Heidelberg, Germany, Seoul, Korea (Feb 7–10,
2010)

28. Wang, L., Sasaki, Y., Komatsubara, W., Ohta, K., Sakiyama, K.: (Second) preimage
attacks on step-reduced RIPEMD/RIPEMD-128 with a new local-collision approach.
In: Kiayias, A. (ed.) Topics in Cryptology – CT-RSA 2011. Lecture Notes in
Computer Science, vol. 6558, pp. 197–212. Springer, Heidelberg, Germany, San
Francisco, CA, USA (Feb 14–18, 2011)

29. Wu, S., Feng, D., Wu, W., Guo, J., Dong, L., Zou, J.: (Pseudo) preimage attack
on round-reduced Grøstl hash function and others. In: Canteaut, A. (ed.) Fast
Software Encryption – FSE 2012. Lecture Notes in Computer Science, vol. 7549, pp.
127–145. Springer, Heidelberg, Germany, Washington, DC, USA (Mar 19–21, 2012)

29

A Appendix 1

k0

AK

#0

KS

k1

AK
#1

SB

#2

SR

#3

MC

#4

KS

k2

AK
#5

SB

#6

SR

#7

MC

Match #8

KS

k3

AK
#9

SB

#10

SR

#11

MC

#12

KS

k4

AK
#13

SB

#14

SR

#15

MC

#16

Initial Structure

KS

k5

AK
#17

SB

#18

SR

#19

MC

#20

KS

k6

AK
#21

SB

#22

SR

#23

MC

#24

k7

AK
#25

SB

#26

SR

#27

#28

T

forward backward constant uncertain

Figure 13: The multi-targets 7-round attack on AES in [29]

30

	Improved Meet-in-the-Middle Preimage Attacks against AES Hashing Modes

