
Utreexo: A dynamic hash-based accumulator

optimized for the Bitcoin UTXO set

Thaddeus Dryja
tdryja@media.mit.edu

MIT Digital Currency Initiative

Abstract

In the Bitcoin consensus network, all nodes come to agreement
on the set of Unspent Transaction Outputs (The “UTXO” set). The
size of this shared state is a scalability constraint for the network, as
the size of the set expands as more users join the system, increasing
resource requirements of all nodes. Decoupling the network’s state size
from the storage requirements of individual machines would reduce
hardware requirements of validating nodes. We introduce a hash based
accumulator to locally represent the UTXO set, which is logarithmic
in the size of the full set. Nodes attach and propagate inclusion proofs
to the inputs of transactions, which along with the accumulator state,
give all the information needed to validate a transaction. While the size
of the inclusion proofs results in an increase in network traffic, these
proofs can be discarded after verification, and aggregation methods can
reduce their size to a manageable level of overhead. In our simulations
of downloading Bitcoin’s blockchain up to early 2019 with 500MB of
RAM allocated for caching, the proofs only add approximately 25% to
the amount otherwise downloaded.

1 Introduction

As cryptographic currencies such as Bitcoin [?] have seen increased adop-
tion, scalability limitations persist as one of the major drawbacks of the
technology. While Bitcoin’s original author was optimistic that the network
would scale well, later research has both tempered that optimism as well as
presented novel solutions to reduce the resource requirements for operating
the network.

Every node in the network verifies and stores the entire state of the sys-
tem. Each user of the system has a wallet, which tracks at least one UTXO,

1

but generally several. As the number of users of the system increases, the
UTXO set grows, and the resource cost of running a node increases. This
has led to a progressively smaller proportion of users running their own
node as more users rely on light clients or on 3rd party nodes to inform
them of the state of the network. Light clients, nodes that do not store
the system state and do not validate transactions, can still obtain some as-
surance about transactions through Simplified Payment Verification (SPV),
which leverages Bitcoin’s Proof-of-Work and block commitment scheme to
give compact proofs of transaction inclusion into a (not necessarily valid)
blockchain.

SPV, while reducing the resource costs of operating a network node,
comes with a number of security and privacy weaknesses not present in full
nodes. SPV nodes rely on fully validating nodes to enforce the rules of the
system as they cannot do so themselves. An adversary with sufficient hashing
power can present transactions which SPV nodes will accept as confirmed,
but which will be rejected by fully validating nodes. While improving the
security and privacy of SPV is a promising area of research, this work focuses
only on fully validating nodes, and on reducing the resource requirements
to run one.

In this paper we present Utreexo, a method for greatly reducing the
storage needed to run a fully validating node. In hardware setups where
disk I/O speeds and storage requirements are the bottleneck, this can sig-
nificantly accelerate the validation process, or make validation possible on
hardware where it previously has not been.

Utreexo uses a hash-based cryptographic accumulator and introduces a
new type of node, the “Compact State Node”, which stores only an accumu-
lator representation of the state. These nodes require additional inclusion
proofs before they are able to verify transactions, and while the CPU time
cost of this verification is small, the network bandwidth of these proofs is a
trade-off made to achieve the lower state size. We explore several techniques
to limit the size of these proofs. We observe that the spending patterns
of outputs in Bitcoin follow a Pareto distribution where many outputs are
short-lived. We can exploit this locality to keep outputs that are likely to be
removed clustered together and use shorter, overlapping proofs when prov-
ing their inclusion. In addition, we are able to cache recent additions, and
even anticipate deletions before they occur when catching up to the current
network state. While the proofs add on the order of O(n log n) space over-
head to synchronization, in practice with the empirical blockchain data and
reasonable caching, about 25% more data needs to be downloaded.

2

2 Related Work

The limitations of having every client store the UTXO set have been clear
since Bitcoin was first introduced; in fact this was the first comment ever
recorded about Bitcoin [?]. Earlier work has focused on UTXO commitments
[?], where some representation of the UTXO set would be included in the
blockchain itself. With a consensus rule enforcing the validity of this UTXO
commitment, users could get some assurance, similar to SPV security, about
the representation of the UTXO set without downloading or validating it
themselves. In contrast to UTXO commitments, Utreexo state is not trans-
mitted to clients, but instead computed by them.

Techniques for speeding up or skipping parts of Initial Block Download
have been proposed, the most promising of which is Mimblewimble [?]. While
Mimblewimble maintains the same cryptographic security as downloading
and verifying the transaction history, it is a substantial change in transaction
format and is difficult to implement in a backwards-compatible way to the
existing Bitcoin network. Systems which do implement Mimblewimble ben-
efit from a decrease in data needed to perform initial synchronization, but
once synchronized still maintain a full UTXO set. It’s possible that Utreexo
and Mimblewimble techniques could be implemented simultaneously, which
would allow for both reduced state size and efficient initial synchronization.

Other recent work on accumulators for blockchain state has introduced
constant-size accumulators using groups of unknown order [?]. While this
construction has superior properties in terms of proof size and batching, it
depends on either a trusted setup or novel cryptographic primitives. An-
other difficulty with accumulators using groups of unknown order is that
while transmission of proofs can be batched and thus made very small, up-
dating and maintaining many proofs (such as all of them) may be infeasable,
due to proof updates not batching as is possible with Utreexo’s hash based
accumulator.

3 Application to Bitcoin

In contrast to account based systems where user balances can be incremented
and decremented, the Bitcoin protocol keeps track of Unspent Transaction
Outputs (referred to as UTXOs). A transaction in Bitcoin has inputs and
outputs (TXOs), the inputs referring to, and consuming, previously created
outputs. In this design, the only operations on the data set are create, read,
and delete. There is no modification other than deletion possible of a set

3

element after it is written.
Cryptographic accumulators, first introduced in [?], allow for set query

operations without storing or revealing all members of the set. Bitcoin’s
UTXO set is well-suited to an accumulator construction; for each transaction
we would like to query whether the TXOs being spent are indeed members
of the UTXO set, and if not, reject the transaction.

In Bitcoin, clients verify all state changes. This significantly limits scal-
ability of the system, as raising the resource requirements to participate
reduces the number of participants in the system, in many cases forcing
them to rely on SPV or custodial wallets. As of early 2019, the initial syn-
chronization process, called “Initial Block Download” (IBD), requires users
to download over 200 gigabytes of historic data and to verify hundreds of
millions of digital signatures. The end state of the system is much smaller
than the historic transcript – the UTXO set is closer to 4 gigabytes.

Long initial synchronization times and large data storage requirements
present a burden to users and limit the reach and scalability of the sys-
tem. IBD times vary widely depending on hardware, and there are several
different constraints which can be the limiting factor for IBD speed. Disk
I/O, especially the ability to rapidly perform random access reads, is very
important for fast IBD. In machines with solid state drives, disk I/O is not
usually the limiting factor, and the CPU will be kept busy with signature
verification. In machines using mechanical hard drives however, disk I/O is
usually the limiting factor, and the CPU will spend most of its time waiting
for disk reads to complete. IBD times for a machine with an SSD can be
around 6 hours, while the same machine using a mechanical hard drive can
take more than a week.1

Current Bitcoin client implementations store the UTXO set in an on-
disk database, so that nodes can verify the existence and details of every
UTXO when performing the read and delete operations at the end of the
UTXO’s life in the database. From the creation of a UTXO to just before
it is spent, a duration that is often several years, the UTXO has no effect
on the system, and its database entry is never accessed. A transaction in
Bitcoin cannot query the state or existence of other UTXOs, and UTXOs
are only read from disk when they are being spent.

A design in which clients do not need to store UTXOs during this dor-
mant period offers many benefits. Currently the system’s state can be stored

1Recently tested with Bitcoin Core 0.17.1 on a AMD Ryzen 1700 Machine using a
Samsung 960 EVO 500GB SSD, in comparison with the same machine where the bitcoin
folder was instead stored on a Samsung HD154UI 1.5TB mechanical drive.

4

on inexpensive hardware, but as there is is no limit on the state’s size, this
may not continue to be the case. (Bitcoin’s block size limit does limit the
growth rate of the UTXO set to approximately 1MB every 10 minutes, but
does not impose an absolute limit on the set size). Omitting dormant UTXOs
not only helps long term scalability, but also increases synchronization speed
as disk reads and writes are minimized. Full validation is possible using only
data arriving over the network and a small in-memory state representation.
Additionally, this type of client allows for better code separation as evaluat-
ing the validity of a transaction or block can be done in isolation, since all
data needed to validate a transaction is comparable in size to the transac-
tion itself, rather than the size of the entire UTXO database as is currently
the case.

4 Dynamic Accumulator

We introduce a hash-based dynamic accumulator with no trusted setup or
manager requirements. Introduced in [?], accumulators are compact repre-
sentations of a set, to which elements can be added and proven. Our accu-
mulator uses a forest of perfect Merkle trees [?] and extends the work of [?]
to allow efficient removals of elements from the accumulator, reducing the
total number of leaves in the forest when deletions occur.

Additions are computable without any data beyond the accumulator and
the element to be added, and deletions are computable with an inclusion
proof of the data to be deleted.

The design of the accumulator is a forest of perfect binary hash trees.
The representation of the accumulator which must be stored includes: the
number of elements stored, and the root of every tree in the forest.

To update the accumulator, Add(), Delete() and V erify() functions are
defined, which each operate on single elements. Batched operations, where
multiple elements are added or removed at the same time can speed up
operations and reduce the sizes of proofs.

4.1 Logical structure of the binary forest

We arrange the elements of the accumulator into a forest of perfect binary
trees with the largest tree on the left and smallest on the right. This arrange-
ment allows for a more intuitive visualization of trees merging and splitting
when needed. Row operations are also possible where elements can move
between sub-trees.

5

As the trees in the forest are always perfect, they hold 2h leaves, where
h is the height of the tree. Any natural number of leaves can be organized
into a forest of perfect binary trees, just as any natural number can be
represented by a sum of powers of two. This relation provides a convenient
shortcut: the number of trees in the accumulator is the number of 1-bits in
the binary representation of the number of leaves. The heights of those trees
is the bit-position of the 1-bits in that representation. For example, a forest
with 133 leaves would have 3 trees: a height 7 tree, a height 2 tree, and a
height 0 tree. This is quickly visible by looking at the binary representation
of the number 133: 10000101.

Any set of leaves can be grouped into binary trees using this method. In
all cases, it is possible to add one more leaf to the forest knowing only the
roots of each tree. In the 133 leaf example, adding an extra leaf would result
in 134 leaves, with a binary representation of 10000110. The 0-height tree
(which itself is a leaf) would combine with the newly added leaf to create a
1-height tree with 2 leaves. A further addition to 135 would then create a
0-height tree with the additional leaf.

4.2 Adding and removing elements

We describe here how to add or remove a single element, which suffices for
all operations as these algorithms can be invoked many times to add or
remove many elements. In the case of removing elements, batching many
removals into a single operation can significantly reduce CPU usage. The
batch operation is described with examples in the appendix.

The Parent() function, used below, is the typical concatenate and hash
function from Merkle trees; we append the height within the tree to prevent
attacks such as in [?]. To simplify the pseudocode, this height argument is
left out of the Parent() function call, as well as the left / right information
in DeleteOne(), which can be obtained from the proof argument.

We represent the accumulator’s Merkle forest roots as an array of hashes,
which can include empty hashes. acc[n] is the root at index n, or ∅ if that
index is unpopulated (if there is no tree of that height).

6

Algorithm 1 AddOne

1: function AddOne(acc, leaf) . add a leaf to the accumulator
2: n← leaf . n is initially the leaf to add
3: h← 0 . height is initially 0
4: r ← acc[h] . r is the lowest root
5: while r 6= ∅ do . loop until an empty root
6: n← Parent(r, n)
7: acc[h]← ∅
8: h← h + 1
9: r ← acc[h]

10: acc[h]← n
11: return acc

AddOne() takes in the accumulator roots and an element to add. It
continues to compute parents until it encounters the first unpopulated space
in the accumulator array, at which point it stores the output of the final
parent function and returns a new list of hashes. This new list can have
one more populated hash (in the case where index 0 was empty), the same
number, or fewer, down to a single element.

Algorithm 2 DeleteOne

1: function DeleteOne(acc, proof) . Delete leaf from the accumulator
2: n← ∅
3: h← 0
4: while h < len(proof) do
5: p← proof [h] . Iterate over each proof element
6: if n 6= ∅ then
7: n← Parent(p, n)
8: else if acc[h] = ∅ then
9: acc[h]← p

10: else
11: n← Parent(p, acc[h])
12: acc[h]← ∅
13: h← h + 1

14: acc[h]← n
15: return acc

DeleteOne() takes in the accumulator roots and an inclusion proof of
the element to be deleted. The inclusion proof is also a list of hashes, along

7

with a position index indicating which proof elements are right and which
are left Parent() arguments. As in AddOne(), it begins with the smallest
trees in the array, moving to larger trees, increasing height at each step. The
loop runs through every element of the proof, consuming a proof element at
every step, and returning a modified array of roots when done.

There are two distinct phases of the ascending loop: breaking and hash-
ing. The deleted node can either be replaced with a tree root if one exists, or
if one doesn’t the sibling of the deleted node (the proof node) is promoted
into a tree itself. Once a tree does exist and is swapped in to an empty spot,
the algorithm latches into the hashing phase, where the remainder of the
proofs are used to compute the root of the modified tree.

Thus the addition operation for the accumulator is to add elements,
in whatever insertion order desired, to the bottom right of the forest. Even
without knowing the entire bottom row, the new roots can be calculated, and
the newly added leaves can be forgotten after the addition has completed.

4.3 Combining verification and deletion

Verification and deletion require the same proof data. This is convenient
for our use case where elements are proven and then immediately deleted
from the UTXO set. An inclusion proof consists of a integer position of the
element to be proven, and a sequence of siblings to insert into the parent
function. (Alternatively, a sequence of left / right flags can be provided, but
this is equivalent to indicating the position of the leaf to be proven.) An
inclusion proof is considered valid if the final hash computed is equal to the
root already stored. The proof is considered invalid otherwise.

Once an inclusion proof is deemed valid, that same proof can be used to
delete the element from the accumulator. This allows for an efficient Verify
/ Delete combined function call which returns an error if the inclusion proof
is invalid, and otherwise returns the modified accumulator with the element
removed.

4.4 Bridge nodes

Using the above described accumulator, we can replace the on-disk database
and store only the Merkle forest roots, while still adding and removing every
TXO from the UTXO set. The issue then becomes where these proofs come
from.

Introducing the Utreexo accumulator design to an already running sys-
tem presents challenges. If we design a system with the accumulator in mind

8

from the beginning, all wallet software which manages private keys would
also manage and update inclusion proofs for UTXOs owned by that wallet.
However, the Bitcoin network has been in operation for over a decade, and
a wide variety of software and hardware manage UTXOs, none of which has
yet implemented the ideas detailed in this paper. This poses a problem for
the first client, or compact state node, which implements this accumulator.
While a compact state node will be able to provide inclusion proofs for its
own UTXOs, no other node will want them. More critically, the compact
state node will require inclusion proofs in order to verify every transaction it
sees, but no other node will provide any proofs! Unless everyone coordinates
and switches simultaneously, the compact state nodes will be left behind as
soon as they start.

In order to simultaneously support old nodes which store the full UTXO
set as well new nodes which use the accumulator, the network requires a
“bridge node”. A bridge node is a node which stores proofs for every UTXO
in the accumulator. In the case of Utreexo, a bridge node is simply a node
which stores the entire Merkle forest at all times.

All nodes compute new hashes and update tree roots when additions
and deletions to the set occur due to new blocks arriving. As inclusion
proofs consist of branches up to the roots, maintaining and updating proofs
of every element in the set incurs no additional computational cost above
computing the roots. The only additional cost is space, as bridge nodes store
approximately 2n hashes, in contrast to the log(n) hashes stored by compact
state nodes.

In order for the bridge node to produce proofs with minimal latency, in
addition to the full forest, a mapping of TXO identifier to leaf position must
also be maintained. As the leaves in the forest are unsorted and in fact shuffle
positions during accumulator updates, a bridge node would need to search
linearly through the set of leaves to find a proof without such an index.
A lookup table mapping outpoints to leaf positions presents an additional
space requirement but improves speed. Ideally, a single bridge node should
be able to attach proofs and relay all transactions to the network of compact
state nodes with minimal latency.

4.5 Network Design

Compact state nodes can be incrementally added to the current network
with no changes to the existing node software. Full nodes operate as before,
propagating transactions and blocks to each other. The bridge node is a full
node which also stores the entire Merkle forest and can provide proofs for

9

compact
state
node

compact
state
node

bridge
node

full
node

full
node

tx

tx

tx

tx

proof

tx

p
ro
o
f

tx

Figure 1: A bridge node connects the network of already existing full nodes to
the network of compact state nodes. Full nodes propagate transactions (and
blocks of transactions) to each other. Compact state nodes similarly propa-
gate transactions, and also send inclusion proofs along with every transac-
tion. Compact state nodes can send transaction messages to full nodes by
omitting the inclusion proofs, but cannot receive transactions directly from
full nodes, which are unable to provide proofs.

compact state nodes. The bridge node does not announce itself as such; to
full nodes, it appears to be a standard full node, and to compact state nodes
it appears to be a compact state node. While the bridge node links the two
networks together, it is only needed to bridge in one direction: from the
existing full node network to the Utreexo network. While the bridge node
can send transactions from the Utreexo network to the full node network,
so can any compact state node, as the data sent in the Utreexo network is
a super-set of the data needed by full nodes.

4.6 Full and partial forest storage

Bridge nodes need to store the entirety of the hash forest data. An efficient
storage mechanism for this is to store every hash sequentially in memory, and
compute byte offsets to seek to a specific hash. This has no space overhead,
but some I/O overhead when swapping elements. This can be implemented
with a linear array of hashes, some of which remain unpopulated. We have
also implemented the mapping of UTXO identifiers to leaf position in lev-
elDB, so that bridge nodes can quickly provide an inclusion proof when they
receive a transaction.

Compact state nodes need only store the tree roots, but as detailed in the
next section, are able to trade some additional storage for reduced download

10

size. To store partial forests, we use a variant of pointer-based binary trees
where every node has two pointers to cousin nodes (the children of a node’s
sibling) rather than directly pointing to children. This allows efficient storage
and processing of subsets of the forest, from the roots only to the entire forest
(though if storing the entire forest, using a hash array is more efficient as
no pointers are needed.)

5 Performance and Optimizations

5.1 Reducing proof length

While a single inclusion proof will be of log(n) size, we can send multiple
simultaneous proofs in less space than sending each proof individually. The
size reduction depends on the proximity of the leaves to be proven. Here
are the two extreme examples: if two leaves are in different trees, there is
no overlap in their proofs and two full-sized proofs are needed. If, however,
the leaves are adjacent, then no additional data is needed and the second
inclusion proof is obtained for free. When aggregating proofs, we send a
sparse forest, covering every leaf to be proven, rather than a branch. Proof
branches are provided only up to the point where they intersect an already
provided branch. We can save even more space by omitting hashes that will
be computed by the verifier; parent hashes can be omitted if both child
hashes are contained in the proof. In the extreme case, the proof for all the
leaves in a tree is just the leaves themselves, as all intermediate hashes can
be computed from the leaves.

In Bitcoin, transactions are aggregated into blocks in order to be con-
firmed via proof-of-work. When compact state nodes propagate blocks, the
existence of all UTXOs spent in the block (every input in the block) can
be proven with a sparse forest. In cases where single transactions are be-
ing sent, a sparse forest proving all inputs within a transaction can be sent
along with the transaction. To save bandwidth at the cost of some mem-
ory and complexity, clients can maintain their own sparse forest in memory.
When sending a transaction, nodes send only the positions of the UTXOs
consumed. Receiving clients then respond with a proof request, indicating
which nodes in the forest are needed to get up to an intersection with nodes
it already has in memory.

11

5.2 Short trees

As the trees are of different heights, the length of an inclusion proof is
dependent on the tree in which the leaf to be proven resides. Bitcoin’s UTXO
set exhibits a power-law distribution of UTXO durations, or the length of
time between when a UTXO is created and when it is deleted. In fact, many
UTXOs are created and destroyed within the same block, in which case we
can ignore them as they have no effect on the accumulator. Among UTXOs
that do persist, many only last a few blocks, while some last for hundreds
of thousands. As we insert leaves into the forest on the right side, they will
start off in the smaller trees, with shorter inclusion proofs. UTXOs which
have made their way to the larger trees on the left tend to have been around
for thousands of blocks, and proofs in the larger trees will be less frequent.
The short-duration UTXOs will be added into short trees to the right and
will be removed using smaller proofs, often with many adjacent leaves being
deleted in the same block, which further reduces proof sizes.

5.3 Forest Caching Space/Space Trade-off

A node implementing the Utreexo accumulator can fully verify all inclusion
proofs by storing only the roots of each tree in the forest, which on average
is log(n)/2 hashes. The additional size of the inclusion proofs can be signif-
icant when initially synchronizing to the blockchain – if proofs are naively
added to every transaction input, their size exceeds that of the transactions
themselves.

The simplest way to reduce proof sizes is to eliminate redundant data
among multiple proofs. Sending a sparse forest which simultaneously proves
all inputs within a block, as described above, gives us the first significant
space reduction.

Further proof size reductions can be achieved due to the redundancy
of temporally rather than spatially distinct proofs. As noted above, many
UTXOs persist only for a short duration. In the case where a UTXO persists
for only a single block, the prover would be sending data that was known to
(in fact computed by) the verifier just a single block prior. (In IBD scenarios,
this could be a fraction of a second.) If the verifier had kept all the hash tree
information they computed from the last block, they would not need proofs
for these short-lived UTXOs.

While the idea of keeping extra data from the forest (which takes up
space) seems counter to the point of using an accumulator (to take up less
space), there are good reasons to do this. Without the ability to store and

12

Figure 2: Distribution of UTXO duration in the Bitcoin blockchain. Short
lifetimes are very common, and durations of 0 blocks even more so. 0-
duration UTXOs are not displayed as they do not affect the accumulator
(and don’t fit on a log-scale x-axis). Note the distinct peaks at block dura-
tions of 6, 100, 433, and 1000. The 100 block delay for coinbase TXOs is a
consensus rule, while the other peaks are likely due to user preferences and
behavior.

remember parts of the forest, using an accumulator is all-or-nothing where
the choices are to either run a traditional node with a database storing the
entire UTXO set or an accumulator node with only a few hashes for tree
roots. With the ability to store parts of the forest, this choice becomes a
gradient, allowing users to select the memory vs. bandwidth trade-off they
wish to make.

At one extreme of this gradient, nodes minimize storage and memory
requirements, keeping only the roots of the hash trees, which never exceed
a kilobyte. At the other extreme, nodes cache the entire hash forest and
do not need downloaded proofs at all, just like a node with the full UTXO
set (this is in fact a bridge node). Between these two extremes, there is

13

Figure 3: Fractional distribution of UTXO duration in the Bitcoin
blockchain. This is another view of the same data from Figure 2. From this
plot we can see that 40% of UTXOs last for 20 blocks or less, suggesting
that a look-ahead cache of 20 blocks can reduce proof sizes by approximately
40%.

a gradual trade-off between network traffic and in-ram or on-disk storage.
The more of the forest a node caches, the smaller the proofs it will need
to download. Fortunately, due to the fact that transaction data exhibits a
power-law distribution in the duration of UTXOs, this trade-off is not linear.
The first few megabytes of caching space give a large reduction in proof
download size, after which there are diminishing returns as more memory is
devoted to forest caching. For the amounts of memory we would expect to
see in low cost, widely used computing devices, the download overhead for
IBD is quite reasonable.

Another advantage of storing partial forest data is that non-root data is
easily recoverable. The partial forest data can be stored in volatile memory
and not copied to persistent disk, with only the forest roots being maintained
on disk. A node can forget all forest data except for the accumulator roots

14

when it shuts down, and resume synchronization later. The node will need
to download additional data (the hashes forgotten) but will not have to
backtrack in the synchronization process.

5.4 What to cache

When a client is performing IBD and decides to cache some portion of the
forest data, what should they retain, and what should they forget? A simple,
but still fairly effective strategy would be to remember all leaves added to
the forest until either they are removed, or some number of blocks (the
look-back period) have passed, at which point they are forgotten. Given
the distribution of TXO lifetimes, a small look-back period can significantly
reduce the sizes of proofs.

Look-back caching is sub-optimal, however, as it would store many nodes
for a period and then forgot them before they are used. The space these
nodes took up was wasted, as they displaced other nodes which could have
potentially reduced proof sizes. While this problem is generally unavoidable
in caching algorithms, we can prevent this from happening completely in
the case of IBD. The server which stores the blocks and inclusion proofs is
already fully synchronized, and for every TXO created, it knows in which
block (if any) that TXO is consumed. (For TXOs still in the UTXO set,
the server considers that block to be “never”.) Servers can send this time to
live (TTL) value to the synchronizing client as a hint, allowing the client to
cache look-ahead nodes rather than look-behind nodes. This also removes
the need for the client to keep track of the insertion time of the cached
leaves, as leaves are eliminated from memory only when the TXO is spent,
and never from cache eviction.

The look-ahead caching is dependent on the cooperation of the IBD
server. While this server provides a hint of the UTXO’s TTL, the server
does not provide any cryptographic proof for it. Such a proof could be con-
structed using SPV proofs of transactions spending the TXO. Unfortunately
the size of such proofs would offset all download savings from the look-ahead,
defeating the purpose of sending them. While the IBD node is “trusted” to
give TXO TTL hints, this trust is only for an optimization, and the worst a
malicious IBD server can do is cause the client to cache leaves inefficiently,
resulting in higher network transfer sizes (which the server also suffers it-
self). A client could perform spot checks on the hints the server provides
and disconnect from a server providing erroneous information.

IBD presents an unusual optimization scenario in that not only are TXO
TTLs known ahead of time, but TXO arrivals are known before they happen

15

as well. In fact, the entire sequence of TXO insertion and removal is fully
known at the outset of the IBD process. Thus for a given amount of memory
there is a deterministic, optimal caching schedule which can be precomputed.
The caching schedule can be represented as a single bit for every TXO, with
0 meaning “immediately forget” and 1 meaning “remember until spent”.
We anticipate that the optimal selection algorithm in [?] can be effectively
applied to reduce the proof sizes for IBD beyond the reductions provided
by look-ahead caching. These caching schedules will be of reasonable size
(on the order of 100MB) and are likely amenable to standard compression
algorithms, unlike most of the data we deal with here, such as hashes and
signatures.

We have left implementation of the clairvoyant cache scheduling for later
work. We have implemented the simpler look-ahead caching to measure net-
work traffic requirements for IBD, as detailed below. While implementing
this caching strategy we observe that a fixed block look-ahead, while better
than look-behind, is sub-optimal, and thus there may still be room for sig-
nificant space savings. One easily observed deficiency is the highly variable
amount of memory used. Client machines generally have a fixed amount of
memory to be used for running Bitcoin, which would ideally be full, or close
to full, at all times. In the early blocks of Bitcoin’s blockchain, there are few
transactions, and many blocks with no TXOs consumed at all. Thus clients
with, for example, 100MB to dedicated to caching are using only a small
fraction of that in the first half of the IBD process. Even in later blocks
with higher transaction rates, there is still significant variability in memory
usage for a fixed look-ahead strategy.

5.5 Measuring Performance

We implemented a Utreexo library and IBD simulator. This simulator it-
erates through the Bitcoin blockchain up to block 546000, adding and re-
moving TXOs from the accumulator. We used blake2b as our hash function,
and wrote the implementation in Go, compiled with go1.10.4 linux/amd64.
Simulations were run on a machine with an AMD Ryzen 7 1700 processor
and 32GB of RAM, running Ubuntu 18.04. Our implementation is publicly
available at [?].

Given the power-law-like distribution of UTXO TTLs, we would expect
a similar curve for download size as cache sizes increase, and our observed
performance is in keeping with this expectation. We measured peak memory
usage for the entire program, and had a minimum memory usage of approxi-
mately 80MB (likely due to database and other runtime memory usage). Due

16

Figure 4: IBD proof size vs cache size. Labels on the points are the number
of look-ahead blocks.

to this fixed overhead, very small lookahead values of 1, 3, or 10 blocks do
not seem useful. Given that memory usage will be at least 80MB (and likely
more for a real, rather than simulated node) saving a few megabytes of cache
memory is undetectable, while the increase in download size is significant.

As we increase cache sizes, we see diminishing returns, and it takes nearly
12GB of memory to completely eliminate all proof downloads. With settings
of this size the Utreexo design might seem superfluous as well – no proofs
are ever given, and the client is storing the entire forest, which is larger
than the standard UTXO set database. There are still advantages however,
in that this node keeps the forest in volatile memory, only writing the tree
roots to disk. There may be machine configurations with large amounts of
volatile memory but limited non-volatile storage I/O.

With moderate amounts of memory, caching offers significant improve-
ments for lower-end hardware with mechanical hard drives. A low-cost lap-
top with 4GB of RAM and a 500GB mechanical drive can use a lookahead
value of 1000 blocks, which uses 234MB of RAM and gives an IBD download

17

overhead of about 33%. We hope to bring this overhead down in the future
with improved caching techniques.

5.6 Hardening against collision attacks

In addition to better caching techniques, another promising method to re-
duce proof sizes is to reduce the length of individual hash outputs. At first
glance, truncating hashes may seem unsafe, but Bitcoin offers a unique envi-
ronment which can help mitigate collision attacks on reduced length hashes.

As an attacker (especially a miner) has significant control over the ac-
cumulator’s Merkle forest, one might expect that a collision-resistant hash
function is required to prevent the attacker from creating invalid proofs (in-
clusion proofs for elements not previously added). In Bitcoin’s case, however,
we can make collision attacks infeasible, such that an attacker would instead
need to perform a second preimage attack.

We assume an attacker who also is able to mine a block, and thus in-
fluence a number of leaf insertions, their positions, and the data they con-
tain. The simplest attack would be to create TXOs txo and txo′, where
h(txo) = h(txo′). txo is an output from a valid transaction which all nodes
on the network will confirm, while txo′ is a made-up output of a million bit-
coins that is not part of any valid transaction. The attacker can then provide
an inclusion proof for txo′, and spend the million bitcoins even though only
txo has been inserted into the accumulator.

As the attacker is able to freely create both txo and txo′, the attacker
can mount a collision attack, which takes on the order of 2n/2 computations,
where n is the bit-length of the hash output. If we can restrict the attacker’s
ability to create either side of the collision (the hash being inserted or the
hash being falsely proven) this attack is no longer feasable.

To prevent such an attack, we require that the data inserted into the
accumulator be not just the hash of a TXO, which is controllable by the
attacker, but instead the concatenation of the TXO data with the block
hash in which the TXO is confirmed. The attacker does not know the block
hash before the TXO is confirmed, and it is not alterable by the attacker
after confirmation (without significant cost). Verifiers, when inserting into
the accumulator, perform this concatenation themselves after checking the
proof of work of the block. Inclusion proofs contain this block hash data so
that the leaf hash value can be correctly computed.

This additional data thwarts collision attacks as the attacker needs to
find a block (which currently takes more than 270 hash operations) to create
a single txo. txo′ can still be iterated through rapidly, as the attacker can

18

use any previously computed block hash in their proof of txo′. The number
of operations required to mount a collision attack when attempts on one
side are more difficult can be computed by

s = 2
d+n
2

where d is the difficulty exponent, n is the size of the hash output in bits, and
s is the resulting security against collisions. For collision attacks on 256-bit
hashes, with 270 work required on one side, this would give 2163 operations
for a collision.

A second preimage attack, where txo is fixed and txo′ alone can be
iterated through, would seem to need 2256 operations to succeed. However,
the attacker doesn’t need to collide with txo, but can in fact collide with
any leaf present in the accumulator. This means the attack gets easier as the
accumulator becomes larger; for 232 elements, the attack takes 2192 attempts.

The security gain from mitigating collision attacks can be used to de-
crease the proof size by truncating the output length of all hashes computed.
For a 2128 security parameter, and an anticipated UTXO set size of 232 or
fewer, we estimate that hash outputs of 186 bits would suffice. This would
result in a 27% reduction in proof size with minimal complexity. However,
if the UTXO set increases, security could be degraded as second preimage
attacks become easier to mount. Once hashes are truncated, it’s not possible
to retroactively increase the output size, and instead the accumulator would
need to be rebuilt from scratch with larger hash outputs. Additionally, the
proof-of-work required to create a block in Bitcoin can decrease, which would
also erode the protection from collisions the block hash provides.

Further protection from untargeted second preimage attacks may be
gained by also committing to the leaf’s position in the leaf data. In this
case the leaves would be of the form h(txo||blockHash||position), where
position is the integer index of the leaf position. This would require the at-
tacker to select a single leaf to target for colliding instead of allowing the
attacker to collide with any leaf in the forest. However, this technique is not
applicable to our construction as leaves within the forest move due to dele-
tions, and thus the position data salted into the hash will generally differ
from the leaf position when the leaf is removed. The complexity of tracking
leaf movements seems to overwhelm any savings from this technique, but we
mention this idea as a different accumulator construction, possibly closer to
that in [?] may allow for fixed leaf positions and shorter proofs while still
being secure.

19

6 Conclusion

We have introduced a hash-based dynamic accumulator and architecture for
using this accumulator in the Bitcoin network. Nodes using the accumula-
tor need only store a logarithmically sized representation of the UTXO set,
greatly reducing storage space and disk seek times. The trade-off is the addi-
tional download requirements of inclusion proofs, but with proof aggregation
and caching the increase is of a manageable size.

Acknowledgments

Thanks to Neha Narula and Cory Fields for discussion without which this
paper would not have happened. Thanks to Pieter Wuille for discussions
about the applicability of other accumulator designs and the difficulties of
bridge nodes (as well as coining the term). Thanks to Sophia Yakoubov for
discussing her work which can be extended and applied here. Thanks to
Kalle Alm for discussion about caching strategies, Dan Cline for suggesting
optimal caching strategies, and Peter Malamud Smith for comments and
feedback.

7 Appendix

7.1 Batch deletion process

The following is a description of the batch deletion process. While the single
element deletion process is sufficient and can be invoked repeatedly, it is
inefficient to do so. When many deletions occur simultaneously we can sig-
nificantly reduce the number of hash operations needed to remove elements
from the accumulator by batching the deletions.

Similar to the DeleteOne() function, the process for deleting many el-
ements operates a row at a time, climbing from the bottom to the top of
the forest. At each row, the same phases are followed. The data operated
on at each row, includes the known hashes and their positions, as well a
list of which locations to delete. The phases are, in order: “Twin”, or twin
extraction, “Swap”, or sibling swapping, “Root”, promoting a node to or
demoting a node from a root position, and “Climb”, ascending to the next
row up. These 4 phases are described with accompanying diagrams. In the
following diagrams, green nodes are nodes which are always known, as they
are or were tree roots. Pink nodes are nodes which are being deleted.

20

7.2 Twin

While the twin step is optional, we can save time from the next step by
immediately dealing with “twin” deletions; we define a twin deletion as a
deletion where both the left and right sibling have been deleted. If we have
a sorted list of locations to be deleted, a simple way to find these is to check
if the next deletion is equal to the current deletion bitwise or’ed with 1. If
so, we can remove both “twins” from the deletion list, and add the parent
position to the next higher row of deletions to process.

6

4

0 1

5

2 3

Figure 5: Twin phase; nothing moves, and 4 is marked for deletion.

7.3 Swap

While there are 2 or more deletion positions left in the list, we iterate through
them. Call the two positions deletionA and deletionB.

Move the hash at deletionB ⊕ 1 to deletionA. When moving a node,
all the node’s children move with it. The parent of deletionB is added to
the deletion list for the next row, and both deletionA and deletionB are
removed from the current list. Note that in all cases we know the hash at
deletionB⊕1, as it is the sibling of something being deleted (or the sibling of
a parent of something being deleted) and thus is given to us in the inclusion
proof.

6

4

0 1

5

2 3

Figure 6: Swap phase; deletionA is 1, deletionB is 2. 3 moves to 1, and 5 is
marked for deletion.

21

7.4 Root

If there are an even number of deletions on a row, the twin and swap phases
will finish with no unpaired deletions, and the root phase is skipped. In
cases where there are an odd number of deletions, however, the swap phase
will finish with a single deletion remaining in the list. This final deletion is
handled by the root phase.

For every row in the forest, there either is or is not a tree with a root
at that height. For example, in the forest of 133 leaves, there is a root at
height 0, but there is no root at height 1. There is a root at height 2, and
no roots for several rows above that.

If we are on a row where a root is present, we move that root into the
position of the remaining deletion, clear the deletion and are then finished
with that row, adding no deletions for the next row. If a root is absent, we
move the sibling of the deletion (position ⊕ 1) to the root position for this
height, creating a new tree in the forest, and leaving a twin pair of deletions.
We then mark the parent of the final deletion for deletion in the next row.

12

8

0 1

9

2 3 4

Figure 7: Root phase with root present; 4 is demoted from a root to the
sibling of 2.

12

8

0 1

9

2 3

Figure 8: Root phase with root absent; 2 is promoted to root of the height
1 tree.

22

7.5 Climb

When the root phase has finished, the climb phase transitions between levels
of the forest. All deletions will be in pairs of two deleted siblings. The parent
nodes of all deleted sibling pairs are marked as deleted, and parents of nodes
which moved in the swap or root phase are recomputed. When the deletion
and hashing are finished, the per-row phases (starting with twin) begin on
the next level up.

When the top of the forest is reached, the deletion process is finished. If
a row is reached with no deletions, the process can terminate early.

6

4

0 1

5

2 3

Figure 9: Climb phase; Begin a new deletion list from positions marked in
the previous other 3 phases and climb to the next row.

7.6 Integrated batched deletion example

In this example, there are 8 leaves in a single tree. Leaves 5 and 6 are
being deleted. An inclusion proof for both 5 and 6 is provided. Note that
an inclusion proof for these nodes does not contain any nodes from the 2nd
row, as both 10 and 11 are computable from data known in the first row.

14

12

8

0 1

9

2 3

13

10

4 5

11

6 7

Figure 10: There are no twins, so first 7 is swapped with 5

23

14

12

8

0 1

9

2 3

13

10

4 7

11

6

Figure 11: The bottom row is finished and 11 is marked for deletion as its
children are gone. 10 is computed.

14

12

8

0 1

9

2 3

13

10

4 7

11

6

Figure 12: On the second row, there are no twins, and we cannot swap, so
we proceed directly to root.

14

12

8

0 1

9

2 3

13

10

4 7

Figure 13: 10 becomes the root of its own tree, leaving 13 to be deleted as
well.

24

14

12

8

0 1

9

2 3

10

4 7

Figure 14: 14 is deleted as 12 becomes the root of its tree.

12

8

0 1

9

2 3

10

4 7

Figure 15: The final forest state after deletion is complete.

25

