
Simple Yet Efficient Knowledge-Sound and Non-Black-Box
Any-Simulation-Extractable ZK-SNARKs

Helger Lipmaa

University of Tartu, Tartu, Estonia helger.lipmaa@gmail.com

Abstract. Motivated by applications like verifiable computation and privacy-preserving cryptocurrencies,
many efficient pairing-based SNARKs were recently proposed. However, the most efficient SNARKs like the
one by Groth (EUROCRYPT 2016) have a very brittle and difficult-to-verify knowledge-soundness proof in
the generic model. Due to that, it is difficult to modify such SNARKs to, e.g., satisfy simulation-extractability
or to implement some other language instead of QAP (Quadratic Arithmetic Program).
We propose a template for constructing knowledge-sound and non-black-box any-simulation-extractable
(NBBASE) SNARKs for QAP. This template is designed so that the knowledge-soundness and even NBBASE
proofs of the new SNARKs are quite simple. The new knowledge-sound SNARK for QAP is very similar to the
mentioned SNARK of Groth, except it has fewer trapdoors. To achieve NBBASE, we add to the knowledge-
sound SNARK a few well-motivated extra steps, while its security proof is even simpler due to the use of a
second verification equation. Moreover, we give a simple characterization of languages like SAP, SSP, and QSP
in the terms of QAP and show how to modify the SNARK for QAP correspondingly. The only prior published
efficient simulation-extractable SNARK was for SAP.

Keywords: NIZK, QAP, QSP, SNARK, SAP, SSP, simulation-extractability, zero-knowledge

1 Introduction

Zero-knowledge proof systems [GMR85] are fundamental for the theory and applications of cryp-
tography. In particular, a zero-knowledge proof system guarantees that participants of a proto-
col follow the protocol correctly. For zero-knowledge proof systems to actually be used in prac-
tice, one however has to use an “efficient” zero-knowledge proof system that satisfies “reason-
able” security definitions under “reasonable” cryptographic and trust assumptions. Due to their
performance and versatility, zero-knowledge succinct non-interactive arguments of knowledge (zk-
SNARKs, [Gro10,BCCT12,Lip12,GGPR13,PHGR13,BCCT13,BCTV14,Gro16,GM17]) have become one
of the most widely researched and deployed proof systems, in particular because of their applicability
in verifiable computation [PHGR13] and anonymous cryptographic currencies [DFKP13,BCG+14]. All
mentioned zk-SNARKs are knowledge-sound in the CRS model [BFM88].

Nonetheless, it is quite difficult to obtain expertise to design new zk-SNARKs, and it is easy for even
well-established research groups to err in such an endeavor [CGGN17,Gab19]. One explanation for this is
that for the proof system to be secure, the constant number of proof elements and verification equations
need to be carefully designed to simultaneously satisfy a number of properties:

First, they need to encode an NP language. The most widely used language is that of a quadratic
arithmetic program (QAP, [GGPR13]) which corresponds to the rank-1 quadratic constraint system of the
popular libSNARK library. Other related languages are square arithmetic programs (SAP, [Gro16,GM17]),
quadratic span programs (QSP, [GGPR13,Lip13]), and square span programs (SSP, [DFGK14]). Here, QSP
and SSP are convenient in the case one works with Boolean circuits and SAP and QAP are convenient in
the case one works with arithmetic circuits.

Second, for optimal efficiency, the NP witness and the argument need to be encoded into the smallest
number of proof elements and verified via the smallest number of verification equations possible. This
creates a new set of design constraints, and several (tight) lower bound are known, [Gro16,GM17].

Third, throughout this process, one needs to assure that the SNARK remains knowledge-sound and
zero-knowledge. Due to well-known impossibility results [GW11], one has to use non-falsifiable assumptions

2 Helger Lipmaa

like the knowledge assumptions [Dam92]. To facilitate better efficiency, most efficient zk-SNARKs are
proven to be knowledge-sound in the generic model.

Fourth, most of the existing pairing-based zk-SNARKs are defined in the CRS model assuming the
existence of a trusted third party that samples a CRS from the correct distribution and does not leak any
trapdoors. The existence of such a trusted third party is often a too strong assumption. Hence, the size
and structure of the CRS and of the trapdoor is thus another important concern.

Fifth, sometimes, knowledge-soundness is not enough and one desires to achieve simulation-
extractability (SE, [GM17]). Intuitively, SE SNARKs guarantee that knowledge-soundness holds even
if the prover has seen many simulated proofs, a property that is needed in many applications [GM17]
including UC-security.

Related to the latter, it has been studied how to achieve UC-security for SNARKs. Kosba et
al. [KZM+15] constructed a black-box simulation-extractable (BBSE) version of SNARKs; BBSE is suffi-
cient to obtain UC-security, [Gro06]. However, their transformation results in quite a large overhead and,
in particular, results in a linear-size commitment. Alternatively, Groth and Maller [GM17] proposed a
non-black-box strong any-simulation-extractable (NBBSASE) SNARK for SAP that is only slightly less
efficient than the most efficient knowledge-sound SNARK of Groth [Gro16]. However, their SNARK is
based on the SAP language [Gro16,GM17] and thus has approximately two times larger circuits than the
ones underlying the QAP languages. They also proved that their construction achieved the lower bound
for the argument length for NBBSASE SNARKs. While NBBSASE is not sufficient to obtain UC-security,
it is clearly a stronger security notion than knowledge-soundness.

No other simulation-extractable SNARKs are known at this moment (except [BG18] that works in the
random-oracle model), not even ones that are just NBBASE (non-black-box any-simulation-extractable,
allows an adversary after seeing simulation queries to modify a valid argument to a different valid argument
for the same statement) or NBBTSE (non-black-box any-simulation-extractable, allows an adversary after
seeing simulation queries to true statement to modify a valid argument to a different valid argument for the
same statement). While NBBASE and NBBTSE are weaker properties than NBBSASE, they are sufficient
in many applications. Moreover, in some applications, one desires to have rerandomization properties of
NBBASE or NBBTSE SNARKs. (See [DHLW10] for discussion.)

This brings us to the main question of this paper:

Is it possible to construct SNARKs for a multitude of languages (like QAP, SAP, QSP, and SSP)
that would simultaneously (i) satisfy a strong soundness definition (like some sort of SE), (ii) have
a simple soundness proof in the generic model, and (iii) be as or almost as efficient as the most
efficient known knowledge-sound SNARKs.

Our Contributions. We answer positively to the main question. We will propose a template for
knowledge-sound and non-black-box any-simulation-extractable (NBBASE) zk-SNARKs for QAP. The
knowledge-sound version Sqap of the new SNARK for QAP is similar to Groth’s SNARK [Gro16] and the
NBBASE version is obtained it by well-motivated (minimal) modifications. We provide a different (and
very simple) knowledge-soundness proof for this version. NBBASE is weaker than NBBSASE by allowing
one to maul an acceptable argument for a statement to a different acceptable argument for the same
statement. Both NBBSASE and NBBASE SNARKs allow the adversary to ask simulations of false state-
ments. After that, we modify both the knowledge-sound and the NBBASE version of Sqap to cover SAP,
QSP, and SSP languages. This is based on a simple observation about algebraic relations (summarized
in Table 2) between these languages and QAP. See Table 1 for efficiency comparison with the previous
work. We emphasize that it is only fair to compare SNARKs for the same language; to compare SNARKs
for different languages, one also has to take into account the complexity of the reduction from circuits to
these languages. (Note that [Lip13] only described a reduction from Boolean circuits to QSP and a linear
PCP [BCI+13] for QSP, leaving the cryptographic details of constructing a SNARK.)

Simple Yet Efficient Knowledge-Sound and Non-Black-Box Any-Simulation-Extractable ZK-SNARKs 3

Table 1. Efficiency comparison: of QAP/SAP/SSP/QSP-based SNARKs. m, n (or n∗), and m∗ denote the number of wires,
gates, and constraints in the solutions. In the case of |crs| and P’s computation we have omitted constant (or m0-dependent)
addends like +(m0 + 3)|G1|. “eι” (“mι”) denotes exponentiation (multiplication) in group Gι, “p” denotes pairing, and Gι
denotes the representation length of a Gι element in bits.

Π security |crs| P computation |π| V computation

QAP-based (arithmetic circuit, with n gates), m∗ = m

[BCTV14] KS (6m+ n)|G1|+m|G2| (6m+ n) e1 + m e2 7|G1|+ 1|G2| 12 p + m0 e1
[Gro16] KS (m+ 2n)|G1|+ n|G2| (m+ 3n) e1 + n e2 2|G1|+ 1|G2| 3 p + m0 e1
Sqap § 3 KS (m+ 2n)|G1|+ n|G2| (m+ 2n) e1 + n e2 2|G1|+ 1|G2| 3 p + m0 e1
Sse
qap § 3 NBBASE (m+ 3n)|G1|+ n|G2| (m+ 3n) e1 + n e2 3|G1|+ 1|G2| 5 p + m0 e1

SAP-based (arithmetic circuit, with n∗ squaring gates): u = v, n∗ ≈ 2n, m∗ ≈ m

[GM17] NBBSASE (m∗ + 4n∗)|G1|+ 2n∗|G2| (m∗ + 4n∗) e1 + 2n∗ e2 2|G1|+ 1|G2| 5 p + m0 e1
Ssap § 4 KS (m∗ + 2n∗)|G1|+ n∗|G2| (m∗ + 2n∗) e1 + n∗ e2 2|G1|+ 1|G2| 3 p + m0 e1
Sse
sap § 4 NBBASE (m∗ + 2n∗)|G1|+ n∗|G2| (m∗ + 2n∗) e1 + n∗ e2 2|G1|+ 1|G2| 5 p + m0 e1

SSP-based (Boolean circuit with n gates): u = v = w, m∗ = m+ n

[DFGK14] KS (m∗ + n)|G1|+ n|G2| 2m∗ m1 + n e1 + m∗ m2 3|G1|+ 1|G2| 6 p + m0 m1
Sssp § 5 KS (m∗ + 2n)|G1|+ n|G2| 2m∗ m1 + n e1 + m∗ m2 2|G1|+ 1|G2| 3 p + m0 m1
Sse
ssp § 5 NBBASE (m∗ + 2n)|G1|+ n|G2| 2m∗ m1 + n e1 + m∗ m2 2|G1|+ 1|G2| 5 p + m0 m1

QSP-based (Boolean circuit with n gates): w = 0, n∗ ≈ 14n [Lip13]

[Lip13] KS – – – –
Sqsp § 6 KS (m∗ + 2n∗)|G1|+ n∗|G2| 2m∗ m1 + n∗ e1 + n∗ e2 2|G1|+ 1|G2| 3 p + m∗0 m1
Sse
qsp § 6 NBBASE (m∗ + 3n∗)|G1|+ n∗|G2| 3m∗ m1 + n∗ e1 + n∗ e2 2|G1|+ 1|G2| 5 p + m∗0 m1

In Section 3, we propose a knowledge-sound SNARK Sqap for QAP. Recall that to show that the prover
is honest, one needs to show that χ(X) := u(X)v(X) − w(X) − h(X)`(X) = 0 (see [GGPR13]), where
`(X) is a public fixed polynomial, the polynomials u(X), v(X), and w(X) depend on the concrete circuit
and the witness the prover is using, and h(X) = (u(X)v(X)−w(X))/`(X) is a polynomial iff the prover
is honest. Note that χ(X) consists of a linear combination of 3 terms, each of us being a product of two
polynomials, with polynomials `(X) and 1 being publicly known.

We now consider polynomials A(X,Y), B(X,Y) (“commitments” to u(X) and v(X), respectively), and
C(X,Y) = A(X,Y)B(X,Y), such that the coefficient of Y κ (for a κ fixed later) is u(X)v(X) − w(X) =
h(X)`(X) for some h(X) iff the prover is honest (i.e., χ(X) = 0). One can guarantee that χ(X) = 0 in the
case of generic prover [Sho97] by inserting to the CRS elements of type f(X)Y κ only for polynomials f(X)
that divide by `(X). The resulting zk-SNARK Sqap guarantees that (i) u(X), v(X), and w(X) use the
same witness, and (ii) the public input encoded into u(X) is correct. It will be somewhat more complicated
(but not less efficient!).

We use aggressive optimization to get an as efficient knowledge-sound SNARK as possible while not
sacrificing (much) in the simplicity of the soundness proof. Somewhat surprisingly, the resulting SNARK
Sqap is very similar to Groth’s knowledge-sound SNARK from EUROCRYPT 2016 [Gro16]. However, it
uses only two trapdoors instead of five. This distinction is important: for example, as noted in [ABLZ17],
only two out of Groth’s five trapdoors are needed for simulation. In Sqap, we use well-chosen powers of
one trapdoor Y as substitutes of four trapdoors in [Gro16].

The way we choose these powers of Y is interesting by itself. Let X∗ = (X, . . .) be the vector of
all indeterminates, except Y , that are available in the knowledge-soundness (or NBBASE) proof. This
includes indeterminates created by the adversary by using elliptic curve hashing and (in the case of
NBBASE proof) indeterminates created by simulator queries. Then, V (X∗, Y) =

∑
Vi(X

∗)Y i for some
polynomials Vi(X∗) where i is a linear combination of some initially undetermined values α, β, γ, We
identify that the prover is honest (χ(X) = 0, the public inputs are correctly encoded, and one uses the

4 Helger Lipmaa

same witness in u(X), v(X), w(X)) if and only Vi(X∗) = 0 for six (in the case of Sqap) so-called critical
values i. We then choose α, β, . . . so that the corresponding six linear combinations i are distinct from
each other and all other “non-critical” linear combinations j. Moreover, we choose α, β, . . . so that the
SNARK is relatively efficient. E.g., we require for all critical i, |i| is as small as possible, and check if
there is a way to make some non-critical values j to collapse (this can shorten the CRS). Since this is a
moderately hard optimization problem for humans, we used an exhaustive search at this point. Due to
this, exponents in the resulting SNARKs can look somewhat obscure, e.g., A(X,Y) = raY

0 + u(X)Y −1

and B(X,Y) = rbY
4 + v(X)Y 3.

We modify Sqap minimally to also make it NBBASE. More precisely, to achieve NBBASE, we establish
that for any k a malicious prover has an attack vector by setting A(X,Y) = sa1kDk + . . . for non-zero
sa1k and an indeterminate Dk generated during the kth simulation query. We eliminate this vector by
additionally requiring the prover to compute polynomial A(X,Y)Z for a new indeterminate Z (as often
done in knowledge-assumption-based security proofs). This increases the complexity of the SNARK slightly,
but the resulting NBBASE SNARK is still significantly more efficient than the Groth-Maller NBBSASE
zk-SNARK from CRYPTO 2017. Moreover, the latter was only given for the language SAP that has an
efficient reduction from arithmetic circuits that only have squaring gates (and are thus usually twice larger
than circuits that have generic multiplication gates, [GM17]).

Importantly, Sqap has a simple Sub-GBGM knowledge-soundness proof where only the value of the
six critical coefficients of V matter. The NBBASE proof of the NBBASE SNARK has an arguably even
simpler proof due to the effective use of a knowledge assumption. This should be compared to Groth’s
SNARK from EUROCRYPT 2016 [Gro16] (resp., the Groth-Maller SNARK from CRYPTO 2017 [GM17])
that has a very complicated knowledge-soundness (resp., NBBSASE) proof.

As we mentioned before, Sqap is very similar to Groth’s SNARK. We obtain a simpler knowledge-
soundness proof by assuming that the pairing is asymmetric. (Asymmetric pairings are much more effi-
cient than symmetric pairings and thus strongly preferred in practice.) On the other hand, Groth proved
knowledge-soundness in the case of symmetric pairing, which results in both malicious A(X∗, Y) and
B(X∗, Y) having more terms and thus V (X∗, Y) =

∑
Vi(X

∗)Y i having more critical coefficients. Thus,
one corollary of our knowledge-sound proof is the (up to our knowledge, novel) observation that Groth’s
SNARK has a very simple knowledge-soundness proof given that one uses asymmetric pairings. Our goal
was not to duplicate Groth’s SNARK but to construct an efficient SNARK that has a simple knowledge-
soundness proof. Thus, our exposition of the derivation of Sqap can also be seen as an intuitive pedagogical
re-derivation of (a slight variant) the most efficient existing pairing-based SNARK. We emphasize that,
on the other hand, Sseqap is novel.

After that, we consider languages SAP [Gro16,GM17], SSP [DFGK14], and QSP [GGPR13,Lip13] that
have been used in the pairing-based SNARK literature. For each of them, we explain its algebraic relation
to QAP, which helps us to lift both Sqap and Sseqap to the setting of the corresponding languages. In the
SNARK literature, all four languages are usually handled separately and our (simple) relation seems to be
novel. In some of the cases, we improve on the efficiency of previous known SNARKs for the same language.
In the case of NBBASE, we propose the first known SNARK for QAP, SSP, and SAP. In particular, we
propose the first known (efficient) NBBASE SNARK for SSP and QSP and, therefore, Boolean circuits
in general. We omit precise descriptions of the reduction between circuits and corresponding languages,
giving only a brief explanation and then referring to original papers.

In Section 4, we describe a SNARK Ssap for the language SAP (Square Arithmetic Program, [GM17]).
SAP has an efficient reduction to arithmetic circuits that use squaring gates instead of multiplication gates.
Algebraically, SAP is a variant of QAP with v(X) = u(X); thus, χ(X) = u(X)2 − w(X) − h(X)`(X).
Ssap is as efficient than Sqap. Since the argument contains ([a]1, [b]2) with a = b in the honest case, to
obtain NBBASE it is sufficient to check that [a]1 • [1]2 = [1]1 • [1]1; that is, one does not have to introduce
the new variable Z. However, one has to take into account that such a circuit has usually 2 times more
gates; this is since in general one needs two squaring gates to implement a multiplication gate; however

Simple Yet Efficient Knowledge-Sound and Non-Black-Box Any-Simulation-Extractable ZK-SNARKs 5

Table 2. Algebraic relations between languages: restrictions on u(X), v(X), and v(X)

u(X) v(X) w(X)

QAP general general general
SAP general = u(X) general
SSP = u(X) = u(X) = u(X)
QSP general general = 0

this is a difference in the reduction overhead between circuits and the corresponding language, not in the
cryptographic construction of the SNARK.

In Section 5, we describe a SNARK Sssp for the SSP language [DFGK14] that has efficient reduction
from Boolean circuit. Algebraically, SSP is a variant of QAP, where one sets u(X) = v(X) = w(X). In this
case, χ(X) = u(X)(u(X)− 1)− h(X)`(X). Sssp is approximately as efficient as the SSP-based SNARK of
Danezis et al but it has a shorter argument with more efficient verification (only one verification equation
instead of two). The new NBBASE SNARK Ssessp for SSP uses the same idea as Ssesap, by just adding a
single verification to check that A(X,Y) = B(X,Y). No previous NBBASE SNARKs for SSP were known.
Moreover, we are not aware of a previous observation that one can design SNARKs for SSP by starting
with a SNARK for QAP and then just setting u(X) = v(X) = w(X).

We emphasize that an efficient SNARK for SSP is well-suited for applications where one needs to use
Boolean circuits. They are also useful in applications like shuffle arguments [FLZ16,FLSZ17], and SSP has
been used as the basis for falsifiable SNARKs with long commitments [DGP+19].

Finally, in Section 6, we design a SNARK for QSP (Quadratic Span Programs, [GGPR13,Lip13]).
Algebraically, QSP is a variant of QAP, where one sets w(X) = 0. However, the reduction from Boolean
circuits to QSP is relatively complex, with the need to implement span-program-based gate checkers
and error-correcting-code-based wire checkers [GGPR13,Lip13]. We construct an NBBASE version Sseqsp
of this SNARK similarly to how we constructed Sseqap. Sqsp is again more efficient than previously known
knowledge-sound SNARKs for QSP, while there was no previously known NBBASE SNARK for QSP.

To construct eight different SNARKs and verify their sets of critical coefficients and also soundness
in the generic model, we used computer algebra and exhaustive search. We believe that the soundness
of the SNARKs is obvious, assuming that the variables α, β, γ, . . . have been chosen so that exponents
of Y corresponding to the critical coefficients are different from all other exponents. However, finding
small values of these variables seems to require exhaustive search — the number of non-zero coefficients
of Vi(X) (even in the knowledge-soundness proof without allowing the generic adversary to create new
indeterminates) is approximately 30, depending on the SNARK. This issue can be solved by using more
trapdoors as in [Gro16].

Further Work. Since our goal was to provide a simple, very generic, template that allows for efficient
soundness proofs, we did not fully optimize all eight new SNARKs. Moreover, we do not consider the
important notion of subversion-security [BFS16,ABLZ17,Fuc18]: including all technical details for how to
do it in the case of all 8 new zk-SNARKs would make the paper considerably longer.

Another open question is the applicability of NBBASE SNARKs. One obvious application (further
studying of which we will leave as an open problem) is the construction of UC-secure SNARKs as
in [KZM+15]. Kosba et al. used a knowledge-sound SNARK to construct a UC-secure SNARK with non-
succinct commitment. This construction used a generic transformation from non-black-box knowledge-
sound argument systems (with perfectly binding and extractable commitments) to black-box simulation-
extractable argument systems, implemented as a very large arithmetic circuit. We conjecture that there
exists a more efficient transformation from NBBASE argument systems to black-box simulation-extractable
argument systems.

6 Helger Lipmaa

Finally, we conjecture that at least the NBBASE security of Ssesap and Ssessp should be provable under
reasonable knowledge assumptions.

2 Preliminaries

Let PPT denote probabilistic polynomial-time and let λ ∈ N be the security parameter. All adversaries
will be stateful. For an algorithm A, range(A) is the range of A, i.e., the set of of valid outputs of A,
RND(A) denotes the random tape of A, and r←$RND(A) denotes the random choice of the randomizer r
from RND(A). By y ← A(x; r) we denote the fact that A, given an input x and a randomizer r, outputs y.
When we use this notation then r represents the full random tape of A. We denote by negl(λ) an arbitrary
negligible function, and by poly(λ) an arbitrary polynomial function. We write a ≈λ b if |a− b| ≤ negl(λ).
For a matrix A, Ai denotes its ith row and A(j) denotes its jth column.

Assume n is a power of two, and let ω be the n-th primitive root of unity modulo p. Such ω exists,
given that n | (p− 1). Then, `(X) :=

∏n
i=1(X − ωi−1) is the unique degree n monic polynomial such that

`(ωi−1) = 0 for all i ∈ [1 .. n]. For i ∈ [1 .. n], let `i(X) be the ith Lagrange basis polynomial, i.e., the unique
degree n−1 polynomial s.t. `i(ωi−1) = 1 and `i(ωj−1) = 0 for i 6= j. Given any χ ∈ Zp, there is an efficient
algorithm (see, e.g., [BCG+13]) that computes `i(χ) for i ∈ [1 .. n]. Clearly, La(X) :=

∑n
i=1 ai`i(X) is the

interpolating polynomial of a at points ωi−1, with La(ωi−1) = ai, and its coefficients can thus be computed
by executing an inverse Fast Fourier Transform in time Θ(n log n). Moreover, (`j(ω

i−1))ni=1 = ej (the jth
unit vector) and (`(ωi−1))ni=1 = 0n.

A bilinear group generator Pgen(1λ) returns (p,G1,G2,GT , ê), where G1,G2,GT are three additive
cyclic groups of prime order p, and ê : G1 ×G2 → GT is a non-degenerate efficiently computable bilinear
pairing. We require the bilinear pairing to be Type-3 [GPS08], i.e., we assume that there is no efficient
isomorphism between G1 and G2. We use the bracket notation of [EHK+13], i.e., we write [a]ι to denote
agι where gι is a fixed generator of Gι. We denote ê([a]1, [b]2) as [a]1 • [b]2. We use freely the bracket
notation together with matrix notation, e.g., if AB = C then [A]1 • [B]2 = [C]T .

QAP. Quadratic Arithmetic Program (QAP) was introduced in [GGPR13] as a language where for an
input x and witness w, (x,w) ∈ R can be verified by using a parallel quadratic check, and that has an
efficient reduction from the well-known language (either Boolean or Arithmetic) Circuit-SAT. Thus, an
efficient zk-SNARK for QAP results in an efficient zk-SNARK for Circuit-SAT.

Let m0 < m be a non-negative integer. In the case of arithmetic circuits, n is the number of multipli-
cation gates and m to the number of wires in the circuit. Here, we consider arithmetic circuits that consist
only of fan-in-2 multiplication gates, but either input of each multiplication gate can be a weighted sum
of some wire values, [GGPR13].

Let F = Zp, such that ω is the n-th primitive root of unity modulo p. (This requirement is needed for
the sake of efficiency, and we will make it implicitly throughout the paper. However, it is not needed for
the new SNARKs to work.) A QAP is characterized by n constraints (

∑m
j=1 Uijuj(X))(

∑m
j=1 Vijuj(X)) =∑m

j=1Wijwj(X), where U , V , and W are instant-dependent matrices. For j ∈ [0 ..m], define uj(X) :=
LU (j)(X), vj(X) := LV (j)(X), and wj(X) := LW (j)(X) to be interpolating polynomials of the jth column
of the corresponding matrix. Thus, uj , vj , wj ∈ Z(≤n−1)

p [X].
An QAP instance Qp is specified by the so defined (Zp,m0, {uj , vj , wj}mj=0). This instance defines the

following relation, where we assume that a0 = 1:

RQp =
{

(x,w) : x = (a1, . . . , am0)> ∧ w = (am0+1, . . . , am)> u(X)v(X) ≡ w(X) (mod `(X))
}

where u(X) =
∑m

j=0 ajuj(X), v(X) =
∑m

j=0 ajvj(X), and w(X) =
∑m

j=0 ajwj(X). Alternatively, (x,w) ∈
R if there exists a (degree ≤ n− 2) polynomial h(X), s.t.

χ(X) := u(X)v(X)− w(X) · 1− h(X)`(X) = 0 , (1)

Simple Yet Efficient Knowledge-Sound and Non-Black-Box Any-Simulation-Extractable ZK-SNARKs 7

Note that on top of checking Eq. (1), the verifier also needs to check that u(X), v(X), and w(X) are
correctly computed: that is, that (i) the first m0 coefficients aj in u(X) are equal to the public inputs,
and (ii) u(X), v(X), and w(X) are all computed by using the same coefficients aj for j ≤ m.

SNARKs. Let R be a relation generator, such that R(1λ) returns a polynomial-time decidable binary
relation R = {(x,w)}. Here, x is the statement and w is the witness. We assume that λ is explicitly
deductible from the description of R. R also outputs auxiliary information auxR that will be given to the
honest parties and the adversary. As in [Gro16], auxR will be equal to gk← Pgen(1λ, n) for a well-defined
n. Because of this, we will also give auxR as an input to the honest parties; if needed, one can include
an additional auxiliary input as an input to the adversary. We recall that the choice of p and thus of the
groups Gz depends on n. Let LR = {x : ∃w, (x,w) ∈ R} be an NP-language.

A non-interactive zero-knowledge argument system Ψ for R consists of four PPT algorithms:

CRS generator: Kcrs is a probabilistic algorithm that, given (R, auxR) ∈ range(R(1λ)), outputs (crs, tc)
where crs is a CRS and tc is a CRS trapdoor. Otherwise, it outputs a special symbol ⊥. For the sake
of efficiency and readability, we divide crs into crsP (the part needed by the prover) and crsV (the part
needed by the verifier).

Prover: P is a probabilistic algorithm that, given (R, auxR, crsP, x,w) for (x,w) ∈ R, outputs an argument
π. Otherwise, it outputs ⊥.

Verifier: V is a probabilistic algorithm that, given (R, auxR, crsV, x, π), returns either 0 (reject) or 1
(accept).

Simulator: Sim is a probabilistic algorithm that, given (R, auxR, crs, tc, x), outputs an argument π.

A SNARK is required to satisfy completeness (honest verifier accepts honest verifier), knowledge-
soundness (if a prover makes honest verifier accept, then we can extract from the prover the witness w),
and zero-knowledge (there exists a simulator that, knowing CRS trapdoor but not knowing the witness,
can produce accepting statements with the verifier’s view being indistinguishable from the view when
interacting with a honest prover). See Appendix B.1 for formal definitions.

Simulation-Extractability (SE). SE [Sah99,DDO+01] is a stronger notion of knowledge-soundness,
motivated by cryptographic applications like non-malleability and UC-security. An SE NIZK argument
system remains knowledge-sound even if the soundness adversary has access to the simulation oracle.
More precisely, one requires that there exists a universal extractor Ext, such that for each PPT soundness
adversary A, who has oracle access to the simulator, that can deduce the witness from A.

Dodis et al. [DHLW10] differentiated between several different favors of SE. In the case of any-
simulation-extractability (ASE), the simulator can be queried with any (potentially false) statement while
in the case of true-simulation-extractability (TSE), the simulator can only be queried with true statements.
Moreover, in the case of strong (any or true)-simulation-extractability, the adversary wins even if she can
come up with a new argument for a statement she has queried a simulation for.

Groth and Maller [GM17] introduced the notion of non-black-box simulation-extractability (NBBSE)
for SNARKs. In NBBSE, one requires that for each PPT soundness adversary A, who has oracle ac-
cess to the simulator, there exists a non-black-box extractor ExtA that can deduce the witness from A.
See [KZM+15] for a treatment of SE, with an universal extractor„ for SNARKs.

The definition of SE from [GM17] corresponds to a non-black-box strong any-simulation extractabil-
ity (NBBSASE). Groth and Maller proved that for any NBBSASE, the argument consists at least of
three group elements and that there should be at least two verification equations. They also proposed
one concrete NBBSASE SNARK, based on the SAP (Square Arithmetic Program) language, that meets
the lower bounds. In the current paper, we design several non-black-box any-simulation-extractable
(NBBASE) SNARKs based on different languages like QAP [GGPR13], SSP [DFGK14], SAP [Gro16],
and QSP [GGPR13]. As argued by Dodis et al. [DHLW10], TSE (and thus also ASE) is sufficient in many

8 Helger Lipmaa

applications. We will provide formal definitions of non-black-box simulation-extractability (NBBSASE and
NBBASE) in Appendix B.2.

Generic Model. In the Generic Bilinear Group Model (GBGM) [Nec94,Sho97,Mau05,BBG05], one
assumes that the adversary has only access to group elements via generic bilinear-group operations
(group operations and the bilinear map) together with an equality test. In the subversion GBGM (Sub-
GBGM, [SPMS02,BFS16,ABLZ17]; named generic group model with hashing into the group in [BFS16]),
the adversary has an additional power of creating new indeterminates in bilinear group. The Sub-GBGM
is motivated by elliptic curve hashing algorithms [Ica09,BCI+10,TK17] that allow one to efficiently create
elliptic-curve group elements without knowing their discrete logarithms.

Thus, Sub-GBGM is a weaker model than GBGM. As an important example, knowledge assumptions
that state that the output group element must belong to the span of input group elements hold in the
GBGM but not in the Sub-GBGM. This is since in the Sub-GBGM, the adversary can create new group
elements without knowing their discrete logarithms; indeed the output element might be equal to one
such created group elements. Hence, an Sub-GBGM adversary is less restricted than a GBGM adversary.
Moreover (see, e.g., [ALSZ18]), some knowledge assumptions that have a trivial security proof in the
GBGM have quite a complicated proof in the Sub-GBGM.

All knowledge-soundness and NBBASE proofs in this paper are in the Sub-GBGM. Intuitively, it means
that we will operate with polynomials in several indeterminates by using constraints given by the pairing-
based setting. In the actual SNARK, we will instead have representations of said polynomials in one of
the three groups G1, G2, and GT , where the representation of f(X) in group Gι is [f(x)]ι for x being a
vector of secret trapdoors. In the pairing-based setting, the adversary can only compute new polynomials
“in Gι” from the span of the polynomials “in Gι” in her input (that importantly includes the CRS) and new
indeterminates she has created in Gι. For example, if the CRS is ([x2y3, y2, 1]1, [1, xy]2) then any output
of the adversary has to be a known linear combination of the form [a1x

2y3 + a2y
2 + a3 +

∑
k qkQιk]1 or

[a1+a2xy+
∑
qkQk]2 for known constants ai, where Qιk are indeterminates are created by the adversary in

groupGι. In addition, given polynomialsA(X,Y) andB(X,Y) in the source groupsG1 andG2 respectively,
one can compute the polynomial A(X,Y)B(X,Y) in the target group GT , by using bilinear pairing. Due to
this, we will use the language of polynomials in the rest of this paper, switching back to their representation
in some group only at the end of each section.

See Appendix A for a long introduction to GBGM and Sub-GBGM.

3 QAP-Based SNARKs

In this section, we will describe a generic template for SNARKs for QAP and then give details of con-
crete new SNARKs Sqap (SNARK for QAP) and Sseqap (SNARK for QAP, SE). The template follows two
objectives: (i) simple soundness proof in the generic model, and (ii) efficiency. In fact, Sqap will be very
similar to Groth’s SNARK from EUROCRYPT 2016 [Gro16] with the main difference being the use of only
two trapdoors instead of five. The second difference is an alternative, much simpler, knowledge-soundness
proof for the case of asymmetric pairings; Groth on the other hand provided a very complex knowledge-
soundness proof that is valid for both asymmetric and symmetric pairings. The NBBASE SNARK Sseqap is
novel, and has arguably an even simpler security proof.

Let u(X) =
∑m

j=1 ajuj(X), v(X) =
∑m

j=1 ajvj(X), and w(X) =
∑m

j=1 ajwj(X) as in Section 2. Recall
from Eq. (1) that for χ(X) = u(X)v(X)−w(X)−h(X)`(X), the key equation of QAP is χ(X) = 0. That
is, h(X) := (u(X)v(X)− w(X))/`(X) is a polynomial iff the prover is honest.

The main intuition behind our approach is that χ(X) can be seen as a linear combination of three
products of two polynomials. Thus, if we represent one multiplicand polynomial in each addend as a
member of G1 and another multiplicand as a member of G2, we can use pairings and group operations
to check if χ(X) = 0, i.e., that the prover was honest. (More precisely, we represent an evaluation of the

Simple Yet Efficient Knowledge-Sound and Non-Black-Box Any-Simulation-Extractable ZK-SNARKs 9

polynomial at a random point in the corresponding group; however, for a moment we will just use the
terminology of polynomials.)

Our very first idea is to commit to u(X), v(X), and w(X) as A(X,Y) = u(X)Y +w(X)Y 2 + h(X)Y 3

and B(X,Y) = v(X)Y 3 − Y 2 − `(X)Y . In this case, the coefficient of Y 4 in C(X,Y) := A(X,Y)B(X,Y)
is χ(X). Thus, if an adversary can compute C(X,Y) (i.e., compute its coefficients), he can also compute
χ(X). One can construct a knowledge-sound SNARK so that the CRS does not contain any elements of the
shape f(X)Y 4 where f(X) is a non-zero polynomial; this means that a generic adversary will not be able to
compute a representation of C(X,Y) unless the input belongs to QAP. We construct a verification equation
that accepts iff the coefficient of Y 4 in C(X,Y) is 0 iff the prover is honest. To obtain zero-knowledge,
one can define A(X,Y) = ra + u(X)Y + w(X)Y 2 + h(X)Y 3 and B(X,Y) = rb + v(X)Y 3 − Y 2 − `(X)Y
for uniformly random ra and rb.

We optimize this by noting that if A(X,Y) = u(X)Y + w(X)Y 2 and B(X,Y) = v(X)Y 3 − Y 2 then
the coefficient of Y 4 in C(X,Y) = A(X,Y)B(X,Y) is u(X)v(X)− w(X) = h(X)`(X) for some h(X) iff
the prover is honest. One obtains knowledge-soundness by including to the CRS elements of type f(X)Y 4

only if `(X) | f(X). Since A(X,Y) and B(X,Y) now have one fewer addend, C(X,Y) has fewer addends
and thus both the prover’s computation and the CRS length are smaller.

Unfortunately, this general approach is too simplistic: on top of χ(X) = 0, we need to additionally
guarantee that the public input is correct and that the same coefficients aj are used in the computation of
each u(X) =

∑
ajuj(X), v(X) =

∑
ajvj(X), and w(X) =

∑
ajwj(X). Moreover, the described SNARK

is less efficient (especially in the CRS size) than the state-of-the-art SNARKs like [Gro16]. Thus, we will
use a somewhat more complex approach.

The argument in the new template consists of three elements, π = ([a, cs]1, [b]2), where a = A(x, y),
b = B(x, y), and cs = Cs(x, y) for well-defined polynomials A(X,Y), B(X,Y), and Cs(X,Y). Intuitively,
[a]1 is a succinct commitment to u(X) while [b]2 is a succinct a commitment to v(X). Moreover, [cs]1 is
the actual argument. More precisely, we set c = C(x, y) where

C(X,Y) = (A(X,Y) + Y ε)(B(X,Y) + Y ζ)− Y ε+ζ = A(X,Y)B(X,Y) +B(X,Y)Y ε +A(X,Y)Y ζ (2)

for integers ε, ζ chosen later. We define A(X,Y), B(X,Y), and C(X,Y) (chosen as per Eq. (2)) as follows,
where also α, β, γ, κ are chosen later:

A(X,Y) =raY
α + u(X)Y γ ,

B(X,Y) =rbY
β + v(X)Y κ−γ ,

C(X,Y) =rarbY
α+β + rbu(X)Y β+γ + rav(X)Y α−γ+κ + raY

α+ζ + rbY
β+ε + u(X)v(X)Y κ+

u(X)Y γ+ζ + v(X)Y −γ+κ+ε

=rb(A(X,Y) + Y ε)Y β + rav(X)Y α−γ+κ + raY
α+ζ+∑m

j=1 aj(uj(X)Y γ+ζ + vj(X)Y −γ+κ+ε + wj(X)Y κ) + (u(X)v(X)− w(X))Y κ .

(3)

Since a SNARK also has a public input (aj)
m0
j=1, we define two polynomials Cs(X,Y) and Cp(X,Y), so

that1 Cp(X,Y)Y δ + Cs(X,Y)Y β = C(X,Y), where Cp(X,Y) depends only on aj for j ≤ m0, Cs(X,Y)
depends only on aj for j > m0, and Cp(X,Y) only has m0 addends (to minimize the computation,
performed by the verifier):

Cp(X,Y) =
∑m0

j=1 aj
(
uj(X)Y −δ+γ+ζ + vj(X)Y −δ−γ+κ+ε + wj(X)Y −δ+κ

)
,

Cs(X,Y) =
∑m

j=m0+1 aj
(
uj(X)Y −β+γ+ζ + vj(X)Y β+−γ+κ+ε + wj(X)Y −β+κ

)
+

(u(X)v(X)− w(X))Y −β+κ + rb (A(X,Y) + Y ε) + rav(X)Y α−β−γ+κ + raY
α−β+ζ .

(4)

1 We use the multiplicand Y β for efficiency reasons, since C(X,Y) has an addend raA(X,Y)Y β .

10 Helger Lipmaa

To minimize the length of the CRS, we make one more optimization, setting β = α − 2γ + κ. Without
this, the CRS contains [{xiyγ}n−1i=0]1 and [{xiyα−β−γ+κ}n−1i=0]1 separately. Thus, Eq. (4) simplifies to

A(X,Y) =raY
α + u(X)Y γ ,

B(X,Y) =rbY
α−2γ+κ + v(X)Y κ−γ ,

Cp(X,Y) =
∑m0

j=1 aj
(
uj(X)Y −δ+γ+ζ + vj(X)Y −δ−γ+κ+ε + wj(X)Y −δ+κ

)
,

Cs(X,Y) =
∑m

j=m0+1 aj
(
uj(X)Y −α+3γ+ζ−κ + vj(X)Y −α+γ+ε + wj(X)Y 2γ−α)+

(u(X)v(X)− w(X))Y −α+2γ + rb (A(X,Y) + Y ε) + rav(X)Y γ + raY
2γ−κ+ζ .

(5)

Note that if −α+ 2γ (now, considering α and γ to be integers) is different from all other exponents in
C(X,Y), then the coefficient of Y −α+2γ in C(X,Y) is u(X)v(X)−w(X). Moreover, the prover is honest
iff χ(X) = 0 iff u(X)v(X) − w(X) = h(X)`(X) for some polynomial h(X) iff the coefficient of Y −α+2γ

in C(X,Y) is divisible by `(X). In addition, Cs(X,Y) has addends uj(X)Y −α+3γ+ζ−κ, vj(X)Y −α+γ+ε,
and wj(X)Y 2γ−α; thus their sum can be written as

∑m
j=1 ajfj(X,Y) for known polynomials fj(X,Y), as

above. This and the shape of Y −α+2γ is the main reason why we chose C(X,Y) as in Eq. (2).
In the resulting SNARK, the verifier V checks that ([a]1 +[yε]1)• ([b]2 +[yζ]2)− [yη+ζ]T = [cp]1 • [yδ]2 +

[cs]1 • [yβ]2, where [cp]1 is recomputed by V. If this holds, then in the generic model, also Eq. (2) holds.
In G1, the CRS contains (representations of) polynomials, needed to compute A(X,Y) + Y ε, Cp(X,Y),
and Cs(X,Y). In G2, the CRS contains polynomials, needed the compute B(X,Y) + Y ε, Y α−2γ+κ, and
Y δ. See the description of the CRS in Fig. 1. (Some of the computation is done by the prover only and
some of it by the verifier only; this explains the division of the CRS to crsP and crsV.)

In the malicious case, the Sub-GBGM adversary can also create a number of new indeterminates. Let
Q1 be the vector of new indeterminates in G1 andQ2 be the corresponding vector in G2. LetQ = (Q1,Q2)
and X = (X,Q, Y). Then, the polynomial corresponding to the verification equation is

V (X) = (A(X,Q1, Y)+Y ε)(B(X,Q2, Y)+Y ζ)−Y ζ+ε−Cp(X,Q1, Y)Y δ−Cs(X,Q1, Y)Y α−2γ+κ , (6)

for potentially maliciously computed polynomials A(X,Q1, Y), B(X,Q2, Y), and Cs(X,Q1, Y) (that can
also depend on the new indeterminates). Thus, if the verifier accepts then (since we are working in
the generic model) V (X) = 0. Writing V (X) =

∑
i Vi(X,Q)Y i, it follows from V (X) = 0 that each

Vi(X,Q) = 0. We now aim to construct the SNARK so that from Vi(X,Q) = 0, for i ∈ S (with κ ∈ S)
and |S| being small, it follows that the prover is honest.

To formalize the previous discussion, consider the malicious case where A(X,Q1, Y), B(X,Q2, Y), and
Cs(X,Q1, Y) can be arbitrary polynomials in the span of polynomials represented in the CRS in groups
G1, G2, and G1, respectively. Since a generic adversary can only compute polynomials that are in the span
of the polynomials in the CRS (of the same group), then we know that maliciously computed A(X,Q1, Y)
and B(X,Q2, Y) have to have the following shape.

A(X,Q1, Y) =
∑m0

j=1 a
∗
j (uj(X)Y −δ+γ+ζ + vj(X)Y −δ−γ+κ+ε + Y −δ+κwj(X))+∑m

i=m0+1 a
∗
i (ui(X)Y −α+3γ+ζ−κ + vi(X)Y −α+γ+ε + wi(X)Y 2γ−α)+

`(X)ha(X)Y −α+2γ + raY
α + ua(X)Y γ + aεY

ε + a2γ+ζ−κY
2γ+ζ−κ +

∑
k qakQ1k ,

B(X,Q2, Y) =rbY
α−2γ+κ + vb(X)Y κ−γ + bζY

ζ + bδY
δ +

∑
k qbkQ2k .

(7)

C(X,Q1, Y) is defined like A(X,Q1, Y), except that one has to replace the letter a with the letter c in
variable names (e.g., ra is replaced with rc).

Let R = {i : Vi(X,Q) 6= 0}, where ∆ = (α, γ, ε, ζ, δ, κ). Let

S = {γ + ζ,−γ + ε+ κ, κ, ε+ ζ, δ + ε, 2γ + 2ζ − κ}

Simple Yet Efficient Knowledge-Sound and Non-Black-Box Any-Simulation-Extractable ZK-SNARKs 11

Kcrs(p): Sample x, y, z ←$Z∗p, return tc← (x, y, z). Let

crsP ←

[yα, {xjyγ}n−1
j=0 , y

αz, {xjyγz}n−1
j=0 , {x

i`(x)y−α+2γ}n−2
j=0 , y

ε, y2γ+ζ−κ,

{uj(x)Y −α+3γ+ζ−κ + vj(x)y
−α+γ+ε + wj(x)y

2γ−α}mj=m0+1

]
1

,
[
yα−2γ+κ, {xiyκ−γ}n−1

i=0

]
2

 ;

crsV ←
(
[{uj(x)y−δ+γ+ζ + vj(x)y

−δ−γ+κ+ε + wj(x)y
−δ+κ}m0

j=1, y
ε]1,
[
yα−2γ+κ, yζ , yδ, z

]
2
, [yε+ζ]T

)
;

crs← (crsP, crsV); return (crs, tc);

P(p, crs; (aj)
m0
j=1, (aj)

m
j=m0+1): (ra, rb)←$Z2

p; u(X) ←
∑m
j=1 ajuj(X); v(X) ←

∑m
j=1 ajvj(X); w(X) ←

∑m
j=1 ajwj(X);

h(X) ← (u(X)v(X) − w(X))/`(X); [a]1 ← ra[y
α]1 + [u(x)yγ]1; [az]1 ← ra[y

αz]1 + [u(x)yγz]1 ; [cs]1 ←∑m
j=m0+1 aj [uj(x)y

−α+3γ+ζ−κ + vj(x)y
−α+γ+ε + wj(x)y

2γ−α]1 + [h(x)`(x)y−α+2γ]1 + rb ([A(x, Y)]1 + [Y ε]1) +

ra([y
2γ−κ+ζ]1 + [v(x)yγ]1); [b]2 ← rb[y

α−2γ+κ]2 + [v(x)yκ−γ]2; return π ←
(
[a, az , cs]1 , [b]2

)
;

V(p, crs; (aj)
m0
j=1, π =

(
[a, az , cs]1 , [b]2

)
): Set [cp]1 ←

∑m0
j=1 aj [uj(x)Y

−δ+γ+ζ+vj(x)Y
−δ−γ+κ+ε+wj(x)Y

−δ+κ]1. Check that
[a+ yε]1 • [b+ yζ]2 = [cp]1 • [yδ]2 + [cs]1 • [yα−2γ+κ]2 + [yζ+ε]T and [a]1 • [z]2 = [az]1 • [1]2 ;

Sim(p, crs; (aj)
m0
j=1, tc = y): [cp]1 ←

∑m0
j=1 aj [uj(x)y

−δ+γ+ζ+vj(x)y
−δ−γ+κ+ε+wj(x)y

−δ+κ]1; d←$Zp; e←$Zp; [a]1 ← d[1]1;
[az]1 ← dy−α[yαz]1 ; [b]2 ← e[1]2; [cs]1 ← y−β((de+ dyζ + eyε)[1]1 − yδ[cp]1); return π ←

(
[a, az , cs]1 , [b]2

)
;

Fig. 1. The new SNARKs for QAP: Sqap (without gray entries) and Sse
qap (with gray entries)

and S̄ = R \ S̄ be the complement of S. As we will see shortly, to obtain knowledge-soundness, we will
need to choose the values in ∆ so that S consists of mutually different integers (|S| = 6) and S ∩ S̄ = ∅.
Let h(X) := hc(X) − rbha(X). Let ãj = aj − bδa∗j for j ≤ m0 and ãi = c∗j − rba∗j for j > m0. Denote
u(X) =

∑m
j=1 ãjuj(X), v(X) =

∑m
j=1 ãjvj(X), and w(X) =

∑m
j=1 ãjwj(X). In this case, the “significant”

coefficients Vi(X,Q), i ∈ S, of V (X) are depicted in Fig. 2.
We are now ready to describe the full SNARK Sqap, see Fig. 1, and prove its knowledge-soundness.

Like [Gro16] but unlike say [GGPR13], Sqap guarantees that u(X), v(X), and w(X) use the same witness
a without having to use a strong QAP [GGPR13]. Unlike [Gro16], we will not prove knowledge-soundness
in the case of symmetric pairings, although Groth’s proof can be easily adapted to our case.

Theorem 1. (1) Assume ∆ is chosen so that S ∩ S̄ = ∅. Then Sqap in Fig. 1 is knowledge-sound in the
Sub-GBGM.
(2) Sqap is perfectly zero-knowledge.

Proof (Sketch). (1: knowledge-soundness) Let A be a knowledge-soundness adversary that has suc-
ceeded in outputting (x, π) such that x 6∈ L but V accepts. Since the proof is in the generic model, the
Gι-outputs of A have to belong to the span of her inputs (one part of the input is the CRS) and moreover,
one can extract the corresponding coordinates. LetX = (X,Q, Y) be a vector of all indeterminates. Recall
that since we work the Sub-GBGM model, we give A the power to create new indeterminates Qιk in Gι

(see Section 2 for the posed restrictions on the latter).
In the generic model, we can extract all coefficients of V (X). Then, from the verification equation (since

the adversary is generic) it follows that V (X) = 0 and thus Vi(X,Q) = 0 for i ∈ S. Since Vε+ζ(X,Q) =
bζ+aε(bζ+1) = 0, we have aε = −bζ/(bζ+1). In particular, aε, bζ 6= −1 and (aε+1)(bζ+1) = 1. Moreover,
Vδ+ε(X,Q) = (aε + 1)bδ = 0 and thus bδ = 0. Next, V2γ+2ζ−κ(X,Q) = a2γ+ζ−κ = 0. Thus, ãj = aj for j ≤
m0. Finally, (bζ+1)ua(X) = u(X), (aε+1)vb(X) = v(X), and χ(X) = u(X)v(X)−w(X)−`(X)h(X) = 0,
thus Sqap is knowledge-sound.

(2: zero-knowledge) To see that simulator makes the verifier accept, note that (a + yε)(b + yζ) −
csy

α−2γ+κ − cpy
δ − yε+ζ = de + dyζ + eyε − cpy

δ − (de + dyζ + eyε − cpy
δ) = 0. The simulator’s output

comes from the correct distribution since both a and b are individually uniform in Zp, and c is chosen so
that the verification accepts. ut

12 Helger Lipmaa

Y i Coefficient Vi(X,Q) (KS and NBBASE) V +
i (X,Q) (NBBASE only)

Y γ+ζ −u(X) + (bζ + 1)ua(X) + vb(X)a2γ+ζ−κ
∑
k(sc2k

∑
j c
s
kjuj(X)− rbsa2k

∑
j a

s
kjuj(X))

Y −γ+ε+κ −v(X) + (aε + 1)vb(X)
∑
k(sc2k

∑
j c
s
kjvj(X)− rbsa2k

∑
j a

s
kjvj(X))

Y κ ua(X)vb(X)− w(X)− h(X)`(X)
∑
k(sc2k

∑
j c
s
kjwj(X)− rbsa2k

∑
j a

s
kjwj(X))

Y ε+ζ bζ + aε(bζ + 1)

Y δ+ε (aε + 1)bδ
Y 2γ+2ζ−κ (bζ + 1) a2γ+ζ−κ

Fig. 2. Critical coefficients in Sqap (left) and addends to the same coefficients in the NBBASE case (right).

The choice of∆. Recall that we need to find values for∆ = (α, . . .), such that S∩S̄ = ∅. For convenience
sake, it makes sense to require that crs1 and crs2 both have a non-zero monomial corresponding to Y 0

(then one can publish [1]1 and [2]1) and that the values i, such that j for which f(X)Y j belongs to the
CRS for some f(X), have as small absolute values as possible (although we do not consider subversion
security, this potentially speeds up the CRS verification algorithm [ABLZ17]). Since there are too many
coefficients that one can take into account, we used a computer search to the following values for α, γ, . . .:

α = 0, γ = −1, ε = 6, ζ = 0, δ = 5, κ = 2 .

In this case,

crsP =

([
y0, {xjy−1}n−1j=0 , y

0z, {xjy−1z}n−1j=0 , {x
i`(x)y−2}n−2j=0 ,

y6, y−4, {uj(x)y−5 + vj(x)y5 + wj(x)y−2}mj=m0+1

]
1

,
[
y4, {xiy3}n−1i=0

]
2

)
,

crsV =
(

[{uj(x)y−6 + vj(x)y4 + wj(x)y−3}m0
j=1, y

6]1,
[
y4, y0, y5, z

]
2
, [y11]T

)
.

Efficiency. Sqap has fewer trapdoors but otherwise essentially the same complexity as Groth’s (knowledge-
sound) SNARK [Gro16]. (See Table 1 for an efficiency comparison.) For example, crsP has (m −m0) +
1 + n + (n − 1) + 1 = m + 2n − m0 + 1 elements from G1 and (n + 2) elements from G2. Moreover,
crsV has m0 + 1 elements from G1, 3 elements from G2, and one elements from GT . Hence, |crs| =
(m+ 2n+ 2)|G1|+ (n+ 4)|G2|+ |GT | since crsP and crsV have one common element in G1. Note that [a]1
can be computed from [yα]1 and [xiyγ]1 by using n+ 1 exponentiations.

NBBASE SNARK Sse
qap. Let now X = (X,Q,D,E, Y) and X∗ = (X,Q,D,E). Here, Dk (resp., Ek) is

the indeterminate corresponding to the random trapdoor d (resp., e) generated by the simulator during
the kth query. In the case of NBBASE, maliciously generated A∗(X), B∗(X), and C∗(X) have addends
that correspond to the indeterminates generated by the simulator oracle:

A(X,Q1, Y) =
∑m0

j=1 a
∗
j (uj(X)Y −δ+γ+ζ + vj(X)Y −δ−γ+κ+ε + Y −δ+κwj(X))+∑m

i=m0+1 a
∗
i (ui(X)Y −α+3γ+ζ−κ + vi(X)Y −α+γ+ε + wi(X)Y 2γ−α)+

`(X)ha(X)Y −α+2γ + raY
α + ua(X)Y γ + aεY

ε + a2γ+ζ−κY
2γ+ζ−κ +

∑
k qakQ1k−∑

k sa1kDk +
∑

k sa2k
∑

j

(
Y −α+2γ+ζ−κDk + Y −α+2γ−κDkEk + Y −α+2γ−κ+εEk

)
+∑

k sa2k
∑

j a
s
kj

(
uj(X)Y −α+3γ+ζ−κ + vj(X)Y −α+γ+ε + wj(X)Y 2γ−α) ,

B(X,Q2, Y) =rbY
α−2γ+κ + vb(X)Y κ−γ + bζY

ζ + bδY
δ +

∑
k qbkQ2k +

∑
k sbkEk .

In this case, due to the extra inputs from the simulator, the critical coefficients of Vi(X) will be changed
by extra addend V +

i (X) in Fig. 2.
First, assume that only the first verification equation is used. Then the coefficients of Dk1Ek2 (rbsa2k1 +

sak1sbk2 − sc2k1), Y ζDk1 (rbsa2k1 + (Bζ + 1)sak1 − sc2k1), and Y εEk2 (rbsa2k1 + sbk2/(Bζ + 1) − s2Ck1) in

Simple Yet Efficient Knowledge-Sound and Non-Black-Box Any-Simulation-Extractable ZK-SNARKs 13

i = Y j1Dj2k Ej3k Coefficient Vi(X∗, Z)

Y γ+ζ (bζ + 1)uza(X)− u(X)
Y −γ+ε+κ vb(X)− v(X)
Y κ uza(X)vb(X)− w(X)− `(X)hc(X)

Y ε+ζ bζ
Y ζDk1 −sc2k1

Fig. 3. Critical coefficients in Sse
qap after taking into account the verification equation Az(X, Z) = A(X, Z)Z.

V (X) imply that either (i) sak1sbk2 = 0, for all k1 and k2, or (ii) sa1k1 = 1/(bζ + 1) and sbk1 = bζ + 1 for
at least one k1 = k0. In the first case, we can eliminate the V +

i (X∗) addends in Fig. 2, and thus get back
to the (already solved) knowledge-soundness setting.

In the second case, A(X) = sak1Dk1 + . . . for sak1 6= 0. To guarantee that the prover is honest, we must
make it impossible for the prover to include a term sak1Dk1 , for non-zero sak1 , to A(X). We achieve this
by introducing a new knowledge variable Z, adding elements Y αZ and XiY γZ (in G1) and Z (in G2) to
the CRS, asking the prover to compute Az(X, Z) := A(X, Z)Z and then letting the verifier additionally
verify that Az(X, Z) = A(X, Z)Z. After adding these elements to the CRS,

A(X, Z) =rzbY
αZ + uza(X)Y γZ+

∑m0
j=1 a

∗
j (uj(X)Y −δ+γ+ζ + vj(X)Y −δ−γ+κ+ε + Y −δ+κwj(X))+∑m

i=m0+1 a
∗
i (ui(X)Y −α+3γ+ζ−κ + vi(X)Y −α+γ+ε + wi(X)Y 2γ−α)+

`(X)ha(X)Y −α+2γ + raY
α + ua(X)Y γ + aεY

ε + a2γ+ζ−κY
2γ+ζ−κ +

∑
k qakQ1k−∑

k sa1kDk +
∑

k sa2k
∑

j

(
Y −α+2γ+ζ−κDk + Y −α+2γ−κDkEk + Y −α+2γ−κ+εEk

)
+∑

k sa2k
∑

j a
s
kj

(
uj(X)Y −α+3γ+ζ−κ + vj(X)Y −α+γ+ε + wj(X)Y 2γ−α) ,

B(X, Z) =bzZ+rbY
α−2γ+κ + vb(X)Y κ−γ + bζY

ζ + bδY
δ +

∑
k qbkQ2k +

∑
k sbkEk ,

where vb(X) =
∑m

j=1 b
∗
jvj(X) and uza(X) =

∑m
j=1 u

z
juj(X). (Again, C(X, Z) is defined like A(X, Z)

by the substitution a → c.) Since the prover is generic, the verifier’s second verification guarantees that
A(X, Z) = raY

α + ua(X)Y γ for some ra and ua(X) =
∑
a∗juj(X).

At this point, since A(X, Z), B(X, Z), and C(X, Z) are different from the case of knowledge-soundness
proof, we will have a new set of critical coefficients. Let ãj = aj −

∑
k sc2kc

s
kj for j ≤ m0 and ãj = c∗j for

j > m0. Let u(X) =
∑m

j=1 ãjuj(X), v(X) =
∑m

j=1 ãjvj(X), and w(X) =
∑m

j=1 ãjwj(X). Let R′ = {i =

Y j0Dj1k1E
j2
k1
Ej3k2 : Vi(X

∗) = 0}, where one takes into account that the first verification equation accepted
and thus A(X) = raY

α + ua(X)Y γ . Let

S′ = {Y γ+ζ , Y −γ+ε+κ, Y κ, Y ε+γ , Y ζDk1}

be the new set of critical coefficients. We depict the critical coefficients Vi(X∗, Z) for i ∈ S′ of the resulting
Sseqap in Fig. 3. Let S̄′ = R′ \ S′.

Theorem 2. (1) Assume ∆ = (α, γ, . . .) is such that S′ ∩ S̄′ = ∅. Then Sseqap in Fig. 1 is NBBASE in the
Sub-GBGM.
(2) Sseqap is perfectly zero-knowledge.

Proof (Sketch). (1: knowledge-soundness) Let A be a NBBASE adversary that has succeeded in out-
putting (x, π) such that x 6∈ L but V accepts. Since the proof is in the generic model, the Gι-outputs of A
have to belong to the span of her inputs (one part of the input is the CRS) and moreover, one can extract
the corresponding coordinates. . Since we are proving NBBASE, another part of the input to A is the
reply of the Sim oracle for each query. When replying to jth query, Sim samples fresh random integers dj
and ej . We model dj and ej as new indeterminates Dj and Ej . Since we have the Sub-GBGM model, we

14 Helger Lipmaa

give A the power to create new indeterminates Qιi in Gι (see Section 2 for the posed restrictions on the
latter). Let X = (X,Q,D,E, Y, Z) be a vector of all indeterminates.

Since the second verification equation holds, we get A(X, Z) = raY
α + ua(X)Y δ for known ra and

ua(X). Consider now the verification polynomial V (X∗, Z) corresponding to the first verification equation,
but assuming that A(X, Z) = raY

α + ua(X)Y δ. We now equate all five polynomials Vi(X∗, Z) in Fig. 3,
i ∈ S′, to zero. First, VY ε+ζ (X∗, Z) = bζ = 0. Second, for any k1, VY ζDk1 (X∗, Z) = −sc2k1 = 0. Thus
ãj = aj for j ≤ m0. Finally, uza(X) = u(X) (since VY γ+ζ = 0), vb(X) = v(X) (since VY −γ+ε+κ = 0), and
χ(X) = u(X)v(X)− w(X)− `(X)h(X) = 0 (since VY κ = 0) and thus Sseqap is NBBASE.

(2: zero-knowledge) similar to Theorem 1. ut

Sse
qap is not NBBSASE-secure. It is easy to show Sseqap is not NBBASE-secure by showing how one can

easily modify an accepting argument to another argument for the same statement. Given an accepting
argument π = ([a, az, cs]1, [b]2), one can generate another accepting argument π′ = ([a′, a′z, c

′
s]1, [b

′]2) by
using at least one of the two following strategies [GM17]:

1. for random r, [a′]1 ← r[a]1 + (r− 1)[yε]1, [a′z]1 ← r[az]1 + (r− 1)[yεz]1, [b′]2 ← 1/r[b]2 + (1/r− 1)[yζ]2,
[c′s]1 ← [cs]1. Note that this is an attack against NBBASE, not only NBBSASE. Thus, as expected,
this attack does not work in the case of Sseqap since due to the second verification accepting, yε has a 0
coefficient in [a]1.

2. for random r, [a′]1 ← [a]1, [a′z]1 ← [az]1, [b′]2 ← [b]2 + r[yα−2γ+κ]2, [c′s]1 ← [cs]1 + r([a]1 + [yε]1).

Clearly, the second attack is feasible also in the case of Sseqap and thus Sqap is not NBBSASE. How-
ever, in many applications, NBBASE (or even NBBTSE) is sufficient or even desirable [DHLW10]. In
particular, (non-black-box) strong any-simulation-extractability is not required to achieve UC-security:
any-simulation-extractability and even true-simulation-extractability.

4 SAP-Based SNARKs

In the following sections, we will describe SNARKs for different languages SAP, SSP, and QSP. Since these
SNARKs and their security proofs are modifications of Sqap, we will omit the details.

Groth [Gro16] and Groth and Maller [GM17] used SAP (Square Arithmetic Programs) instead of
QAP. The only distinction here is that it is assumed that u(X) = v(X). This means that each gate in
the arithmetic circuit gets the same left and right inputs, or, putting it another way, the circuit consists
of squaring gates only. Since each multiplication gate c = ab can be implemented two squaring gates
(ab = (a/2 + b/2)2− (a/2− b/2)2), one can verify the correctness of an arbitrary d-gate arithmetic circuit
by transferring it to a circuit that has m∗ ≤ 2d squaring gates and then constructing a SNARK for SAP
for the resulting circuit. The main motivation behind introducing SAP is that one can construct SNARK
in a way that A(X,Y) = B(X,Y), which potentially makes the SNARK more efficient.

We will next describe how to modify our approach to the case of SAP. Since u(X) = w(X), the
corresponding key equation is χsap(X) = 0, where

χsap(X) = u(X)2 − w(X)− h(X)`(X) .

In this case, we simplify Eq. (3) by setting v(X) = u(X). Then A(X,Y) = raY
α+u(X)Y γ and B(X,Y) =

rbY
α−2γ+κ + v(X)Y κ−γ . It makes sense to do additional simplifications so that A(X,Y) = B(X,Y), by

assuming that ra = rb and κ = 2γ.
Thus, Eq. (5) simplifies to

A(X,Y) =B(X,Y) = raY
α + u(X)Y γ ,

C(X,Y) =(A(X,Y) + Y ε)(A(X,Y) + Y ζ)− Y ε+ζ

Simple Yet Efficient Knowledge-Sound and Non-Black-Box Any-Simulation-Extractable ZK-SNARKs 15

Kcrs(p): Sample x, y←$Z∗p, return tc← (x, y). Let

crsP =

yα, {xjyγ}n−1

j=0 , {x
i`(x)y−α+2γ}n−2

j=0 , y
ε, yζ ,{

uj(x)y
−α+γ+ε + uj(x)y

−α+γ+ζ + wj(x)y
−α+2γ

}m
j=m0+1

1

,
[
yα, {xiyγ}n−1

i=0

]
2

 ,

crsV =

([{
uj(x)y

−δ+γ+ε + uj(x)y
−δ+γ+ζ + wj(x)y

−δ+2γ
}m0

j=1
, yε
]
1

,
[
yα, yζ , yδ

]
2
, [yε+ζ]T

)
;

crs← (crsP, crsV); return (crs, tc);

P(p, crs; (aj)
m0
j=1, (aj)

m
j=m0+1): (ra, rb)←$Z2

p; u(X) ←
∑m
j=1 ajuj(X); w(X) ←

∑m
j=1 ajwj(X); h(X) ← (u(X)2 −

w(X))/`(X); [a]1 ← ra[y
α]1 + [u(x)yγ]1; [cs]1 ←

∑m
j=m0+1 aj

[
uj(x)y

−α+γ+ε + uj(x)y
−α+γ+ζ + wj(X)y−α+2γ

]
1
+

[h(x)`(x)y−α+2γ]1 + ra
(
ra[y

α]1 + 2[u(x)yγ]1 + [yε]1 + [yζ]1
)
; [b]2 ← ra[y

α]2 + [u(x)yγ]2; return π ←
(
[a, cs]1 , [b]2

)
;

V(p, crs; (aj)
m0
j=1, π =

(
[a, cs]1 , [b]2

)
): Set [cp]1 ←

∑m0
j=1 aj

[
2 uj(x)Y −δ+γ+ε + wj(x)Y

−δ+κ]
1
. Check that [a + yε]1 •[

b +yζ
]
2
= [cp]1 • [yδ]2 + [cs]1 • [yα]2 +[yε+ζ]T and [a]1 • [1]2 = [1]1 • [b]2 ;

Sim(p, crs; (aj)
m0
j=1, tc = y): [cp]1 ←

∑m0
j=1 aj

[
uj(x)y

−δ+γ+ε + uj(x)y
−δ+γ+ζ + wj(x)y

−δ+2γ
]
1
; d←$Zp; [a]1 ← d[1]1;

[b]2 ← d[1]2; [cs]1 ← y−α
((
d2 + dyζ+dyε

)
[1]1 − yδ[cp]1

)
; return π ←

(
[a, cs]1 , [b]2

)
;

Fig. 4. The new SNARKs for SAP: knowledge-sound Ssap (with boxed entries and without gray entries) and NBBASE Sse
sap

(with gray entries and without boxed entries)

=u(X)(Y γ+ε + Y γ+ζ) + u(X)2Y 2γ + ra

(
raY

α + 2u(X)Y γ + Y ε + Y ζ
)
Y α ,

=(u(X)Y γ+ε + u(X)Y γ+ζ + w(X)Y 2γ) + (u(X)2 − w(X))Y 2γ+

ra

(
raY

α + 2u(X)Y γ + Y ε + Y ζ
)
Y α ,

Cp(X,Y) =
∑m0

j=1 aj
(
u(X)Y −δ+γ+ε + u(X)Y −δ+γ+ζ + w(X)Y −δ+2γ

)
,

Cs(X,Y) =
∑m

j=m0+1 aj
(
u(X)Y −α+γ+ε + u(X)Y −α+γ+ζ + w(X)Y −α+2γ

)
+ h(X)`(X)Y −α+2γ+

ra(raY
α + 2u(X)Y γ + 2Y ε) .

We now construct the SNARK Ssap by doing corresponding simplifications in Fig. 1, see Fig. 4. Clearly,
in Ssap, the CRS has (n) + (n− 1) +m+ 2 = 2n+m+ 1 elements from G1 and n+ 3 elements from G2.
The prover’s computation is n+1 exponentiations to compute [a]1, n+1 exponentiations to compute [b]2,
and 1 + (m−m0) + (n− 1) = n+m−m0 additional exponentiations to compute [cs]1.

We can find a suitable ∆ by using the same approach as in the case of QAP in Section 3, but limiting
the exhaustive search by setting κ = 2γ. In particular, one can set

α = 3, γ = 4, δ = 2, ε = 0, ζ = −5, κ = 8 .

In this case,

crsP =

y3, {xjy4}n−1j=0 , {x

i`(x)y5}n−2j=0 , y
0, y−5 ,{

uj(x)y1 + uj(x)y−4 + wj(x)y5
}m
j=m0+1

1

,
[
y3, {xiy4}n−1i=0

]
2

 ,

crsV =

([{
uj(x)y2 + uj(x)y−3 + wj(x)y6

}m0

j=1
, y0
]
1

,
[
y3, y−5 , y2

]
2
, [y−5]T

)
.

Knowledge-soundness. Since Ssap is an optimized version of Sqap, its knowledge-soundness can be proven
by using the same approach. That is, one can follow the proof of Theorem 1, taking into account that

16 Helger Lipmaa

Y i Coefficient Vi(X,Q) (KS and NBBASE)

Y γ+ζ −u(X) + (bζ + 1)ua(X) + aζub(X)
Y −γ+ε+κ −u(X) + (aε + 1)vb(X)
Y κ ua(X)ub(X)− w(X)− h(X)`(X)

Y ε+ζ bζ + aε(bζ + 1)

Y δ+ε (aε + 1)bδ
Y 2ζ aζ(bζ + 1)

Fig. 5. Critical coefficients in Ssap.

κ = 2γ. This will slightly change the sets R, S, and S̄. Let h(X) := hc(X)− rbha(X). Let ãj = aj − bδa∗j
for j ≤ m0 and ãi = c∗j − rba∗j for j > m0. Denote u(X) =

∑m
j=1 ãjuj(X) and w(X) =

∑m
j=1 ãjwj(X).

In this case, the “significant” coefficients Vi(X,Q), i ∈ S, of V (X) are depicted in Fig. 5. The differences
compared to Fig. 2 are solely due to the settings κ = 2γ and v(X) = u(X).

Corollary 1. (1) Assume ∆ is chosen so that S ∩ S̄ = ∅. Then Ssap in Fig. 1 is knowledge-sound in the
Sub-GBGM.
(2) Ssap is perfectly zero-knowledge.

Proof (Sketch). (1: knowledge-soundness) Consider the polynomials in Fig. 5. Since bζ +aε(bζ +1) = 0,
we get aε = −bζ/(bζ + 1) and aε, bζ 6= −1 and (aε + 1)(bζ + 1) = 1. Thus aζ = bδ = 0, which means that
ãj = aj for j ≤ m0. Thus, ua(X)vb(X) = u(X)2 and u(X)2 − w(X) = h(X)`(X), which means that
χsap(X) = 0.

(2: zero-knowledge) as in Theorem 1, except that we use only one new trapdoor e due to the fact
that a = b. ut

NBBASE SNARK Sse
sap. Obtaining NBBASE in this case is simpler than in Section 3: to guarantee that

A(X) has no dependency on Dk, one can peruse the fact that A(X) = B(X) in the honest case. Thus,
to achieve NBBASE, one will not have to rely on a new variable Z: the main change compared to the
knowledge-sound version Ssap is that the verifier now additionally checks that [a]1• [1]2 = [1]1• [b]2. Adding
this verification equation (that efficiently establishes that A(X) = B(X) = raY

α+u(X)Y δ+aζY
ζ use the

same witness) means that we can now omit the term Y ζ from the definition of C(X), slightly simplifying
the verifier’s work.2 That is, C(X) = (A(X) + Y ε)A(X). This also means that there is no element [yζ]1
in the CRS, meaning that A(X,Y) = B(X,Y) = raY

α+u(X)Y γ . See Fig. 4 for a complete description of
Ssesap. The exclusion of boxed entries (corresponding to the described optimization) cut down a bit from
the cost of the Ssesap as compared to Ssap.

The CRS has (n) + (n− 1) +m+ 2 = 2n+m+ 1 elements from G1 and n+ 2 elements from G2. The
prover’s computation is n+ 1 exponentiations to compute [a]1, n+ 1 exponentiations to compute [b]2, and
1 + (m−m0) + (n− 1) = n+m−m0 additional exponentiations to compute [c]1.

5 SSP-Based SNARKs

In this section, we will build two SNARKs for SSP (Square Span Programs, [DFGK14]), one (Sssp) being
knowledge-sound and another one (Ssessp) being NBBASE. We recall that by using SSP, one can prove that
different linear combinations of witness coefficients are simultaneously Boolean. As shown in [DFGK14],
this is sufficient to show that a Boolean circuit has been correctly evaluated:

– For each wire, one checks that the wire value is Boolean.
2 This term Y ζ was used to make C(X) to linearly depend on A(X)Y ζ and B(X)Y ε, which was then used to verify that
A(X) and B(X) use the same witness a. Here, A(X) = B(X) and thus such a verification is unnecessary.

Simple Yet Efficient Knowledge-Sound and Non-Black-Box Any-Simulation-Extractable ZK-SNARKs 17

– For each gate, one can check that it has implemented its Boolean function correctly by checking that
certain linear combination of its input and output wire values is Boolean. For example, a∧̄b = c iff
a+ b+ 2c− 2 ∈ {0, 1} and a⊕ b = c iff (a+ b+ c)/2 ∈ {0, 1} [DFGK14].

Thus, one can implement SSP by using a QAP-type approach, by checking n = d + m constraints of
type (

∑m
j=1 Uijaj)

2 =
∑m

j=1 Uijaj , i ∈ [1 .. n], where d is the number of the gates and m is the number of
the wires. (In a QAP-based approach for arithmetic circuits, n = d.) Based on this observation, we design
Sssp around the verification equation as in Section 3. In the case of SSP, the only difference in the language
is that u(X) = v(X) = w(X), and thus the key equation become χssp(X) = 0, where

χssp(X) = u(X)(u(X)− 1)− h(X)`(X) .

Thus, h(X) = u(X)(u(X)− 1)/`(X) is a polynomial iff the prover is honest.
Modifying u(X) = v(X) = w(X) in Eq. (3), we get A(X,Y) = raY

α + u(X)Y γ and B(X,Y) =
rbY

β +v(X)Y κ−γ = rbY
α−2γ+κ+u(X)Y κ−γ . We can simplify the SNARK construction by assuming that

A(X,Y) = B(X,Y), that is, ra = rb and κ = 2γ. Thus, Eq. (5) simplifies to

A(X,Y) =B(X,Y) = raY
α + u(X)Y γ ,

C(X,Y) =(A(X,Y) + Y ε)(A(X,Y) + Y ζ)− Y ε+ζ

=u(X)(Y γ+ε + Y γ+ζ) + u(X)2Y 2γ + ra

(
raY

α + 2u(X)Y γ + Y ε + Y ζ
)
Y α ,

=(u(X)Y γ+ε + u(X)Y γ+ζ + u(X)Y 2γ) + (u(X)2 − u(X))Y 2γ+

ra

(
raY

α + 2u(X)Y γ + Y ε + Y ζ
)
Y α ,

Cp(X,Y) =
∑m0

j=1 aj
(
u(X)Y −δ+γ+ε + u(X)Y −δ+γ+ζ + u(X)Y −δ+2γ

)
,

Cs(X,Y) =
∑m

j=m0+1 aj
(
u(X)Y −α+γ+ε + u(X)Y −α+γ+ζ + u(X)Y −α+2γ

)
+ h(X)`(X)Y −α+2γ+

ra(raY
α + 2u(X)Y γ + 2Y ε) .

We now construct the SNARK Sssp by doing corresponding simplifications in Fig. 1, see Fig. 6. Thus
the CRS length is (m+2n+1)|G1|+(n+2)|G2|. The prover’s computation ism multiplications (since aj are
Boolean!) and 1 exponentiation to compute [a]1, m multiplications and 1 exponentiation to compute [b]2,
and m−m0 multiplications and 1 + (n− 1) = n exponentiations to compute [cs]1. However, as explained
in [DFGK14], one can speed up the computation of [h(x)`(x)y−α+2γ]1 by using FFT. The verifier executes
≈ m0 multiplications in G1 and 3 pairings.

We can find a suitable ∆ by using the same approach as in the case of QAP in Section 3, but limiting
the exhaustive search by setting κ = 2γ. In particular, one can set (as in Section 4)

α = 3, γ = 4, δ = 2, ε = 0, ζ = −5, κ = 8 .

Knowledge-soundness. Since the resulting SNARK Sssp is an optimized version of Sqap, it can proven
knowledge-sound by using the same basic idea. That is, one can follow the approach of Section 3 but
by taking into account that κ = 2γ. This will slightly change the sets R, S, and S̄ but the rest of the
analysis stays the same. Let h(X) := hc(X)− rbha(X). Let ãj = aj − bδa∗j for j ≤ m0 and ãi = c∗j − rba∗j
for j > m0. Denote u(X) =

∑m
j=1 ãjuj(X). In this case, the “significant” coefficients Vi(X,Q), i ∈ S, of

V (X) are depicted in Fig. 7. The differences compared to Fig. 2 are solely due to the settings κ = 2γ and
w(X) = v(X) = u(X).

Corollary 2. (1) Assume ∆ is chosen so that S ∩ S̄ = ∅. Then Sssp in Fig. 1 is knowledge-sound in the
Sub-GBGM.
(2) Sssp is perfectly zero-knowledge.

18 Helger Lipmaa

Kcrs(p): Sample x, y←$Z∗p, return tc← (x, y). Let

crsP =

yα, {xjyγ}n−1

j=0 , {x
i`(x)y−α+2γ}n−2

j=0 , y
ε, yζ ,{

uj(x)y
−α+γ+ε + uj(x)y

−α+γ+ζ + uj(x)y
α−2γ

}m
j=m0+1

1

,
[
yα, {xiyγ}n−1

i=0

]
2

 ,

crsV =

([{
uj(x)y

−δ+γ+ε + uj(x)y
−δ+γ+ζ + uj(x)y

−δ+2γ
}m0

j=1
, yε
]
1

,
[
yα, yζ , yδ

]
2
, [yε+ζ]T

)
;

crs← (crsP, crsV); return (crs, tc);

P(p, crs; (aj)
m0
j=1, (aj)

m
j=m0+1): (ra, rb)←$Z2

p; u(X) ←
∑m
j=1 ajuj(X); h(X) ← (u(X)2 − u(X))/`(X); [a]1 ← ra[y

α]1 +∑m
j=1 aj [uj(x)y

γ]1; [cs]1 ←
∑m
j=m0+1 aj

[
uj(x)y

−α+γ+ε + uj(x)y
−α+γ+ζ + uj(X)y−α+2γ

]
1
+ [h(x)`(x)y−α+2γ]1 +

ra
(
ra[y

α]1 + 2
∑m
j=1 aj [uj(x)y

γ]1 + [yε]1 + [yζ]1
)
; [b]2 ← ra[y

α]2 +
∑m
j=1 aj [uj(x)y

γ]2; return π ←
(
[a, cs]1 , [b]2

)
;

V(p, crs; (aj)
m0
j=1, π =

(
[a, cs]1 , [b]2

)
): Set [cp]1 ←

∑m0
j=1 aj

[
uj(x)Y

−δ+γ+ε + uj(x)Y
−δ+γ+ζ + uj(x)Y

−δ+κ
]
1
. Check that

[a+ yε]1 •
[
b +yζ

]
2
= [cp]1 • [yδ]2 + [cs]1 • [yα]2 +[yε+ζ]T and [a]1 • [1]2 = [1]1 • [b]2 ;

Sim(p, crs; (aj)
m0
j=1, tc = y): [cp]1 ←

∑m0
j=1 aj

[
uj(x)y

−δ+γ+ε + uj(x)y
−δ+γ+ζ + uj(x)y

−δ+2γ
]
1
; d←$Zp; [a]1 ← d[1]1;

[b]2 ← d[1]2; [cs]1 ← y−α
((
d2 + dyζ+dyε

)
[1]1 − yδ[cp]1

)
; return π ←

(
[a, cs]1 , [b]2

)
;

Fig. 6. The new SNARKs for SSP: knowledge-sound Sssp (with boxed entries and without gray entries) and NBBASE Sse
ssp

(with gray entries and without boxed entries)

Y i Coefficient Vi(X,Q) (KS and NBBASE)

Y γ+ζ −u(X) + (bζ + 1)ua(X) + aζub(X)
Y −γ+ε+κ −u(X) + (aε + 1)vb(X)
Y κ ua(X)ub(X)− u(X)− h(X)`(X)

Y ε+ζ bζ + aε(bζ + 1)

Y δ+ε (aε + 1)bδ
Y 2ζ aζ(bζ + 1)

Fig. 7. Critical coefficients in Ssap.

Proof (Sketch). (1: knowledge-soundness) Consider the polynomials in Fig. 7. Since bζ +aε(bζ +1) = 0,
we get aε = −bζ/(bζ + 1) and aε, bζ 6= −1 and (aε + 1)(bζ + 1) = 1. Thus aζ = bδ = 0, which means that
ãj = aj for j ≤ m0. Thus, ua(X)vb(X) = u(X)2 and u(X)2 − u(X) = h(X)`(X), which means that
χssp(X) = 0.

(2: zero-knowledge) as in Theorem 1, except that we use only one new trapdoor e due to the fact
that a = b. ut

NBBASE SNARK Sse
ssp. To guarantee that A(X,Y) has no dependency on Dk, one can peruse the

fact that A(X,Y) = B(X,Y) in the honest case. Thus, to achieve NBBASE, one will not have to rely
on a new variable Z: the only changes compared to Sssp are that (i) the verifier additionally checks that
[a]1 • [1]2 = [1]1 • [b]2, and (ii) there is no term yζ in the verification equation. Alternatively, Ssessp is as Ssesap
in Section 4 except wj(X) is always replaced by uj(X).

6 QSP-Based SNARKs

In addition to QAP, Gennaro et al. [GGPR13] proposed another formalism called QSP (Quadratic Span
Program). This approach was further optimized by Lipmaa [Lip13]. Without going to full details, we
mention that there exists a reduction from Boolean circuit satisfiability to QSPs. The reduction itself is

Simple Yet Efficient Knowledge-Sound and Non-Black-Box Any-Simulation-Extractable ZK-SNARKs 19

Kcrs(p): Sample x, y, z ←$Z∗p, return tc← (x, y, z). Let

crsP ←

[yα, {xjyγ}n−1
j=0 , y

αz, {xjyγz}n−1
j=0 , {x

i`(x)y−α+2γ}n−2
j=0 , y

ε, y2γ+ζ−κ,

{uj(x)y−α+3γ+ζ−κ + vj(x)y
−α+γ+ε}mj=m0+1

]
1

,
[
yα−2γ+κ, {xiyκ−γ}n−1

i=0

]
2

 ;

crsV ←
(
[{uj(x)y−δ+γ+ζ + vj(x)y

−δ−γ+κ+ε}m0
j=1, y

ε]1,
[
yα−2γ+κ, yζ , yδ, z

]
2
, [yε+ζ]T

)
;

crs← (crsP, crsV); return (crs, tc);

P(p, crs; (aj)
m0
j=1, (aj)

m
j=m0+1): (ra, rb)←$Z2

p; u(X) ←
∑m
j=1 ajuj(X); v(X) ←

∑m
j=1 ajvj(X); h(X) ← u(X)v(X)/`(X);

[a]1 ← ra[y
α]1 +

∑m
j=1 aj [uj(x)y

γ]1; [az]1 ← ra[y
αz]1 +

∑m
j=1 aj [uj(x)y

γz]1 ; [cs]1 ←
∑m
j=m0+1 aj [uj(x)y

−α+3γ+ζ−κ +

vj(x)y
−α+γ+ε]1 + [h(x)`(x)y−α+2γ]1 + rb

(
ra[y

α]1 +
∑m
j=1 aj [uj(x)y

γ]1 + [yε]1
)
+ ra([y

2γ−κ+ζ]1 +
∑m
j=1 aj [vj(x)y

γ]1);

[b]2 ← rb[y
α−2γ+κ]2 + [v(x)yκ−γ]2; return π ←

(
[a, az , cs]1 , [b]2

)
;

V(p, crs; (aj)
m0
j=1, π =

(
[a, az , cs]1 , [b]2

)
): Set [cp]1 ←

∑m0
j=1 aj [uj(x)y

−δ+γ+ζ + vj(x)y
−δ−γ+κ+ε]1. Check that [a+ yε]1 • [b+

yζ]2 = [cp]1 • [yδ]2 + [cs]1 • [yα−2γ+κ]2 + [yζ+ε]T and [a]1 • [z]2 = [az]1 • [1]2 ;

Sim(p, crs; (aj)
m0
j=1, tc = y): [cp]1 ←

∑m0
j=1 aj [uj(x)y

−δ+γ+ζ + vj(x)y
−δ−γ+κ+ε]1; d←$Zp; e←$Zp; [a]1 ← d[1]1;

[az]1 ← dy−α[yαz]1 ; [b]2 ← e[1]2; [cs]1 ← y−β((de+ dyζ + eyε)[1]1 − yδ[cp]1); return π ←
(
[a, az , cs]1 , [b]2

)
;

Fig. 8. The new SNARKs for QSP: knowledge-sound Sqsp (without gray entries) and NBBASE Sse
qsp (with gray entries)

not as efficient than the reduction to SSPs, and in particular, the size of the QSP, given the same circuit,
is considerably larger than that of the SSP. (According to [DFGK14], if the circuit has m wires and n
gates, an SSP has size ≈ m× (m+ n) while a QSP has size ≈ 14n× 11n.) However, QSP-based solutions
like the SSP-based solutions have a short argument and CRS.

In this section, we assume that one has already constructed a reduction to the QSP, and given that,
we propose several updatable QSP-based SNARKs. We also assume that the QSP matrix size is n ×m
(thus, n and m do not correspond to the circuit size anymore.)

In the case of QSP [GGPR13,Lip13], w(X) = 0 and thus the key equation is

χqsp(X) = u(X)v(X)− h(X)`(X) .

Thus, here, Eq. (4) simplifies to

A(X,Y) =raY
α + u(X)Y γ ,

B(X,Y) =rbY
α−2γ+κ + v(X)Y κ−γ ,

Cp(X,Y) =
∑m0

j=1 aj
(
uj(X)Y −δ+γ+ζ + vj(X)Y −δ−γ+κ+ε

)
,

Cs(X,Y) =
∑m

j=m0+1 aj
(
uj(X)Y −α+3γ+ζ−κ + vj(X)Y −α+γ+ε

)
+ u(X)v(X)Y −α+2γ+

rb (A(X,Y) + Y ε) + ra(v(X)Y γ + Y 2γ−κ+ζ) .

(8)

Clearly, Cs(X,Y)Y α−2γ+κ + Cp(X,Y)Y ζ = C(X,Y).
We now construct the SNARK Sqsp by doing corresponding simplifications in Fig. 1, see Fig. 8. Thus,

each cost parameter is the same as in the case of Sqap except that there are significantly more constraints
(that are hidden in the reduction from circuits to QSP, [Lip13]).

The prover’s computation ism multiplications (since aj are Boolean!) and 1 exponentiation to compute
[a]1,m multiplications and 1 exponentiation to compute [b]2, and 2m−m0 multiplications and (n−1)+3 =
n+ 2 exponentiations to compute [cs]1.

We can find a suitable∆ by using the same approach as in the case of QAP in Section 3. In particular,
one can set (as in Section 3)

α = 0, γ = −1, ε = 6, ζ = 0, δ = 5, κ = 2 .

20 Helger Lipmaa

NBBASE SNARK Sse
qsp. One obtains a NBBASE version of Sqsp exactly as in the case of Sqap in

Section 3, by introducing a new indeterminate Z. (See Fig. 8.)

Acknowledgment. Helger Lipmaa was supported by the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 780477 (project PRIViLEDGE), and by the Estonian
Research Council grant (PRG49).

References

ABLZ17. Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, and Michal Zajac. A subversion-resistant SNARK. In
Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part III, volume 10626 of LNCS, pages 3–33.
Springer, Heidelberg, December 2017.

ALSZ18. Behzad Abdolmaleki, Helger Lipmaa, Janno Siim, and Michał Zając. QANIZK in the BPK Model. Technical
Report 2018/877, IACR, September 18, 2018. Available from https://eprint.iacr.org/2018/877, updated
version from 19 Feb 2019.

BBG05. Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with constant size ciphertext.
In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 440–456. Springer, Heidelberg, May
2005.

BCCT12. Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From Extractable Collision Resistance to
Succinct Non-Interactive Arguments of Knowledge, And Back Again. In Shafi Goldwasser, editor, ITCS 2012,
pages 326–349, Cambridge, MA, USA, January 8–10, 2012. ACM Press.

BCCT13. Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive Composition and Bootstrapping for
SNARKs and Proof-Carrying Data. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, STOC
2013, pages 241–250, Palo Alto, CA, USA, June 1–4, 2013. ACM Press.

BCG+13. Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. SNARKs for C: Verifying
program executions succinctly and in zero knowledge. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part II, volume 8043 of LNCS, pages 90–108. Springer, Heidelberg, August 2013.

BCG+14. Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, and Madars
Virza. Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE Symposium on Security and
Privacy, pages 459–474. IEEE Computer Society Press, May 2014.

BCI+10. Eric Brier, Jean-Sébastien Coron, Thomas Icart, David Madore, Hugues Randriam, and Mehdi Tibouchi. Efficient
indifferentiable hashing into ordinary elliptic curves. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS,
pages 237–254. Springer, Heidelberg, August 2010.

BCI+13. Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct non-interactive
arguments via linear interactive proofs. In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 315–333.
Springer, Heidelberg, March 2013.

BCPR14. Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the Existence of Extractable One-Way Functions.
In David Shmoys, editor, STOC 2014, pages 505–514, New York, NY, USA, May 31 – Jun 3, 2014. ACM Press.

BCTV14. Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero knowledge via cycles of elliptic
curves. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages
276–294. Springer, Heidelberg, August 2014.

BFM88. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its applications (extended
abstract). In 20th ACM STOC, pages 103–112. ACM Press, May 1988.

BFS16. Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. NIZKs with an untrusted CRS: Security in the face
of parameter subversion. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume
10032 of LNCS, pages 777–804. Springer, Heidelberg, December 2016.

BG18. Sean Bowe and Ariel Gabizon. Making groth’s zk-SNARK simulation extractable in the random oracle model.
Cryptology ePrint Archive, Report 2018/187, 2018. https://eprint.iacr.org/2018/187.

CGGN17. Matteo Campanelli, Rosario Gennaro, Steven Goldfeder, and Luca Nizzardo. Zero-knowledge contingent payments
revisited: Attacks and payments for services. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, ACM CCS 2017, pages 229–243. ACM Press, October / November 2017.

Dam92. Ivan Damgård. Towards practical public key systems secure against chosen ciphertext attacks. In Joan Feigen-
baum, editor, CRYPTO’91, volume 576 of LNCS, pages 445–456. Springer, Heidelberg, August 1992.

DDO+01. Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and Amit Sahai. Robust non-
interactive zero knowledge. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 566–598. Springer,
Heidelberg, August 2001.

DFGK14. George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss. Square span programs with applications to
succinct NIZK arguments. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part I, volume 8873
of LNCS, pages 532–550. Springer, Heidelberg, December 2014.

https://eprint.iacr.org/2018/877
https://eprint.iacr.org/2018/187

Simple Yet Efficient Knowledge-Sound and Non-Black-Box Any-Simulation-Extractable ZK-SNARKs 21

DFKP13. George Danezis, Cédric Fournet, Markulf Kohlweiss, and Bryan Parno. Pinocchio coin: building zerocoin from a
succinct pairing-based proof system. pages 27–30, Berlin, Germany, November 4, 2013. ACM.

DGP+19. Vanesa Daza, Alonso González, Zaira Pindado, Carla Ràfols, and Javier Silva. Shorter quadratic QA-NIZK proofs.
In Dongdai Lin and Kazue Sako, editors, PKC 2019, Part I, volume 11442 of LNCS, pages 314–343. Springer,
Heidelberg, April 2019.

DHLW10. Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel Wichs. Efficient public-key cryptography
in the presence of key leakage. In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 613–631.
Springer, Heidelberg, December 2010.

EHK+13. Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An algebraic framework for Diffie-
Hellman assumptions. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of
LNCS, pages 129–147. Springer, Heidelberg, August 2013.

FLSZ17. Prastudy Fauzi, Helger Lipmaa, Janno Siim, and Michal Zajac. An efficient pairing-based shuffle argument. In
Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part II, volume 10625 of LNCS, pages 97–127.
Springer, Heidelberg, December 2017.

FLZ16. Prastudy Fauzi, Helger Lipmaa, and Michal Zajac. A shuffle argument secure in the generic model. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 841–872. Springer,
Heidelberg, December 2016.

Fuc18. Georg Fuchsbauer. Subversion-zero-knowledge SNARKs. In Michel Abdalla and Ricardo Dahab, editors,
PKC 2018, Part I, volume 10769 of LNCS, pages 315–347. Springer, Heidelberg, March 2018.

Gab19. Ariel Gabizon. On the security of the BCTV Pinocchio zk-SNARK variant. Technical Report 2019/199, IACR,
February 5, 2019. Available from https://eprint.iacr.org/2019/199.

GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and succinct
NIZKs without PCPs. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881
of LNCS, pages 626–645. Springer, Heidelberg, May 2013.

GM17. Jens Groth and Mary Maller. Snarky signatures: Minimal signatures of knowledge from simulation-extractable
SNARKs. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part II, volume 10402 of LNCS, pages
581–612. Springer, Heidelberg, August 2017.

GMR85. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof-systems
(extended abstract). In 17th ACM STOC, pages 291–304. ACM Press, May 1985.

Gol93. Oded Goldreich. A Uniform-Complexity Treatment of Encryption and Zero-Knowledge. J. Cryptology, 6(1):21–53,
1993.

GPS08. Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for Cryptographers. Discrete Applied
Mathematics, 156(16):3113–3121, 2008.

Gro06. Jens Groth. Simulation-sound NIZK proofs for a practical language and constant size group signatures. In Xuejia
Lai and Kefei Chen, editors, ASIACRYPT 2006, volume 4284 of LNCS, pages 444–459. Springer, Heidelberg,
December 2006.

Gro10. Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Masayuki Abe, editor, ASI-
ACRYPT 2010, volume 6477 of LNCS, pages 321–340. Springer, Heidelberg, December 2010.

Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and Jean-Sébastien Coron,
editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305–326. Springer, Heidelberg, May 2016.

GW11. Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsifiable assumptions.
In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages 99–108. ACM Press, June 2011.

Ica09. Thomas Icart. How to hash into elliptic curves. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS,
pages 303–316. Springer, Heidelberg, August 2009.

KZM+15. Ahmed Kosba, Zhichao Zhao, Andrew Miller, Yi Qian, Hubert Chan, Charalampos Papamanthou, Rafael Pass,
abhi shelat, and Elaine Shi. How to use SNARKs in universally composable protocols. Cryptology ePrint Archive,
Report 2015/1093, 2015. http://eprint.iacr.org/2015/1093.

Lip12. Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments. In
Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 169–189. Springer, Heidelberg, March 2012.

Lip13. Helger Lipmaa. Succinct non-interactive zero knowledge arguments from span programs and linear error-correcting
codes. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part I, volume 8269 of LNCS, pages 41–60.
Springer, Heidelberg, December 2013.

Mau05. Ueli M. Maurer. Abstract models of computation in cryptography (invited paper). In Nigel P. Smart, editor,
10th IMA International Conference on Cryptography and Coding, volume 3796 of LNCS, pages 1–12. Springer,
Heidelberg, December 2005.

Nec94. V. I. Nechaev. Complexity of a determinate algorithm for the discrete logarithm. Mathematical Notes, 55(2):165–
172, 1994.

PHGR13. Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical verifiable computation.
In 2013 IEEE Symposium on Security and Privacy, pages 238–252. IEEE Computer Society Press, May 2013.

Sah99. Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In 40th
FOCS, pages 543–553. IEEE Computer Society Press, October 1999.

https://eprint.iacr.org/2019/199
http://eprint.iacr.org/2015/1093

22 Helger Lipmaa

Sho97. Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy, editor, EURO-
CRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, Heidelberg, May 1997.

SPMS02. Jacques Stern, David Pointcheval, John Malone-Lee, and Nigel P. Smart. Flaws in applying proof methodologies
to signature schemes. In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 93–110. Springer,
Heidelberg, August 2002.

TK17. Mehdi Tibouchi and Taechan Kim. Improved elliptic curve hashing and point representation. Des. Codes Cryp-
tography, 82(1–2):161–177, 2017.

A GBGM and Sub-GBGM

Generic Bilinear Group Model. Next, we will introduce the Generic Bilinear Group Model
(GBGM) [Nec94,Sho97,Mau05,BBG05], by following the exposition in [ABLZ17].

We start by picking an asymmetric bilinear group (p,G1,G2,GT , ê)← Pgen(1λ). Consider a black box
B that stores values from additive groups G1,G2,GT in internal state variables cell1, cell2, . . . , where for
simplicity we allow the storage space to be infinite (this only increases the power of a generic adversary).
The initial state consists of some values (cell1, cell2, . . . , cell|inp|), which are set according to some probability
distribution. Each state variable celli has an accompanying type typei ∈ {1, 2, T,⊥}. Initially, typei = ⊥
for i > |inp|. The black box allows computation operations on internal state variables and queries about
the internal state. No other interaction with B is possible.

Let Π be an allowed set of computation operations. A computation operation consists of selecting a
(say, t-ary) operation f ∈ Π together with t+ 1 indices i1, i2, . . . , it+1. Assuming inputs have the correct
type, B computes f(celli1 , . . . , cellit) and stores the result in cellit+1 . For a set Σ of relations, a query
consists of selecting a (say, t-ary) relation % ∈ Σ together with t indices i1, i2, . . . , it. Assuming inputs
have the correct type, B replies to the query with %(celli1 , . . . , cellit). In the GBGM, we define Π = {+, ê}
and Σ = {=}, where

1. On input (+, i1, i2, i3): if typei1 = typei2 6= ⊥ then set celli3 ← celli1 + celli2 and typei3 ← typei1 .
2. On input (ê, i1, i2, i3): if typei1 = 1 and typei2 = 2 then set celli3 ← ê(celli1 , celli2) and typei3 ← T .
3. On input (=, i1, i2): if typei1 = typei2 6= ⊥ and celli1 = celli2 then return 1. Otherwise return 0.

Since we are proving lower bounds, we will give a generic A additional power. We assume that all
relation queries are for free. We also assume that A is successful if after τ operation queries, he makes
an equality query (=, i1, i2), i1 6= i2, that returns 1; at this point A quits. Thus, if typei 6= ⊥, then
celli = Fi(cell1, . . . , cell|inp|) for a polynomial Fi known to A.

Sub-GBGM. By following [SPMS02,BFS16,ABLZ17], we enhance the power of generic bilinear group
model. Since the power of the generic adversary will increase, security proofs in the resulting Sub-GBGM
are more realistic than in the GBGM, see Section 2.

More precisely, we give the generic model adversary an additional power to effectively create new
indeterminates Yi in groups G1 and G2 (e.g., by hashing into elliptic curves), without knowing their
values. Since [Y]1 [1]2 = [Y]T and [1]1 [Y]2 = [Y]T , the adversary that has generated an indeterminate
Y in G1 can also operate with Y in GT . Formally, Π will contain one more operation create, with the
following semantics:

4. On input (create, i, t): if typei = ⊥ and t ∈ {1, 2, T } then set celli←$Zp and typei ← t.

The semantics of create dictates that the actual value of the indeterminate Yi is uniformly random in
Zp, that is, the adversary cannot create indeterminates for which she does not know the discrete logarithm
and that yet are not random.

Simple Yet Efficient Knowledge-Sound and Non-Black-Box Any-Simulation-Extractable ZK-SNARKs 23

Main ExpNBBSASE
Π,A,ExtA (λ)

Q← ∅;R←R(1λ); (crs, tc)← Kcrs(R);

r ← RND(A); (x, π)← ASimNBBSASE
crs,tc (crs; r);

w ← ExtA(crs; r);

if Vf(crs, x, π) = 1 ∧ (x, π) 6∈ Q ∧ (x, w) 6∈ R
then return 1; else return 0;fi

SimNBBSASE
crs,tc (xj)

πi ← Sim(crs, tc; xj);Q← Q ∪ {(xj , πj)};
return πj ;

Main ExpNBBASE
Π,A,ExtA(λ)

Q← ∅;R←R(1λ); (crs, tc)← Kcrs(R);

r ← RND(A); (x, π)← ASimNBBASE
crs,tc (crs; r);

w ← ExtA(crs; r);
if Vf(crs, x, π) = 1 ∧ x 6∈ Q ∧ (x, w) 6∈ R
then return 1; else return 0;fi

SimNBBASE
crs,tc (xj ,wj)

πi ← Sim(crs, tc; xj);Q← Q ∪ {xj };
return πj ;

Fig. 9. NBBSE experiment: strong any-simulation (NBBSASE, left) and any-simulation (NBBASE, right). Differences are
outlined in grey

B Formal Security Definitions

B.1 Zero-Knowledge

As in [Gro16], we define all security notions against a non-uniform adversary. However, since our security
reductions are uniform, it is a simple matter to consider only uniform adversaries, as it was done by Bellare
et al. [BFS16] (see also [Gol93]).

Definition 1 (Perfect Completeness). A non-interactive argument Ψ is perfectly complete for R, if
for all λ, all (R, auxR) ∈ range(R(1λ)), and (x,w) ∈ R,

Pr [(crs, tc)← Kcrs(R, auxR, tc) : V(R, auxR, crsV, x,P(R, auxR, crsP, x,w)) = 1] = 1 .

Definition 2 (Computational Knowledge-Soundness). Ψ is computationally (adaptively)
knowledge-sound for R, if for every non-uniform PPT A, there exists a non-uniform PPT extractor
ExtA, s.t. for all λ,

Pr

[
(R, auxR)← R(1λ); (crs, tc)← Kcrs(R, auxR); r ←r RND(A); (x, π)← A(R, auxR, crs; r);

w← ExtA(R, auxR, crs; r) : (x,w) 6∈ R ∧ V(R, auxR, crsV, x, π) = 1

]
≈λ 0 .

Here, auxR can be seen as a common auxiliary input to A and ExtA that is generated by using a be-
nign [BCPR14] relation generator; we recall that we just think of auxR as being the description of a secure
bilinear group. A knowledge-sound argument system is called an argument of knowledge.

Definition 3 (Statistically Unbounded ZK [Gro06]). Ψ is statistically unbounded Sub-ZK for R,
if for all λ, all (R, auxR) ∈ range(R(1λ)), and all computationally unbounded A, εunb0 ≈λ εunb1 , where

εunbb = Pr[(crs, tc)← Kcrs(R, auxR) : AOb(·,·)(R, auxR, crs) = 1] .

Here, the oracle O0(x,w) returns ⊥ (reject) if (x,w) 6∈ R, and otherwise it returns P(R, auxR, crsP, x,w).
Similarly, O1(x,w) returns ⊥ (reject) if (x,w) 6∈ R, and otherwise it returns Sim(R, auxR, crs, tc, x). Ψ is
perfectly unbounded ZK for R if one requires that εunb0 = εunb1 .

B.2 Simulation-Extractability

Definition 4 (NBBSASE SNARK [GM17]). Let Π = (Kcrs,P,V, Sim) be a SNARK for relation R.
Define Advnbbsase

Π,A,ExtA(λ) = Pr[ExpNBBSASE
Π,A,ExtA (λ)], where the experiment ExpNBBSASE

Π,A,ExtA (λ) is depicted in Fig. 9.
Π is non-black-box strong any-simulation-extractable (NBBSASE) if for any PPT adversary A there exists
a PPT extractor ExtA such that Advnbbsase

Π,A,ExtA(λ) ≈λ 0.

24 Helger Lipmaa

Definition 5 (NBBASE SNARK). Let Π = (Kcrs,P,V, Sim) be a SNARK for relation R. Define
Advnbbase

Π,A,ExtA(λ) = Pr[ExpNBBASE
Π,A,ExtA(λ)], where the experiment ExpNBBASE

Π,A,ExtA(λ) is depicted in Fig. 9. Π is
non-black-box any-simulation-extractable (NBBASE) if for any PPT adversary A there exists a PPT
extractor ExtA such that Advnbbase

Π,A,ExtA(λ) ≈λ 0.

	Simple Yet Efficient Knowledge-Sound and Non-Black-Box Any-Simulation-Extractable ZK-SNARKs

