
Simulation-Extractable SNARKs Revisited
July 13, 2019,

Helger Lipmaa1,2

1 University of Tartu, Tartu, Estonia
2 Simula UiB, Bergen, Norway
helger.lipmaa@gmail.com

Abstract. The most efficient SNARKs (e.g., Groth, 2016) have a
brittle and difficult-to-verify knowledge-soundness proof in the generic
model. This makes it nontrivial to modify such SNARKs to, e.g., satisfy
simulation-extractability or to implement some other language instead
of QAP (Quadratic Arithmetic Program). We propose knowledge-sound
and non-black-box strong any-simulation-extractable (SASE) SNARKs
for QAP that is designed to have a relatively simple security proof. The
knowledge-sound SNARK is similar to the mentioned SNARK of Groth,
except it has fewer trapdoors. To achieve SASE, we add to it a one-time
simulation-extractable QA-NIZK for a subspace language. Moreover, we
give a simple characterization of languages like SAP, SSP, and QSP in
the terms of QAP and show how to modify the SNARK for QAP cor-
respondingly. The only prior published efficient simulation-extractable
SNARK was for the somewhat impractical SAP language. We prove
security under subversion algebraic knowledge assumptions that are a
concrete version of the (subversion) algebraic group model.

Keywords: Algebraic group model, NIZK, non-black-box, QAP, QSP,
SNARK, SAP, SSP, simulation-extractability, zero-knowledge

1 Introduction

Zero-knowledge proof systems [GMR85] are fundamental for the theory and ap-
plications of cryptography. In particular, zero-knowledge proof systems are used
to guarantee that participants of some protocol follow the protocol correctly.
For zero-knowledge proof systems to be used in practice, one needs an “efficient”
zero-knowledge proof system that satisfies “reasonable” security definitions un-
der “reasonable” cryptographic and trust assumptions. Due to their performance
and versatility, zero-knowledge succinct non-interactive arguments of knowledge
(zk-SNARKs, [Gro10,BCCT12,Lip12,GGPR13,PHGR13,BCCT13,Gro16]) have
become one of the most widely researched and deployed proof systems, in particu-
lar because of their applicability in verifiable computation [PHGR13] and anony-
mous cryptographic currencies [DFKP13,BCG+14]. The mentioned zk-SNARKs
are knowledge-sound in the CRS model [BFM88].

It is difficult to design SNARKs, and it is easy for even well-established
research groups to err in such an endeavor (see, e.g., [Par15,CGGN17,Gab19] for

2 Helger Lipmaa

related cryptanalysis). One explanation for this is that for the proof system to
be secure, one needs to carefully designed the constant number of proof elements
and verification equations o that they satisfy a number of properties:

First, they need to encode an NP language. The most widely used language
is that of a quadratic arithmetic program (QAP, [GGPR13]) which corresponds
to the rank-1 quadratic constraint system of the popular libSNARK library.
Other related languages are square arithmetic programs (SAP, [Gro16,GM17]),
quadratic span programs (QSP, [GGPR13,Lip13]), and square span programs
(SSP, [DFGK14]). Here, QSP and SSP (resp., SAP and QAP) are convenient in
the case one works with Boolean (resp., arithmetic) circuits.

Second, for optimal efficiency, the NP witness and the argument need to
be encoded into the smallest number of proof elements and verified via the
smallest number of verification equations possible. This creates a new set of
design constraints, and several (tight) lower bound are known, [Gro16,GM17].

Third, throughout this process, one needs to assure that the SNARK remains
(at least) knowledge-sound and zero-knowledge. Due to known impossibility re-
sults [GW11], one has to use non-falsifiable assumptions like the knowledge as-
sumptions [Dam92]. To facilitate better efficiency, the most efficient zk-SNARKs
like [Gro16] are proven to be knowledge-sound in the generic model. Generic
model proofs often require one to derive soundness from a solution of a compli-
cated system of polynomial equations. Moreover, there exist constructions that
are secure in the generic group model but cannot be instantiated given any
efficient instantiation of the group encoding [Fis00,Den02].

Fourth, sometimes, knowledge-soundness is not sufficient and one desires
to achieve simulation-extractability (SE, [Sah99,DDO+01,GM17]). SE SNARKs
guarantee that knowledge-soundness holds even after the adversary has seen
many simulated proofs, a property that is needed in many applications includ-
ing UC-security [Can01].

It has been studied how to achieve UC-security for SNARKs. Kosba
et al. [KZM+15] constructed a black-box simulation-extractable version of
SNARKs; black-box simulation-extractability is sufficient to obtain UC-
security, [Gro06]. However, their transformation results in quite a large over-
head and, in particular, results in a linear-size commitment. Alternatively,
Groth and Maller [GM17] proposed a non-black-box strong any-simulation-
extractable (SASE) SNARK that is only slightly less efficient than the most
efficient knowledge-sound SNARK of Groth [Gro16]. However, their SNARK is
based on the SAP language [Gro16,GM17] and thus has a blowup of approxi-
mately two times in circuit size compared to the QAP language. (This is since
SAP has an efficient reduction from arithmetic circuits that have squaring gates
instead of general multiplication gates, [Gro16,GM17].) They also proved that
their construction achieved the lower bound for the argument length for SASE
SNARKs. While SASE is not sufficient to obtain UC-security, it is clearly a
stronger security notion than knowledge-soundness. Based on this observation,
Baghery [Bag19] recently noticed that a much simpler transformation is needed
to obtain UC-security based on SASE SNARKs. However, due to the use of SAP,

Simulation-Extractable SNARKs Revisited 3

this transformation is twice as costly when using the Groth-Maller SNARK as
compared to (yet unknown) SASE SNARKs for QAP.

No other simulation-extractable SNARKs are known at this moment (ex-
cept [BG18] that works in the random-oracle model), not even ones that are just
non-black-box ASE (any-simulation-extractable, allows an adversary after seeing
simulation queries to modify a valid argument to a different valid argument for
the same statement) or non-black-box TSE (any-simulation-extractable, allows
an adversary after seeing simulation queries to true statement to modify a valid
argument to a different valid argument for the same statement). This brings us
to the main question of this paper:

Is it possible to construct a general SNARK for a multitude of languages
(like QAP, SAP, QSP, and SSP) that would simultaneously (i) satisfy
SASE, (ii) have a simple soundness proof that does not use the whole
power of the generic model, and (iii) be almost as efficient as the most
efficient known knowledge-sound SNARKs.

Our Contributions. We answer positively to the main question. The new
knowledge-sound zk-SNARK Sqap for QAP is similar to Groth’s SNARK [Gro16]
while the SASE version Sseqap of it is obtained from it by well-motivated modi-
fications. Based on a simple observation about algebraic relations (summarized
in Table 2) between QAP and other languages, we modify both Sqap and Sseqap to
cover SAP, QSP, and SSP. See Table 1 for an efficiency comparison.3

Since the new SASE SNARKs are tag-based, we use (tautological)
knowledge assumptions instead of the full-blown generic group model
(GGM, [Nec94,Sho97]) to prove knowledge-soundness and SASE. We moti-
vate these knowledge assumptions by analysing the algebraic group model
(AGM, [FKL18]): essentially, AGM states that for any efficient algorithm A
that on an input vector [x]ι of group elements outputs an output vector [y]ι of
group elements (we use here the bracket notation of [EHK+13]), there exists an
efficient extractor ExtA that outputs a matrix N such that y = Nx.

A tautological algebraic knowledge (AK) assumption, see Section 3, states
that the same holds only for a concrete distribution of [x]ι (e.g., the distribution
of correctly formed CRSs). In Section 3, we will also study a “subversion” [BFS16]
version SAK of the AK assumption: it is essentially an AGM version of the sub-
version generic model [SPMS02,BFS16,ABLZ17] where we require the extractor
to output a vector of group elements [q]1 and a matrix N , such that y = N(xq).
Here, [q]1 are elements for which the adversary does not know discrete logarithm.
In the new SNARKs, to be able to rely on an SAK assumption, we need [q]1 to
come from a distribution of high min-entropy.

3 We emphasize that it is only fair to compare SNARKs for the same language; to
compare SNARKs for different languages, one also has to take into account the
complexity of the reduction from circuits to these languages. Note that [Lip13] only
described a reduction from Boolean circuits to QSP and a linear PCP [BCI+13] for
QSP, leaving out cryptographic details of constructing a SNARK.

4 Helger Lipmaa

Table 1. Efficiency comparison of QAP/SAP/SSP/QSP-based SNARKs. m, n (or
n∗), and m∗ denote the number of wires, gates, and constraints in the solutions. “eι”
(“mι”) denotes exponentiation (multiplication) in group Gι, “p” denotes pairing, and gι
denotes the representation length of a Gι element in bits. In the case of |crs| and P’s
computation we omit constant (or m0-dependent) addends like +(m0 + 3)g1.

Π security |crs| P computation |π| V computation

QAP-based (arithmetic circuit, with n gates), m∗ = m

[Gro16] KS (m+ 2n)g1 + ng2 (m+ 3n)e1 + ne2 2g1 + 1g2 3p + m0e1
Sqap § 4 KS (m+ 2n)g1 + ng2 (m+ 3n)e1 + ne2 2g1 + 1g2 3p + m0e1
Sse
qap § 4 SASE (m+ 3n)g1 + ng2 (m+ 4n)e1 + ne2 3g1 + 1g2 5p + (m0 + 1)e1

SAP-based (arithmetic circuit, with n∗ squaring gates): u = v, n∗ ≈ 2n, m∗ ≈ 2m

[GM17] SASE (m∗ + 2n∗)g1 + n∗g2 (m∗ + 2n∗)e1 + n∗e2 2g1 + 1g2 5p + m0e1
Ssap § 6 KS (m∗ + 2n∗)g1 + n∗g2 (m∗ + 2n∗)e1 + n∗e2 2g1 + 1g2 3p + m0e1
Sse
sap § 6 SASE (m∗ + 3n∗)g1 + n∗g2 (m∗ + 2n∗)e1 + n∗e2 2g1 + 1g2 5p + (m0 + 4)e1

SSP-based (Boolean circuit with n gates): u = v = w, n∗ = m+ n

[DFGK14] KS (m+ n∗)g1 + n∗g2 2mm1 + n∗e1 + mm2 3g1 + 1g2 6p + m0m1

Sssp § 7 KS (m+ 2n∗)g1 + n∗g2 2mm1 + n∗e1 + mm2 2g1 + 1g2 3p + m0m1

Sse
ssp § 7 SASE (m+ 3n∗)g1 + n∗g2 3mm1 + n∗e1 + mm2 2g1 + 1g2 5p + (m0 + 4)m1

QSP-based (Boolean circuit with n gates): w = 0, n∗ ≈ 14n [Lip13]

[Lip13] KS – – – –
Sqsp § 8 KS (m∗ + 2n∗)g1 + n∗g2 4m∗m1 + n∗e1 + m∗m2 2g1 + 1g2 3p + m∗0m1

Sse
qsp § 8 SASE (m∗ + 3n∗)g1 + n∗g2 5m∗m1 + n∗e1 + m∗m2 3g1 + 1g2 5p + (m∗0 + 1)m1

Similarly to subversion generic model and subversion algebraic model, a
SAK assumption can explain the absence of attacks on existing efficient cryp-
tographic protocols as they are, without having to decrease efficiency to obtain
security under more standard assumptions like the knowledge-of-exponent as-
sumptions [Dam92] or falsifiable assumptons. On the other hand, using a SAK
assumption as compared to the generic model enables one to handle a larger va-
riety of protocols (e.g., tag-based or protocols where one employs hashing from
group elements to integers) and avoids some of the criticisms against the generic
model [Fis00,Den02]. Thus, arguably, SAK assumptions hit a sweet spot, being
minimal assumptions to prove security of maximally efficient protocols.

In Section 4, we propose a knowledge-sound zk-SNARK Sqap for QAP. Recall
that that the prover is honest (the statement belongs to the QAP language) iff
χ(X) := u(X)v(X)−w(X)−h(X)`(X) = 0 (see [GGPR13]) for some polynomial
h(X), where the polynomials u(X), v(X), and w(X) depend on the concrete
circuit and on the witness the prover is using, `(X) is a public fixed polynomial.

We consider polynomials A(X,Y), B(X,Y) (“commitments” to u(X) and
v(X), respectively), and C(X,Y) = A(X,Y)B(X,Y), such that the coefficient
of Y κ (for a κ fixed later) in C(X,Y) is u(X)v(X)−w(X) = h(X)`(X) for some
h(X) iff the prover is honest, i.e., χ(X) = 0. One can guarantee that χ(X) = 0

Simulation-Extractable SNARKs Revisited 5

in the case of an algebraic adversary by inserting to the CRS elements of type
[f(x)yκ]1 only for polynomials f(X) that divide by `(X). On top of it, Sqap needs
to guarantee that (i) u(X), v(X), and w(X) use the same witness, and (ii) the
public input encoded into u(X) is correct.

We use aggressive optimization to get an as efficient SNARK as possible
while not sacrificing (much) in the simplicity of the knowledge-soundness proof.
Somewhat surprisingly, Sqap is very similar to Groth’s SNARK from EURO-
CRYPT 2016 [Gro16]. However, it uses only two trapdoors instead of five. This
distinction is important: for example, as noted in [ABLZ17,Fuc18], only two out
of Groth’s five trapdoors are needed for simulation; thus, it is logical or at least
aesthetic to drop the other trapdoors. In Sqap, we use well-chosen powers of one
trapdoor Y as substitutes of four out of the five trapdoors of Groth’s SNARK.

The way we choose the powers of Y is interesting by itself. LetX∗ = (X, . . .)
be the vector of all indeterminates, except Y , that are relevant in the knowledge-
soundness (or SASE) proof. This includes X, Y , indeterminates created by the
adversary by using elliptic curve hashing [Ica09], and (in the case of SASE)
indeterminates created by simulator queries. Then, V (X∗, Y) =

∑
Vi(X

∗)Y i

for known polynomials Vi(X∗), where i is a linear combination of an initially
undetermined integer vector ∆ = (α, β, . . .). We show that in the case of Sqap, a
generic prover is honest iff Vi(X∗) = 0 for six critical values i. We then choose∆
so that the corresponding six critical linear combinations i are distinct from each
other and from all other non-critical linear combinations j. Moreover, we choose
∆ so that the SNARK is relatively efficient. E.g., we require that for all critical
i, |i| is as small as possible, and check if there is a way to make some non-critical
values j to collapse (this can shorten the CRS). Since this is a moderately hard
optimization problem for humans, we here use an exhaustive computer search.
Due to this, exponents in the resulting SNARKs may look somewhat obscure,
e.g., A(X,Y) = raY

3 + u(X)Y 4.

In Section 5, we modify Sqap to make it SASE. We establish that for any k,
a SASE adversary has an attack vector by setting A(X,Y) = sa1kDk + . . . for
non-zero sa1k, where Dk is indeterminate generated during the kth simulation
query. We eliminate this attack vector by letting the prover to use an efficient
quasi-adaptive NIZK (QA-NIZK, [JR13]) to prove that A(X,Y) is in the span of
correct monomials. Since our goal is simulation-extractability, the QA-NIZK has
to be simulation-extractable. While known (unbounded) simulation-extractable
QA-NIZKs are not very efficient, we observe that Sqap itself (without the added
QA-NIZK) already guarantees that an acceptable argument can only depend on
the answer of a single simulation query. Thus, quite surprisingly, it is sufficient
to use a more efficient one-time simulation-extractable (OTSE) QA-NIZK. It is
known how to construct the latter efficiently [KW15] by using tags. We construct
an even more efficient OTSE QA-NIZK by relying on the specifics of Sqap and on
non-falsifiable assumptions. Adding this QA-NIZK increases the complexity of
the SNARK only slightly compared to Sqap (see Table 1). Since the Groth-Maller
SASE zk-SNARK [GM17] is for SAP, the new SASE SNARK is more efficient.

6 Helger Lipmaa

Importantly, Sqap has a simple Sub-GBGM knowledge-soundness proof where
only the value of the six critical coefficients of V matters. The SASE proof of the
SASE SNARK relies only a few more extra coefficients. This should be compared
to Groth’s SNARK [Gro16] (resp., the Groth-Maller SNARK [GM17]) that has
a very complicated knowledge-soundness (resp., SASE) proof.

As we mentioned before, Sqap is very similar to Groth’s SNARK. We obtain a
simpler knowledge-soundness proof by assuming that the pairing is asymmetric.
(Asymmetric pairings are much more efficient than symmetric pairings and thus
strongly preferred in practice.) On the other hand, Groth proved knowledge-
soundness in the case of a symmetric pairing, which results in A(X∗, Y),
B(X∗, Y), and C(X∗, Y) having more terms and thus V (X∗, Y) having more
critical coefficients. Thus, one corollary of our knowledge-sound proof is the (up
to our knowledge, novel) observation that Groth’s SNARK has a very simple
knowledge-soundness proof given that one uses asymmetric pairings. Our goal
was not to duplicate Groth’s SNARK but to construct an efficient SNARK that
has a simple knowledge-soundness proof. Thus, our exposition of the derivation
of Sqap can also be seen as an intuitive pedagogical re-derivation of (a slight vari-
ant of) the most efficient existing pairing-based SNARK. We emphasize that,
on the other hand, Sseqap is novel. In particular, none of the previous simulation-
extractable SNARKs [GM17,BG18] used tags.

After that, we consider languages SAP [Gro16,GM17], SSP [DFGK14], and
QSP [GGPR13,Lip13] that have also been used in the pairing-based SNARK lit-
erature. We explain their algebraic relation to QAP, which helps us to lift both
Sqap and Sseqap to the setting of the corresponding languages. In the previous re-
search, all four languages are handled separately and our (simple) relation seems
to be novel. In some of the cases, we improve on the efficiency of previous known
SNARKs for the same language. IWe propose the first known SASE SNARKs
for QAP, SSP, and SAP. In particular, we propose the first known (efficient)
SASE SNARKs for Boolean circuits in general. We omit precise descriptions of
the reduction between circuits and corresponding languages, giving only a brief
explanation and then referring to original papers.

In Section 6, we describe a SNARK Ssap for the language SAP (Square Arith-
metic Program, [GM17]). As mentioned before, SAP has an efficient reduction
from arithmetic circuits that use squaring gates instead of multiplication gates.
Thus, one has to take into account that such a circuit has usually two times more
gates and wires, since in general one needs two squaring gates to implement a
multiplication gate. This is a difference in the reduction overhead between cir-
cuits and the corresponding language, not in the cryptographic construction of
the SNARK. Algebraically, SAP is a variant of QAP with v(X) = u(X); thus,
χ(X) = u(X)2−w(X)−h(X)`(X). Thus, Ssap itself is as efficient as Sqap. Since
the honest argument contains ([a]1, [b]2) with a = b, we obtain a SASE SNARK
Ssesap by using a simpler tranformation than we used in the case of QAP.

In Section 7, we describe a SNARK Sssp for the SSP language [DFGK14]
that has efficient reduction from Boolean Circuit-SAT. Algebraically, SSP
is a variant of QAP, where one sets u(X) = v(X) = w(X). Then, χ(X) =

Simulation-Extractable SNARKs Revisited 7

Table 2. Algebraic relations between languages: restrictions on u(X), v(X), and v(X)

u(X) v(X) w(X)

QAP general general general
SAP general = u(X) general
SSP general = u(X) = u(X)
QSP general general = 0

u(X)(u(X)− 1)−h(X)`(X). Sssp is approximately as efficient as the SSP-based
SNARK of [DFGK14] but it has a shorter argument with more efficient verifi-
cation (only one verification equation instead of two). The new SASE SNARK
Ssessp for SSP uses the same transformation as Ssesap; no previous SASE SNARKs
for SSP were known. We are not aware of a previous observation that one can
design SNARKs for SSP by starting with a SNARK for QAP and then just
setting u(X) = v(X) = w(X).

We emphasize that an efficient SNARK for SSP is well-suited in applications
where one needs to use Boolean circuits. They are also useful in applications
like shuffle arguments [FLZ16,FLSZ17], and SSP has been used as the basis for
falsifiable SNARKs with long commitments [DGP+19].

Finally, in Section 8, we design a SNARK for QSP (Quadratic Span Pro-
grams, [GGPR13,Lip13]). Algebraically, QSP is a variant of QAP, where one
sets w(X) = 0. QSP is interesting in theory since one can construct a 2-query
linear PCP for it, [BCI+13,Lip13]. However, the reduction from Boolean circuits
to QSP is relatively complex, with the need to implement span-program-based
gate checkers and error-correcting-code-based wire checkers [GGPR13,Lip13].
The new SASE SNARK Sseqsp for QSP uses the same transformation as Sseqap.
Sqsp is again more efficient than previously known knowledge-sound SNARKs
for QSP, while there was no previously known SASE SNARK for QSP.

To construct eight different SNARKs and verify their sets of critical coeffi-
cients and also soundness, we used computer algebra and exhaustive search. We
believe that the soundness of the SNARKs is obvious, assuming that the vari-
ables ∆ = (α, β, . . .) have been chosen so that exponents of Y corresponding to
the critical coefficients are different from all other exponents. However, finding
small values of these variables seems to require exhaustive search — the num-
ber of non-zero coefficients of Vi(X∗) (even in the knowledge-soundness proof
and without allowing the algebraic adversary to create new indeterminates) is
at least 30, depending on the SNARK. This issue can be solved by using more
trapdoors as in [Gro16], but such a solution is not always acceptable.

Application: UC-Secure SNARKs. One can plug in Sseqap (instead of the
Groth’s SNARK as done in [KZM+15] or the Groth-Maller SNARK as done
in [Bag19]) to the known transformation of non-black-box SASE SNARKs to
bllack-box SASE SNARKs [Bag19] obtain better efficiency.

8 Helger Lipmaa

Further Work. Since our goal was to provide a simple, very general, template
that allows for efficient soundness proofs, we did not fully optimize all eight new
SNARKs. Moreover, we did not consider the important notion of subversion-
security [BFS16,ABLZ17,Fuc18]: including all technical details for how to do it
in the case of all 8 new zk-SNARKs would make the paper considerably longer.

Historic Remark. This version (from July 13, 2019) differs significantly from
the first eprint version from May 31, 2019. The main difference is in the handling
of simulation-extractability (SE): the earlier version achieved ASE but not SASE.
In fact, its ASE security proofs contained a subtle error, introduced in the last
moment during a submission rush. The current version of this paper achieves
SASE by using tags; this changed the SE SNARKs somewhat but their efficiency
remains comparable to the SE SNARKs in the earlier version. Due to the use
of tags, we stopped using the full power of the generic bilinear group model in
the soundness / SE proofs and added a lengthy description of the AGM and
tautological knowledge assumptions.

2 Preliminaries

For a matrix A, Ai denotes its ith row and A(j) denotes its jth column.
Assume n is a power of two, and let ω be the n-th primitive root of unity

modulo p. Such ω exists, given that n | (p− 1). Then, `(X) :=
∏n
i=1(X − ωi−1)

is the unique degree n monic polynomial such that `(ωi−1) = 0 for all i ∈ [1 .. n].
For i ∈ [1 .. n], let `i(X) be the ith Lagrange basis polynomial, i.e., the unique
degree n − 1 polynomial s.t. `i(ωi−1) = 1 and `i(ω

j−1) = 0 for i 6= j. Given
χ ∈ Zp, there is an efficient algorithm (see, e.g., [BCG+13]) that computes `i(χ)
for i ∈ [1 .. n]. Clearly, La(X) :=

∑n
i=1 ai`i(X) is the interpolating polynomial of

a at points ωi−1, with La(ωi−1) = ai, and its coefficients can thus be computed
by executing an inverse Fast Fourier Transform in time Θ(n log n). Moreover,
(`j(ω

i−1))ni=1 = ej (the jth unit vector) and (`(ωi−1))ni=1 = 0n.
Let PPT denote probabilistic polynomial-time and let λ ∈ N be the security

parameter. For an algorithm A, range(A) is the range of A, i.e., the set of of
valid outputs of A, RND(A) denotes the random tape of A, and r←$RND(A)
denotes the uniformly random choice of the randomizer r from RND(A). By
y ← A(x; r) we denote the fact that A, given an input x and a randomizer r,
outputs y. Let negl(λ) be an arbitrary negligible function, and poly(λ) be an
arbitrary polynomial function. We write a ≈λ b if |a− b| ≤ negl(λ).

Bilinear Groups. A bilinear group generator Pgen(1λ, n) returns
(p,G1,G2,GT , ê), where G1, G2, and GT are three additive cyclic groups
of prime order p, and ê : G1 × G2 → GT is a non-degenerate efficiently
computable bilinear pairing. We assume that n | (p − 1). As in say [BFS16],
we assume that Pgen is deterministic and cannot be subverted. We require
the bilinear pairing to be Type-3 [GPS08], i.e., we assume that there is no

Simulation-Extractable SNARKs Revisited 9

efficient isomorphism between G1 and G2. At this moment, the curve BLS12-
381 [BLS04,Bow17] is recommended at the 128-bit security level. We use the
bracket notation of [EHK+13], i.e., we write [a]ι to denote agι where gι is a fixed
generator of Gι. We denote ê([a]1, [b]2) by [a]1 • [b]2. We use freely the bracket
notation together with matrix notation, e.g., AB = C iff [A]1 • [B]2 = [C]T .

Let d1(n), d2(n) ∈ poly(λ). Then, Pgen is (d1(n), d2(n))-PDL (Power Dis-
crete Logarithm, [Sta08,THS+09,JR10,Lip12] secure if for any non-uniform PPT
adversary A, Advpdld1,d2,Pgen,A(λ) = negl(λ), where Advpdld1,d2,Pgen,A(λ) :=

Pr
[
p← Pgen(1λ, n), x←$Zp : A

(
p; [(xi)

d1(n)
i=0]1, [(x

i)
d2(n)
i=0]2

)
= x

]
.

QAP. Quadratic Arithmetic Program (QAP) was introduced in [GGPR13] as
a language where for an input x and witness inp, (x, inp) ∈ R can be verified by
using a parallel quadratic check. QAP has an efficient reduction from the (either
Boolean or Arithmetic) Circuit-SAT. Thus, an efficient zk-SNARK for QAP
results in an efficient zk-SNARK for Circuit-SAT.

Let m0 < m be a non-negative integer. In the case of arithmetic circuits,
n is the number of multiplication gates, m is the number of wires, and m0 is
the number of public inputs. We consider arithmetic circuits that consist only
of fan-in-2 multiplication gates, but either input of each multiplication gate can
be any weighted sum of wire values, [GGPR13].

Let F = Zp, such that ω is the n-th primitive root of unity modulo p. This
requirement is needed for the sake of efficiency, and we will make it implicitly
throughout the paper. However, it is not needed for the new SNARKs to work.
A QAP is characterized by n constraints (

∑m
j=1 Uijuj(X))(

∑m
j=1 Vijuj(X)) =∑m

j=1Wijwj(X), where U , V , and W are instant-dependent matrices. For j ∈
[1 ..m], define uj(X) := LU(j)(X), vj(X) := LV (j)(X), and wj(X) := LW (j)(X)
to be interpolating polynomials of the jth column of the corresponding matrix.
Thus, uj , vj , wj ∈ Z(≤n−1)

p [X].
An QAP instance Instqap is equal to (Zp,m0, {uj , vj , wj}mj=0). This instance

defines the following relation:

RInstqap =

{
(x, inp) : x = (a1, . . . , am0

)> ∧ inp = (am0+1, . . . , am)>∧
u(X)v(X) ≡ w(X) (mod `(X))

}
(1)

where u(X) =
∑m
j=0 ajuj(X), v(X) =

∑m
j=0 ajvj(X), and w(X) =∑m

j=0 ajwj(X). Alternatively, (x, inp) ∈ R if there exists a (degree ≤ n − 2)
polynomial h(X), such that the following key equation holds:

χ(X) := u(X)v(X)− w(X)− h(X)`(X) = 0 , (2)

On top of checking Eq. (2), the verifier also needs to check that u(X), v(X),
and w(X) are correctly computed: that is, that (i) the first m0 coefficients aj
in u(X) are equal to the public inputs, and (ii) u(X), v(X), and w(X) are all
computed by using the same coefficients aj for j ≤ m.

10 Helger Lipmaa

SNARKs. LetR be a relation generator, such thatR(1λ) returns a polynomial-
time decidable binary relation R = {(x, inp)}. Here, x is a statement and inp is a
witness. We assume that λ is explicitly deductible from the description of R. R
also outputs auxiliary information auxR that will be given to the honest parties
and the adversary. As in [Gro16], auxR will be equal to p ← Pgen(1λ, n) for a
well-defined n. Because of this, we will also give auxR as an input to the honest
parties; if needed, one can include an additional auxiliary input as an input to
the adversary. We recall that the choice of p and thus of the groups Gz depends
on n. Let LR = {x : ∃inp, (x, inp) ∈ R} be an NP-language.

We will define tag-based argument systems; in the non-tag-based case, the
tag-space is Tags = {⊥} (empty string) and tags are ignored by all algorithms.
A non-interactive zero-knowledge (NIZK) argument system Ψ for R consists of
four PPT algorithms:

CRS generator: Kcrs is a probabilistic algorithm that, given (R, auxR) ∈
range(R(1λ)), outputs (crs, td) where crs is a CRS and td is a simulation
trapdoor. Otherwise, it outputs a special symbol ⊥. For the sake of efficiency
and readability, we divide crs into crsP (the part needed by the prover) and
crsV (the part needed by the verifier).

Prover: P is a probabilistic algorithm that, given (R, auxR, crsP, τ, x, inp) for
τ ∈ Tags and (x, inp) ∈ R, outputs an argument π. Otherwise, it outputs ⊥.

Verifier: V is a probabilistic algorithm that, given (R, auxR, crsV, τ, x, π), re-
turns either 0 (reject) or 1 (accept).

Simulator: Sim is a probabilistic algorithm that, given (R, auxR, crs, td, τ, x),
outputs an argument π.

A NIZK argument system must satisfy completeness (an honest verifier accepts
an honest verifier), knowledge-soundness (if a prover makes an honest verifier
accept, then one can extract from the prover a witness inp), and zero-knowledge
(there exists a simulator that, knowing CRS trapdoor but not the witness, can
produce accepting statements with the verifier’s view being indistinguishable
from the view when interacting with an honest prover). See Appendix A.1 for
formal definitions. A SNARK (succinct non-interactive argument of knowledge)
is a NIZK argument system where the argument is sublinear in the input size.

Simulation-Extractability (SE). SE [Sah99,DDO+01] is a stronger no-
tion of knowledge-soundness, motivated by cryptographic applications like non-
malleability and UC-security. An SE argument system remains knowledge-sound
even if the soundness adversary has access to the simulation oracle. More pre-
cisely, one requires that there exists a universal extractor Ext, such that for each
PPT soundness adversary A who has oracle access to the simulator, Ext can
deduce the witness from A.

Dodis et al. [DHLW10] differentiated between several favors of SE. In the case
of any-simulation-extractability (ASE), the simulator can be queried with any
(potentially false) statements while in the case of true-simulation-extractability
(TSE), the simulator can only be queried with true statements. In the case of

Simulation-Extractable SNARKs Revisited 11

strong any-simulation-extractability, the adversary wins even if she can come up
with a new argument for a statement she has queried a simulation for, as long
as she outputs it for a new tag not used in simulation queries.

Groth and Maller [GM17] introduced the notion of non-black-box
simulation-extractability for SNARKs. In the case of non-black-box simulation-
extractability, one requires that for each PPT soundness adversary A who has
oracle access to the simulator, there exists a non-black-box extractor ExtA that
can extract the witness from A. The definition of SE from [GM17] corresponds
to non-black-box strong any-simulation extractability (SASE). Since we are in-
terested in non-black-box SE, we will implicitly assume SE means non-black-box
SE.Groth and Maller proved that for any SASE SNARK, the argument consists
at least of three group elements and that there should be at least two verification
equations. They also proposed one concrete SASE SNARK, based on the SAP
(Square Arithmetic Program) language, that meets the lower bounds. We will
design several SASE SNARKs based on different languages like QAP [GGPR13],
SSP [DFGK14], SAP [Gro16], and QSP [GGPR13]. We will provide formal defi-
nitions of non-black-box (strong) any-simulation-extractability in Appendix A.2.

3 Subversion Algebraic Knowledge Assumptions

AGM is a new model [FKL18] that one can use to prove the security of a crypto-
graphic assumption, protocol, or a primitive. Essentially, in AGM one assumes
that each PPT algorithm (including the adversaries) is algebraic in the follow-
ing sense: if the adversary’s input includes [xι]ι and no other elements from Gι
(ι ∈ {1, 2}) and the adversary outputs group elements [yι]ι, then the adversary
knows matrices N ι, such that yι = N ιxι. While [FKL18] defined AGM by re-
quiring the adversaries in the security proof to output [xι]ι together with N ι,
we find it more convenient to define AGM as a general knowledge assumption.

Let G be a cyclic group of prime order p. A PPT algorithm A is alge-
braic [BV98] if there exists an efficient extractor ExtA that for any PPT sam-
pleable distribution D, AdvakG,D,A(λ) = negl(λ), where AdvakG,D,A(λ) :=

Pr
[
[x]ι←$D; r←$RND(A); [y]ι←$A([x]ι; r);N ← ExtA([x]ι; r) : y 6= Nx

]
.

A group Gι is algebraic if every PPT algorithm A that obtains inputs from Gι
and outputs elements in Gι is algebraic.

The restriction that adversaries are algebraic is not valid in situations where
the adversary can create new random group elements by say using elliptic curve
hashing [Ica09]. We model this capability by allowing the adversary to create
additional “input” group elements [q]ι for which she does not know discrete
logarithms. We require that [qι]ι can be extracted from the adversary, such
that y = N · (xq). Moreover, q must be sampled from a public distribution
D′. For example, if elliptic-curve hashing is used, one can assume that each
coefficient of q is close to uniformly random. In the setting of a bilinear group p,
we follow [BFS16,ABLZ17] and assume additionally that group elements created
in G1 and G2 are independent. (See [BFS16,ABLZ17] for discussion.)

12 Helger Lipmaa

We say that a PPT algorithm A is subversion-algebraic if there exists an effi-
cient extractor ExtA, such that for any PPT distribution D and any sufficiently
random (we will clarify this notion later) distribution D′, AdvsakGι,D,D′,A(λ) :=

Pr

[
[x]ι←$D; r←$RND(A); [y]ι←$A([x]ι; r);

(N , [q]ι)← ExtA([x]ι; r) : (y 6= N(xq)) ∧ ([q]ι ∼ D′)

]
= negl(λ) .

A group Gι is subversion-algebraic if every PPT algorithm A that obtains inputs
fromGι and outputs elements inGι is subversion-algebraic. Clearly, a subversion-
algebraic adversary has more power than an algebraic adversary.

The AGM (resp., Sub-AGM) is essentially the assumption that the given
group is algebraic (resp., subversion-algebraic). Let us make this more precise.
We think of the requirement that for fixed (D,D′), A is subversion-algebraic
as a specialized (G,D,D′,A)-subversion algebraic knowledge (SAK) assumption
stating that AdvsakG,D,D′,A(λ) = negl(λ). Analogously, the (Gι,D,A)-algebraic
knowledge (AK) assumption states that AdvakG,D,A(λ) = negl(λ).

In AGM (resp., Sub-AGM), one assumes that (Gι,D,A)-AK (resp.,
(Gι,D,D′,A)-SAK) holds for all choices of (D,A) (resp., (D,D′,A)). We thus
call AGM (resp., Sub-AGM) the Gι-AK (resp., Gι-SAK) assumption. While
proving the security of a concrete protocol, it is sufficient to rely on the tauto-
logical (Gι,D,D′)-SAK assumption that there exists an extractor for each PPT
adversary A that obtains inputs, distributed according to the distribution D fixed
by the security definition of that protocol and then outputs [q]ι and N such that
[q]ι ∼ D′. A similar approach (but without mentioning AGM) was taken say in
[ALSZ18] that defined KW-KE to be the assumption that there exists an extrac-
tor for each adversary that, given the CRS of the Kiltz-Wee QA-NIZK protocol
Π ′as [KW15], outputs a purported argument.

Example 1. Let us demonstrate how a SAK assumption can be used. Consider
the q-PCDH assumption [GJM03,Gro10], D outputs x = [1, x, x1, . . . , xq]>1 for
uniformly random x, and the adversary A is asked to output [y]1 = [xq+1]1.
In this case, the (Gι,D,D′,A)-SAK assumption states that one can efficiently
extract [q]ι and integers Ni and N ′i such that xq+1 =

∑q
i=0Nix

i +
∑
N ′iqi. It

means that either f(X,Q) = Xq+1−
∑q
i=0NiX

i−
∑
N ′iQi = 0 as a polynomial

(which is impossible) or A has returned x, such that (x, q) is a root of the non-
zero polynomial f(X,Q). If A created no new group elements then f(X) is a
univariate polynomial and the adversary has broken (a version of) the (q, 0)-PDL
assumption. Otherwise, assuming [q]ι is “random enough” from the viewpoint of
A, the probability that f(x, q) = 0 will be negligible.

Let us now analyze the notion of “random enough”. Bellare et
al. [BFS16,ABLZ17] modelled subversion security by using the subversion generic
group model (Sub-GBGM) where the adversary can create random group ele-
ments [qι]1 that are interpreted as new indeterminates Qι in the security proof.
Our approach clarifies what does it mean for the elements to be random. As we
will see later (e.g., see the proof of Theorem 1), it will be needed that D′ has

Simulation-Extractable SNARKs Revisited 13

“high” min-entropy

H∞(D′) := − log2 max
y

Pr[q←$D′ : q = y] = ω(log λ) .

Really, we need that for any x, a randomly chosen q is a root of some “verification
polynomial” V ∗(x, q) with negligible probability. In the bilinear-group setting,
V ∗ has degree one in any of the variables Qιk. Thus, it follows from the Schwartz-
Zippel lemma [Zip79,Sch80] that

Pr[V ∗(x, q1, q2) = 0] ≤ 2−H∞(D′) = 2−ω(log λ) = λ−ω(1)

is negligible.4 There exist simpler versions of elliptic curve hashing (so called
encodings, [Ica09,BCI+10]) where the output is assumed to have high-entropy
but is not close to uniform; importantly, such versions suffice for us.

Moreover, the assumption of high min-entropy is quite natural. Really, if
qιk is equal to some yιk with a high probability then a non-uniform adversary
that has yιk as an advise can compute the discrete logarithm qιk with a non-
negligible probability. In such a case, qιk can be considered as an element with
known discrete logarithm.

Importantly, when proving the securty under (S)AK assumptions, the ad-
versary is allowed to make use of the group presentation as long as this does
not contradict the concrete knowledge assumption. This is important in the tag-
based setting where the adversary can choose her own tags (integers).

Finally, to simplify exposition, in the bilinear-group setting where we make
both (G1,D1,D

′
1)-SAK and (G2,D2,D

′
2)-SAK assumptions, we will talk about

a (G1,G2,D,D
′)-SAK assumption where D = D1 ×D2 and D′ = D′1 ×D′2. We

define the (G1,G2,D)-AK assumption analogously.

4 Knowledge-Sound SNARK for QAP

In this section, we will describe new SNARKs Sqap (SNARK for QAP) and
Sseqap (SNARK for QAP, SE) for QAP. The template follows two objectives: (i)
simple soundness proof under an SAK assumption, and (ii) efficiency. In fact, Sqap
is very similar to Groth’s SNARK from EUROCRYPT 2016 [Gro16] with the
main difference being the use of only two trapdoors instead of five. The second
difference is an alternative, much simpler, knowledge-soundness proof in the
case of asymmetric pairings; Groth on the other hand provided a very complex
knowledge-soundness proof that is valid for both asymmetric and symmetric
pairings. The new tag-based SASE SNARK Sseqap is novel and we are not aware
of any prior art tag-based SNARKs at all.

Let u(X) =
∑m
j=1 ajuj(X), v(X) =

∑m
j=1 ajvj(X), and w(X) =∑m

j=1 ajwj(X) as in Section 2. Recall from Eq. (2) that for χ(X) = u(X)v(X)−
w(X) − h(X)`(X), the key equation of QAP states that χ(X) = 0. That is,
h(X) := (u(X)v(X)− w(X))/`(X) is a polynomial iff the prover is honest.
4 See [FKL18, Section 1.2] for a less concrete analysis of the Sub-AGM case.

14 Helger Lipmaa

The argument in the new template consists of three elements, π =
([a, c]1, [b]2), where a = A(x, y), b = B(x, y), and c = C(x, y) for well-defined
polynomials A(X,Y), B(X,Y), and C(X,Y). Intuitively, [a]1 is a succinct com-
mitment to u(X), [b]2 is a succinct commitment to v(X), and [c]1 is the “actual”
argument that additionally commits to w(X). More precisely, let α, β, γ, and δ
be integers chosen later. Then

A(X,Y) = raY
α + u(X)Y β , B(X,Y) = rbY

α + v(X)Y β . (3)

We now define

C(X,Y) = (A(X,Y) + Y γ)(B(X,Y) + Y δ)− Y γ+δ

=A(X,Y)B(X,Y) +B(X,Y)Y γ +A(X,Y)Y δ

=u(X)Y β+δ + v(X)Y β+γ + w(X)Y 2β + (u(X)v(X)− w(X))Y 2β+

rb(raY
α + u(X)Y β + Y γ)Y α + ra(v(X)Y β + Y δ)Y α

=
∑m
j=1 aj(uj(X)Y β+δ + vj(X)Y β+γ + wj(X)Y 2β)+

(u(X)v(X)− w(X))Y 2β + rb(A(X,Y) + Y γ)Y α+

ra(v(X)Y β + Y δ)Y α .

(4)

Since a SNARK also has a public input (aj)
m0
j=1, we define two polynomials

Cs(X,Y) and Cp(X,Y), so that for another integer η,

C(X,Y) = Cp(X,Y)Y η + Cs(X,Y)Y α ,

where Cp(X,Y) depends only on aj for j ≤ m0, Cs(X,Y) depends only on aj
for j > m0, and Cp(X,Y) only has m0 addends (to minimize the computation,
performed by the verifier):

Cp(X,Y) =
∑m0

j=1 aj
(
uj(X)Y β−η+δ + vj(X)Y β−η+γ + wj(X)Y 2β−η) ,

Cs(X,Y) =
∑m
j=m0+1 aj

(
uj(X)Y β−α+δ + vj(X)Y β−α+γ + wj(X)Y 2β−α)+

(u(X)v(X)− w(X))Y 2β−α + rb (A(X,Y) + Y γ) + rav(X)Y β + raY
δ .
(5)

Here, we use the multiplicand Y α for efficiency reasons, since C(X,Y) has an
addend raA(X,Y)Y α.

Hence, the argument consists of three elements, π = ([a, cs]1, [b]2), where
cs = Cs(x, y) and the verifier recomputes [C(x, y)]T = [cp]1 • [yη]2 + [cs]1 • [yα]2.
Essentially, the verifier of the new SNARK checks that [c(x, y)]T is computed
correctly by checking that [c]T = ([a]1 + [yγ]1) • ([b]2 + [yδ]2)− [yγ+δ]T .

We prove knowledge-soundness based on a SAK and a PDL assumption. Let
V (X,Y) = C(X,Y)− (A(X,Y)+Y γ)(B(X,Y)+Y δ)+Y γ+δ be the verification
polynomial. By the SAK assumption, all coefficients of V are known. Assume
first that V (X,Y) = 0 is a zero polynomial. Then since the coefficient of Y 2β

is u(X)v(X) − w(X), it divides by `(X) only if χ(X) = 0. Hence, by inserting
to the CRS elements of type [f(x)y2β]1 only when `(X) | f(X), we get that if

Simulation-Extractable SNARKs Revisited 15

V (X,Y) = 0 iff the prover is honest. Second, if V (X,Y) 6= 0 but the verification
succeeds, then V (x, y) = 0 and by the same strategy as in Section 3 (the example
of PCDH), we can break the PDL assumption.

The full proof needs some more considerations. First, in the malicious case,
the adversary can also create a number of new random group elements [q1]1
and [q2]2. Let Qι be the vector of corresponding formal indeterminates in Gι
for ι ∈ {1, 2}. Let Q = (Q1,Q2) and let X = (X,Q, Y) be the vector of all
indeterminates. Let X∗ = (X,Q). Then, the polynomial corresponding to the
verification equation is

V (X) =(A(X) + Y γ)(B(X) + Y δ)− Y γ+δ − Cp(X)Y η − Cs(X)Y α , (6)

where A(X), B(X), and Cs(X) are potentially maliciously computed polyno-
mials that may depend on the indeterminates Q.

Assume V (X) = 0. Writing V (X) =
∑
i Vi(X

∗)Y i, we get that each
Vi(X

∗) = 0. We aim to construct the SNARK so that for some small set Crit, if
Vi(X

∗) = 0 for i ∈ Crit then χ(X) = 0. We already know that 2β ∈ Crit.
To formalize this discussion, consider the malicious case where A(X), B(X),

and Cs(X) are any polynomials in the span of polynomials represented in the
CRS in groups G1, G2, and G1, respectively. Since a subversion-algebraic ad-
versary can only evaluate polynomials that are in the span of the polynomials
in the CRS (of the same group) and of the newly generated group elements,
then any maliciously computed polynomials crs1(a,X) and crs2(b,X), where
a and b are symbolic, that represent group eements in G1 and G2 respectively,
have to have the following shape. This shape follows from the description of crs
in Fig. 2, which follows from the elements that either the honest prover or the
honest verifier have to be able to compute during the argument.

crs1(a,X) =
∑m0

j=1 a
∗
j (uj(X)Y β−η+δ + vj(X)Y β−η+γ + wj(X)Y 2β−η)+∑m

i=m0+1 a
∗
i (ui(X)Y β−α+δ + vi(X)Y β−α+γ + wi(X)Y 2β−α)+

ha(X)`(X)Y 2β−α + raY
α + ua(X)Y β + aγY

γ + aδY
δ +

∑
k qakQ1k ,

crs2(b,X) = rbY
α + vb(X)Y β + bδY

δ + bηY
η +

∑
k bqkQ2k ,

(7)

where say a∗j ∈ Zp, ua(X) ∈ Zp[X] is a degree-≤ (n − 1) polynomial, and
ha(X) ∈ Zp[X] is a degree-≤ (n − 2) polynomial. Then, A(X) = crs1(a,X) =
· · ·+raY

α+ua(X)Y β + · · · , Cs(X) = crs1(c,X) = · · ·+rcY
α+uc(X)Y β + · · · ,

and B(X) = crs2(b,X) = rbY
α + · · · . Thus, V (X) is defined as in Eq. (6) but

with polynomials A(X), B(X), and Cs(X) as defined in the current paragraph.
Second, for the described proof idea to go through, we need 2β to be different

from all other exponents in maliciously computed V ∗(X). Moreover, the prover is
honest iff χ(X) = 0 iff u(X)v(X)−w(X) = h(X)`(X) for some polynomial h(X)
iff the coefficient of Y 2β in C(X,Y) is divisible by `(X). In addition, Cs(X,Y)
has addends uj(X)Y β−α+δ, vj(X)Y β−α+γ , and wj(X)Y 2β−α; thus their sum
can be written as

∑m
j=1 ajfj(X,Y) for known polynomials fj(X,Y), as above.

This and the shape of the coefficient of Y 2β−α are the main reasons why we

16 Helger Lipmaa

Y i Coeff. Vi(X∗) (KS and SASE) V +
i (X∗) (SASE only)

Y 2β ua(X)vb(X)− w(X)− h(X)`(X)
∑
k(sc2k − rbsa2k)

∑
j σkjwj(X)

Y β+γ (aγ + 1)vb(X)− v(X)
∑
k(sc2k − rbsa2k)

∑
j σkjvj(X)

Y β+δ (bδ + 1)ua(X)− u(X) + aδvb(X)
∑
k(sc2k − rbsa2k)

∑
j σkjuj(X)

Y γ+δ bδ + aγ(bδ + 1)
Y γ+η (aγ + 1)bη
Y 2δ (bδ + 1) aδ

Fig. 1. Critical coefficients in Sqap (left) and addends to the same coefficients in the
SASE case (right).

chose C(X,Y) as in Eq. (4). Let R = {i : Vi(X
∗) 6= 0}, and

Crit = {2β, β + γ, β + δ, γ + δ, γ + η, 2δ}

and Crit = R \ Crit be the complement of Crit. Let ∆ = (α, β, γ, η, δ). To obtain
knowledge-soundness, we will need to choose the values in∆ so that Crit consists
of mutually different integers (|Crit| = 6) and Crit∩Crit = ∅. The concrete value
of the set Crit will become clear from the proof of Theorem 1 and from the
following observation. Let h(X) := hc(X)− rbha(X). Let

ãj =

{
aj − bηa∗j , j ≤ m0 ,

c∗j − rba∗j , j > m0 .

Denote u(X) =
∑m
j=1 ãjuj(X), v(X) =

∑m
j=1 ãjvj(X), and w(X) =∑m

j=1 ãjwj(X). In this case, the “critical” coefficients Vi(X∗), i ∈ Crit, of V (X)
are depicted in Fig. 1. As argued in the the proof of Theorem 1, from Vi(X

∗) = 0
for i ∈ Crit it follows that χ(X) = 0.

We are now ready to describe the SNARK Sqap, see Fig. 2, and prove its
security. (Note that tags τ are only used in the SASE version.) Like [Gro16] but
unlike say [GGPR13], Sqap guarantees that u(X), v(X), and w(X) use the same
witness a without having to use a strong QAP [GGPR13].

Before stating the following theorem, we need to specify the (G1,G2,D,D
′)-

SAK assumption. More precisely, we need to define D, since Gι is fixed by
the protocol and it suffices if D′ is any distribution of high min-entropy. Here,
Dqap(R, auxR) is the distribution of honestly generated CRS for the concrete
QAP instance R = Instqap and for auxR. Thus, for Kcrs depicted in Fig. 2,

Dqap(R, auxR) = {crs : (crs, td)← Kcrs(R, auxR)} .

Theorem 1. Let R = Instqap = (Zp,m0, {uj , vj , wj}mj=0) be a QAP instance.
Let Sqap be the SNARK in Fig. 2.
(1) Assume ∆ satisfies Crit ∩ Crit = ∅ and H∞(D′) = ω(log λ). Then, Sqap is
knowledge-sound under the (G1,G2,Dqap(R, auxR),D′)-SAK and (2n−1, n−1)-
PDL assumptions.
(2) Sqap is perfectly zero-knowledge.

Simulation-Extractable SNARKs Revisited 17

Kcrs(R, auxR): Sample x, y, z ←$Z∗p, let td← (x, y, z). Let

crsP ←

[
{uj(x)yβ−α+δ + vj(x)y

β−α+γ + wj(x)y
2β−α}mj=m0+1

]
1
,[

yα, {xjyβ}n−1
j=0 , {x

i`(x)y2β−α}n−2
j=0 , y

γ , yδ, yαz, {xjyβz}n−1
j=0

]
1
,[

yα, {xiyβ}n−1
i=0

]
2

 ;

crsV ←

[
{uj(x)yβ−η+δ + vj(x)y

β−η+γ + wj(x)y
2β−η}m0

j=1, y
γ , z

]
1
,[

yα, yδ, yη
]
2
, [yγ+δ]T

 ;

crs← (crsP, crsV); return (crs, td);

P(R, auxR, crsP, τ,(aj)
m0
j=1, (aj)

m
j=m0+1):

u(X)←
∑m
j=1 ajuj(X); v(X)←

∑m
j=1 ajvj(X); w(X)←

∑m
j=1 ajwj(X);

h(X)← (u(X)v(X)− w(X))/`(X);
(ra, rb)←$Z2

p;
[a]1 ← ra[y

α]1 + [u(x)yβ]1; [b]2 ← rb[y
α]2 + [v(x)yβ]2;

[b1]1 ← rb(τ [y
α]1 + [yαz]1) + [τv(x)yβ]1 + [v(x)yβz]1 ;

[cs]1 ←
∑m
j=m0+1 aj [uj(x)y

β−α+δ + vj(x)y
β−α+γ + wj(x)y

2β−α]1 +

[h(x)`(x)y2β−α]1 + rb ([a]1 + [yγ]1) + ra([y
δ]1 + [v(x)yβ]1);

return π ←
([
a, b1 , cs

]
1
, [b]2

)
;

V(R, auxR, crsV, τ,(aj)
m0
j=1, π = (

[
a, b1 , cs

]
1
, [b]2)):

[cp]1 ←
∑m0
j=1 aj [uj(x)y

β−η+δ + vj(x)y
β−η+γ + wj(x)y

2β−η]1;
Check that
1. [cp]1 • [yη]2 + [cs]1 • [yα]2 = [a+ yγ]1 • [b+ yδ]2 − [yγ+δ]T ;
2. [b1]1 • [1]2 = [τ + z]1 • [b]2 ;

Sim(R, auxR, crs, td = y, τ,x = (aj)
m0
j=1):

[cp]1 ←
∑m0
j=1 aj [uj(x)y

β−η+δ + vj(x)y
β−η+γ + wj(x)y

2β−η]1;
d←$Zp; e←$Zp;
[a]1 ← d[1]1; [b1]1 ← e(τ [1]1 + [z]1) ; [b]2 ← e[1]2;
[cs]1 ← y−α((de+ dyδ + eyγ)[1]1 − yη[cp]1);
return π ←

([
a, b1 , cs

]
1
, [b]2

)
;

Fig. 2. The new SNARKs Sqap (without highlighted entries) and Sse
qap (with highlighted

entries). Moreover, Sqsp is exactly like Sqap and Sse
qsp is exactly like Sse

qap, except wj(X) = 0

We emphasize that the following knowledge-soundness proof depends mini-
mally on the concrete SNARK: the only SNARK-dependent part is the Step 1 in
the knowledge-soundness proof. The rest of the knowledge-soundness proof can
basically be copied to the knowledge-soundness proofs of all following SNARKs.

Proof. (1: knowledge-soundness) In all following knowledge-
soundness/SASE proofs, we will use the following template. We use the
(G1,G2,Dqap(R, auxR),D′)-SAK assumption to extract all coefficients of
V (X). The fact that the verifier accepts means that V (x) = 0, where x is the

18 Helger Lipmaa

vector of actual trapdoors. We will then move everything from group elements
to indeterminates, and we argue that if the verification polynomial V (X)
satisfies V (X) = 0, then the prover did not cheat. After that, we use the PDL
assumption to derive a contradiction from V (X) 6= 0 but V (x) = 0; we also
argue that due to the high min-entropy of D′, creating random group elements
does not benefit A. These two steps together guarantee that the SNARK is
knowledge-sound/SASE: if the verifier accepted and the PDL assumption holds,
then V (X) = 0 as a polynomial and thus the prover did not cheat.

Let A be a knowledge-soundness adversary that, given (R, auxR, crs; r) as
an input succeeds in outputting (x, π) such that x 6∈ L but V accepts. Denote
crs = ([Γ 1]1, [Γ 2]2). ([yγ+δ]T is only included to the CRS as an optimization
and has no influence on the security.) By the SAK assumption, there exists an
extractor ExtA that on the same inputs returns N1, N2, [q1]1 and [q2]1, such
that (a, b1, cs)

> = N1

(
Γ 1
q1

)
and (a, b1, cs)

> = N2

(
Γ 2
q2

)
. As in above, write a =

A(x), b1 = B1(x), c = C(x), and b = B(x). Taking into account that elements
of Γ 1 are known polynomials of x and y, we can efficiently the coefficients of the
polynomials A, B1, C, and B from N1 and N2.

Step 1. Assume first that V (X) = 0 and thus Vi(X∗) = 0 for i ∈ Crit. Consider
Fig. 1. Since Vγ+δ(X∗) = bδ + aγ(bδ + 1) = 0, we have aγ = −bδ/(bδ + 1). Thus,
aγ , bδ 6= −1 and (aγ + 1)(bδ + 1) = 1. Moreover, Vη+γ(X∗) = (aγ + 1)bη = 0
and thus bη = 0. Next, V2δ(X∗) = aδ = 0. Thus, ãj = aj for j ≤ m0. Finally,
(bδ + 1)ua(X) = u(X), (aγ + 1)vb(X) = v(X), and χ(X) = u(X)v(X)−w(X)−
`(X)h(X) = 0, thus the prover did not cheat.

Step 2. Assume that V (X) 6= 0 but V (x) = 0, then the extractor has produced
a root of the non-zero multivariate polynomial V (X). We will first consider the
case when the adversary did not create any new group elements in G1 and G2,
i.e., we are working in the “non-subversion” case. After that, we show how to
reduce the subversion case to the non-subversion case.

In the non-subversion case, assume that A is a knowledge-soundness adver-
sary. We construct the following PDL adversary B. The challenger C samples
x←$Zp and then gives x = ([1, x, . . . , x2n−1]1, [1, x, . . . , x

n−1]2) as an input to
B. B samples y←$Zp, and uses it together with (R, auxR) and x to create crs.
B plays the challenger in the knowledge-soundness game with A: after sending
crs and r←$RND(A) to A, B obtains a purported proof ([a, cs]1, [b]2) from A. B
runs the extractor ExtA, guaranteed by the SAK assumption, to obtain matrices
N ι and [qι]ι (the latter is empty in the non-subversion case). FromN ι, she com-
putes the coefficients of various polynomials like A(X,Y), B(X,Y), Cs(X,Y),
and V (X,Y). Now, [a]1 = [A(x, y)]1, [cs]1 = [Cs(x, y)]1, and [b]2 = [B(x, y)]2.
Since the verifier accepts, V (x, y) = 0; however, V (X,Y) 6= 0 as a polynomial.
For the fixed value of y, let V ∗(X) := V (X, y). Finally, B does the following:

1. Use an efficient polynomial factorization algorithm to obtain up to 2n − 1
roots xi of V ∗(X).

2. Return the root xi that satisfies [xiy
β]1 = [xyβ]1.

Simulation-Extractable SNARKs Revisited 19

Clearly, B has broken the (2n−1, n−1)-PDL assumption with a probability sta-
tistically close to the success probability of A, and B’s running time is dominated
by the running time of A and the time to perform polynomial factorization.

Consider now the subversion case when A has created at least one random
group element qιk. We will rely on the fact that the new group elements qιk are
added additively to a polynomial of x in both groups, and moreover, the elements
in G1 and G2 are independent. Then, V ∗(X,Q) is a degree-1 polynomial in any
indeterminate Qιk. Thus, by the Schwartz-Zippel lemma and since H∞(D′) =
ω(log λ), for any x, the probability that V ∗(x, q) = 0 is negligible. Hence, the
probability that an adversary, who created at least one (high min-entropy) group
element [qιk]1, can make the verifier accept is negligible.

(2: zero-knowledge) To see that Sim makes the verifier accept, note that
(a + yγ)(b + yδ) − csy

α − cpy
η − yγ+δ = de + dyδ + eyγ − cpy

η − (de + dyδ +
eyγ − cpy

η) = 0. Sim’s output comes from the correct distribution since a and b
are individually uniform in Zp, and c is chosen so that V accepts. ut

In Appendix B, we observe that if the verification consists of a single pairing
execution then it is not even needed to assume that D′ has high min-entropy.

Choice of ∆. Recall that we need to find values for ∆ = (α, . . .), such that
Crit ∩ Crit = ∅. For convenience sake, we require that the polynomials crs1 and
crs2 both contain a non-zero monomial corresponding to Y 0 (then we can publish
[1]1 and [1]2) and that the values i, such that j for which f(X)Y j belongs to the
CRS for some f(X), have as small absolute values as possible (although we do
not consider subversion security, this potentially speeds up the CRS verification
algorithm [ABLZ17]). Since there are too many coefficients that one can take
into account, we used a computer search to find the following values for α, β, . . .:

α = 3, β = 4, γ = 0, δ = −5, η = 2. (8)

In this case,

crsP =

[{uj(x)y−4 + vj(x)y1 + wj(x)y5}mj=m0+1, y
3, {xjy4}n−1j=0

]
1
,[

{xi`(x)y5}n−2j=0 , y
0, y−5, y3z, {xjy4z}n−1j=0

]
1
,
[
y3, {xiy4}n−1i=0

]
2

 ,

crsV =
(
[{uj(x)y−3 + vj(x)y2 + wj(x)y6}m0

j=1, y
0]1,

[
y3, y−5, y2, z

]
2
, [y2]T

)
.

Efficiency. Sqap has fewer trapdoors but otherwise the same complexity as
Groth’s knowledge-sound zk-SNARK [Gro16], see Table 1 for a comparison. E.g.,
crsP has (m−m0) + 1 + n+ (n− 1) + 1 = m+ 2n−m0 + 1 elements from G1

and (n + 2) elements from G2. Moreover, crsV has m0 + 1 elements from G1,
3 elements from G2, and one element from GT . Since crsP and crsV have one
common element in G1 then |crs| = (m + 2n + 2)g1 + (n + 4)g2 + gT . (Recall
that gι denotes the representation length of an element of Gι.) Clearly, [a]1 can
be computed from [yα]1 and [xiyβ]1 by using n+ 1 exponentiations, and it takes
≈ m+ 2n additional exponentiations to compute [c]1.

20 Helger Lipmaa

5 SASE SNARK Sse
qap for QAP

Consider the case of simulation-extractability, where the adversary also can
query the simulator. Let σk = (σkj)

m0
j=1 be the (maliciously generated) simulator

input used by the adversary during the kth query. LetX = (X,Q,D,E, Y) and
X∗ = (X,Q,D,E), where Dk (resp., Ek) is the indeterminate corresponding
to the random trapdoor d (resp., e) generated by the simulator during the kth
query. In the case of SASE, in Sqap, crs1(a,X) and crs2(b,X) have additional
addends (highlighted in what follows) that correspond to the indeterminates
generated by the simulator oracle:

crs1(a,X) = . . .+
∑
k sa1kDk +

∑
k sa2k

(
Y δ−αDk + Y −αDkEk + Y γ−αEk

)
+∑

k sa2k
∑m0

j=1 σkj
(
uj(X)Y β−α+δ + vj(X)Y β−α+γ + wj(X)Y 2β−α) ,

crs2(b,X) = . . .+
∑
k sbkEk .

In this case, due to the extra inputs from the simulator, the critical coefficients
of Vi(X∗) of V (X) will be changed by extra addends V +

i (X∗), depicted in
Fig. 1. For example, Vβ+δ(X∗) = (bδ + 1)ua(X)− u(X) + aδvb(X) +

∑
k(sc2k −

rbsa2k)
∑
j σkjuj(X).

First, assume that the first verification equation is used. Then the coefficient
of Y −α+δ+γEk of V (X) (namely, (bδ + 1)sa2k) implies that sa2k = 0. Moreover,
the coefficients of Y δDk (namely, rbsa2k + (bδ + 1)sa1k − sc2k), Y γEk (namely,
rbsa2k + sbk/(bδ + 1)− sc2k), Y αDk (namely, rBsa1k− sc1k), and DkEk (namely,
rbsa2k + sa1ksbk − sc2k) in V (X) imply that either

(i) sa1k = sbk = 0 and thus sc1k = rbsa1k, for all k, or
(ii) sa1k = 1/(bδ + 1) and sbk = bδ + 1 for at least one k.

In the first case, sc1k = rbsa1k for all k and thus we can eliminate the V +
i (X∗)

addends in Fig. 1, and thus get back to the (already solved) knowledge-soundness
setting that guarantees us that χ(X) = 0.

In the second case, for some k, A(X) = sa1kDk+ . . . and B(X) = sbkEk+ . . .
for sa1k = 1/(bδ+1) 6= 0 and sbk = bδ+1 6= 0. Now, for k1 6= k2, the coefficient of
Dk1Ek2 is sa1k1sbk2 = 0. Since sa1k = 0 iff sbk = 0, we get that sa1k, sbk 6= 0 for
at most one index k := k0. Thus, the polynomials V +

i (X∗) in Fig. 1 are equal to∑
j σk0juj(X),

∑
j σk0jvj(X), and

∑
j σk0jwj(X), respectively. Note also that

sa2k = 0 and thus sc2k = 1.
To guarantee that the prover is honest, we must make it impossible for the

prover to include a term sa1k0Dk0 , for non-zero sa1k0 , to A(X). The first idea
how to achieve this is by asking the prover to additionally output [b]1 and then
letting the verifier to check that [b]1 • [1]2 = [1]1 • [b]2. Since in the kth query,
the simulator also outputs [bk]1 = [ek]1, then now A(X) also depends on Ek.
That is, the polynomial A(X) has an additional monomial −

∑
k sa3kEk for

each simulation query, and similarly for polynomial B1(X) = . . .−
∑
k sb13kEk.

Thus, checking that [b]1 • [1]2 = [1]1 • [b]2 only guarantees that B(X) = rbY
α +

vb(X)Y β +
∑
sbk0Ek0 for some rb, vb(X), and (possibly non-zero) sbk0 = sb13k.

Simulation-Extractable SNARKs Revisited 21

The problem here is that the added step can be seen as a knowledge-sound
QA-NIZK argument Πsub [JR13] that [b]2 belongs to the “subspace”5 generated
by [M(X,Y)]1 = [Y α, Y β , XY β , . . . , Xn−1Y β]1. Since we allow for simulation
queries, we need a simulation-extractable QA-NIZK argument for the subspace
language. While such QA-NIZK arguments are known, they are not very effi-
cient, [KW15]. A saving grace for us is that it suffices for Πsub to be one-time
simulation-extractable (OTSE): that is, it suffices for Πsub to be knowledge-
sound after one malicious query to the simulator. Really, as we argued before, it
is possible that sa1k, sbk 6= 0 for at most one index k = k0. More precisely, assume
now that sa1k0 = sbk0 = 1. Then, as seen from the coefficient of Y −αDk1E

2
k2
,

sa2k1sbk2 = 0 for any k1, k2. Thus, sbk0 = 0 for any k 6= k0.
Next, we use the main idea of the one-time simulation-sound (OTSS) QA-

NIZK of Kiltz-Wee [KW15, Section 3.3] Πotss by introducing a tag τ , and requir-
ing that the simulation queries are made on tags τk that differ from the tag τ for
which the malicious prover constructs a forgery attempt. We introduce for this
a new indeterminate Z, and ask the prover to compute the QA-NIZK argument
with respect to the sum τ + Z. This can be interpreted as making use of the
pairwise independent function HZ1,Z2

(τ) = τZ1 + Z2 [WC81]. Note that also
Πotss is somewhat inefficient and therefore we do use it directly.

Let X = (X,Q,D,E, Y, Z) and X∗ = (X,Q1,Q2,D,E, Z). Then,

crs1(a,X) =
∑m0

j=1 a
∗
j (uj(X)Y β−η+δ + vj(X)Y β−η+γ + wj(X)Y 2β−η)+∑m

i=m0+1 a
∗
i (ui(X)Y β−α+δ + vi(X)Y β−α+γ + wi(X)Y 2β−α)+

ha(X)`(X)Y 2β−α + raY
α + ua(X)Y β + aγY

γ + aδY
δ +

∑
k aqkQ1k−∑

k sa1kDk +
∑
k sa2k

(
Y δ−αDk + Y −αDkEk + Y γ−αEk

)
+∑

k sa2k
∑m0

j=1 σkj
(
uj(X)Y β−α+δ + vj(X)Y β−α+γ + wj(X)Y 2β−α)+

rzaY
αZ + uza(X)Y βZ −

∑
k sa3kEk(τk + Z) ,

crs2(b,X) = rbY
α + vb(X)Y β + bδY

δ + bηY
η +

∑
k bqkQ2k +

∑
k sbkEk .

where uza(X) ∈ Z(≤n−1)
p [X]. Then, for example, B1(X) = crs1(b1,X). Recall

that the verifier’s second verification guarantees that for fixed τ , the second
verification polynomial V se(X) satisfies V se(x) = 0, where

V se(X) := B1(X)− (τ + Z)B(X) .

Consider again first the case V se(x) = 0 as a polynomial. Looking at the co-
efficient of Ek in V se(X), we get τksb13k = −τsbk, while looking at the coefficient
of EkZ in V se(X), we get sb13k = −sbk. Since τk 6= τ , we get sb13k = sbk = 0.
From the earlier discussion, we obtain that sa1k = 0 and thus sc2k = rbsa2k,
which means that the polynomials V +

i (X∗) in Fig. 1 are equal to 0 and thus
SASE of Sseqap follows from the knowledge-soundness of Sqap.

5 Since this subspace is trivial (equal to the whole space), we need to rely on a knowl-
edge assumption to achieve security. See [FLSZ17] that used a similar technique to
combine QA-NIZK and SNARKs.

22 Helger Lipmaa

Due to the introduction of new indeterminate, we will have a larger set of
critical coefficients. Let ãj = aj−

∑
k sc2kσkj for j ≤ m0 and ãj = c∗j for j > m0.

Let u(X) =
∑m
j=1 ãjuj(X), v(X) =

∑m
j=1 ãjvj(X), and w(X) =

∑m
j=1 ãjwj(X).

Let R′ = {i = Y j0Dj1
k1
Ej2k1E

j3
k2
Zj4 : Vi(X

∗) = 0}. Let k = 2β and

Crit′ = {2β, β + γ, β + δ, γ + δ, γ + η, 2δ, Y γDk1 , Ek1 , Ek1Z}

be the new set of critical coefficients. (Here, the first 6 coefficients are the same
as in the case of Sqap.) Let Crit′ = R′ \ Crit′.

Theorem 2. Let R = Instqap = (Zp,m0, {uj , vj , wj}mj=0) be a QAP instance.
Let Sseqap be the SASE SNARK (with highlighted entries) in Fig. 2.
(1) Assume ∆ is chosen so that Crit′ ∩ Crit′ = ∅ and that H∞(D′) = ω(log λ).
If the (G1,G2,Dqap(R, auxR),D′)-SAK and (2n − 1, n − 1)-PDL assumptions
hold then Sseqap in Fig. 2 is ASE. If, additionally, RInstqap is a hard-membership
language then Sseqap is SASE.
(2) Sseqap is perfectly zero-knowledge.

Proof. (1: ASE and SASE) First, let A be an ASE adversary that succeeded
in outputting (x, π) such that x 6∈ L but V accepts. Since we are proving ASE,
another part of the input to A is the reply of the Sim oracle to each query. Due
to the use of a SAK assumption, Gι-outputs of A have to belong to the span
of her inputs (one part of the input is the CRS and of the simulator replies in
this group) and of new random group elements and moreover, one can extract
the corresponding coordinates. When replying to jth query, Sim samples fresh
random integers dj and ej . We model dj and ej as new indeterminates Dj and
Ej . Let X = (X,Q,D,E, Y, Z) be the vector of all indeterminates.

Since the second verification equation holds, from the coefficients of Ek and
EkZ of V se(X) = 0 (and from τ 6= τk) we get sa1k = sbk = 0. Then, from the
coefficient of Y γEk of V (X) = 0 we get that sc2k = rbsa2k for each k. This
means that the polynomials V +

i (X∗) in Fig. 1 are all equal to 0. The rest of the
proof of ASE now follows from the knowledge-soundness proof from Theorem 1.

To see that also SASE holds, note that from the ASE security proof it follows
that a SASE adversary A cannot use the answers of simulation queries (produced
when using a different tag) while creating an argument. This means that A, after
seeing a simulated argument for a statement x, creates a new argument π for the
same statement (but under a different tag τ), but without the help of the oracle.
Thus,A can be used to decide membership in the QAP language, a contradiction.
Note that the SASE case cannot be reduced to knowledge-soundness, since it also
must be impossible to create new arguments for true statements.

(2: zero-knowledge) similar to Theorem 1. ut

6 SAP-Based SNARKs

In the following sections, we will describe SNARKs for different languages SAP,
SSP, and QSP. Since these SNARKs and their security proofs are modifications
of Sqap, we will omit most of the details.

Simulation-Extractable SNARKs Revisited 23

Groth [Gro16] and Groth and Maller [GM17] used SAP (Square Arithmetic
Programs) instead of QAP. The only algebraic distinction here is that v(X) =
u(X) and thus R = Instsap = (Zp,m0, {uj , wj}mj=0) is a SAP instance. RInstsap is
defined as RInstqap in Eq. (1) except that v(X) = u(X). Thus, each gate in the
arithmetic circuit gets the same left and right inputs, or, putting it another way,
the circuit consists of squaring gates only. Since each multiplication gate c = ab
can be implemented two squaring gates (ab = (a/2 + b/2)2 − (a/2− b/2)2), one
can verify the correctness of an arbitrary d-gate arithmetic circuit by transferring
it to a circuit that has m∗ ≤ 2d squaring gates and then constructing a SNARK
for SAP for the resulting circuit. The main motivation behind introducing SAP
is that one can construct SNARK where A(X,Y) = B(X,Y), which potentially
makes the SNARK more efficient.

We will next describe how to modify our approach to the case of SAP. Since
u(X) = w(X), the corresponding key equation is χsap(X) = 0, where

χsap(X) = u(X)2 − w(X)− h(X)`(X) .

In this case, we simplify Eqs. (3) and (4) by setting v(X) = u(X) and ra = rb.
Then A(X,Y) = B(X,Y) = raY

α + u(X)Y β .
Thus, Eqs. (3) to (5) simplify to

A(X,Y) = B(X,Y) = raY
α + u(X)Y β ,

C(X,Y) = (A(X,Y) + Y γ)(A(X,Y) + Y δ)− Y γ+δ

=u(X)(Y β+γ + Y β+δ) + u(X)2Y 2β + ra
(
raY

α + 2u(X)Y β + Y γ + Y δ
)
Y α ,

=
(
u(X)(Y β+γ + Y β+δ) + w(X)Y 2β

)
+ (u(X)2 − w(X))Y 2β+

ra
(
raY

α + 2u(X)Y β + Y γ + Y δ
)
Y α ,

Cp(X,Y) =
∑m0

j=1 aj
(
uj(X)(Y β−η+γ + Y β−η+δ) + wj(X)Y 2β−η) ,

Cs(X,Y) =
∑m
j=m0+1 aj

(
uj(X)(Y β−α+γ + Y β−α+δ) + wj(X)Y 2β−α)+

h(X)`(X)Y 2β−α + ra(raY
α + 2u(X)Y β + Y γ + Y δ) .

We construct the SNARK Ssap by correspondingly simplifying Fig. 2, see
Fig. 3. We can find a suitable ∆ as in the case of QAP in Section 4, see Eq. (8).

Knowledge-soundness. Since Ssap is an optimized version of Sqap, its
knowledge-soundness can be proven by using the same approach. That is, one
can follow the proof of Theorem 1. Let h(X) := hc(X)− raha(X). Let

ãj =

{
aj − bηa∗j , j ≤ m0 ,

c∗j − raa∗j , j > m0 .

Denote u(X) =
∑m
j=1 ãjuj(X) and w(X) =

∑m
j=1 ãjwj(X). In this case, the

“significant” coefficients Vi(X,Q), i ∈ Crit, of V (X) are depicted in Fig. 4. The
differences compared to Fig. 1 are solely due to the setting v(X) = u(X).

24 Helger Lipmaa

Kcrs(R, auxR): Sample x, y, z ←$Z∗p, let td← (x, y, z). Let

crsP ←

[
{uj(x)yβ−α+δ + uj(x)y

β−α+γ + wj(x)y
2β−α}mj=m0+1, y

α
]
1
,[

{xjyβ}n−1
j=0 , {x

i`(x)y2β−α}n−2
j=0 , y

γ , yδ, yαz, {xjyβz}n−1
j=0

]
1
,[

yα, {xiyβ}n−1
i=0

]
2

 ;

crsV ←

[
{uj(x)yβ−η+δ + uj(x)y

β−η+γ + wj(x)y
2β−η}m0

j=1, y
γ , z, yγz

]
1
,[

yα, yδ, yη, yηz, yαz
]
2
, [yγ+δ]T

 ;

crs← (crsP, crsV); return (crs, td);

P(R, auxR, crsP, τ,(aj)
m0
j=1, (aj)

m
j=m0+1):

u(X)←
∑m
j=1 ajuj(X); w(X)←

∑m
j=1 ajwj(X); h(X)← (u(X)2 − w(X))/`(X);

ra ←$Zp;
[u′]1 ← ra[y

α]1; [u′′]1 ← [u(x)yβ]1;
[a]1 ← τ ·([u′]1 + [u′′]1)+ra[y

αz]1 + [u(x)yβz]1 ; [b]2 ← ra[y
α]2 + [u(x)yβ]2;

[cs]1 ←
∑m
j=m0+1 aj [uj(x)y

β−α+δ + uj(x)y
β−α+γ + wj(x)y

2β−α]1 +

[h(x)`(x)y2β−α]1 + ra
(
[u′]1 + 2[u′′]1 + [yγ]1 + [yδ]1

)
);

return π ←
(
[a, cs]1 , [b]2

)
;

V(R, auxR, crsV, τ,(aj)
m0
j=1, π = ([a, cs]1 , [b]2)):

[cp]1 ←
∑m0
j=1 aj [uj(x)y

β−η+δ + uj(x)y
β−η+γ + wj(x)y

2β−η]1;
Check that
1. [cp]1 • [(τ + z)yη]2 + [cs]1 • [(τ + z)yα]2 = [a + (τ + z)yγ]1 • [b + yδ]2 −

[(τ + z)yγ+δ]T ;
2. [a]1 • [1]2 = [τ + z]1 • [b]2 ;

Sim(R, auxR, crs, td = y, τ,x = (aj)
m0
j=1):

[cp]1 ←
∑m0
j=1 aj [uj(x)y

β−η+δ + uj(x)y
β−η+γ + wj(x)y

2β−η]1;
d←$Zp; [a]1 ← τ ·d[1]1+d[z]1 ; [b]2 ← e[1]2;
[cs]1 ← y−α((d2 + d(yδ + yγ))[1]1 − yη[cp]1);
return π ←

(
[a, cs]1 , [b]2

)
;

Fig. 3. The new SNARKs for SAP and SSP: knowledge-sound Ssap (without highlighted
entries) and SASE Sse

sap (with highlighted entries). Sssp is like Ssap and Sse
ssp is like Sse

sap,
except that then also wj(X) = uj(X).

Let R = (Zp,m0, {uj , wj}mj=0) be a SAP instance. Here, we need to use the
knowledge assumption for Dsap(R, auxR), where for Kcrs depicted in Fig. 3,

Dsap(R, auxR) = {crs : (crs, td)← Kcrs(R, auxR)} .

Theorem 3. Let R = Instsap = (Zp,m0, {uj , wj}mj=0) be a SAP instance.
(1) Assume ∆ is chosen so that Crit ∩ Crit = ∅ and that H∞(D′) = ω(log λ). If
the (G1,G2,Dsap(R, auxR),D′)-SAK and (2n− 1, n− 1)-PDL assumptions hold

Simulation-Extractable SNARKs Revisited 25

Y i Coeff. Vi(X∗) (KS and SASE) V +
i (X∗) (SASE only)

Y 2β ua(X)vb(X)− w(X)− h(X)`(X)
∑
k(τsc2k − rasa2k)

∑
j σkjwj(X)

Y β+γ (aγ + τ)vb(X)− v(X)
∑
k(τsc2k − rasa2k)

∑
j σkjvj(X)

Y β+δ (bδ + 1)ua(X)− u(X) + aδvb(X)
∑
k(τsc2k − rasa2k)

∑
j σkjuj(X)

Y γ+δ bδ(aγ + τ) + aγ
Y 2δ (bδ + 1) aδ
Y η+γ (aγ + τ)bη

Fig. 4. Critical coefficients in Sqap (left, τ = 1) and addends to the same coefficients in
the SASE case (right).

then Ssap in Fig. 2 is knowledge-sound.
(2) Ssap is perfectly zero-knowledge.

Proof (Sketch). (1: knowledge-soundness) Since the rest of the knowledge-
sound is essentially the same as in the proof of Theorem 1, we only reprove the
Step 1 from that proof.

Consider the polynomials in Fig. 4. Since bδ + aγ(bδ + 1) = 0, we get aγ =
−bδ/(bδ + 1) and aγ , bδ 6= −1 and (aγ + 1)(bδ + 1) = 1. Thus aδ = bη = 0, which
means that ãj = aj for j ≤ m0. Thus, ua(X)vb(X) = u(X)2 and u(X)2−w(X) =
h(X)`(X), which means that χsap(X) = 0.

(2: zero-knowledge) as in Theorem 1, except that we use only one new
trapdoor d due to the fact that a = b. ut

Efficiency. Clearly, in Ssap, the CRS has (n) + (n − 1) + m + 2 = 2n + m + 1
elements from G1 and n + 3 elements from G2. The prover’s computation is
n + 1 exponentiations to compute [a]1, n + 1 exponentiations to compute [b]2,
and 1 + (m−m0) + (n− 1) = n+m−m0 exponentiations to compute [cs]1.

SASE SNARK Sse
sap. Consider the case of SASE with Ssap. Taking into ac-

count answers from simulation queries, the polynomials crs1 and crs2 have the
following new addends:

crs1(a,X) = . . .+
∑
k sa1kDk +

∑
k sa2k

(
Y δ−α + Y −αDk + Y γ−α

)
Dk+∑

k sa2k
∑m0

j=1 σkj
(
uj(X)Y β−α+δ + uj(X)Y β−α+γ + wj(X)Y 2β−α) ,

crs2(b,X) = . . .+
∑
k sbkDk .

(Compared to Sqap, we just changed vj(X) to uj(X) and Ek to Dk.) In the
honest case, [a]1•[1]2 = [1]1•[b]2. However, if the verifier additionally checks that
[a]1 • [1]2 = [1]1 • [b]2, one obtains the guarantee that A(X) = B(X) = raY

α +
ua(X)Y β −

∑
sa1kDk. Again, this does not guarantee simulation-extractability.

We proceed similarly to the case of Sqap but take into account the fact that
a = b in the honest case. Recall that in Sqap, one constructed b1, such that

26 Helger Lipmaa

b1 = b(τ + z) (where τ is a tag and Z is a new indeterminate). What we do next
is to define a = b1, and then modify the verification equations to take that into
account, as in Fig. 3. This defines two verification polynomials,

V (X) =(A(X) + (τ + Z)Y γ)(B(X) + Y δ)− (τ + Z)Cp(X)Y η−
(τ + Z)Cs(X)Y α − (τ + Z)Y γ+δ ,

V se(X) =A(X)− (τ + Z)B(X) .

After this, note that the CRS has to additionally include some new elements
(highlighted in Fig. 3). This changes the polynomials crs1 and crs2 to

crs1(a,X) =
∑m0

j=1 a
∗
j (uj(X)Y β−η+δ + uj(X)Y β−η+γ + wj(X)Y 2β−η)+∑m

i=m0+1 a
∗
i (ui(X)Y β−α+δ + ui(X)Y β−α+γ + wi(X)Y 2β−α)+

ha(X)`(X)Y 2β−α + raY
α + ua(X)Y β + aγY

γ + aδY
δ +

∑
k aqkQ1k−∑

k sa1k(τk + Z)Dk +
∑
k sa2k

(
Y δ−αDk + Y −αD2

k + Y γ−αDk

)
+∑

k sa2k
∑m0

j=1 σkj
(
uj(X)Y β−α+δ + uj(X)Y β−α+γ + wj(X)Y 2β−α)+

aY αZY
αZ + uza(X)Y βZ + aZZ + aγzY

γZ ,

crs2(b,X) = rbY
α + ub(X)Y β + bδY

δ + bηY
η +

∑
k bqkQ2k+∑

k sbkDk + bαzY
αZ + bηzY

ηZ .

Since the second verification accepts holds, then V se(x) = 0. If V se(X) =
0 as a polynomial then A(X) = (τ + Z)B(X), and from the coefficients of
Dk and DkZ of V se(X) we get τksa1k = τsbk and sa1k = sbk. Since τ 6= τk,
this means sa1k = sbk = 0. From the coefficient of Y γDk of V (X), we get
rbsa2k1 − τsc2k1 + sbk2(Aγ + τ) = 0. and thus τsc2k1 = rbsa2k1 . Thus means that
V +
i (X∗) = 0 in Fig. 4 and thus, as in the case of Sseqap, SASE of Ssesap can be

reduced to the knowledge-soundness of Ssap and the hardness of SAP.

Theorem 4. Let R = Instsap = (Zp,m0, {uj , wj}mj=0) be a SAP instance.
(1) Assume ∆ is chosen so that Crit′ ∩ Crit′ = ∅ and that H∞(D′) = ω(log λ).
If the (G1,G2,Dsap(R, auxR),D′)-SAK and (2n − 1, n − 1)-PDL assumptions
hold then Ssesap in Fig. 3 is ASE. If, additionally, RInstsap is a hard-membership
language then Ssesap is SASE.
(2) Ssesap is perfectly zero-knowledge.

Efficiency. Clearly, in Ssesap, the CRS has (n)+(n−1)+m+2+(n+3) = 3n+m+4
elements from G1 and n + 5 elements from G2. The prover’s computation is
n + 1 + 1 = n + 2 exponentiations to compute [a]1, n + 1 exponentiations to
compute [b]2, and 1 + (m − m0) + (n − 1) = n + m − m0 exponentiations to
compute [cs]1. The verifier executes 5 pairings and m0 + 4 exponentiations.

Simulation-Extractable SNARKs Revisited 27

7 SSP-Based SNARKs

In this section, we will construct a knowledge-sound SNARK Sssp and a SASE
SNARK Ssessp for SSP (Square Span Programs, [DFGK14]). We recall that by
using SSP, one can prove that different linear combinations of witness coefficients
are simultaneously Boolean. As shown in [DFGK14], this is sufficient to show
that a Boolean circuit has been correctly evaluated on (secret or public) inputs:

– For each wire, one checks that the wire value is Boolean.
– For each gate, one can check that it has implemented its Boolean function

correctly by checking that certain linear combination of its input and output
wire values is Boolean. For example, a∧̄b = c iff a+ b+ 2c− 2 ∈ {0, 1} and
a⊕ b = c iff (a+ b+ c)/2 ∈ {0, 1} [DFGK14].

Thus, one can implement SSP by using a QAP-type approach, by checking
n = d + m constraints of type (

∑m
j=1 Uijaj)

2 =
∑m
j=1 Uijaj , i ∈ [1 .. n], where

d is the number of the gates and m is the number of the wires. (In a QAP-
based approach for arithmetic circuits, n = d.) Based on this observation, we
design Sssp around the verification equation as in Section 4. The only difference
in the language is that u(X) = v(X) = w(X), and thus the key equation is
χssp(X) = 0, where

χssp(X) = u(X)(u(X)− 1)− h(X)`(X) .

Thus, h(X) = u(X)(u(X) − 1)/`(X) is a polynomial iff the prover is honest.
The new SNARK Sssp for SSP in Fig. 3 is like Ssap, except that now we have
uj(X) = vj(X) = wj(X) instead of just uj(X) = vj(X).

Let R = (Zp,m0, {uj}mj=0) be a SSP instance. RInstssp is defined as RInstqap in
Eq. (1) except that u(X) = v(X) = w(X). Here, we need to use the knowledge
assumption for Dssp(R, auxR), where for Kcrs depicted in Fig. 3,

Dssp(R, auxR) = {crs : (crs, td)← Kcrs(R, auxR)} .

Theorem 5. Let R = Instssp = (Zp,m0, {uj}mj=0) be a SSP instance.
(1) Assume ∆ is chosen so that Crit ∩ Crit = ∅ and that H∞(D′) = ω(log λ). If
the (G1,G2,Dssp(R, auxR),D′)-SAK and (2n− 1, n− 1)-PDL assumptions hold
then Sssp in Fig. 3 is knowledge-sound.
(2) Sssp is perfectly zero-knowledge.

Proof. Follows directly from Theorem 3. ut

Importantly, since aj are Boolean, it is cheaper to compute say [u(X)uβ]1 ←∑m
j=1 aj [uj(X)yβ]1: this requires m multiplications compared to n exponen-

tiations in the case of QAP and SAP. (Here, and in the next section, we
count the number of multiplications in the worst case. In the average case,
it will be reduce by a factor of two.) Moreover, setting wj(X) = uj(X) al-
lows for additional minor optimizations. For example, to compute [a]1 and
[cs]1, the prover can first set [u′]1 ← ra[yα]1; [u′′]1 ←

∑m
j=1 aj [uj(x)yβ]1,

28 Helger Lipmaa

and then [a]1 ← τ ·([u′]1 + [u′′]1)+ra[yαz]1 +
∑m
j=1 aj [uj(x)yβz]1 and [cs]1 ←∑m

j=m0+1 aj [uj(x)yβ−α+δ + uj(x)yβ−α+γ + wj(x)y2β−α]1 + [h(x)`(x)y2β−α]1 +

ra
(
[u′]1 + 2[u′′]1 + [yγ]1 + [yδ]1

)
. Thus, the prover spends one exponentiation

and m multiplications in G1 to compute [u′]1 and [u′′]1, and additional m−m0

multiplications and (n− 1) + 1 = n exponentiations in G1 to compute [cs]1. She
also spends 1 exponentiation and m multiplications in G2 to compute [b]2.

SASE SNARK Sse
ssp. Ssessp is defined as Ssesap, setting wj(X) = uj(X).

Theorem 6. Let R = Instssp = (Zp,m0, {uj}mj=0) be a SSP instance.
(1) Assume ∆ is chosen so that Crit′ ∩ Crit′ = ∅ and that H∞(D′) = ω(log λ).
If the (G1,G2,Dssp(R, auxR),D′)-SAK and (2n − 1, n − 1)-PDL assumptions
hold then Ssessp in Fig. 3 is ASE. If, additionally, RInstssp is a hard-membership
language then Ssessp is SASE.
(2) Ssessp is perfectly zero-knowledge.

Efficiency-wise, Ssessp is like Ssesap, except that the prover needs to compute
3m−m0 multiplications and n+ 2 exponentiations in G1 and 1 exponentiation
and m multiplications in G2.

8 QSP-Based SNARKs

In addition to QAP, Gennaro et al. [GGPR13] proposed another formalism called
QSP (Quadratic Span Program). This approach was further optimized by Lip-
maa [Lip13]. Without going to full details, we mention that there exists a re-
duction from Boolean circuit satisfiability to QSPs. The reduction itself is not
as efficient than the reduction to SSPs, and in particular, the size of the QSP,
given the same circuit, is considerably larger than that of the SSP. (According
to [DFGK14], if the circuit has m wires and n gates, SSP matrices have size
≈ m× (m+n) while QSP matrices have size ≈ 14n×11n.) However, QSP-based
solutions like the SSP-based solutions have a short argument and CRS. They
also result in 2-query linear PCPs for Circuit-SAT, [BCI+13,Lip13].

In this section, we assume that one has already constructed a reduction to
the QSP. Given now a concrete QSP instance, we construct a knowledge-sound
and a SASE SNARK fo QSP. We also assume that the QSP matrix size is n×m
(thus, n and m do not correspond to the circuit size anymore.)

In the case of QSP [GGPR13,Lip13], w(X) = 0 and thus the key equation is

χqsp(X) = u(X)v(X)− h(X)`(X) = 0 .

We now construct the SNARK Sqsp, see Fig. 2 (the case wj(X) = uj(X)).
Thus, each cost parameter is the same as in the case of Sqap except that there
are significantly more constraints (that are hidden in the reduction from circuits
to QSP, [Lip13]) and thus n is larger.

Simulation-Extractable SNARKs Revisited 29

Let R = (Zp,m0, {uj , vj}mj=0) be a QSP instance. RInstqsp is defined as RInstqap

in Eq. (1) except that w(X) = 0. Here, we need to use the knowledge assumption
for Dqsp(R, auxR), where for Kcrs depicted in Fig. 2,

Dqsp(R, auxR) = {crs : (crs, td)← Kcrs(R, auxR)} .

Theorem 7. Let R = (Zp,m0, {uj , vj}mj=0) be a QSP instance.
(1) Assume ∆ is chosen so that Crit ∩ Crit = ∅ and that H∞(D′) = ω(log λ). If
the (G1,G2,Dqsp(R, auxR),D′)-SAK and (2n− 1, n− 1)-PDL assumptions hold
then Sqsp in Fig. 2 is knowledge-sound.
(2) Sqsp is perfectly zero-knowledge.

As in the case of SSP, since the witness is Boolean, we can signifi-
cantly speed up the prover’s computation. Really, the prover computes [a]1 ←
ra[yα]1 +

∑m
j=1 aj [uj(x)yβ]1, [b]2 ← rb[y

α]2 +
∑m
j=1 aj [vj(x)yβ]2, and [cs]1 ←∑m

j=m0+1 aj [uj(x)yβ−α+δ+vj(x)yβ−α+γ]1+[h(x)`(x)y2β−α]1+rb ([a]1 + [yγ]1)+

ra([yδ]1+
∑m
j=1 aj [vj(x)yβ]1). Thus, the prover executes 1+1+((n−1)+1) = n+2

exponentiations and m+m+ ((m−m0) +m) = 4m−m0 multiplications in G1

and 1 exponentiation and m multiplications in G2.

SASE SNARK Sse
qsp. One obtains a SASE version of Sqsp exactly as in the

case of Sqap in Section 4. Thus, Sseqsp is like Sseqap, except that wj(X) = 0.

Theorem 8. Let R = (Zp,m0, {uj , vj}mj=0) be a QSP instance.
(1) Assume ∆ is chosen so that Crit′ ∩ Crit′ = ∅ and that H∞(D′) = ω(log λ).
If the (G1,G2,Dqsp(R, auxR),D′)-SAK and (2n − 1, n − 1)-PDL assumptions
hold then Sseqsp in Fig. 2 is ASE. If, additionally, RInstqsp is a hard-membership
language then Sseqsp is SASE.
(2) Sseqsp is perfectly zero-knowledge.

Efficiency-wise, compared to Sqsp, the prover additionally computes [b1]1 ←
rb(τ [yα]1 + [yαz]1) + τ

∑m
j=1 aj [vj(x)yβ]1 +

∑m
j=1 aj [vj(x)yβz]1, which takes 3

exponentiations and m additional multiplications (since
∑m
j=1 aj [vj(x)yβ]1 is

already computed) in G1.

Acknowledgment. Helger Lipmaa was supported by the European Union’s
Horizon 2020 research and innovation programme under grant agreement No
780477 (project PRIViLEDGE), and by the Estonian Research Council grant
(PRG49).

References

ABLZ17. Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, and Michal Zajac.
A subversion-resistant SNARK. In Tsuyoshi Takagi and Thomas Peyrin,
editors, ASIACRYPT 2017, Part III, volume 10626 of LNCS, pages 3–33.
Springer, Heidelberg, December 2017. 1, 1, 3, 3, 4

30 Helger Lipmaa

ALSZ18. Behzad Abdolmaleki, Helger Lipmaa, Janno Siim, and Michał Zając. On
QA-NIZK in the BPK Model. Technical Report 2018/877, IACR, Septem-
ber 18, 2018. Available from https://eprint.iacr.org/2018/877, last
checked version from 16 May 2019. 3

Bag19. Karim Baghery. On the efficiency of privacy-preserving smart contract
systems. In Johannes Buchmann, Abderrahmane Nitaj, and Tajje eddine
Rachidi, editors, AFRICACRYPT 19, volume 11627 of LNCS, pages 118–
136. Springer, Heidelberg, July 2019. 1, 1

BCCT12. Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From
Extractable Collision Resistance to Succinct Non-Interactive Arguments of
Knowledge, And Back Again. In Shafi Goldwasser, editor, ITCS 2012, pages
326–349, Cambridge, MA, USA, January 8–10, 2012. ACM Press. 1

BCCT13. Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive
Composition and Bootstrapping for SNARKs and Proof-Carrying Data. In
Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, STOC 2013,
pages 241–250, Palo Alto, CA, USA, June 1–4, 2013. ACM Press. 1

BCG+13. Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and
Madars Virza. SNARKs for C: Verifying program executions succinctly
and in zero knowledge. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 90–108. Springer,
Heidelberg, August 2013. 2

BCG+14. Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous
payments from bitcoin. In 2014 IEEE Symposium on Security and Privacy,
pages 459–474. IEEE Computer Society Press, May 2014. 1

BCI+10. Eric Brier, Jean-Sébastien Coron, Thomas Icart, David Madore, Hugues
Randriam, and Mehdi Tibouchi. Efficient indifferentiable hashing into or-
dinary elliptic curves. In Tal Rabin, editor, CRYPTO 2010, volume 6223
of LNCS, pages 237–254. Springer, Heidelberg, August 2010. 3

BCI+13. Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer
Paneth. Succinct non-interactive arguments via linear interactive proofs.
In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 315–333.
Springer, Heidelberg, March 2013. 3, 1, 8

BCPR14. Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the Existence
of Extractable One-Way Functions. In David Shmoys, editor, STOC 2014,
pages 505–514, New York, NY, USA, May 31 – Jun 3, 2014. ACM Press.
A.1

BFM88. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications (extended abstract). In 20th ACM STOC,
pages 103–112. ACM Press, May 1988. 1

BFS16. Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. NIZKs with an
untrusted CRS: Security in the face of parameter subversion. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume
10032 of LNCS, pages 777–804. Springer, Heidelberg, December 2016. 1, 1,
2, 3, 3, A.1

BG18. Sean Bowe and Ariel Gabizon. Making groth’s zk-SNARK simulation ex-
tractable in the random oracle model. Cryptology ePrint Archive, Report
2018/187, 2018. https://eprint.iacr.org/2018/187. 1, 1

BLS04. Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. On the selection of
pairing-friendly groups. In Mitsuru Matsui and Robert J. Zuccherato, edi-

https://eprint.iacr.org/2018/877
https://eprint.iacr.org/2018/187

Simulation-Extractable SNARKs Revisited 31

tors, SAC 2003, volume 3006 of LNCS, pages 17–25. Springer, Heidelberg,
August 2004. 2

Bow17. Sean Bowe. BLS12-381: New zk-SNARK Elliptic Curve Construction. Blog
post, https://blog.z.cash/new-snark-curve/, last accessed in July, 2018,
March 11, 2017. 2

BV98. Dan Boneh and Ramarathnam Venkatesan. Breaking RSA may not be
equivalent to factoring. In Kaisa Nyberg, editor, EUROCRYPT’98, volume
1403 of LNCS, pages 59–71. Springer, Heidelberg, May / June 1998. 3

Can01. Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society
Press, October 2001. 1

CGGN17. Matteo Campanelli, Rosario Gennaro, Steven Goldfeder, and Luca Niz-
zardo. Zero-knowledge contingent payments revisited: Attacks and pay-
ments for services. In Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, ACM CCS 2017, pages 229–243. ACM Press, Oc-
tober / November 2017. 1

Dam92. Ivan Damgård. Towards practical public key systems secure against chosen
ciphertext attacks. In Joan Feigenbaum, editor, CRYPTO’91, volume 576
of LNCS, pages 445–456. Springer, Heidelberg, August 1992. 1, 1

DDO+01. Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Per-
siano, and Amit Sahai. Robust non-interactive zero knowledge. In Joe Kil-
ian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 566–598. Springer,
Heidelberg, August 2001. 1, 2

Den02. Alexander W. Dent. Adapting the weaknesses of the random oracle model
to the generic group model. In Yuliang Zheng, editor, ASIACRYPT 2002,
volume 2501 of LNCS, pages 100–109. Springer, Heidelberg, December 2002.
1, 1

DFGK14. George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss.
Square span programs with applications to succinct NIZK arguments. In
Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part I, volume
8873 of LNCS, pages 532–550. Springer, Heidelberg, December 2014. 1, 1,
2, 7, 8

DFKP13. George Danezis, Cédric Fournet, Markulf Kohlweiss, and Bryan Parno.
Pinocchio coin: building zerocoin from a succinct pairing-based proof sys-
tem. pages 27–30, Berlin, Germany, November 4, 2013. ACM. 1

DGP+19. Vanesa Daza, Alonso González, Zaira Pindado, Carla Ràfols, and Javier
Silva. Shorter quadratic QA-NIZK proofs. In Dongdai Lin and Kazue Sako,
editors, PKC 2019, Part I, volume 11442 of LNCS, pages 314–343. Springer,
Heidelberg, April 2019. 1

DHLW10. Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel
Wichs. Efficient public-key cryptography in the presence of key leakage.
In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages
613–631. Springer, Heidelberg, December 2010. 2, 4, 5

EHK+13. Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An
algebraic framework for Diffie-Hellman assumptions. In Ran Canetti and
Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS,
pages 129–147. Springer, Heidelberg, August 2013. 1, 2

Fis00. Marc Fischlin. A note on security proofs in the generic model. In Tatsuaki
Okamoto, editor, ASIACRYPT 2000, volume 1976 of LNCS, pages 458–469.
Springer, Heidelberg, December 2000. 1, 1

https://blog.z.cash/new-snark-curve/

32 Helger Lipmaa

FKL18. Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model
and its applications. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 33–62. Springer,
Heidelberg, August 2018. 1, 3, 4

FLSZ17. Prastudy Fauzi, Helger Lipmaa, Janno Siim, and Michal Zajac. An efficient
pairing-based shuffle argument. In Tsuyoshi Takagi and Thomas Peyrin,
editors, ASIACRYPT 2017, Part II, volume 10625 of LNCS, pages 97–127.
Springer, Heidelberg, December 2017. 1, 5

FLZ16. Prastudy Fauzi, Helger Lipmaa, and Michal Zajac. A shuffle argument
secure in the generic model. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 841–
872. Springer, Heidelberg, December 2016. 1

Fuc18. Georg Fuchsbauer. Subversion-zero-knowledge SNARKs. In Michel Abdalla
and Ricardo Dahab, editors, PKC 2018, Part I, volume 10769 of LNCS,
pages 315–347. Springer, Heidelberg, March 2018. 1, 1

Gab19. Ariel Gabizon. On the security of the BCTV Pinocchio zk-SNARK variant.
Technical Report 2019/199, IACR, February 5, 2019. Available from https:
//eprint.iacr.org/2019/199. 1

GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct NIZKs without PCPs. In Thomas
Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881
of LNCS, pages 626–645. Springer, Heidelberg, May 2013. 1, 1, 2, 2, 4, 8

GJM03. Philippe Golle, Stanislaw Jarecki, and Ilya Mironov. Cryptographic primi-
tives enforcing communication and storage complexity. In Matt Blaze, edi-
tor, FC 2002, volume 2357 of LNCS, pages 120–135. Springer, Heidelberg,
March 2003. 1

GM17. Jens Groth and Mary Maller. Snarky signatures: Minimal signatures of
knowledge from simulation-extractable SNARKs. In Jonathan Katz and
Hovav Shacham, editors, CRYPTO 2017, Part II, volume 10402 of LNCS,
pages 581–612. Springer, Heidelberg, August 2017. 1, 1, 2, 6, 4, 5

GMR85. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge com-
plexity of interactive proof-systems (extended abstract). In 17th ACM
STOC, pages 291–304. ACM Press, May 1985. 1

Gol93. Oded Goldreich. A Uniform-Complexity Treatment of Encryption and Zero-
Knowledge. J. Cryptology, 6(1):21–53, 1993. A.1

GPS08. Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for
Cryptographers. Discrete Applied Mathematics, 156(16):3113–3121, 2008.
2

Gro06. Jens Groth. Simulation-sound NIZK proofs for a practical language and
constant size group signatures. In Xuejia Lai and Kefei Chen, editors, ASI-
ACRYPT 2006, volume 4284 of LNCS, pages 444–459. Springer, Heidelberg,
December 2006. 1, 3

Gro10. Jens Groth. Short pairing-based non-interactive zero-knowledge arguments.
In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages
321–340. Springer, Heidelberg, December 2010. 1, 1

Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II,
volume 9666 of LNCS, pages 305–326. Springer, Heidelberg, May 2016. 1,
1, 1, 1, 2, 2, 4, 4, 4, 6, A.1

https://eprint.iacr.org/2019/199
https://eprint.iacr.org/2019/199

Simulation-Extractable SNARKs Revisited 33

GW11. Craig Gentry and Daniel Wichs. Separating succinct non-interactive ar-
guments from all falsifiable assumptions. In Lance Fortnow and Salil P.
Vadhan, editors, 43rd ACM STOC, pages 99–108. ACM Press, June 2011.
1

Ica09. Thomas Icart. How to hash into elliptic curves. In Shai Halevi, editor,
CRYPTO 2009, volume 5677 of LNCS, pages 303–316. Springer, Heidelberg,
August 2009. 1, 3, 3

JR10. Tibor Jager and Andy Rupp. The semi-generic group model and appli-
cations to pairing-based cryptography. In Masayuki Abe, editor, ASI-
ACRYPT 2010, volume 6477 of LNCS, pages 539–556. Springer, Heidelberg,
December 2010. 2

JR13. Charanjit S. Jutla and Arnab Roy. Shorter quasi-adaptive NIZK proofs
for linear subspaces. In Kazue Sako and Palash Sarkar, editors, ASI-
ACRYPT 2013, Part I, volume 8269 of LNCS, pages 1–20. Springer, Hei-
delberg, December 2013. 1, 5

KW15. Eike Kiltz and Hoeteck Wee. Quasi-adaptive NIZK for linear sub-
spaces revisited. In Elisabeth Oswald and Marc Fischlin, editors, EURO-
CRYPT 2015, Part II, volume 9057 of LNCS, pages 101–128. Springer,
Heidelberg, April 2015. 1, 3, 5, 4, 5

KZM+15. Ahmed Kosba, Zhichao Zhao, Andrew Miller, Yi Qian, Hubert Chan, Char-
alampos Papamanthou, Rafael Pass, abhi shelat, and Elaine Shi. How to use
SNARKs in universally composable protocols. Cryptology ePrint Archive,
Report 2015/1093, 2015. http://eprint.iacr.org/2015/1093. 1, 1

Lip12. Helger Lipmaa. Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments. In Ronald Cramer, editor,
TCC 2012, volume 7194 of LNCS, pages 169–189. Springer, Heidelberg,
March 2012. 1, 2

Lip13. Helger Lipmaa. Succinct non-interactive zero knowledge arguments from
span programs and linear error-correcting codes. In Kazue Sako and Palash
Sarkar, editors, ASIACRYPT 2013, Part I, volume 8269 of LNCS, pages
41–60. Springer, Heidelberg, December 2013. 1, 3, 1, 8

Nec94. V. I. Nechaev. Complexity of a determinate algorithm for the discrete
logarithm. Mathematical Notes, 55(2):165–172, 1994. 1

Par15. Bryan Parno. A note on the unsoundness of vnTinyRAM’s SNARK. Cryp-
tology ePrint Archive, Report 2015/437, 2015. http://eprint.iacr.org/
2015/437. 1

PHGR13. Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio:
Nearly practical verifiable computation. In 2013 IEEE Symposium on Secu-
rity and Privacy, pages 238–252. IEEE Computer Society Press, May 2013.
1

Sah99. Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive
chosen-ciphertext security. In 40th FOCS, pages 543–553. IEEE Computer
Society Press, October 1999. 1, 2

Sch80. Jacob T. Schwartz. Fast Probabilistic Algorithms for Verification of Poly-
nomial Identities. Journal of the ACM, 27(4):701–717, 1980. 3

Sho97. Victor Shoup. Lower bounds for discrete logarithms and related problems.
In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages
256–266. Springer, Heidelberg, May 1997. 1

SPMS02. Jacques Stern, David Pointcheval, John Malone-Lee, and Nigel P. Smart.
Flaws in applying proof methodologies to signature schemes. In Moti Yung,

http://eprint.iacr.org/2015/1093
http://eprint.iacr.org/2015/437
http://eprint.iacr.org/2015/437

34 Helger Lipmaa

editor, CRYPTO 2002, volume 2442 of LNCS, pages 93–110. Springer, Hei-
delberg, August 2002. 1

Sta08. Grzegorz Stachowiak. Proofs of knowledge with several challenge values.
Cryptology ePrint Archive, Report 2008/181, 2008. http://eprint.iacr.
org/2008/181. 2

THS+09. Pairat Thorncharoensri, Qiong Huang, Willy Susilo, Man Ho Au, Yi Mu,
and Duncan S. Wong. Escrowed Deniable Identification Schemes. In Do-
minik Slezak, Tai-Hoon Kim, Wai-Chi Fang, and Kirk P. Arnett, editors,
FGIT-SecTech 2009, volume 58 of Communications in Computer and Infor-
mation Science, pages 234–241, Jeju Island, Korea, December 10–12, 2009.
Springer. 2

WC81. Mark N. Wegman and Larry Carter. New hash functions and their use in
authentication and set equality. Journal of Computer and System Sciences,
22:265–279, 1981. 5

Zip79. Richard Zippel. Probabilistic Algorithms for Sparse Polynomials. In Ed-
ward W. Ng, editor, EUROSM 1979, volume 72 of LNCS, pages 216–226,
Marseille, France, June 1979. Springer, Heidelberg. 3

A Formal Security Definitions

A.1 Zero-Knowledge

As in [Gro16], we define all security notions against a non-uniform adversary.
However, since our security reductions are uniform, it is a simple matter to
consider only uniform adversaries, as it was done by Bellare et al. [BFS16] (see
also [Gol93]).

Definition 1 (Perfect Completeness). A non-interactive argument Ψ is per-
fectly complete for R, if for all λ, all (R, auxR) ∈ range(R(1λ)), tag τ ∈ Tags,
and (x, inp) ∈ R,

Pr

[
(crs, td)← Kcrs(R, auxR) :

V(R, auxR, crsV, τ, x,P(R, auxR, crsP, τ, x, inp)) = 1

]
= 1 .

Definition 2 (Computational Knowledge-Soundness). Ψ is computation-
ally (adaptively) knowledge-sound for R, if for every non-uniform PPT A, there
exists a non-uniform PPT extractor ExtA, s.t. for all λ,

Pr

(R, auxR)← R(1λ); (crs, td)← Kcrs(R, auxR); r ←r RND(A);

(τ, x, π)← A(R, auxR, crs; r); inp← ExtA(R, auxR, crs; r) :

(x, inp) 6∈ R ∧ V(R, auxR, crsV, τ, x, π) = 1

 ≈λ 0 .

Here, auxR can be seen as a common auxiliary input to A and ExtA that is
generated by using a benign [BCPR14] relation generator; we recall that we just
think of auxR as being the description of a secure bilinear group. A knowledge-
sound argument system is called an argument of knowledge.

http://eprint.iacr.org/2008/181
http://eprint.iacr.org/2008/181

Simulation-Extractable SNARKs Revisited 35

Main Expsase
Π,A,ExtA(λ)

Q ← ∅;R← R(1λ); (crs, td)← Kcrs(R);
r ← RND(A);
(τ, x, π)← ASimsase

crs,td(crs; r);
inp← ExtA(crs; r);
if V(R, auxR, crsV, τ, x, π) = 1∧
τ 6∈ Q ∧ (x, inp) 6∈ R

then return 1; else return 0;fi

Simsase
crs,td(τj , xj)

πj ← Sim(R, auxR, crs, td, τj , xj);
Q ← Q∪ {τj };
return πj ;

Main Expase
Π,A,ExtA(λ)

Q ← ∅;R←R(1λ); (crs, td)← Kcrs(R);
r ← RND(A);
(τ, x, π)← ASimase

crs,td(crs; r);
inp← ExtA(crs; r);
if V(R, auxR, crsV, τ, x, π) = 1∧

x 6∈ Q ∧ (x, inp) 6∈ R
then return 1; else return 0;fi

Simase
crs,td(τj , xj)

πj ← Sim(R, auxR, crs, td, τj , xj);
Q ← Q∪ {xj };
return πj ;

Fig. 5. Simulation-extractability experiments: strong any-simulation (SASE, left) and
any-simulation (ASE, right). Differences are highlighted

Definition 3 (Statistically Unbounded ZK [Gro06]). Ψ is statistically
unbounded Sub-ZK for R, if for all λ, all (R, auxR) ∈ range(R(1λ)), all τ ∈
Tags, and all computationally unbounded A, εunb0 ≈λ εunb1 , where

εunbb = Pr[(crs, td)← Kcrs(R, auxR) : AOb(·,·,·)(R, auxR, crs) = 1] .

Here, the oracle O0(τ, x, inp) returns ⊥ (reject) if (x, inp) 6∈ R, and otherwise
it returns P(R, auxR, crsP, τ, x, inp). Similarly, O1(τ, x, inp) returns ⊥ (reject) if
(x, inp) 6∈ R, and otherwise it returns Sim(R, auxR, crs, td, τ, x). Ψ is perfectly
unbounded ZK for R if one requires that εunb0 = εunb1 .

A.2 Simulation-Extractability

ASE (any simulation-extractability) and SASE (strong any simulation-
extractability) guarantee knowledge-soundness even if one can obtain simulation
answers to arbitrary statement, with the following difference: an ASE SNARK
does not use tags and explicitly forbids simulation queries to the same statement
that the adversary outputs. On the other hand, an SASE SNARK uses tags and
allows to ask simulation queries even to the statement that the adversary out-
puts; however, it forbids to ask simulation queries for the same tag.

Definition 4 (SASE SNARK [DHLW10,KW15,GM17]). Let Π =
(Kcrs,P,V,Sim) be a SNARK for relation R. Define

AdvsaseΠ,A,ExtA(λ) := Pr[Expsase
Π,A,ExtA(λ)] ,

where the experiment Expsase
Π,A,ExtA(λ) is depicted in Fig. 5. Π is non-black-box

strong any-simulation-extractable (SASE) if for any PPT adversary A there
exists a PPT extractor ExtA such that AdvsaseΠ,A,ExtA(λ) ≈λ 0.

36 Helger Lipmaa

Definition 5 (ASE SNARK [DHLW10,KW15,GM17]). Let Π =
(Kcrs,P,V,Sim) be a SNARK for relation R. Define

AdvaseΠ,A,ExtA(λ) := Pr[Expase
Π,A,ExtA(λ)] ,

where the experiment Expase
Π,A,ExtA(λ) is depicted in Fig. 5. Π is non-black-box

any-simulation-extractable (ASE) if for any PPT adversary A there exists a
PPT extractor ExtA such that AdvaseΠ,A,ExtA(λ) ≈λ 0.

B Discussion: Verification Equation with One Pairing

Consider the case the verification equation V consists of only one pairing eval-
uation. That is,

V ∗(X,Q1,Q2) = (f1(X) +
∑
k c1kQ1k) (f2(X) +

∑
k c2kQ2k)

for polynomials f1(X) and f2(X) and coefficients cιk. (As in the knowledge-
soundness proof of Theorem 1, Y is not an indeterminate.) In this case, under a
PDL assumption, the creation of new random group elements — independently
of their distribution — does not help the adversary at all.

Really, V ∗(x, q1, q2) = 0 is only possible if
∑
cιkqιk = −fι(x) for at least one

ι. W.l.o.g., assume it holds for ι = 1. This means that [q1k]1 (or at least their
weighted sum, that is the only thing that matters) are not created as random
new group elements but as evaluations of some polynomials in x. Thus, one can
assume that the adversary created no random group elements in G1. Hence,

V ∗(X,Q1,Q2) = f1(X)
(
f2(X) +

∑
c2kq2k

)
for some polynomials f1(X) and f2(X). Next, either f1(x) = 0 or

∑
c2kq2k =

−f2(x). In the first case, f1(X) 6= 0 (otherwise also V ∗(X,Q1,Q2) = 0 as
a polynomial) but f1(x) = 0 and thus one has broken the (2n − 1, n − 1)-PDL
assumption. In the second case, the adversary created no random group elements
in G1 and thus

V ∗(X,Q1,Q2) = f1(X)f2(X) .

Again, since f1(x)f2(x) = 0 but f1(X)f2(X) 6= 0, the adversary has broken the
(2n − 1, n − 1)-PDL assumption. Hence, creating new group elements does not
increase the adversarial power.

	Simulation-Extractable SNARKs Revisited

