
1

MeltdownDetector: A Runtime Approach for
Detecting Meltdown Attacks

Taha Atahan Akyildiz, Can Berk Guzgeren, Cemal Yilmaz, and Erkay Savas
Faculty of Engineering and Natural Sciences
Sabanci University, Istanbul 34956, Turkey

Email: {aakyildiz, cguzgeren, cyilmaz, erkays}@sabanciuniv.edu

Abstract—In this work, we present a runtime approach, called MeltdownDetector, for detecting, isolating, and preventing ongoing
Meltdown attacks that operate by causing segmentation faults. Meltdown exploits a hardware vulnerability that allows a malicious
process to access memory locations, which do not belong to the process, including the physical and kernel memory. The
proposed approach is based on a simple observation that in order for a Meltdown attack to be successful, either a single
byte of data located at a particular memory address or a sequence of consecutive memory addresses (i.e., sequence of bytes)
need to be read, so that a meaningful piece of information can be extracted from the data leaked. MeltdownDetector, therefore,
monitors segmentation faults occurring at memory addresses that are close to each other and issues a warning at runtime when
these faults become “suspicious.” Furthermore, MeltdownDetector flushes the caches after every suspicious segmentation fault,
preventing even a single byte of data from being leaked. In the experiments we carried out to evaluate the proposed approach,
MeltdownDetector successfully detected all the attacks, correctly isolated all the malicious processes, and did so at the earliest
possible time after the attacks have started with an average runtime overhead of 0.34% and without even leaking a single byte
of information.

Index Terms—Meltdown; side-channel attacks; countermeasures; runtime detection, prevention, and isolation

F

1 INTRODUCTION

Memory isolation is an integral security mechanism
provided by today’s modern computing systems. Be-
ing a part of both instruction set architectures and
operating systems, this mechanism prevents processes
from accessing each other’s memory or kernel mem-
ory, thus enabling us to concurrently run processes
with different owners on the same physical comput-
ing platforms, such as on the same desktop/server
platforms or in the same cloud.

A recently discovered attack, called Meltdown (of-
ficially logged as CVE-2017-5754 under the Com-
mon Vulnerabilities and Exposures database [11]),
can, however, overcome memory isolation, allowing
malicious processes to access the memory that is not
allocated to them, including the physical and kernel
memory [17].

Meltdown exploits a hardware vulnerability, which
is present in commonplace processors today, such as
in modern Intel microarchitectures [17]. In a nutshell,
a malicious process attempts to access a memory
location that does not belong to the process, knowing
that the request will eventually fail (with a segmen-
tation fault, for example). However, due to out-of-
order execution – a hardware mechanism for speed-
ing up computations by reordering the instructions
to be executed, such that clock cycles which would
otherwise be wasted are utilized to the extent possi-
ble – the memory access violation is caught after the

content of the requested memory location is brought
to the cache. Once the violation is determined, the
requesting process is notified by the operating sys-
tem (OS), e.g., by raising a SIGSEGV signal. From
this point on, although the content of the memory
location cannot directly be read in the user space
as the access has already been forbidden, since the
content is now in the cache, the malicious process uses
microarchitectural cache-based covert channels, such
as Flush+Reload [27], to infer the content.

According to [18], almost all the Intel proces-
sors, which implement out-of-order execution, since
1995, are potentially susceptible to Meltdown. The
attack can also be carried out on processors with
transactional memory support, which were debuted
in late 2013 by Intel. In this work, we are solely
concerned with Meltdown attacks on conventional,
non-transactional memory systems. Note that such
systems have been widely deployed in the field as
laptop, desktop, server, and Cloud computers since
1995. Therefore, even if the hardware vulnerabilities
causing Meltdown are fixed in the new generations
of processors, it will certainly take a long while to
replace all the susceptible processors in the field [6].
Therefore, detecting and preventing Meltdown attacks
will be relevant at least until then.

Part of the reason as to why Meltdown can be
quite hazardous is that due to some solid performance
reasons, modern operating systems, such as Linux,
map both the physical and kernel memory into to the



2

virtual address space of every running process, which
enables any malicious process employing Meltdown
to access any part of the physical and kernel memory
during any phase of its execution. Consequently, one
countermeasure against Meltdown could be to avoid
having such memory mappings or to make it diffi-
cult for malicious processes to make sense of these
mappings. This can, indeed, be achieved by using
recent OS patches, such as KPTI (formerly known
as KAISER) [13]. However, these patches can signif-
icantly affect the performance of real-world environ-
ments by a factor in the range of 5% to 30% [6].

In this work, we present a low-overhead approach,
called MeltdownDetector, to detect, isolate, and prevent
ongoing Meltdown attacks at runtime. The proposed
approach is based on a simple observation we make:
In order for a Meltdown attack to be successful, either
a single byte of data located at a particular mem-
ory address or a sequence of consecutive memory
addresses (i.e., sequence of bytes) need to be read,
so that a meaningful piece of information can be
extracted from the data leaked. MeltdownDetector,
therefore, monitors segmentation faults occurring at
memory addresses that are close to each other and
issues a warning at runtime when these faults become
“suspicious.” Furthermore, to prevent even a single
byte of data from being leaked, MeltdownDetector
flushes the cache hierarchy after every suspicious
segmentation fault, regardless of whether an ongoing
attack is detected or not.

Note that MeltdownDetector incurs runtime over-
head only when a segmentation fault occurs. There-
fore, due to the factors that the benign processes, espe-
cially the ones running in production environments,
are not likely to cause frequent segmentation faults,
especially when the total number of memory accesses
that they make is considered, and that the malicious
processes, after being detected, can be dealt with by,
for example, terminating them, we conjecture that the
runtime overhead of MeltdownDetector can be kept
under control.

We implemented MeltdownDetector in a Linux ker-
nel and carried out a set of experiments. In these
experiments, MeltdownDetector successfully detected
all the attacks, correctly isolated all the malicious
processes, and did so at the earliest possible time
after the attacks have started with an average runtime
overhead of 0.34% and without even leaking a single
byte of information.

The remainder of the paper is organized as follows:
Section 2 discusses the Meltdown attack; Section 3
introduces the proposed approach; Section 4 presents
the experiments we carried out and the results we
obtained; Section 5 discusses potential threats to va-
lidity; Section 6 presents related work; and Section 7
presents concluding remarks and possible directions
for future work.

Listing 1: A code segment (taken from [17]) illus-
trating the integral part of Meltdown.

1 xor rax, rax
2 retry:
3 mov al, byte [rcx]
4 shl rax, 0xc
5 jz retry
6 mov rbx, qword [rbx + rax]

2 MELTDOWN ATTACK

This section provides a brief overview of the Melt-
down attack. The interested reader can obtain further
details in [17].

Listing 1 (taken from [17]) illustrates the integral
part of Meltdown. The byte located at address rcx,
which does not belong to the process issuing the
instruction, is attempted to be read (line 3). The mali-
cious process knows that the operation will eventually
fail with a SIGSEGV signal (i.e., segmentation fault).
However, due to out-of-order execution the subse-
quent instructions (lines 4-6) are executed before the
signal is actually raised. More specifically, the value
of the byte at address rcx is first read into register
rax (line 4) and then used as an index to access an
element in a strategically created array, which starts
at address rbx (line 6). In the remainder of the paper,
this array will be referred to as the ‘rbx array‘.

As expected, the SIGSEGV signal is finally raised at
address rcx. Although the value stored in rax, i.e.,
the value of the byte stored at address rcx, is never
released to the user space, the element at index rax
in the rbx array (which is, indeed, created by the ma-
licious process) is brought to the cache. This, in turn,
creates a microarchitectural side-channel because the
malicious process can now discover the value of the
byte at address rcx, by figuring out the element, thus
the index, accessed in the rbx array.

To this end, a microarchitectural cache-based covert
channel, such as Flush+Reload [27], is used. First, all
the elements of the rbx array are evicted from the
cache by, for example, using machine instructions,
such as clflush, which evicts the cache line that
contains a given memory address from the entire
cache hierarchy. Then, the malicious process executes
the code segment given in Listing 1 to read the value
of a byte that belongs to a different process. After
the segmentation fault has occurred, the malicious
process finally probes the cache to figure out which
element was accessed in the rbx array, thus the value
of the byte.

More specifically, the elements in the rbx array
are probed to detect an element (or elements) that
can be accessed faster than the others; fetching an
element from cache is much faster than fetching it
from memory. To deal with cache prefetching – a



3

mechanism for improving the runtime performance
of systems by fetching memory to cache before the
respective content is actually needed – the malicious
process, rather than accessing consecutive elements
in the rbx array, accesses elements that are far apart
from each other based on the value of the byte to
be leaked. For example, instead of accessing [rbx +
rax], one can access [rbx + 4096 * rax] to avoid
the noise caused by cache prefetching.

3 MELTDOWN DETECTOR

MeltdownDetector monitors the segmentation
faults occurring at memory addresses that are close
to each other and emits a warning when a set of such
faults becomes suspicious. Note that this approach
can be carried out on per process basis, where the
segmentation faults caused by each process are
analyzed in isolation, or in a system-wide manner,
where all the segmentation faults regardless of
the processes causing them are analyzed together.
Furthermore, as addresses to be monitored, virtual
addresses or physical addresses can be used.

Although the proposed approach is general enough
to be used with any combination of the design deci-
sions discussed above, we, in this work, opt to analyze
the segmentation faults in a system-wide manner
by using physical memory page offsets. We made
the former decision because it enables one to detect
and prevent attacks that are carried out by multiple
processes in coordination, where each process reads a
different portion of the memory, such that a sequence
of bytes are read in effect.

We made the latter decision because extracting page
offsets does not require a conversion between virtual
and physical addresses and consecutive addresses
(virtual or physical) have consecutive page offsets,
given that offsets are processed in a circular manner.
Although the reverse is not necessarily true, i.e., con-
secutive page offsets do not necessarily indicate con-
secutive addresses, the odds of having a single process
or multiple processes cause segmentation faults on
consecutive page offsets by chance, are low, thus
tolerable.

3.1 Approach
Listing 2 illustrates the core steps in MeltdownDe-

tector, which is carried out in the kernel space after
a segmentation fault is detected, but right before the
control is passed to the user space (i.e., right before a
SIGSEGV signal is raised). In the algorithm, addr is the
physical page offset of the memory address, at which
a segmentation fault has just occurred (in our case, the
least significant 12 bits of an address), pid is the ID
of the process responsible for the segmentation fault,
and hist is a hash table of previously seen SIGSEGV
signals, for each of which both addr (as the key) and
pid (as the value) are stored.

Listing 2: MeltdownDetector

1 if addr > cutoff then
2 counter ← 0
3 hist← hist ∪ {.addr ← addr, .pid← pid}
4 for each a in [addr - range, addr + range] do
5 if a in hist then
6 counter++
7 end
8 end
9 if counter ≥ threshold then

10 issue a warning
11 end
12 flush cache hierarchy
13 end

One common cause of segmentation faults in pro-
cesses is null pointer dereferencing (i.e., dereferenc-
ing memory address 0x00). Since these segmentation
faults as well as the ones caused by pointer arithmetic
operations involving null pointers, are benign, we
filter out (line 1) all the SIGSEGV signals that are raised
at addresses, which are smaller than or equal to a pre-
determined cutoff value (in our case, cutoff = 1024).
For example, given u32 ∗ addr = NULL, while an op-
eration of the form ∗addr=. . . would raise a SIGSEGV
signal at address 0x00, an operation of the form
∗(addr++) would raise the same signal at address
0x04.

If addr is not filtered, we populate the hist hash
table with addr and pid (line 3), indicating that the
respective segmentation fault is a suspicious one. To
determine the level of suspiciousness, we check to see
whether other segmentation faults have occurred at
addresses around addr (lines 4-8).

To this end, MeltdownDetector offers two param-
eters: range and threshold. If the total number of
segmentation faults that have occurred in the range
[addr− range, addr+ range] is larger than or equal to
threshold (line 9), a warning indicating the presence
of a potential ongoing Meltdown attack is issued to-
gether with the respective process IDs as the potential
malicious processes (line 10). Note that as we use
physical page offsets in the analysis, the range of
addresses to be checked is computed in a circular
manner; offset 0 comes after the last offset and last
offset comes before offset 0.

Furthermore, regardless of whether a warning has
been raised or not, when addr is not a filtered address,
we flush the cache hierarchy (line 12) to prevent even
a single byte of information from being leaked. Once
a warning has been issued, on the other hand, various
countermeasures, such as terminating the suspicious
processes or migrating them to different machines,
can be taken to further prevent these processes from
harming the system by, for example, causing denial of



4

service (DoS) [28]. However, these countermeasures of
the latter form are beyond the scope of this work.

3.2 Implementation

We have implemented MeltdownDetector in Linux
kernel v3.10.0-957.5.1.el7.x86 64 (Section 4). Note,
however, that the same implementation can readily be
converted to a SystemTap script – a tool for dynami-
cally instrumenting Linux kernel at runtime [24], such
that the patch can be deployed at runtime without
even requiring to reboot the underlying machine.

In the kernel, we implemented the
algorithm given in Listing 2 as a part of the

bad area nosemaphore(. . .) kernel function
defined in arch/x86/mm/fault.c, which is one of
the functions invoked before a SIGSEGV signal is
raised and the control is passed to the user space.
The memory address at which the segmentation fault
has occurred is passed as an argument to this kernel
function and the ID of the process responsible for
the fault is obtained by using the current pointer
– a pointer to the task struct of the currently
executing process. Furthermore, we flush the cache
hierarchy by using the wbinvd() kernel function,
which uses a machine instruction with the same
name to invalidate (i.e., flush) all the cache lines in
the hierarchy.

4 EXPERIMENTS

We carried out a series of experiments to evaluate
MeltdownDetector.

4.1 Experimental Setup

In these experiments, as the Meltdown attack code
we used the implementation [16] provided by the
original paper [17]. More specifically, we used the
one in memdump.c, which attempts to dump the entire
physical memory.

As the workload present during the attack, we used
SPECjvm2008 benchmark suite [23], which leverages
real life applications to mimic a wide spectrum of
common computations, including the the ones that are
typically carried out on servers, such as cryptographic
and numerical computations. This benchmark suite
is composed of a number of sub-benchmarks, each
which can be executed separately. To create a realistic
setup, we randomly divided this suite into 10 non-
overlapping groups of 4 sub-benchmarks each. In the
remainder of the paper, we refer to these groups as
workloads.

For each workload, we first started all the sub-
benchmarks within the workload. We then executed
the Meltdown attack after a warm-up period and let
everything to run in parallel until the benchmarks are
completed.

MeltdownDetector was configured, such that the
cutoff value used for filtering out addresses was
1024, and the range and threshold values used for
detection were 8 and 4, respectively (Listing 2). Note
that all of these values are parameters, with which
MeltdownDetector can be configured. We opted to
use this configuration in the experiments, because the
former parameter is large enough to filter out the
segmentation faults that occur due to dereferencing
null pointers or due to pointer arithmetic operations
involving null pointers. Similarly, we used the latter
set of parameters as they, in a sense, mimic a scenario
where a 128-bit (16-byte) secret key is the target of the
attack. Note further that although the threshold value
we used was 4, no information was actually leaked to
the attacker as we flush the cache hierarchy after every
segmentation fault of interest (line 12 in Listing 2).

We also configured MeltdownDetector, such that
after detecting the presence of an ongoing attack,
no further predictions and flushes are performed,
mimicking the situation that the malicious processes
are dealt with by, for example, terminating them.

All the experiments were carried out on an E5630
Intel Xeon platform with 32 GB of RAM and 32
KB of L1, 256 KB of L2, and 12288 KB of L3 cache
memory, running CentOS v6.1810.2 operating system
with kernel v3.10.0-957.5.1.el7.x86 64.

4.2 Evaluation Framework

To evaluate the accuracy of the proposed approach,
we kept track of whether the attack under each
workload was detected or not. To evaluate the extent
to which the malicious process(es) can be isolated
(i.e., pinpointed), we compared the ID(s) of the sus-
picious process (i.e., the ones that caused a warning)
with that (those) of the actual malicious process(es).
To evaluate the precision, we measured the number
of unique memory addresses, at which the attacker
caused segmentation faults, e.g., the number of bytes
attempted to be stolen by the attacker, before the
attack is detected. The faster the attacks are detected,
the better the proposed approach is.

To evaluate the extent to which flushing the cache
hierarchy after every suspicious segmentation fault,
prevents Meltdown, we used the reliability tool (i.e.,
reliability.c) that comes with the Meltdown im-
plementation [16]. This tool simply measures the ac-
curacy of the attack by computing the percentage
of the bytes that are read successfully. The smaller
the accuracy, the better the proposed approach is.
Furthermore, an accuracy of 0, indicates that not even
a single byte of data is leaked.

Last but not least, we have also measured the run-
time overheads. To this end, we executed the work-
loads both on the original kernel and on the kernel
instrumented with MeltdownDetector and computed
the overhead as ((P ′−P )/P )∗100, where P and P ′ are



5

total filtered unfiltered segfaults by segfaults by benign processes # of bytes attempted
workload segfaults segfaults segfaults benign processes Meltdown causing segfaults before detection

1 18743 20 18723 1 18722 7 4
2 40335 13 40322 10 40312 9 4
3 26499 12 26487 5 26482 9 4
4 215101 31 215070 30 215040 8 4
5 813621 36 813585 1416 812169 5 4
6 5400887 42 5400845 7405 5393440 5 4
7 4966860 12 4966848 1617 4965231 5 4
8 4659575 12 4659563 5157 4654406 5 4
9 1600207 14 1600193 3432 1596761 5 4

10 993984 53 993931 1412 992519 3 4

TABLE 1: Results obtained in the experiments. The columns, respectively, depict the workload, the number
of total, filtered, and unfiltered segmentation faults, the number of segmentation faults caused by benign
processes and Meltdown, the number of benign processes causing segmentation faults, and the number
of memory addresses attempted to be read by Meltdown before the attack was detected.

the execution times of the workloads on the original
and instrumented kernel, respectively. The smaller the
runtime overhead, the better the proposed approach
is. For each workload, the experiments were repeated
5 times.

4.3 Data and Analysis
Table 1 presents the results we obtained. Overall,

MeltdownDetector successfully detected all the at-
tacks, correctly isolated all the malicious processes,
and did so at the earliest possible time after the
attacks have started (which depends on the threshold
value) with an average runtime overhead of 0.34%
and without even leaking a single byte of information.

More specifically, all the attacks were detected right
after the malicious processes had caused segmentation
faults on 4 unique memory addresses, which given
threshold = 4, is, indeed, the earliest possible time at
which an attack can be detected. An in-depth analysis
also revealed that had we used threshold = 2, all the
attacks would have been detected as soon as the
attackers attempted to read the second byte.

Regardless of where the attacks have been detected,
no information was leaked. To further validate this,
we ran the reliability tool (Section 4.2) both on the
original kernel and on the kernel instrumented with
MeltdownDetector. While the accuracy of the attack
on the former was typically above 99%, that on the
latter was 0%.

We, furthermore, observed that, benign processes
rarely caused segmentation faults especially when
the number of memory accesses that they make are
considered. Note that this, in turn, helps reduce the
runtime overhead of MeltdownDetector as the over-
head, such as flushing cache hierarchy, only occurs
when a SIGSEGV signal is raised. Overall, only 0.001%
(20530 out of 18735612) of all the segmentation faults
were caused by benign processes. Furthermore, 0.01%
(245 out of 20530) of all these benign segmentation
faults were filtered out by using cutoff = 1024 (line
1 in Listing 2). The remainder (99.99%) of the seg-
mentation faults were considered to be suspicious by

MeltdownDetector. However, none of these segmen-
tation faults have occurred at consecutive memory
addresses or addresses that were close to each other,
such that a warning was issued. Therefore, no false
alarms were generated. That is, when the benchmarks
were run without the presence of a Meltdown attack,
MeltdownDetector issued no false warnings although
the cache hierarchy was flushed after every unfiltered
segmentation fault.

4.4 Discussion

Note that by using the wbinvd() kernel function, we
flush the cache hierarchy in its entirety, affecting all
the processes sharing the same caches. Therefore, one
way to further reduce the runtime overhead of Melt-
downDetector, could be to flush only the cache lines
belonging to the suspicious process(es). We, indeed,
evaluated a similar approach in our studies, where
we only flushed the cache line that contains the sus-
picious address (addr), at which a segmentation fault
has occurred. To this end, we used the clflush(addr)
kernel function, which, in turn, uses a machine in-
struction with the same name to do the job (Section 2).
We, however, observed that this strategy could not
fully prevented the leak. More specifically, although
the accuracy of the attacks generally dropped to less
than 3%, it was not 0% as was the case with wbinvd().
We could not exactly figure out the reason behind this
phenomenon and left it as a future work.

5 THREATS TO VALIDITY

In this work we are mainly concerned with external
threats to study. One possible threat concerns the rep-
resentativeness of the Meltdown attacks used in the
study. To the best of our knowledge, however, there
are no reported incidents involving Meltdown attacks
in the literature [18]. Therefore, we used the proof-
of-concept implementation of the attack provided by
the original paper [17], [18]. Another threat is the
workloads used in the study. To alleviate this threat as
much as possible we used workloads, which leverage



6

real life applications to mimic a wide spectrum of
common computations, including the the ones that
are typically carried out on servers, such as crypto-
graphic and numerical computations. A similar threat
is the representativeness of the hardware and software
platforms (e.g., operating system) in the experiments.
We, on the other hand, used a quite commonplace
CPU architecture and a well-known operating sys-
tem. Note further that the proposed approach can be
implemented in any operating system that handles
segmentation faults (i.e., pretty much in all the mod-
ern operating systems), regardless of the underlying
hardware platform.

6 RELATED WORK

Side-channels are unintended manifestations about
the secret information-dependent aspects of system
operations, e.g., the execution time, power consump-
tion, electromagnetic emanation, micro-architectural
artifacts, etc [2], [3], [4], [14]. Among all different types
of side-channels, the ones that are most relevant to
this work are the cache-based side-channels [1], [2],
[5], [7], [8], [9], [12], [19], [21], [22], [25], [26], [27], as
Meltdown also leverages a cache-based side-channel
to discover the content stored at a specific memory
address.

A number of approaches have been developed
to detect the presence of ongoing side-channel at-
tacks [10], [15], [20], [29]. However, all of these exist-
ing approaches address the side-channel attacks that
are carried out against the software implementation
of cryptographic applications with the goal of dis-
covering sensitive information processed by the ap-
plication, such as a secret key. From this perspective,
Meltdown is quite different, because in this attack,
there is no target process to protect from the attackers,
in the sense that an attacker can target any parts of
the physical and/or kernel memory, thus any process,
during an attack. In side-channel attacks addressed by
the existing approaches, however, the cryptographic
process, which is to be protected, such as a process
encrypting/decrypting messages using AES [7], [10],
[15], [27], is typically known beforehand. Therefore,
detection mechanisms generally make use of this in-
formation. For example, SpyDetector [15], instruments
the parts where cryptographic operations are carried
in an application, which can be exposed to attacks,
such that when the extent to which the application
suffers from cache misses becomes “suspicious,” a
warning about a possible ongoing attack is issued.
In the Meltdown attack, however, any part of any
process, including the kernel processes, can be tar-
geted. Therefore, it is generally not clear how to adopt
the existing approaches (if at all possible) to detect
Meltdown attacks.

Furthermore, the aforementioned detection ap-
proaches require either an online or an offline training

phase, where data about benign and/or malicious
processes is collected, so that supervised or unsuper-
vised detection models can be trained. MeltdownDe-
tector, on the other hand, requires no training at all.

7 CONCLUDING REMARKS

In this paper, we have presented MeltdownDe-
tector, which is a runtime approach for detecting,
isolating, and preventing ongoing Meltdown attacks
that operate by causing segmentation faults. The pro-
posed approach does not need any training and can
be implemented in any operating system that han-
dles segmentation faults, regardless of the underlying
hardware platform. Operational systems can even be
patched with MeltdownDetector at runtime without
requiring any reboots by using dynamic kernel instru-
mentation frameworks, such as SystemTap [24], which
is available in Linux-like operating systems.

We believe that this line of research is novel. One
possible avenue for future research is to develop
approaches for performing selective flushing of the
cache hierarchy (i.e., flushing only the cache lines
that belong to the suspicious processes) to further
reduce the runtime overheads. Another avenue is to
develop and evaluate various countermeasures that
can be taken after an attack has been detected. Yet
another avenue is to develop additional mechanisms,
such that further trade-offs between accuracy, preci-
sion, and runtime overhead can be made. Last but
not least, we are also working on developing sim-
ilar approaches, which are possibly integrated with
hardware performance counters-based system traces,
to detect Meltdown attacks that leverage transactional
memory instructions.

REFERENCES

[1] O. Aciiçmez and W. Schindler. A vulnerability in RSA
implementations due to instruction cache analysis and its
demonstration on OpenSSL. In CT-RSA, pages 256–273, 2008.

[2] O. Acıiçmez and Ç. K. Koç. Trace-driven cache attacks on
aes (short paper). In P. Ning, S. Qing, and N. Li, editors,
Information and Communications Security, volume 4307 of Lec-
ture Notes in Computer Science, pages 112–121. Springer-Verlag
Berlin Heidelberg, 2006. Full paper available at eprint.iacr.
org/2006/138/.

[3] O. Aciicmez, C. K. Koc, and J.-P. Seifert. Predicting secret keys
via branch prediction. In Proceedings of the 7th Cryptographers’
Track at the RSA Conference on Topics in Cryptology, CT-RSA’07,
pages 225–242, Berlin, Heidelberg, 2006. Springer-Verlag.

[4] O. Aciicmez, C. K. Koc, and J.-P. Seifert. On the power of
simple branch prediction analysis. In Proceedings of the 2Nd
ACM Symposium on Information, Computer and Communications
Security, ASIACCS ’07, pages 312–320, New York, NY, USA,
2007. ACM.

[5] N. Benger, J. Pol, N. P. Smart, and Y. Yarom. ”ooh aah... just a
little bit”: A small amount of side channel can go a long way.
In Proceedings of the 16th International Workshop on Cryptographic
Hardware and Embedded Systems — CHES 2014 - Volume 8731,
pages 75–92, Berlin, Heidelberg, 2014. Springer-Verlag.

[6] R. Bennett, C. Callahan, S. Jones, M. Levine, M. Miller, and
A. Ozment. How to live in a post-meltdown and -spectre
world. Queue, 16(4):30:18–30:30, Aug. 2018.

[7] D. J. Bernstein. Cache-timing attacks on aes, 2005.



7

[8] G. Bertoni, V. Zaccaria, L. Breveglieri, M. Monchiero, and
G. Palermo. AES power attack based on induced cache miss
and countermeasure. In International Symposium on Information
Technology: Coding and Computing (ITCC 2005), Volume 1, 4-6
April 2005, Las Vegas, Nevada, USA, pages 586–591, 2005.

[9] J. Blömer and V. Krummel. Analysis of countermeasures
against access driven cache attacks on AES. In Selected Areas
in Cryptography, pages 96–109, 2007.

[10] M. Chiappetta, E. Savas, and C. Yilmaz. Real time detection of
cache-based side-channel attacks using hardware performance
counters. Appl. Soft Comput., 49(C):1162–1174, Dec. 2016.

[11] Common vulnerabilities and exposures. https://cve.mitre.org.
Accessed: 2019-05-24.

[12] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar. Wait a
minute! a fast, cross-vm attack on aes. In A. Stavrou, H. Bos,
and G. Portokalidis, editors, Research in Attacks, Intrusions and
Defenses, pages 299–319, Cham, 2014. Springer International
Publishing.

[13] Kaiser: Hiding the kernel from user space. https://lwn.net/
Articles/738975/. Accessed: 2019-05-10.

[14] P. C. Kocher. Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems. In N. Koblitz, ed-
itor, Advances in Cryptology – CRYPTO’96, volume 1109 of
Lecture Notes in Computer Science, pages 104–113. Springer-
Verlag Berlin Heidelberg, 1996. http://www.cryptography.
com/public/pdf/TimingAttacks.pdf.

[15] Y. Kulah, B. Dincer, C. Yilmaz, and E. Savas. Spydetector:
An approach for detecting side-channel attacks at runtime.
International Journal of Information Security, Jun 2018.

[16] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and
M. Hamburg. Meltdown Proof-of-Concept, 2018.

[17] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and
M. Hamburg. Meltdown: Reading kernel memory from user
space. USENIX Security Symposium, 2(5):43–51, September
2018.

[18] Meltdown and spectre: Vulnerabilities in modern computers
leak passwords and sensitive data. https://meltdownattack.
com. Accessed: 2019-05-10.

[19] M. Neve, J.-P. Seifert, and Z. Wang. A refined look at
bernstein’s aes side-channel analysis. In ASIACCS, page 369,
2006.

[20] M. Payer. Hexpads: A platform to detect “stealth” attacks.
In J. Caballero, E. Bodden, and E. Athanasopoulos, editors,
Engineering Secure Software and Systems, pages 138–154, Cham,
2016. Springer International Publishing.

[21] C. Percival. Cache missing for fun and profit. In Proc. of
BSDCan 2005, 2005.

[22] C. Rebeiro, M. Mondal, and D. Mukhopadhyay. Pinpointing
cache timing attacks on AES. In VLSI Design, pages 306–311,
2010.

[23] Specjvm2008 benchmarking suite. https://www.spec.org/
jvm2008. Accessed: 2019-05-16.

[24] Systemtap. https://sourceware.org/systemtap. Accessed:
2019-05-14.

[25] E. Tromer, D. A. Osvik, and A. Shamir. Efficient cache attacks
on aes, and countermeasures. J. Cryptology, 23(1):37–71, 2010.

[26] Y. Yarom and N. Benger. Recovering openssl ecdsa nonces
using the flush+reload cache side-channel attack. IACR Cryp-
tology ePrint Archive, 2014:140, 2014.

[27] Y. Yarom and K. Falkner. Flush+reload: A high resolution, low
noise, l3 cache side-channel attack. In 23rd USENIX Security
Symposium (USENIX Security 14), pages 719–732, San Diego,
CA, 2014. USENIX Association.

[28] S. Yu. Distributed Denial of Service Attack and Defense. Springer,
2014.

[29] T. Zhang, Y. Zhang, and R. B. Lee. Cloudradar: a real-time
side-channel detection system in clouds. In Intrusions and
Defenses (RAID), 2016.


