
MeltdownDetector: A Runtime Approach for Detecting
Meltdown Attacks

Taha Atahan Akyildiz, Can Berk Guzgeren, Cemal Yilmaz, and Erkay Savas

Faculty of Engineering and Natural Sciences
Sabanci University
Istanbul 34956

Turkey

Abstract

In this work, we present a runtime approach, called MeltdownDetector, for

detecting, isolating, and preventing ongoing Meltdown attacks that operate by

causing segmentation faults. Meltdown exploits a hardware vulnerability that

allows a malicious process to access memory locations, which do not belong to

the process, including the physical and kernel memory. The proposed approach

is based on a simple observation that in order for a Meltdown attack to be

worthwhile, either a single byte of data located at a particular memory address

or a sequence of consecutive memory addresses (i.e., sequence of bytes) need to

be read, so that a meaningful piece of information can be extracted from the

data leaked. MeltdownDetector, therefore, monitors segmentation faults occur-

ring at memory addresses that are close to each other and issues a warning at

runtime when these faults become “suspicious.” Furthermore, MeltdownDetec-

tor flushes the cache hierarchy after every suspicious segmentation fault, which,

in turn, prevents any information leakage. In the experiments we carried out

to evaluate the proposed approach, MeltdownDetector successfully detected all

the attacks in every subject workload under every combination of attack detec-

tion configuration and attack variation used in the experiments and correctly

pinpointed all the malicious processes involved in these attacks without issuing

Email address: {aakyildiz, cguzgeren, cyilmaz, erkays}@sabanciuniv.edu (Taha
Atahan Akyildiz, Can Berk Guzgeren, Cemal Yilmaz, and Erkay Savas)

Preprint submitted to Journal of LATEX Templates July 12, 2019



any false alarms and without leaking even a single byte of data. Furthermore,

the runtime overhead of MeltdownDetector was 0.55%, on average.

Keywords:

Meltdown, side-channel attacks, countermeasures, runtime detection,

prevention, and isolation

1. Introduction

Memory isolation is an integral security mechanism provided by today’s

modern computing systems. Being a part of both instruction set architectures

and operating systems, this mechanism prevents processes from accessing each

other’s memory or kernel memory, thus enabling processes with different owners5

run safely and concurrently on the same physical computing platforms, such as

on the same workstation/server platforms or in the same cloud.

A recently discovered attack, called Meltdown (officially logged as CVE-

2017-5754 under the Common Vulnerabilities and Exposures database [1]), can,

however, overcome memory isolation, allowing malicious processes to access10

the memory that is not allocated to them, including the physical and kernel

memory [2].

Meltdown exploits a hardware vulnerability, which is present in common-

place processors today, such as in modern Intel microarchitectures [2]. In a

nutshell, a malicious process attempts to access a memory location that does15

not belong to the process, knowing that the request will eventually fail (with a

segmentation fault, for example). However, due to out-of-order execution – a

hardware mechanism for speeding up computations by reordering the instruc-

tions to be executed, such that clock cycles which would otherwise be wasted

are utilized to the extent possible – the access violation is caught after the20

content of the requested memory location is brought to the cache. Once the

violation is determined, the requesting process is notified by the operating sys-

tem (OS), e.g., by raising a SIGSEGV signal. From this point on, although the

content of the memory location cannot directly be read in the user space since

2



the access has already been forbidden, as the content is now in the cache, the25

malicious process can use microarchitectural cache-based covert channels, such

as Flush+Reload [3], to infer the content.

According to [4], almost all the Intel processors, which implement out-of-

order execution, since 1995, are potentially susceptible to Meltdown. The attack

can also be carried out on processors with transactional memory support, which30

were debuted in late 2013 by Intel. In this work, we are solely concerned with

Meltdown attacks on conventional, non-transactional memory systems. Note

that such systems have been widely deployed in the field as laptop, workstation,

server, and cloud computers since 1995. Therefore, even if the hardware vul-

nerabilities causing Meltdown were fixed in the new generations of processors,35

it would certainly take a long while to replace all the susceptible processors in

the field [5]. Therefore, detecting and preventing Meltdown attacks are still

relevant.

Part of the reason as to why Meltdown can be quite hazardous is that due to

some solid performance reasons, modern operating systems, such as Linux, map40

both the physical and kernel memory into to the virtual address space of every

running process. This, however, enables any malicious process employing Melt-

down to access any part of the physical and kernel memory during any phase

of its execution. Consequently, one countermeasure against Meltdown could be

to avoid having such memory mappings or to make it difficult for malicious45

processes to make sense of these mappings. This can, indeed, be achieved by

using recent OS patches, such as KPTI (formerly known as KAISER) [6] and

EPTI [7]. However, not all of these patches are general and they can significantly

affect the performance of real-world environments. For example, EPTI supports

virtual machines only, requiring a hardware-support feature called “EPT switch-50

ing” within guest virtual machines without hypervisor involvement, and it has a

runtime overhead of up to 13% [7]. Similarly, KPTI, although a general solution,

has an overhead in the range of 13% and 17% [5, 8].

In this work, we present a low-overhead approach, called MeltdownDetec-

tor, to detect, isolate, and prevent ongoing Meltdown attacks at runtime. The55

3



proposed approach is based on a simple observation we make: In order for a

Meltdown attack to be worthwhile, either a single byte of data located at a

particular memory address or a sequence of consecutive memory addresses (i.e.,

sequence of consecutive bytes) need to be read, so that a meaningful piece of in-

formation can be extracted from the data leaked. MeltdownDetector, therefore,60

monitors segmentation faults occurring at memory addresses that are close to

each other and issues a warning at runtime when these faults become “suspi-

cious.” Furthermore, to prevent even a single byte of data from being leaked,

MeltdownDetector flushes the cache hierarchy after every suspicious segmenta-

tion fault, regardless of when or whether an ongoing attack is detected.65

To evaluate the proposed approach, we carried out a series of experiments

with well-known benchmarks (i.e., workloads) where we varied both the Melt-

downDetector configuration and the attack itself (e.g., by having the attack

extended over a period of time and carried out with multiple processes in coor-

dination). In these experiments, MeltdownDetector successfully detected all the70

attacks in every subject workload under every combination of MeltdownDetec-

tor configuration and attack variation and correctly pinpointed all the malicious

processes involved in these attacks without issuing any false alarms and with-

out leaking even a single byte of data. Furthermore, the runtime overhead of

MeltdownDetector was 0.55%, on average.75

The remainder of the paper is organized as follows: Section 2 discusses the

Meltdown attack; Section 3 presents the attacker model; Section 4 introduces the

proposed approach; Section 5 presents the experiments we carried out and the

results we obtained; Section 6 discusses potential threats to validity; Section 7

presents related work; and Section 8 presents concluding remarks and possible80

directions for future work.

2. Meltdown Attack

This section provides a brief overview of the Meltdown attack. The interested

reader can obtain further details in [2].

4



Algorithm 1: A code segment (taken from [2]) illustrating the integral

part of Meltdown.

1 xor rax, rax

2 retry:

3 mov al, byte [rcx]

4 shl rax, 0xc

5 jz retry

6 mov rbx, qword [rbx + rax]

Algorithm 1 (taken from [2]) illustrates the integral part of Meltdown. The85

byte located at address rcx, which does not belong to the process issuing the

instruction, is attempted to be read (line 3). The malicious process knows that

the operation will eventually fail with a segmentation fault (e.g., with a SIGSEGV

signal). However, due to out-of-order execution the subsequent instructions

(lines 4-6) are executed before the signal is actually raised. More specifically,90

the value of the byte at address rcx is first read into register rax (line 4) and

then used as an index to access an element in a strategically created array, which

starts at address rbx (line 6). In the remainder of the paper, this array will be

referred to as the “rbx array”.

As expected, the segmentation fault finally occurs at address rcx. Although95

the value stored in rax, i.e., the value of the byte stored at address rcx, is never

released to the user space, the element at index rax in the rbx array (which is,

indeed, created by the malicious process) is brought to the cache. This, in turn,

creates a microarchitectural side-channel because the malicious process can now

discover the value of the byte at address rcx, by figuring out the element, thus100

the index, accessed in the rbx array.

To this end, a microarchitectural cache-based covert channel, such as

Flush+Reload [3], can be used. First, all the elements of the rbx array are

evicted from the cache. To this end, the clflush machine instruction, which

evicts the cache line that contains a given memory address from the entire cache105

5



hierarchy, can be used. Then, the malicious process executes the code segment

given in Algorithm 1 to read the value of the byte located at address rcx, which

belongs to a different process. After the segmentation fault has occurred, the

malicious process probes the cache to figure out which element was accessed in

the rbx array, thus the value of the byte.110

To this end, the malicious process iterates over the elements in the rbx array,

each of which maps to a different cache line, and search for an element, which

takes shorter time to access, compared to the others. Note that accessing an

element in cache is profoundly much faster than accessing an element in memory.

Therefore, the index of the element, which takes shorter time to access, will be115

the value of the byte located at address rcx.

To deal with cache prefetching – a mechanism for improving the runtime per-

formance of systems by fetching memory to cache before the respective content

is actually needed – the malicious process, rather than accessing consecutive

elements in the rbx array, accesses elements that are far apart from each other120

based on the value of the byte to be leaked. For example, instead of accessing

[rbx + rax], one can access [rbx + 4096 * rax] to avoid the noise caused

by cache prefetching.

3. Attacker Model

We consider that the attacker uses Meltdown that operates by causing seg-125

mentation faults. The attacker’s ultimate expectation is to discover the values

stored at some memory locations, for which the attacker does not have any

appropriate permissions to access. There is locality in the attacks in the sense

that the attacker attempts to read chunks of memory, each of which consists

of either a single byte or a sequence of consecutive bytes, so that a meaningful130

piece of information can be extracted from the data discovered.

In order for the proposed approach to work, the attacker can neither bypass

the segmentation fault handling mechanism provided in cooperation with both

the hardware and operating system (e.g., the attacker cannot hide a segmenta-

6



tion fault from the operating system kernel) nor temper with the data collected135

by them for each segmentation fault (e.g., the addresses at which the faults have

occurred) or prevent the proposed approach from accessing this data.

4. Meltdown Detector

MeltdownDetector monitors the segmentation faults occurring at memory

addresses that are close to each other and emits a warning when a collection of140

such faults becomes suspicious. We distinguish between three types of segmen-

tation faults: type 0, type 1, and type 2.

The type 0 category represents the segmentation faults that are caused by

dereferencing null pointers – a common cause of segmentation faults. For exam-

ple, given u32 ∗ addr = NULL, an operation of the form ∗addr=. . . would cause145

a segmentation fault at address 0x00 and an operation of the form ∗(addr++)

would cause a fault at address 0x04. Consequently, we mark all the segmen-

tation faults that occur at addresses, which are smaller than or equal to a

predetermined cutoff value (in our case, cutoff = 1024), as type 0 faults. Since

these segmentation faults are considered benign, MeltdownDetector filters out150

all type 0 faults without taking any actions.

Unlike the type 0 category, the type 1 and type 2 categories are determined

by the operating system. For example, in Linux-like systems, the type of a

segmentation fault is communicated to the user space using the si code or

si errno field (depending on the platform) of the siginfo t structure.155

Type 1 segmentation faults occur when a process attempts to access a mem-

ory address that does not belong to the process, i.e., a memory address, which

is not in the same address space with the process. Type 2 segmentation faults,

on the other hand, occur when the address is in the same address space with

the process, but the process does not have the appropriate rights to access it.160

We opt to distinguish between type 1 and type 2 segmentation faults, be-

cause it turns out that some software systems may occasionally use type 2

faults in order to speed up certain types of operations. For example, modern

7



Java virtual machines (JVMs) leverage type 2 faults to perform safepoint polls

and/or thread-local handshakes [9]. Occasionally, JVM needs to stop all the165

Java threads (i.e., safepoint polling) or a group of selected threads (i.e., thread-

local handshaking). However, this needs to be done at a point in time, which

is “safe” for the threads. Furthermore, as these polls are occasional (if not rare

at all), the mechanism to be used should be quite efficient in the absence of a

poll. One solution approach is to make the threads call into JVM when they170

are at a safe point. However, for various technical reasons, such as the presence

of threads running in a busy-loop, this approach is not desirable. Instead, JVM

allocates a physical page and picks an address in this page, which is typically

aligned with the page (i.e., for 4 KB physical pages, an address that ends with

0x000). When a thread is at a safe point, it accesses the selected memory loca-175

tion. In the absence of a poll, the access is quite fast and the execution resumes

with the next instruction (i.e., nothing happens). However, when JVM needs

to call in the threads, it prevents all the accesses to the selected physical page

(e.g., by calling mprotect with PROT NONE), so that the threads attempting to

access the predetermined memory location cause type 2 segmentation faults.180

The segmentation faults are then handled by JVM, effectively enabling JVM

to call in the threads. For each JVM instance (i.e., JVM process), the physical

page(s) and the memory address(es) used for polling, are fixed.

In MeltdownDetector, we handle type 1 and type 2 segmentation faults simi-

larly but separately. We do this to further improve the accuracy of the proposed185

approach by utilizing the differing characteristics of both types. More specifi-

cally, when dealing with type 2 faults, we use virtual memory addresses. That

is, for type 2 faults, we check the closeness between virtual addresses. This is

because, to have a type 2 segmentation fault at an address, the address should

be in the same address space with the offending process. And, in a given ad-190

dress space, the same virtual addresses map to the same physical addresses.

Furthermore, the probability of multiple processes with different address spaces

causing segmentation faults at virtual addresses that are close to each other by

chance is low, especially when the size of the virtual address space is considered,

8



which can be as large as 248. Note that Meltdown can cause type 2 segmenta-195

tion faults, if the attacker targets some protected memory locations in its own

address space.

When dealing with type 1 segmentation faults, on the other hand, we use

physical page offsets. That is, for type 1 faults, we check the closeness between

physical page offsets. Note that this type of faults occur when the attacker200

targets memory addresses that belong to other processes. As the address spaces

of the offending and the victim processes are different, different virtual addresses

can map to the same physical addresses. We, therefore, use physical page offsets

because consecutive bytes within a page are guaranteed to have consecutive page

offsets regardless of the address space they belong to. This, in turn, enables205

the proposed approach to detect and prevent attacks that are carried out in

coordination with multiple processes (possibly with separate address spaces),

where each process reads a different portion of the memory, such that a sequence

of consecutive bytes are read in effect. Note that although consecutive page

offsets do not necessarily indicate consecutive addresses, we conjecture that210

the probability of the same or multiple processes causing type 1 segmentation

faults on page offsets that are close to each other by chance is low, especially in

production environments.

Last but not least, for either type of segmentation faults, we opt to carry out

the analysis in a system-wide manner, where the segmentation faults, regardless215

of the processes causing them, are analyzed together, rather than on a per

process basis, where the segmentation faults caused by each process are analyzed

in isolation. We do this to detect and prevent coordinated attacks carried out

by multiple processes.

4.1. Approach220

Algorithm 2 illustrates the core steps in MeltdownDetector, which are car-

ried out in the kernel space after a segmentation fault has been detected, but

right before the control is passed to the user space (i.e., right before a SIGSEGV

signal is raised). In this algorithm, addr is the virtual memory address, at

9



Algorithm 2: MeltdownDetector

Input: addr: memory address

type: segmentation fault type

pid: process ID

1 if addr ≤ cutoff then

2 . type 0

3 Do nothing

4 else

5 if type is type 1 then

6 . type 1

7 addr ← addr & PAGE OFFSET MASK

8 hist← type1.hist

9 else

10 . type 2

11 hist← type2.hist

12 counter ← 0

13 hist← hist ∪ {.addr ← addr, .pid← pid}

14 for each address a in [addr - (diameter/2), addr + (diameter/2)] do

15 if a in hist then

16 counter++

17 if counter ≥ threshold then

18 Issue a warning & report the pids involved

19 Flush cache hierarchy

10



which the segmentation fault has occurred, type is the type of the segmenta-225

tion fault as determined by the operating system, pid is the ID of the process

causing the fault, and type1.hist and type2.hist are the hash tables (indexed by

memory addresses) for previously seen type 1 and type 2 segmentation faults,

respectively.

If addr is smaller than or equal to a predetermined cutoff value (in our230

case, cutoff = 1024), we mark the segmentation fault as type 0 and filter it out

without taking any further actions (lines 1-4). Otherwise (i.e., addr > cutoff),

we check to see if the segmentation fault is a type 1 or type 2 fault (line 5).

For a type 1 segmentation fault, we use the physical page offset of addr (line

7 – in our case, PAGE OFFSET MASK = 0xFFF for 4 KB physical pages).235

For a type 2 segmentation fault, we use the virtual address addr as it is (lines

9-11). As from this point on (lines 12-20), the handling of the segmentation

fault does not depend on its type, we make the hist pointer to point to the

respective hash table; to type1.hist for type 1 faults (line 8) and to type2.hist

for type 2 faults (line 11).240

We then populate the hist hash table with addr and pid (line 13), indicating

that the respective segmentation fault is a suspicious one (as it is not type 0). To

determine whether a warning needs to be issued or not, we check to see whether

other segmentation faults have occurred at addresses around addr (lines 14-17).

To this end, MeltdownDetector offers two parameters: diameter and245

threshold. If the total number of segmentation faults that have occurred in

the range [addr − (diameter/2), addr + (diameter/2)] is larger than or equal

to threshold (line 18), a warning indicating the presence of a potential ongoing

Meltdown attack is issued together with the IDs of the processes responsible for

the warning (line 19). Note that when physical page offsets are in use, the range250

of addresses to be checked is computed in a circular manner; offset 0 comes after

the last page offset and the last page offset comes before offset 0.

Furthermore, regardless of whether a warning has been issued or not, when

the segmentation fault is of type 1 or type 2, we flush the cache hierarchy (line

20). We do this to prevent even a single byte of information from being leaked.255

11



Once a warning has been issued, various countermeasures, such as terminating

the suspicious processes or migrating them to different machines, can be taken.

However, these countermeasures are beyond the scope of this work.

4.2. Implementation

We have developed two implementations of MeltdownDetector for Linux op-260

erating system (kernel v3.10.0-957.5.1.el7.x86 64). In one implementation, we

directly modify the OS kernel, whereas in the other implementation we develop

a dynamic instrumentation script using SystemTap – a framework for dynam-

ically instrumenting Linux kernel at runtime [10]. Note that although both

implementations are semantically equivalent (and, indeed, share exactly the265

same MeltdownDetector code), they differ in the way they are deployed. More

specifically, the former implementation requires a rebuild of the kernel followed

by a reboot of the system, whereas the latter can be installed or uninstalled at

runtime without requiring any reboots. Although the latter implementation is

obviously more flexible, it is not clear how much additional runtime overhead (if270

any) the dynamic instrumentation framework may incur. We, therefore, opted

to have both implementations, so that we can compare their overheads.

In both implementations, we instrument the bad area nosemaphore(. . .)

kernel function defined in arch/x86/mm/fault.c with an implementation of the

algorithm given in Algorithm 2. Note that the aforementioned kernel function275

is invoked after a segmentation fault has been detected, but before a SIGSEGV

signal is raised and the control is passed to the user space.

The memory address, at which the segmentation fault has occurred, as well

as the kernel-identified type of the fault, are passed as arguments to this kernel

function. Furthermore, the ID of the process responsible for the segmentation280

fault is obtained by using the current pointer – a global kernel pointer pointing

to the task struct of the currently executing (thus, the offending) process.

Last but not least, we flush the cache hierarchy by using the wbinvd() kernel

function, which uses a machine instruction with the same name (i.e., the Write

12



Back and Invalidate Cache instruction) to invalidate (i.e., flush) all the cache285

lines in the hierarchy.

5. Experiments

We carried out a series of experiments to evaluate MeltdownDetector.

5.1. Experimental Design

In these experiments, we manipulated 4 independent variables: attack vari-290

ation, workload, attack detection configuration, and implementation.

Attack variations. As the base Meltdown attack, we used the imple-

mentation [11] provided by the original paper [2]. More specifically, we used

memdump.c, which attempts to dump the entire physical memory.

To further evaluate the proposed approach on different attack variations,295

we have also modified the base attack, such that an attack can be extended

over a period of time and carried out by multiple processes. Note that both

mechanisms can be leveraged by an attacker to become stealthier. For example,

an attacker, instead of attacking an address space one memory address after

another in a rapid manner, can attack an address and then go silent for a while300

before attacking the subsequent address. The attacker can even utilize multiple

malicious processes, each of which attacks different memory addresses, such

that the data collectively gathered by these processes forms the basis of the

attack. In both cases, the intention of the attacker is to avoid being detected

by replacing short periods of intense suspicious activities with long periods of305

indistinct activities, which are generally harder to detect.

To carry out the aforementioned evaluations, we introduced two parameters

to the base attack, namely N and T . N is the number of processes that are

concurrently carrying out the attack. T is the maximum amount of time a

malicious process waits before attacking the subsequent byte (i.e., address).310

Given N and T , we divide the address space, against which the attack will

be carried out (i.e., the physical memory space), into non-overlapping sliding

13



windows of N addresses each and spawn N malicious processes, each of which

has its own distinct memory space. Each process uses the original attack code

(i.e., memdump.c) to attack a distinct address within a window and waits for a315

random amount of time, not exceeding T , before attacking a distinct address in

the subsequent window.

We, in particular, experiment with all the setups represented by the cross

product of N = {1, 2, 5, 10} and T = {30, 60, 180, 300}. The durations in T are

given in seconds. Furthermore, in the experimental setups where N = 1, con-320

secutive memory addresses are attacked one after another by a single process

(as is the case in the original attack), but the attack is extended over a period

of time depending on the value of T .

Workloads. We use two well-known benchmark suites as workloads, namely

Phoronix [12] and SPECjvm2008 [13]. We chose these workloads because they325

leverage real life applications to mimic a wide spectrum of common computa-

tions, including the ones that are typically carried out on servers and work-

stations, such as cryptographic and numerical computations, audio and video

encoding, various CPU-, memory-, network-, and disk-bound computations, and

database operations.330

Phoronix is an open-source benchmark suite, which fully automates the in-

stallation, execution, and result aggregation for a wide variety of benchmarks.

We, in particular, chose Phoronix, as it is the benchmark, on which the perfor-

mance of the well-known preventive countermeasure against Meltdown, namely

KPTI, has been evaluated for numerous CPU architectures, so that we can com-335

pare the runtime overhead of MeltdownDetector to that of the only alternative

we know of. In the experiments, we used all the Phoronix benchmarks that we

could install on our experimental platform (see Table 1 for more information).

SPECjvm2008 is also a well-known benchmark [13], which aims to measure

the performance of Java runtime environments. We opted to use this additional340

benchmark, because, compared to Phoronix, it caused significantly more number

of segmentation faults due to the use of type 2 segmentation faults for safepoint

polls and thread-local handshakes (Section 4). Furthermore, as also suggested by

14



the developers of this benchmark [13], we ran the benchmark with the --lagom

option, which guarantees that a fixed set of workloads were executed every time345

the benchmark is run.

Attack detection configurations. Throughout the experiments, we use

cutoff = 1024 (Section 4.1). We chose this value because it is large enough to

filter out the segmentation faults that occur due to null-pointer dereferences or

due to pointer arithmetic operations involving null pointers.350

Furthermore, to study the effect of the diameter and threshold parame-

ters on attack detection, we experiment with different MeltdownDetector con-

figurations. More specifically, we use threshold = {2, 4} with diameter = 8,

threshold = {2, 4, 8} with diameter = 16, threshold = {2, 4, 8, 16} with

diameter = 32, and threshold = {2, 4, 8, 16, 32} with diameter = 64.355

Implementation. We experiment with two implementations of Meltdown-

Detector: a kernel implementation and a SystemTap implementation (Sec-

tion 4.2). We do this solely to evaluate the runtime overheads of these otherwise

semantically equivalent implementations.

All the experiments were carried out on an E5630 Intel Xeon platform360

with 32 GB of RAM and 32 KB of L1, 256 KB of L2, and 12288 KB of L3

cache memory, running CentOS v6.1810.2 operating system with kernel v3.10.0-

957.5.1.el7.x86 64.

5.2. Evaluation Framework

To evaluate the accuracy of the proposed approach, we keep track of whether365

the attacks are detected or not. To evaluate the extent to which the malicious

processes are pinpointed, we compare the IDs of the suspicious processes identi-

fied by the proposed approach with those of the actual malicious processes. To

evaluate how early the attacks are detected, we measure the number of distinct

memory addresses, at which the attacker caused segmentation faults, e.g., the370

number of bytes attempted to be stolen by the attacker, before the attack is

detected. The faster the attacks are detected, the better the proposed approach

is.

15



To evaluate the extent to which flushing the cache hierarchy after every

suspicious segmentation fault (i.e., type 1 or type 2 faults), prevents Meltdown,375

we use the reliability tool (i.e., reliability.c) that comes with the Meltdown

implementation [11]. This tool simply measures the accuracy of the attack by

computing the percentage of the bytes that are successfully read. The smaller

the accuracy, the better the proposed approach is. For example, an attack

accuracy of 0 indicates that not even a single byte of data is leaked.380

Last but not least, we measure the runtime overhead of the proposed ap-

proach. To this end, we execute the workloads both on the original kernel and

on the modified kernel; and compute the overhead as ((P ′−P )/P ) ∗ 100, where

P and P ′ are the execution times of the workloads on the original and modified

kernel, respectively. The smaller the runtime overhead, the better the proposed385

approach is. For each experimental setup, we repeat the experiments 5 times.

Note that between the configuration parameters of MeltdownDetector, namely

diameter and threshold, the runtime overhead of the proposed approach solely

depends on the former as the loop between lines 14-17 in Algorithm 2 iterates

diameter times. We, therefore, computed the runtime overhead for the smallest390

and largest values of diameter used in the experiments (i.e., diameter = 8 and

diameter = 64, respectively) by arbitrarily setting the threshold parameter to

its largest value for a given diameter. Furthermore, as the runtime overheads

obtained from different diameter values in the experiments were close to each

other, we report the average overheads (together with the minimum and maxi-395

mum overheads).

5.3. Data and Analysis

We first observed that non-stop 165-hour (about 7 days) and 1.5-hour exe-

cutions of the Phoronix and SPECjvm2008 workloads, caused a total of 42 and

41627 segmentation faults, respectively (Table 1). In the Phoronix workloads,400

all the segmentation faults were type 0 faults, i.e., they all occurred at memory

addresses below the cutoff = 1024 value. In the SPECjvm2008 workload, while

278 of the segmentation faults were type 0, the remaining 41349 were type 2.

16



When we ran the same workload by disabling the use of type 2 segmentation

faults for polling (Section 4) with the -XX:-ThreadLocalHandshakes option of405

Java, no segmentation faults were observed, further assuring that all of these

segmentation faults were indeed caused by JVMs for safepoint polls and thread-

local handshakes. To sum up, during the 7-day non-stop executions of our

workloads, we observed no benign type 1 segmentation faults, i.e., none of the

processes attempted to access a memory location that did not belong to them.410

We then observed that, for the Phoronix workloads, MeltdownDetector in-

curred no runtime overheads; as all the segmentation faults occurred in these

workloads were type 0, they were all filtered out by MeltdownDetector without

performing any actions, such as flushing the cache hierarchy (lines 1-4 in Al-

gorithm 2). This result is especially important considering that KPTI, which415

is a well-known approach for mitigating Meltdown, incurs runtime overheads of

between 13% and 17% for the same workloads [5, 8].

For the SPECjvm2008 workload, the kernel implementation of MeltdownDe-

tector (Section 5.2) incurred an average overhead of 0.72% (min = 0.46% and

max = 0.97%). We, furthermore, observed that the SystemTap-based imple-420

mentation of MeltdownDetector, i.e., the more flexible implementation (com-

pared to the statically modified kernel implementation), which does not re-

quire any reboots of the systems for deployment, imposed similar overheads:

min = 0.37%, avg = 0.37%, and max = 0.38%.

17



a
ll

p
ro

ce
ss

es
ex

ec
u

ti
o
n

su
it

e
w

or
k
lo

ad
se

g
fa

u
lt

s
ty

p
e

0
ty

p
e

1
ty

p
e

2
ca

u
si

n
g

se
g
fa

u
lt

s
ti

m
e

(s
ec

s.
)

Phoronix
A

u
d

io
E

n
co

d
in

g
0

0
0

0
0

3
5
2
.7

0
7

C
om

p
il

at
io

n
0

0
0

0
0

6
2
5
5
.8

1
9

C
om

p
re

ss
io

n
0

0
0

0
0

8
8
6
.7

9
8

C
om

p
u

ta
ti

on
al

B
io

lo
g
y

0
0

0
0

0
2
7
8
.1

9
5

C
om

p
u

ta
ti

on
al

0
0

0
0

0
4
6
6
8
.7

4
8

C
P

U
0

0
0

0
0

1
7
3
5
1
.3

6
2

C
ry

p
to

gr
ap

h
y

0
0

0
0

0
1
0
4
7
.1

6
4

D
at

ab
as

e
3

3
0

0
1

4
0
4
4
3
5
.6

4
8

D
es

k
to

p
G

ra
p

h
ic

s
3

3
0

0
3

5
2
6
4
3
.9

7
7

D
is

k
0

0
0

0
0

1
6
0
2
2
.9

0
8

G
U

I
T

o
ol

k
it

s
0

0
0

0
0

4
7
1
.6

5
7

L
in

u
x

S
y
st

em
0

0
0

0
0

3
6
5
1
4
.5

0
7

M
ac

h
in

e
L

ea
rn

in
g

3
6

3
6

0
0

1
2

1
0
4
8
1
.5

4
4

M
em

or
y

0
0

0
0

0
3
2
1
8
.2

4
1

M
u

lt
ic

or
e

0
0

0
0

0
1
6
8
2
8
.7

6
2

N
et

w
or

k
0

0
0

0
0

1
6
6
0
.7

4
5

S
er

ve
r

0
0

0
0

0
4
5
6
6
.6

5
7

V
id

eo
E

n
co

d
in

g
0

0
0

0
0

4
8
9
.4

8
5

W
or

k
st

at
io

n
0

0
0

0
0

1
6
8
2
5
.2

2
3

S
P

E
C

S
P

E
C

jv
m

20
08

4
1
6
2
7

2
7
8

0
4
1
3
4
9

5
2

5
3
4
2
.2

6
8

T
a
b

le
1
:

S
ta

ti
st

ic
s

a
b

o
u

t
th

e
b

en
ig

n
se

g
m

en
ta

ti
o
n

fa
u

lt
s

o
cc

u
rr

ed
(i

.e
.,

th
e

o
n

es
ca

u
se

d
b
y

b
en

ig
n

p
ro

ce
ss

es
)

d
u

ri
n

g
th

e
ex

ec
u

ti
o
n

s
o
f

th
e

su
b

je
ct

w
o
rk

lo
a
d

s.
T

h
e

co
lu

m
n

s,
re

sp
ec

ti
v
el

y,
d

ep
ic

t
th

e
w

o
rk

lo
a
d

s,
th

e
n
u

m
b

er
s

o
f

to
ta

l,
ty

p
e

0
,

ty
p

e
1
,

a
n

d
ty

p
e

2
se

g
m

en
ta

ti
o
n

fa
u

lt
s,

th
e

n
u

m
b

er
s

o
f

d
is

ti
n

ct
p

ro
ce

ss
es

ca
u

si
n

g
th

es
e

se
g
m

en
ta

ti
o
n

fa
u

lt
s,

a
n

d
th

e
ex

ec
u
ti

o
n

ti
m

es
o
f

th
e

w
o
rk

lo
a
d

s.

18



We next observed that no false alarms were raised by MeltdownDetector.425

That is, none of the unfiltered segmentation faults (i.e., the benign type 2 seg-

mentation faults, as we did not have any benign type 1 faults) occurred during

the executions of our subject workloads, were close enough to each other, such

that a false warning could be issued under any of the MeltdownDetector con-

figurations used in the experiments (Section 5.1). Indeed, there was not even a430

pair of segmentation faults that occurred at consecutive memory addresses.

We then observed that MeltdownDetector successfully detected all the at-

tacks in every subject workload under every combination of MeltdownDetector

configuration and attack variation used in the experiments and correctly pin-

pointed all the malicious processes involved in these attacks. And, it did so435

without leaking even a single byte of data. We validated this by running the re-

liability tool (Section 5.2) that came with the original attack distribution, both

on the original and modified kernels. While the accuracies of the attacks on

the former were typically above 99%, those on the latter were 0% all the time,

indicating that no data at all was leaked.440

19



1
2

5
1
0

2
0

3
0

30 60 180 300

8
1
6

3
2

6
4

8
1
6

3
2

6
4

8
1
6

3
2

6
4

8
1
6

3
2

6
4

8
1
6

3
2

6
4

8
1
6

3
2

6
4

1
0

2
0

3
0

1
0

2
0

3
0

1
0

2
0

3
0

1
0

2
0

3
0

d
ia

m
e

te
r

number of distinct memory addresses attacked before detection

th
re

s
h

o
ld

2 4 8 1
6

3
2

R
e

s
u

lt
s
 O

b
ta

in
e

d
 f

ro
m

 D
if
fe

re
n

t 
M

e
lt
d

o
w

n
D

e
te

c
to

r 
C

o
n

fi
g

u
ra

ti
o

n
 a

n
d

 A
tt

a
c
k
 V

a
ri

a
ti
o

n
 C

o
m

b
in

a
ti
o

n
s

maximum time gap between probing memory addresses (secs)

n
u
m

b
e
r 

o
f 
p
ro

c
e
s
s
e
s
 c

a
rr

y
in

g
 o

u
t 
th

e
 a

tt
a
c
k

F
ig

u
re

1
:

N
u

m
b

er
o
f

d
is

ti
n

ct
m

em
o
ry

a
d

d
re

ss
es

p
ro

b
ed

b
y

a
n

a
tt

a
ck

er
,
b

ef
o
re

th
e

a
tt

a
ck

w
a
s

d
et

ec
te

d
u

n
d

er
v
a
ri

o
u

s
M

el
td

o
w

n
D

et
ec

to
r

co
n

fi
g
u

ra
ti

o
n

s

a
n

d
a
tt

a
ck

v
a
ri

a
ti

o
n

s.
T

h
e

h
o
ri

zo
n
ta

l
a
n

d
v
er

ti
ca

l
a
x
es

d
en

o
te

th
e
d
ia
m
et
er

p
a
ra

m
et

er
a
n

d
th

e
n
u

m
b

er
o
f

d
is

ti
n

ct
m

em
o
ry

a
d

d
re

ss
es

p
ro

b
ed

b
y

th
e

a
tt

a
ck

er
,

re
sp

ec
ti

v
el

y,
w

h
er

ea
s

th
e

co
lu

m
n

s
a
n

d
ro

w
s

d
ep

ic
t

th
e
N

p
a
ra

m
et

er
(n

u
m

b
er

o
f

p
ro

ce
ss

es
co

n
cu

rr
en

tl
y

ca
rr

y
in

g
o
u

t
th

e
a
tt

a
ck

)
a
n

d
th

e
T

p
a
ra

m
et

er
(m

a
x
im

u
m

ti
m

e
la

g
in

se
co

n
d

s,
fo

r
w

h
ic

h
a

m
a
li
ci

o
u

s
p

ro
ce

ss
w

a
it

s
in

b
et

w
ee

n
p

ro
b

in
g

tw
o

a
d

d
re

ss
es

),
re

sp
ec

ti
v
el

y.

20



Note further that regardless of where the attacks might be started during

the executions of the workloads, no false alarms would have been issued or no

benign processes would have been incorrectly marked as suspicious. This is

because all the benign unfiltered segmentation faults were of type 2, whereas

all the malicious ones were of type 1. Had the Meltdown attacks generated445

type 2 segmentation faults, then some of the benign processes could have been

incorrectly marked as suspicious. An in-depth analysis, however, revealed that

all of the 41349 benign type 2 segmentation faults caused by the SPECjvm2008

workload, occurred at only 107 distinct virtual memory addresses. Considering

the size of a virtual address space for a process, which was as large as 248, the450

probability of other processes causing segmentation faults around these 107 ad-

dresses by chance was low. Note further that Meltdown attacks can cause type 2

segmentation faults only when a malicious process carries out the attack against

some protected memory locations, which are in the same address space with the

process (Section 4), thus limiting the scope of an attack. All other attempts,455

such as accessing memory locations that do not belong to the malicious process,

result in type 1 segmentation faults.

Last but not least, we evaluated how early the attacks were detected under

different MeltdownDetector configurations and attack variations (Section 5.1).

Figure 1 presents the results we obtained.460

We first observed that, as expected, in the original Meltdown attack as well

as in all of its variations where the attack was carried out by probing only the

consecutive memory addresses using a single process (i.e., N = 1), regardless

of the values of diameter and T (time lag between attacks), the attacks were

detected after threshold number of addresses had been probed by the attacker,465

which, given a threshold value, the earliest possible time at which an attack

can be detected. For example, when threshold = 2, the original attacks were

detected as soon as the second distinct memory address was probed by the

attacker.

We then observed that MeltdownDetector did not get affected by the attack470

variations used in the experiments in terms of the number of distinct memory

21



10

20

30

1
−

3
0

1
−

6
0

1
−

1
8
0

1
−

3
0
0

2
−

3
0

2
−

6
0

2
−

1
8
0

2
−

3
0
0

5
−

3
0

5
−

6
0

5
−

1
8
0

5
−

3
0
0

1
0
−

3
0

1
0
−

6
0

1
0
−

1
8
0

1
0
−

3
0
0

2
0
−

3
0

2
0
−

6
0

2
0
−

1
8
0

2
0
−

3
0
0

3
0
−

3
0

3
0
−

6
0

3
0
−

1
8
0

3
0
−

3
0
0

attack variation

n
u

m
b

e
r 

o
f 

d
is

ti
n

c
t 

m
e

m
o

ry
 a

d
d

re
s
s
e

s
 a

tt
a

c
k
e

d
 b

e
fo

re
 d

e
te

c
ti
o

n

Sensitivity to Attack Variations

Figure 2: Sensitivity of MeltdownDetector to attack variations. The numbers in the horizontal

tick labels, respectively, represent the number of malicious processes concurrently carrying out

the attack (i.e., N) and the maximum amount of time a malicious process waits before probing

the subsequent byte (i.e., T ). For each attack variation, the distribution of the data obtained

from all of the MeltdownDetector configurations used in the experiments, is visualized.

addresses probed before the attack could be detected. We believe that this was

because all the memory addresses attacked during the experiments were locally

close to each other – a decision we made to mimic realistic attacks (Section 3).

For every attack variation, Figure 2 visualizes the distribution of the results475

we obtained from all of the MeltdownDetector configurations used in the ex-

periments in the form of a box and whisker plot. Each tick on the horizontal

axis depicts an attack variation, where the numbers in the tick label, respec-

tively, represent the number of malicious processes concurrently carrying out

the attack (i.e., N) and the maximum amount of time a malicious process waits480

before probing the subsequent byte (i.e., T ). For each box, the bottom, middle,

and top bars depict the first, second (i.e., median), and third quartile of the

data, respectively, whereas the diamond shape depicts the average value. The

22



10

20

30

2 4 8 16 32

threshold

n
u

m
b

e
r 

o
f 

d
is

ti
n

c
t 

m
e

m
o

ry
 a

d
d

re
s
s
e

s
 a

tt
a

c
k
e

d
 b

e
fo

re
 d

e
te

c
ti
o

n

Sensitivity to "threshold"

Figure 3: Sensitivity of MeltdownDetector to the threshold parameter. For each threshold

value, the distribution of the data obtained from all the experiments with the same threshold

value is visualized.

average values were within 0.186 of each other with min = 8, max = 8.186, and

stddev = 0.07.485

Analyzing the sensitivity of MeltdownDetector to the threshold parameter,

we observed, as expected, that as the threshold value increased, the number of

memory addresses probed before the attack can be detected increased (Figure 3).

The average values were 2.03, 4.11, 8.03, 16.10, and 32, 27 for threshold = 2, 4,

8, 16, and 32, respectively.490

Analyzing the sensitivity of MeltdownDetector to the diameter parameter,

we observed that this parameter generally did not have any profound effects in

the experiments. We believe that this was also due to the locality of the memory

addresses attacked during the experiments (Section 3). Figure 4 summarizes the

results we obtained. As the threshold parameter had an effect on the results495

(Figure 3) and not all the diameter values were used with every threshold value

(as threshold ≤ diameter), we, in this figure, visualize only the distributions of

23



2

3

4

5

6

7

8 16 32 64

diameter

n
u

m
b

e
r 

o
f 

d
is

ti
n

c
t 

m
e

m
o

ry
 a

d
d

re
s
s
e

s
 a

tt
a

c
k
e

d
 b

e
fo

re
 d

e
te

c
ti
o

n

Sensitivity to "diameter"

Figure 4: Sensitivity of MeltdownDetector to the diameter parameter. For each diameter

value, only the results obtained from the experiments where threshold = 2 or threshold = 4

are visualized as not all threshold values are used with every diameter value.

the results obtained from the experiments where threshold = 2 or threshold = 4

(i.e., the ones that were used with all the diameter values). The average values

were within 0.2 of each other with min = 3.0, max = 3.2, and stddev = 0.076.500

Note that regardless of whether or when the attacks are detected, Melt-

downDetector does not leak any information. This is because we flush the

cache hierarchy after every type 1 an type 2 segmentation faults whether or not

an attack has been detected (line 20 in Algorithm 2).

5.4. Discussion505

In this study, we flush the cache hierarchy in its entirety by using the

wbinvd() kernel function, affecting all the processes sharing the same cache

memories. One way to further reduce the runtime overhead of MeltdownDetec-

tor, could be to flush only the cache lines belonging to the suspicious process(es).

We, indeed, evaluated a similar approach in our empirical studies, where we only510

24



flushed the cache line that contained the suspicious address, at which a segmen-

tation fault had occurred. To this end, we used the clflush(addr) kernel

function, which, in turn, uses a machine instruction with the same name to do

the job. We, however, observed that this strategy did not fully prevent the leak.

More specifically, although the accuracies of the attacks generally dropped to515

less than 3% (obtained by using the reliability tool that came with the original

attack distribution – see section Section 5.2 for more information), they were

not 0% as was the case with wbinvd(). We could not exactly figure out the

reason behind this phenomenon and left it as a future work.

6. Threats to Validity520

In this work we are mainly concerned with external threats to study. One

possible threat concerns the representativeness of the Meltdown attacks used

in the study. To the best of our knowledge, there are no reported incidents

involving Meltdown attacks in the literature [4]. Therefore, we used the imple-

mentation of the attack provided by the original paper [2]. We, furthermore,525

systematically varied it by having multiple processes carrying out the attack,

which is extended over a period of time where each malicious process waits for

a random amount of time before targeting the subsequent byte.

Another threat is the representativeness of the workloads used in the study.

To alleviate this threat as much as possible we used two well-known benchmarks,530

namely Phoronix [12] and SPECjvm2008 [13], both of which leverage real-life

applications to mimic a wide spectrum of common computations, including the

ones that are typically carried out on servers and workstations, such as crypto-

graphic and numerical computations, audio and video encoding, various CPU-,

memory-, network-, and disk-bound computations, and database operations.535

We, furthermore, evaluated the proposed approach by considering all possible

scenarios, in which the workloads and attack variations can be interleaved with

each other.

25



A similar threat concerns the representativeness of the hardware and soft-

ware (e.g., operating system) platforms used in the experiments. We, on the540

other hand, used a quite commonplace CPU architecture and a well-known op-

erating system. Note further that the proposed approach can be implemented

in any operating system that handles segmentation faults.

7. Related Work

Side-channels are unintended manifestations about the secret information-545

dependent aspects of system operations, e.g., the execution time, power con-

sumption, electromagnetic emanation, micro-architectural artifacts, etc [14, 15,

16, 17, 18]. Among all different types of side-channels, the ones that are most

relevant to this work are the cache-based side-channels [19, 20, 21, 22, 3, 15, 23,

24, 25, 26, 27, 28, 29], as Meltdown also leverages a cache-based side-channel to550

discover the content stored at a specific memory address.

A number of approaches have been developed to detect the presence of on-

going side-channel attacks [30, 31, 32, 33]. However, all of these existing ap-

proaches address the side-channel attacks that are carried out against the soft-

ware implementation of cryptographic applications with the goal of discovering555

sensitive information processed by the application, such as a secret key. From

this perspective, Meltdown is quite different, because in this attack, there is no

target process to protect from the attackers, in the sense that an attacker can

target any parts of the physical and/or kernel memory, thus any process, during

an attack. In side-channel attacks addressed by the existing approaches, how-560

ever, the cryptographic process, code or sensitive data, which is to be protected,

such as a process encrypting/decrypting messages using AES and performing

ECDSA signature generation [19, 3, 30, 31, 34, 35], is typically known before-

hand. Therefore, detection mechanisms generally make use of this information.

For example, SpyDetector [30], instruments the parts where cryptographic op-565

erations are carried in an application, which can be exposed to attacks, such

that when the extent to which the application suffers from cache misses becomes

26



“suspicious,” a warning about a possible ongoing attack is issued. In the Melt-

down attack, however, any part of any process, including the kernel processes,

can be targeted. Therefore, it is generally not clear how to adopt the existing570

approaches (if at all possible) to detect Meltdown attacks.

Furthermore, the aforementioned detection approaches require either an on-

line or an offline training phase, where data about benign and/or malicious

processes is collected, so that supervised or unsupervised detection models can

be trained. MeltdownDetector, on the other hand, requires no training at all.575

8. Concluding Remarks

In this paper, we have presented MeltdownDetector, which is a runtime

approach for detecting, isolating, and preventing ongoing Meltdown attacks that

operate by causing segmentation faults. The proposed approach does not need

any training and can be implemented in any operating system that handles580

segmentation faults. Furthermore, operational systems can even be patched

with MeltdownDetector at runtime without requiring any reboots, by using

dynamic kernel instrumentation frameworks, such as SystemTap [10] in Linux-

like operating systems.

We believe that this line of research is novel. One possible avenue for fu-585

ture research is to develop approaches for performing selective flushing of the

cache hierarchy (i.e., flushing only the cache lines that belong to the suspicious

processes), which can, in turn, further reduce the runtime overheads. Another

avenue is to develop similar approaches, which are possibly integrated with

hardware performance counters-based system traces [30, 31], to detect Melt-590

down attacks that leverage transactional memory instructions.

References

[1] Common vulnerabilities and exposures, https://cve.mitre.org, ac-

cessed: 2019-05-24.

27

https://cve.mitre.org


[2] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,595

S. Mangard, P. Kocher, D. Genkin, Y. Yarom, M. Hamburg, Meltdown:

Reading kernel memory from user space, USENIX Security Symposium

2 (5) (2018) 43–51.

[3] Y. Yarom, K. Falkner, Flush+reload: A high resolution, low noise, l3 cache

side-channel attack, in: 23rd USENIX Security Symposium (USENIX600

Security 14), USENIX Association, San Diego, CA, 2014, pp. 719–732.

URL https://www.usenix.org/conference/usenixsecurity14/

technical-sessions/presentation/yarom

[4] Meltdown and spectre: Vulnerabilities in modern computers leak passwords

and sensitive data, https://meltdownattack.com, accessed: 2019-05-10.605

[5] R. Bennett, C. Callahan, S. Jones, M. Levine, M. Miller, A. Ozment, How

to live in a post-meltdown and -spectre world, Queue 16 (4) (2018) 30:18–

30:30. doi:10.1145/3277539.3281471.

URL http://doi.acm.org/10.1145/3277539.3281471

[6] Kaiser: Hiding the kernel from user space, https://lwn.net/Articles/610

738975/, accessed: 2019-05-10.

[7] Z. Hua, D. Du, Y. Xia, H. Chen, B. Zang, EPTI: Efficient defence against

meltdown attack for unpatched vms, in: 2018 USENIX Annual Technical

Conference (USENIX ATC 18), USENIX Association, Boston, MA, 2018,

pp. 255–266.615

URL https://www.usenix.org/conference/atc18/presentation/hua

[8] The current spectre / meltdown mitigation overhead benchmarks on

linux 5.0., https://www.phoronix.com/scan.php?page=article&item=

linux50-spectre-meltdown&num=1, accessed: 2019-07-08.

[9] JEP 312: Thread-local handshakes., http://openjdk.java.net/jeps/620

312, accessed: 2019-07-08.

28

https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://meltdownattack.com
http://doi.acm.org/10.1145/3277539.3281471
http://doi.acm.org/10.1145/3277539.3281471
http://doi.acm.org/10.1145/3277539.3281471
http://dx.doi.org/10.1145/3277539.3281471
http://doi.acm.org/10.1145/3277539.3281471
https://lwn.net/Articles/738975/
https://lwn.net/Articles/738975/
https://lwn.net/Articles/738975/
https://www.usenix.org/conference/atc18/presentation/hua
https://www.usenix.org/conference/atc18/presentation/hua
https://www.usenix.org/conference/atc18/presentation/hua
https://www.usenix.org/conference/atc18/presentation/hua
https://www.phoronix.com/scan.php?page=article&item=linux50-spectre-meltdown&num=1
https://www.phoronix.com/scan.php?page=article&item=linux50-spectre-meltdown&num=1
https://www.phoronix.com/scan.php?page=article&item=linux50-spectre-meltdown&num=1
http://openjdk.java.net/jeps/312
http://openjdk.java.net/jeps/312
http://openjdk.java.net/jeps/312


[10] Systemtap, https://sourceware.org/systemtap, accessed: 2019-05-14.

[11] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,

S. Mangard, P. Kocher, D. Genkin, Y. Yarom, M. Hamburg, Meltdown

Proof-of-Concept (2018).625

URL https://github.com/IAIK/meltdown

[12] Phoronix test suite., http://www.phoronix-test-suite.com, accessed:

2019-06-21.

[13] Specjvm2008 benchmarking suite., https://www.spec.org/jvm2008, ac-

cessed: 2019-05-16.630

[14] P. C. Kocher, Timing attacks on implementations of Diffie-Hellman, RSA,

DSS, and other systems, in: N. Koblitz (Ed.), Advances in Cryptology –

CRYPTO’96, Vol. 1109 of Lecture Notes in Computer Science, Springer-

Verlag Berlin Heidelberg, 1996, pp. 104–113, http://www.cryptography.

com/public/pdf/TimingAttacks.pdf.635

[15] O. Acıiçmez, Ç. K. Koç, Trace-driven cache attacks on aes (short paper), in:

P. Ning, S. Qing, N. Li (Eds.), Information and Communications Security,

Vol. 4307 of Lecture Notes in Computer Science, Springer-Verlag Berlin

Heidelberg, 2006, pp. 112–121, full paper available at eprint.iacr.org/

2006/138/.640

[16] O. Aciicmez, C. K. Koc, J.-P. Seifert, On the power of simple branch predic-

tion analysis, in: Proceedings of the 2Nd ACM Symposium on Information,

Computer and Communications Security, ASIACCS ’07, ACM, New York,

NY, USA, 2007, pp. 312–320. doi:10.1145/1229285.1266999.

URL http://doi.acm.org/10.1145/1229285.1266999645

[17] O. Aciicmez, C. K. Koc, J.-P. Seifert, Predicting secret keys via branch

prediction, in: Proceedings of the 7th Cryptographers’ Track at the RSA

Conference on Topics in Cryptology, CT-RSA’07, Springer-Verlag, Berlin,

29

https://sourceware.org/systemtap
https://github.com/IAIK/meltdown
https://github.com/IAIK/meltdown
https://github.com/IAIK/meltdown
https://github.com/IAIK/meltdown
http://www.phoronix-test-suite.com
https://www.spec.org/jvm2008
http://www.cryptography.com/public/pdf/TimingAttacks.pdf
http://www.cryptography.com/public/pdf/TimingAttacks.pdf
http://www.cryptography.com/public/pdf/TimingAttacks.pdf
eprint.iacr.org/2006/138/
eprint.iacr.org/2006/138/
eprint.iacr.org/2006/138/
http://doi.acm.org/10.1145/1229285.1266999
http://doi.acm.org/10.1145/1229285.1266999
http://doi.acm.org/10.1145/1229285.1266999
http://dx.doi.org/10.1145/1229285.1266999
http://doi.acm.org/10.1145/1229285.1266999
http://dx.doi.org/10.1007/11967668_15
http://dx.doi.org/10.1007/11967668_15
http://dx.doi.org/10.1007/11967668_15


Heidelberg, 2006, pp. 225–242. doi:10.1007/11967668_15.

URL http://dx.doi.org/10.1007/11967668_15650

[18] Q. Ge, Y. Yarom, D. Cock, G. Heiser, A survey of microarchitectural

timing attacks and countermeasures on contemporary hardware, Jour-

nal of Cryptographic Engineering 8 (1) (2018) 1–27. doi:10.1007/

s13389-016-0141-6.

URL https://doi.org/10.1007/s13389-016-0141-6655

[19] D. J. Bernstein, Cache-timing attacks on aes (2005).

[20] N. Benger, J. Pol, N. P. Smart, Y. Yarom, ”ooh aah... just a little bit”:

A small amount of side channel can go a long way, in: Proceedings of the

16th International Workshop on Cryptographic Hardware and Embedded

Systems — CHES 2014 - Volume 8731, Springer-Verlag, Berlin, Heidelberg,660

2014, pp. 75–92. doi:10.1007/978-3-662-44709-3_5.

URL https://doi.org/10.1007/978-3-662-44709-3_5

[21] G. Irazoqui, M. S. Inci, T. Eisenbarth, B. Sunar, Wait a minute! a fast,

cross-vm attack on aes, in: A. Stavrou, H. Bos, G. Portokalidis (Eds.),

Research in Attacks, Intrusions and Defenses, Springer International Pub-665

lishing, Cham, 2014, pp. 299–319.

[22] Y. Yarom, N. Benger, Recovering openssl ecdsa nonces using the

flush+reload cache side-channel attack, IACR Cryptology ePrint Archive

2014 (2014) 140.

URL https://eprint.iacr.org/2014/140670

[23] G. Bertoni, V. Zaccaria, L. Breveglieri, M. Monchiero, G. Palermo, AES

power attack based on induced cache miss and countermeasure, in: Inter-

national Symposium on Information Technology: Coding and Computing

(ITCC 2005), Volume 1, 4-6 April 2005, Las Vegas, Nevada, USA, 2005,

pp. 586–591. doi:10.1109/ITCC.2005.62.675

URL http://dx.doi.org/10.1109/ITCC.2005.62

30

http://dx.doi.org/10.1007/11967668_15
http://dx.doi.org/10.1007/11967668_15
https://doi.org/10.1007/s13389-016-0141-6
https://doi.org/10.1007/s13389-016-0141-6
https://doi.org/10.1007/s13389-016-0141-6
http://dx.doi.org/10.1007/s13389-016-0141-6
http://dx.doi.org/10.1007/s13389-016-0141-6
http://dx.doi.org/10.1007/s13389-016-0141-6
https://doi.org/10.1007/s13389-016-0141-6
https://doi.org/10.1007/978-3-662-44709-3_5
https://doi.org/10.1007/978-3-662-44709-3_5
https://doi.org/10.1007/978-3-662-44709-3_5
http://dx.doi.org/10.1007/978-3-662-44709-3_5
https://doi.org/10.1007/978-3-662-44709-3_5
https://eprint.iacr.org/2014/140
https://eprint.iacr.org/2014/140
https://eprint.iacr.org/2014/140
https://eprint.iacr.org/2014/140
http://dx.doi.org/10.1109/ITCC.2005.62
http://dx.doi.org/10.1109/ITCC.2005.62
http://dx.doi.org/10.1109/ITCC.2005.62
http://dx.doi.org/10.1109/ITCC.2005.62
http://dx.doi.org/10.1109/ITCC.2005.62


[24] M. Neve, J.-P. Seifert, Z. Wang, A refined look at bernstein’s aes side-

channel analysis, in: ASIACCS, 2006, p. 369.

[25] C. Rebeiro, M. Mondal, D. Mukhopadhyay, Pinpointing cache timing at-

tacks on AES, in: VLSI Design, 2010, pp. 306–311.680

[26] E. Tromer, D. A. Osvik, A. Shamir, Efficient cache attacks on aes,

and countermeasures, J. Cryptology 23 (1) (2010) 37–71. doi:10.1007/

s00145-009-9049-y.

URL http://dx.doi.org/10.1007/s00145-009-9049-y

[27] C. Percival, Cache missing for fun and profit, in: Proc. of BSDCan 2005,685

2005.

[28] J. Blömer, V. Krummel, Analysis of countermeasures against access driven

cache attacks on AES, in: Selected Areas in Cryptography, 2007, pp. 96–

109.

[29] O. Aciiçmez, W. Schindler, A vulnerability in RSA implementations due to690

instruction cache analysis and its demonstration on OpenSSL, in: CT-RSA,

2008, pp. 256–273.

[30] Y. Kulah, B. Dincer, C. Yilmaz, E. Savas, Spydetector: An approach for

detecting side-channel attacks at runtime, International Journal of Infor-

mation Securitydoi:10.1007/s10207-018-0411-7.695

URL https://doi.org/10.1007/s10207-018-0411-7

[31] M. Chiappetta, E. Savas, C. Yilmaz, Real time detection of cache-based

side-channel attacks using hardware performance counters, Appl. Soft Com-

put. 49 (C) (2016) 1162–1174. doi:10.1016/j.asoc.2016.09.014.

URL https://doi.org/10.1016/j.asoc.2016.09.014700

[32] M. Payer, Hexpads: A platform to detect “stealth” attacks, in: J. Ca-

ballero, E. Bodden, E. Athanasopoulos (Eds.), Engineering Secure Software

and Systems, Springer International Publishing, Cham, 2016, pp. 138–154.

31

http://dx.doi.org/10.1007/s00145-009-9049-y
http://dx.doi.org/10.1007/s00145-009-9049-y
http://dx.doi.org/10.1007/s00145-009-9049-y
http://dx.doi.org/10.1007/s00145-009-9049-y
http://dx.doi.org/10.1007/s00145-009-9049-y
http://dx.doi.org/10.1007/s00145-009-9049-y
http://dx.doi.org/10.1007/s00145-009-9049-y
https://doi.org/10.1007/s10207-018-0411-7
https://doi.org/10.1007/s10207-018-0411-7
https://doi.org/10.1007/s10207-018-0411-7
http://dx.doi.org/10.1007/s10207-018-0411-7
https://doi.org/10.1007/s10207-018-0411-7
https://doi.org/10.1016/j.asoc.2016.09.014
https://doi.org/10.1016/j.asoc.2016.09.014
https://doi.org/10.1016/j.asoc.2016.09.014
http://dx.doi.org/10.1016/j.asoc.2016.09.014
https://doi.org/10.1016/j.asoc.2016.09.014


[33] T. Zhang, Y. Zhang, R. B. Lee, Cloudradar: a real-time side-channel de-

tection system in clouds, in: Intrusions and Defenses (RAID), 2016.705

[34] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, M. Costa,

Strong and efficient cache side-channel protection using hardware transac-

tional memory, in: 26th USENIX Security Symposium (USENIX Security

17), USENIX Association, Vancouver, BC, 2017, pp. 217–233.

URL https://www.usenix.org/conference/usenixsecurity17/710

technical-sessions/presentation/gruss

[35] S. Briongos, G. Irazoqui, P. Malagón, T. Eisenbarth, Cacheshield: De-

tecting cache attacks through self-observation, in: Proceedings of the

Eighth ACM Conference on Data and Application Security and Privacy,

CODASPY ’18, ACM, New York, NY, USA, 2018, pp. 224–235. doi:715

10.1145/3176258.3176320.

URL http://doi.acm.org/10.1145/3176258.3176320

32

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/gruss
http://doi.acm.org/10.1145/3176258.3176320
http://doi.acm.org/10.1145/3176258.3176320
http://doi.acm.org/10.1145/3176258.3176320
http://dx.doi.org/10.1145/3176258.3176320
http://dx.doi.org/10.1145/3176258.3176320
http://dx.doi.org/10.1145/3176258.3176320
http://doi.acm.org/10.1145/3176258.3176320

	Introduction
	Meltdown Attack
	Attacker Model
	Meltdown Detector
	Approach
	Implementation

	Experiments
	Experimental Design
	Evaluation Framework
	Data and Analysis
	Discussion

	Threats to Validity
	Related Work
	Concluding Remarks

