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Abstract. Distinguishers on round-reduced AES have attracted considerable atten-
tion in the recent years. Although the number of rounds covered in key-recovery
attacks has not been increased since, subspace, yoyo, and multiple-of-n cryptanaly-
sis advanced the understanding of properties of the cipher.
Expectation cryptanalysis is an umbrella term for all forms of statistical analysis that
try to identify properties whose expectation differs from that of an ideal primitive.
For substitution-permutation networks, integral attacks seem a suitable target for
extension since they usually end after a linear layer sums several subcomponents.
Based on results by Patarin, Chen et al. already observed that the expected number
of collisions differs slightly for a sum of permutations from the ideal. Though, their
target remained lightweight primitives.
The present work applies expectation-based distinguishers from a sum of PRPs to
round-reduced AES. We show how to extend the well-known 3-round integral distin-
guisher to expectation distinguishers over 4 and 5 rounds. In contrast to previous
expectation distinguishers by Grassi et al., our approach allows to prepend a round
that starts from a diagonal subspace. We demonstrate how the prepended round
can be used for key recovery. Moreover, we show how the prepended round can be
integrated to form a six-round distinguisher. For all distinguishers, our results are
supported by their implementations with Cid et al.’s established Small-AES version.
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1 Introduction

During the previous two decades, the Advanced Encryption Standard (AES) [Nat01] has
withstood vast amounts of cryptanalysis. Besides the biclique-based accelerated exhaus-
tive search by Bogdanov et al. [BKR11]1, the best known attacks in the secret-key model
cover seven rounds of the AES-128, as had been the state close after its announcement
[FKL+00]. However, the community’s efforts led to attacks with considerably reduced re-
sources. Among the best attacks in number of rounds [MDRM10, FKL+00], the Demirci-
Selçuk-based meet-in-the-middle attacks by Derbez et al. possess the lowest time and
data complexities for more than half a decade [DFJ13].

1Instead of exploiting dedicated properties of a given cipher, biclique-based attacks represent rather a
general approach to speed up brute force since their outer loop iterates over all possible keys, cf. [DDKS13].



1.1 Distinguishers on Round-reduced AES

Although the number of rounds covered in key-recovery attacks did not increase since, the
recent years were filled with research on the AES that significantly raised the understand-
ing of the cipher’s components. This direction appears promising – metaphorically, it is
comparable to heuristics that sometimes also have to leave a local optimum to improve
upon existing results in the long run. Until a few years ago, the best key-independent
distinguishers on the AES had covered at most four rounds. Those distinguishers, be
they differential, impossible differential, zero-correlation, or integrals, serve as base for
the construction of longer key-recovery attacks. It is well-known [SLR+15] that there
exists a dual relationship between the existence of impossible-differential, zero-correlation,
and integral distinguishers. This means, the existence of an impossible differential on a
cipher E implies the existence of affine layers A1 and A2 such that there is an integral and
a zero-correlation distinguisher on A2 ◦ E ◦ A1. Thus, results on one kind of distinguisher
are also applicable to others.

Negative Results paved a rocky start for the search for new distinguishers. Sun et al.
[SLG+16b] proved the absence of impossible differentials over more than four rounds for
the AES structure, which was tantamount with the absence of integrals or zero-correlation
attacks over more than four rounds. Interestingly, [SLG+16b] targeted a generalized
structure instead of a concrete cipher; since it ignored the details of the AES S-box and
its key schedule, there remained a spark of hope for longer distinguishers of those kinds.
The work by Wang and Jin [WJ18] extinguished this spark. Under the Markov-cipher
assumption, they showed the absence of any truncated impossible differentials over more
than four-round of the AES even if the details of the S-box are taken into account. For the
AES-256 in particular, they showed the absence even if the key schedule is also considered.

Key-dependent Distinguishers. Despite the negative results, an active series of works
has been focusing on novel properties for distinguishers on less rounds than the best
known attacks. First, a number of key-dependent distinguishers were crafted, e.g., the
chosen-ciphertext zero-correlation hull on five rounds by Sun et al. [SLG+16a] exploited
a known difference in two key bytes to produce a five-round distinguisher. While their
distinguisher required the full codebook when converted to the single-key model, it re-
ignited the community’s efforts on analyzing round-reduced AES.
Subsequent works improved on their result and proposed further key-dependent distin-
guishers. In [GRR16], Grassi et al. reconsidered the distinguisher by Sun et al. and
derived key-dependent chosen-plaintext distinguisher with lower complexity. Their more
relevant contribution was their formalism: Differential, linear, and integral distinguishers
already implicitly exploited that texts or tuples thereof had a larger probability to lie in
cosets of certain subspaces, which were more than often enough formulated in a compli-
cated manner. Grassi et al. unified them in their notion of subspace trails. In particular
for the AES, subspace trails allow to describe diagonal, column, inverse-diagonal, and
mixed (results of MixColumns) subspaces quite elegantly.
Grassi proposed further key-dependent distinguishers in [Gra18a]; starting from the dis-
tinguisher by Sun et al., Hu et al. [HCGW18] improved the complexity and transformed
it into a chosen-plaintext attack, and derived impossible-differential attacks from it. Cui
et al. [CCM+18] later reduced the complexity. Those considered attacks on the AES with
a secret S-box [TKKL15]. Among those attacks, the yoyo distinguisher on five rounds by
Bardeh and Rønjom [BR19] possesses the lowest complexity, with less than 230 chosen
plaintexts and 232 adaptively chosen ciphertexts.

Key-independent Distinguishers. Besides the key-dependent results, several powerful
key-independent distinguishers have been proposed recently. In a series of works [GRR16,
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GRR17, GR18, Gra18b], Grassi et al. proposed several novel observations and distin-
guishers on five-round AES. At their core, [GRR17] proposed a strong property dubbed
multiple-of-n: starting from a structure of a diagonal space, the number of different ci-
phertext pairs that belonged to the same coset of a mixed space was always a multiple of
eight after five rounds.
Boura et al. [BCC19] revisited the multiple-of-n property and derived similar distinguish-
ers for further AES-like primitives. They traced the property back to a combination of
(1) an equivalence relation between the differences after one round that holds for n pairs
at a time, and (2) probability-one subspace trails that wrap the relation. Moreover, they
showed that the property is independent from the details of the MixColumns matrix.

Mixture-differential Distinguishers. In [Gra18b], Grassi considered mixture-differential
differentials. At their core, they exploited the following property: let (P, P ′) denote a
pair of plaintexts that differ in two bytes (x, y) and (x′, y′) in the same column, and
whose corresponding ciphertexts (C, C′) have a difference in a certain (mixed) subspace
after four rounds. Then, the difference of the ciphertext pair (C′′, C′′′) that corresponds
to the plaintexts (P ′′, P ′′′) with byte values (x, y′) and (x′, y) (i.e., which “mixes” the
original pair of plaintexts), respectively, will also lie in a coset of the same subspace. This
pair of plaintext-ciphertext pairs is called a couple. In [Gra18b], Grassi proposed this
and its generic variant (whose plaintexts differ in four bytes in one column) as efficient
four-round distinguishers and a five-round key-recovery attack. Soon upon, Bar-On et al.
[BODK+18] improved the key-recovery to the attack on five-round AES with the lowest
data and time complexity known so far.
In [Gra17], the corresponding full version [Gra18b], Grassi further proposed probabilistic,
threshold, as well as impossible mixture-differential distinguishers. The former distin-
guisher exploited a tiny difference between two expectations: the expected number of sets
with at least one couple whose both ciphertexts belong to the same coset of a subspace is a
little lower for five-round AES than for a random permutation. Grassi’s threshold distin-
guisher exploited different expectations between sets of couples. Each set was formed by
couples whose both plaintexts mixed the byte values in two diagonals, and differed only
in those two diagonals. This distinguisher exploited a complex fact: Grassi counted the
expected number of sets whose number of couples where both ciphertexts belong to the
same coset of a subspace is higher than a threshold. This number is higher for five-round
AES than it is for a random permutation. Finally, he considered an impossible mixture-
differential distinguisher. This attack exploited that it is impossible for five-round AES,
for specifically defined sets, they all have at least one couple whose both ciphertexts be-
long to the same coset of subspace (i.e., for five-round AES, at least one set does not have
the corresponding property). Again, this attack considered sets formed by couples whose
plaintexts mixed the byte values of the first two diagonals.

The Best Previously Published Distinguishers. To the best of our knowledge, the best
previously published distinguishers on round-reduced AES-128 in terms of minimal com-
plexity up to now are the yoyo-based proposals by Rønjom et al. [RBH17]. They proposed
a five-round distinguisher with minimal time complexity among the known results, and a
result on six rounds, at the cost of 2122.3 time and data requirements. Recently, Bardeh
and Rønjom et al. proposed a similar key-independent attack, also in [BR19]. Those
share the need of adaptive chosen ciphertexts. Table 1 provides a summary of existing
distinguishers on five or more rounds of AES-128; note that many results hold for diverse
versions of the AES; the focus of this work resides on the 128-bit variant.
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Table 1: Existing secret-key distinguishers on 5+ rounds of the AES-128, ordered by rounds
(descending) then time (ascending). MAs = memory accesses; CP = chosen plaintexts; (A)CC
= (adaptive) chosen ciphertexts; MD = mixture differential; TD = truncated differential.

Attack Type Time Data Ref.

5 Rounds

Integral 2128 XORs 2128 CC [SLG+16a]

Impossible Differential 2107 MAs 298.2 CP [GRR16]

Threshold MD 298.1 MAs 289 CP [Gra17]

Impossible MD 297.8 MAs 282 CP [Gra17]

Probabilistic MD 271.5 MAs 252 CP [Gra17]

Expectation of TD 270.2 MAs 265 CP Sect. 4.2

Expectation of TD 251 MAs 247.4 CP [GR18]

Variance of TD 241.6 MAs 238 CP [GR18]

Multiple-of-8 235.6 MAs 232 CP [GRR17]

Yoyo 226.2 XORs 227.2 ACC [BR19]

Yoyo 225.8 XORs 226.8 ACC [RBH17]

6 Rounds

Impossible Yoyo 2121.83 XORs 2122.83 ACC [RBH17]

Expectation of TD 296.52 MAs 289.43 CP Sect. 6

1.2 From Integral To Expectation Distinguishers

Integral Distinguishers map multi-sets of inputs that iterate over all values to multi-sets
of outputs that are balanced. Traditionally, the properties of bits or bytes are — in order
of their strength — either constant (C), iterate over all values (A), are balanced (B), or
unknown (U). A traditional integral distinguisher usually ends directly before all parts of
the state become unknown. For the AES, the three-round integral distinguisher [DKR97]
that maps sets of a single active byte to a set of states where each byte is balanced after
three rounds is well-understood, and so is the extension to a distinguisher on four rounds
[DKR97, FKL+00] that prepends a round and starts from an active diagonal.

Probabilistic Integrals. Wang et al. [WCC+16] proposed so-called statistical integrals.
Assuming that integral structures map structures of 2s inputs that iterate over all values
to b pairwise disjoint sets of t output bits each that are uniformly distributed. Statistical
integrals exploit that the results are hypergeometrically distributed in contrast to a close-
to-normally distribution in random permutations. Therefore, they do not reconstruct
the full integral of 2s texts, but can reduce the data requirements to 2(s−t)/2. Cui et al.
[CSCW17, CCM+18] transferred the approach to the AES and exploited multiple integral
structures. If Ns structures are necessary, their approach reduced the data complexity
further to O(

√
Ns/n · 2(s−t)/2), where n is the state size. Though, this approach does

not directly aim at extending distinguishers, but represents a data-reduction technique
instead. Moreover, the attacks by Cui et al. were in the secret-s-box setting. For Skipjack
[WCC+16], it nevertheless allowed to extend previous attacks by reducing the number of
texts to trace through the cipher.

Expectation and Standard-deviation Cryptanalysis aim to distinguish distributions
from the means and standard deviations of certain properties. In [Pat08, Pat13], Patarin
studied the number of pairwise collisions for the sums of multiple permutations in compar-
ison with those from random functions. Follow-up works by Nachef, Marrière or Patarin,
and Volte [NMV16, NPV18, NPV14, VNM16a, VNM16b] also employed the standard de-
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viation as distinguishing property. Though, their focus resided mainly on Feistel networks.

Extending Integrals To Expectation Distinguishers. The core observation at the begin-
ning of this work was that an integral distinguisher usually ends with a linear operation.
In many SPNs, the linear layer often consists of a sum of multiple words. At the end of an
integral, such a sum is equivalent to the sum of values that iterate over all values in the
subspace—hence, a sum of permutations. The sum still has a Balanced (i.e., zero-sum)
property, which is usually destroyed by the subsequent non-linear layer. As illustrated in
Patarin’s works, the number of collisions induced by a sum of permutations differs slightly
from that of an ideal function. The collisions due to the linear sum will be preserved by
the subsequent non-linear S-box operation. Therefore, an integral distinguisher can be
extended through the subsequent non-linear operation.
We point out that Chen et al. [CMSZ15] had already considered this approach of Patarin’s
analysis [Pat08, Pat13] for extending integrals of SPNs. Chen et al. considered Type-II
and Nyberg-type Feistel networks and conducted experiments on lightweight ciphers for
which they could confirm that this strategy can lead to extended attacks. This work,
however, focuses on the AES.

Previous Expectation Distinguishers on the AES. In [GR18], Grassi and Rechberger
also considered truncated differentials and exploited smaller statistical differences. The
core results are five-round distinguishers that exploit the following property of the AES:
A structure of 232 plaintexts that differ only in a single diagonal leads to a mixed space
after two rounds with probability one; this trail can be used twice and connected with a
probabilistic trail over the middle. Grassi and Rechberger observed that the expectation
of this probabilistic event is slightly higher for five-round AES than for a random permu-
tation. Furthermore, they show how to exploit the considerably different variances. Their
results are similar to what we aim to in this work. Though, we start and view from a
different path (from integrals), whereas their work did not depend on Patarin’s result. In
contrast, the expectation distinguishers in [Gra17] considered the expectation of couples,
whereas we will consider pairs.

Contribution. This work tries to extend the known integral distinguisher to expectation
distinguishers. As a result, it describes a five-round distinguisher from a single byte to
a mixed space. Since inputs start from single-byte differences, plaintext structures can
form less pairs than in e.g., the structures from diagonals as in [GR18]. As a consequence,
the data and computational complexity of the five-round distinguisher here is higher
than the probabilistic distinguishers in [GR18]. However, our proposal allows a straight-
forward extension to a six-round key-recovery attack by prepending a round. We report
on the results of a practical implementation of the five-round distinguisher and the six-
round key-recovery attacks with a small-scale variant of the AES. Finally, we propose a
possible extension to a six-round expectation distinguisher and report on our results of
its implementation for the small variant. 2

Outline. The remainder is structured as follows. Next, Section 2 will revisit the nec-
essary preliminaries, as well as the known results from Patarin on sums of independent
permutations and subspaces of the AES by Grassi et al. [GRR16]. Thereupon, Section 4
will develop our five-round distinguisher and report on a verification. Section 5 describes
a key-recovery attack on six rounds. Section 6 derives a six-round distinguisher and again
reports on a verification.

2Our implementations can be found freely available at
https://github.com/medsec/expectation-cryptanalysis-on-round-reduced-aes.
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Table 2: Expected numbers of collisions after q queries for the sums of k permutations and
distinguishing complexity for q ≃ 2n from [Pat08].

k 2 3 4

E [Nk]
g(q

2)
2n

(
1 + 1

2n
−1

) g(q
2)

2n

(
1 −

1
(2n

−1)2

)
g(q

2)
2n

(
1 + 1

(2n
−1)3

)

Complexity O(22n) O(24n) O(26n)

2 Preliminaries

General Notations. We denote by F2 the finite field of characteristic two. We represent
functions and variables by upper case letters and indices by lowercase letters, sets by
calligraphic letters. We employ typewriter font for hexadecimal values. Let X, Y ∈ F

n
2

for some positive integer n in the following. Then, we denote by X ‖ Y the concatenation
of X and Y , by X ⊕ Y their bitwise XOR. For all X ∈ F

n
2 , we index the bits X =

(Xn−1 . . . X1X0) where Xn−1 is the most significant and X0 the least significant bit of X .
For integers x ≥ y, we write Xx..y as short form of (XxXx−1 . . . Xy).
We denote by E [X ] the expectation of a random variable X and by σX its standard
deviation. We denote by µ and σ2 the mean and the variance of a distribution.
We use the binomial distribution B(n, p), which yields the number of successes in the a se-
quence of n independent Boolean experiments, each of which is successful with probability
p. The values µ and variance σ2 are given by µ = n · p and σ2 = n · p · (1− p).
We approximate the binomial distribution with a normal distribution and can consider the
difference again as a normal distribution. Let X1 ∼ N (µ1, σ2

1) follow a normal distribution
with mean µ1 and variance σ2

1 , let X2 ∼ N (µ2, σ2
2). Then, X1−X2 ∼ N (µ1−µ2, σ2

1 +σ2
2).

Functions and Permutations. For sets X and Y, we write Func(X ,Y) =def {F |F : X →
Y} as the set of all functions with domain X and range Y. Let further Perm(X ) be
the set of all permutations over X . We define as short forms Funcn =def Func(Fn

2 ,Fn
2 )

and Permn define the set of permutations over F
n
2 . Clearly, it holds that |Funcn| =

(2n)2n

and |Permn| = (2n)!. We call π an ideal permutation (over F
n
2 ) if π և Permn,

i.e., if it is sampled uniformly at random from Permn. Similarly, we call ρ an ideal
function (over F

n
2 ) if ρ և Funcn. For integers m ≤ n and arbitrary X ∈ F

n
2 , we define

truncm(X) =def msbm(X) =def X(n−1)..(n−1−m) to truncate the input x and return only
the most-significant (i.e., leftmost) m bits of x.

2.1 Distinguishers for Sums of Permutations

In the following, we recall briefly the results by [Pat08]. Given a function set F , we define
by Gen(F) a function generator that gives access to multiple pairwise independent in-
stances from F . Let π1, . . . , πk և Permn be independent ideal random permutations, and
let ρ և Funcn. We define a k-sum of permutations as Σk[π1, . . . , πk](x) =def

⊕k
i=1 πi(x)

and write Σk as short form.
The goal of a k-sum-distinguisher A is to distinguish ρ from Σk: we write ∆A(Σk; ρ) for
its advantage. W.l.o.g., we assume that A is deterministic, information-theoretic, and
does not ask queries to which it already knows the answer. The advantages considered
here may be irrelevant if A has access to only a single instance of ρ or Σk since it usually
exceeds the codebook. Instead, Patarin considered already multiple such independent
functions in the generator Gen(F). We denote by g the number of available functions
from the generator, and by q the number of queries xi that A can ask to each of the
functions. The queries by A are collected together with the responses of the oracle in a
transcript τ = {(xj

i , yj
i )}1≤i≤q,1≤j≤g .
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Let N be a random variable for the number of collisions between outputs yi, i.e., N =
|{i, j ∈ [q] : i 6= j ∧ yi = yj}|. In general, for functions F , we define random variables NF

for the number of collisions of F after q queries. So, let Nρ be the number of collisions for
ρ. Since all responses yi are sampled independently uniformly at random, it holds that
[Pat08]

E [Nρ] =
g
(

q
2

)

2n
and σ(Nρ) = O

(√
gq√
2n

)
.

Let Nk denote a random variable for the number of collisions of Σk (Nk is a short form
of NΣk

). Scenario 2 in [Pat08] gives

E [Nk] =
g
(

q
2

)

2n
·
(

1 +
(−1)k

(2n − 1)k−1

)
and σ(Nk) = O

(√
gq√
2n

)
.

Patarin argues with the Tchebichev theorem Pr [|X − µ|] ≥ cσ] ≤ 1/c2, that the distin-
guishing advantage between the collision distributions of two functions F and G becomes
non-negligible if

σ(NF )≪ |E [NF ]− E [NG]| and σ(NG)≪ |E [NF ]− E [NG]| ,

hold. For example, the sum of k = 2 permutations has

E [N2] =
g
(

q
2

)

2n

(
1 +

1

2n − 1

)
.

Thus, if

√
gq√
2n
≪ g

(
q
2

)

2 · 22n
,

both distributions can be distinguished with non-negligible advantage. So, for q ≃ 2n, the
adversary can distinguish both settings in g ≥ 2n, i.e., the adversary needs O(22n) queries.
For k permutations, Patarin showed that the advantage is non-negligible when

√
gq√
2n
≪ gq2

2kn
.

For q ≃ 2n, this yields that g ≥ 2(2k−3)n functions are necessary. Table 2 illustrates the
expected number of collisions and distinguishing efforts for k ∈ {2, 3, 4}.

2.2 The AES-128 and Subspaces

Brief Definition of The AES-128. We assume, the reader is familiar with the details
of the AES and provide only a very brief summary here. Details can be found in, e.g.,
[DR02, Nat01]. The AES-128 is a substitution-permutation network that transforms 128-
bit inputs through ten rounds, consisting of SubBytes (SB), ShiftRows (SR), MixColumns

(MC), and a round-key addition with a round key Ki. Before the first round, a whitening
key K0 is XORed to the state; the final round omits the MixColumns operation. We write
Si for the state after Round i, and Si[j] for the j-th byte, for 0 ≤ i ≤ 10 and 0 ≤ j ≤ 15.
Though, we will interchangeably also use the indices for a 4× 4-byte matrix, i.e., 0, 0 for
Byte 0, and 3, 3 for Byte 15. So, the byte ordering is given by either




0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15


 or




0, 0 0, 1 0, 2 0, 3

1, 0 1, 1 1, 2 1, 3

2, 0 2, 1 2, 2 2, 3

3, 0 3, 1 3, 2 3, 3


 .
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Table 3: The 4-bit S-box of small-scale AES from [CMR05].

X 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(X) 6 B 5 4 2 E 7 A 9 D F C 3 1 0 8

When using two-dimensional indices, we will assume that all indices are taken modulo
four, which will make our life easier in sums. R[Ki] =def AK[Ki] ◦MC ◦ SR ◦ SB denotes
one application of the round function and denote by Sr,SB, Sr,SR, and Sr,MC the states
in the r-th round directly after the application of SubBytes, ShiftRows, and MixColumns,
respectively. Moreover, we will use M to denote the MixColumns matrix.

Subspaces of The AES. We adopt the notation of subspaces for the AES from Grassi
et al. [GRR16]. LetW denote a vector space and V ⊆ W be a subspace. If a is an element
of W , then a coset V ⊕ a of V in W is a subset V ⊕ a = {v ⊕ a|∀v ∈ V}. We consider
vectors and vector spaces over F

4×4
28 , and denote by {e0,0, . . . , e3,3} the unit vectors of

F
4×4
28 , i.e., ei,j has a single 1 in the i-th row and j-th column. For a vector space V and a

function F : F4×4
28 → F

4×4
28 , we let F (V) =def {F (v)|v ∈ V}. For a subset I ⊆ {1, 2, . . . , n}

and a subset of vector spaces {V1,V2, . . . ,Vn}, we define VI =def
⊕

i∈I Vi. We adopt the
definitions by Grassi et al. of four families of subspaces for the AES for each i ∈ {0, 1, 2, 3}:

• the column spaces Ci = 〈e0,i, e1,i, e2,i, e3,i〉,

• the diagonal spaces Di = SR−1(Ci),

• the inverse-diagonal spaces IDi = SR(Ci), and

• the mixed spaces Mi = MC(IDi).

For I ⊆ {0, 1, 2, 3}, the spaces CI , DI , IDI , and MI are defined as

CI
def
=
⊕

i∈I

Ci , DI
def
=
⊕

i∈I

Di , IDI
def
=
⊕

i∈I

IDi , and MI
def
=
⊕

i∈I

Mi .

Small-AES. Cid et al. [CMR05] proposed small-scale variants of the AES to help crypt-
analysts study attacks whose complexity were impractical on the full-fledged cipher. We
employ the four-bit variant with a 4× 4-nibble matrix in the following.
Small-AES differs from the AES only in the following aspects:

• It operates on a 16-nibble state of 64 bits, i.e., states and keys are elements of F4×4
24 .

• The S-box operates on nibbles; it is given in Table 3 for completeness.

• The MixColumns multiplications operate in F24 modulo p(x) = x
4 +x+1. The values

in the MixColumns matrix are equal to those of M in the original AES.

• The round constants to derive the round key Ki are x
i−1 in F24 /p(x).

3 Integral Properties

Three-round Integral Distinguisher. We briefly recap the well-known three-round inte-
gral distinguisher for the AES [DKR97]. Let I, I ′,J ,J ′ ⊆ {0, 1, 2, 3}. Let X i denote the
i-th element in S and define Sr,i = Rr(X i) denote the encryption of X i through r consecu-
tive rounds of AES. Let r, c ∈ {0, 1, 2, 3}. We denote by S = a⊕

(
D{r} ∩ C{c}

)
a δ-set, that
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is a set of 28 texts that iterate over all values xc−r mod 4,c (the byte at Row (c− r) mod 4
and Column c is indicated as A) and are constant at all other bytes (C). Then, the texts
in S iterate over all 28 values in each byte of S2 after two rounds of AES.




A C C C

C C C C

C C C C

C C C C


 R2

−−→




A A A A

A A A A

A A A A

A A A A


 SR◦SB

−−−−→




A A A A

A A A A

A A A A

A A A A


 MC

−−→




B B B B

B B B B

B B B B

B B B B


 .

This property is preserved through SubBytes and ShiftRows, but is not guaranteed by the
MixColumns operation at the end of Round 3. Since MixColumns is linear, it preserves

balanced input sets, i.e., the sum of all 28 states
⊕28

i=1 S3,i = 0. This is indicated by B.
The subsequent SubBytes operation in Round 4 destroys this Balanced property.

Three-round Integral Distinguisher. Though, there exists a well-known further prop-
erty.

Property 1. For all i, j ∈ {1, . . . , 28}, i 6= j, there is no all-zero column in S3,i ⊕ S3,j .
Hence, there is no all-zero anti-diagonal in the difference SR(SB(S3,i)) ⊕ SR(SB(S3,j)).
Let I ⊂ {0, 1, 2, 3} with |I| < 4. Then, Di ∩ Cj for any i, j ∈ {0, 1, 2, 3} maps to Mj−1

after two rounds with probability one, and cannot map to MI after two further rounds:

Di ∩ Cj
R2

−−→Mj−i 6 R
2

−−→MI .

Four-round Integral Distinguisher. The integral distinguisher is well-known to be ex-
tendable to four rounds [DKR97]. Let DI for |I| = 1 be a diagonal space. Then, the texts
in DI iterate over all 232 values in each column of S3 after three rounds of AES.




A C C C

C A C C

C C A C

C C C A


 R3

−−→




A A A A

A A A A

A A A A

A A A A


 SR◦SB

−−−−→




A A A A

A A A A

A A A A

A A A A


 MC

−−→




B B B B

B B B B

B B B B

B B B B


 .

This property is preserved through SubBytes and ShiftRows, but is not guaranteed by the
MixColumns operation at the end of Round 3. Since MixColumns is linear, it preserves the

Balanced property, i.e., the sum of all 232 states
⊕232

i=1 S4,i = 0. The subsequent SubBytes

operation in Round 5 destroys the Balanced property.

4 Distinguishers

4.1 Four-round Expectation Distinguisher

We can extend the deterministic three-round integral distinguisher to a probabilistic four-
round expectation distinguisher in the following. Prior, we articulate an easy observation:
Let I ⊆ {0, 1, 2, 3}. If there exists an all-zero anti-diagonal IDI in the difference of two
texts after r rounds without the final MixColumns operation, then CI after r − 1 rounds
must have been an all-zero column, and DI after r− 2 rounds must have been an all-zero
diagonal:

Pr

[
IDI

SR
−1◦SB

−1◦AK
−1

−−−−−−−−−−−→ CI
R−1

−−−→ DI

]
= 1.

Let Rr
i,j : F4×4

28 → F28 denote the mapping of a 16-byte state through r consecutive rounds

of AES and output only the Byte at Index (i, j). Let R̃r
i,j denote the similar mapping

9



through almost r rounds, without the final key addition. Moreover, let R̂r
i,j denote the

similar mapping through almost r rounds, without the final key addition and MixColumns

operation. We use the matrix indexing analogously as before.

Theorem 1. Then, for an input Xr ∈ F
4×4
28 , we can rewrite R̂3

i,j(Xr) as

R̂3
i,j(Xr)

def
= πi,j(R̃2

i,j(Xr)),

where the πi,j =def SR ◦ SB ◦ AK[Kr+2
i,j ] and πi,j ∈ Perm(F28 ) are independent, for all

{i, j} ∈ {0, 1, 2, 3}, and R̃2
i,j preserves the ALL property.

Proof. The proof is very brief. Let SBox denote the AES S-box and M the MixColumns

matrix. After one round, each byte is the sum of four transformed input bytes:

Xr+1
i,j = Kr+1

i,j ⊕
3⊕

k=0

(
Mi,k · SBox

(
Xr

j+k,k

))
.

After two rounds, each byte is the sum of all transformed input bytes:

Xr+2
i,j = Kr+2

i,j ⊕
3⊕

k=0

(
Mi,k · SBox

(
Xr+1

j+k,k

))

= Kr+2
i,j ⊕

3⊕

k=0

(
Mi,k · SBox

(
Kr+1

j+k,k ⊕
3⊕

ℓ=0

(
Mj+k,ℓ · SBox

(
Xr

k+ℓ,ℓ

))
))

.

So, each input byte index (i, j) occurs exactly once in the equation for each output byte
index (i′, j′). For a δ-set wherein one input byte Xr

i,j iterates over all values, this means

that R2 without the final key addition yields the state where each byte iterates over all
values. Under the (simplifying) assumption that the round keys are independent and uni-
formly random, the remaining operations πi,j =def SR◦SB◦AK[Kr+2

i,j ] form an independent

permutation each, preserving the ALL property for all output bytes of R̂3.

For a δ-set, all bytes iterate over all values after R̂3. So, for each column, the MixColumns

operation in Round 3 can be viewed as the sum of the results of four independent per-
mutations where the inputs iterate over all values. Hence, we approximate the expected
probability that a fixed byte of interest S3,i

r,c = S3,j
r,c collides after MixColumns by E [N4]:

Pr
AES

[
S3,i

r,c = S3,j
r,c

]
≃ 1

28
+

1

28(28 − 1)3
≃ 2−8 + 2−31.983.

For a random permutation, the probability can be approximated by

Pr
rand

[
S3,i

r,c = S3,j
r,c

]
=

2120 − 1

2128 − 1
≃ 2−8.

The difference between those two probabilities thus can be exploited to build an expec-
tation distinguisher on four-round AES, because S3,i

r,c = S3,j
r,c directly implies a collision

between the corresponding bytes in S4,SB, which can be computed from the ciphertext by
inverting the final ShiftRows operation. The final round-key addition can be converted
into an addition of an equivalent key, such that it does not influence detecting the collision.

Statistical Framework. The results by Patarin yield a good intuition for the number
of necessary queries of distinguishers. To obtain more precise success probabilities, we
further consider the updated framework from [Gra18b], which is close to that used by

10



Chen et al. [CMSZ15]. We consider two distributions, where we approximate that their
difference is normally distributed with N (µ, σ2), with

µ = n · |pAES − prand| and σ2 = n · (prand · (1− prand) + pAES · (1 − pAES)) .

Since the probability density of the normal distribution is

F
(
x|µ, σ2

) def
= e−

(x−µ)2

2σ2 · 1

σ
√

2π
,

it follows that

p =

∫ +∞

0

e−
(x−µ)2

2σ2

σ
√

2π
dx =

∫ +∞

− µ

σ

e− x2

2√
2π

dx =
1

2

(
1 + erf

( −µ

σ
√

2

))
,

where erf(x) is the error function, i.e., the probability that a normally distributed random
variable X ∼ N (0, 0.5) falls into the interval [−x, x]. To obtain a success probability of
at least p, the number of experiments n has to satisfy

n ≥ 2 (pAES(1− pAES) + prand(1 − prand))

(pAES − prand)2
·
(
erfinv(2 · p− 1)2

)
, (1)

where erfinv(x) is the inverse error function. Since pAES, prand ≪ 1, a good approximation
of n is given by

n ≥ 4 max(pAES, prand)

(pAES − prand)2
·
(
erfinv(2 · p− 1)2

)
. (2)

Complexity. The complexity of our four-round expectation distinguisher is approximated
by Equation (2) (plugging PrAES

[
S3,i

r,c = S3,j
r,c

]
into pAES and Prrand

[
S3,i

r,c = S3,j
r,c

]
into prand).

For a success probability of p = 0.95, we obtain n > 258.402 pairs. In total, a δ-set contains(
28

2

)
≃ 215 pairs. So, we need about 243.402 δ-sets with 251.402 chosen plaintexts.

Reduced Variant. In order to allow a practical verification, we derive the corresponding
probabilities for four rounds of Small-AES with four-bit S-boxes. We start again by
viewing the downscaled variant of MixColumns as a sum of four independent permutations
on F24 . Then, the probability that a nibble after three rounds leads to a zero difference
is approximately

Pr
Small-AES

[
S3,i

r,c = S3,j
r,c

]
≃ 1

24
+

1

24(24 − 1)3
≃ 2−4 + 2−15.721.

For a random permutation, the probability can be approximated by

Pr
rand

[
S3,i

r,c = S3,j
r,c

]
=

260 − 1

264 − 1
≃ 2−4 − 2−64.093.

Applying Equation (2) yields n > 229.878 for p = 0.95. Since a δ-set yields
(

24

2

)
= 120

pairs, we need about 223 δ-sets that consist of 227 chosen plaintexts.

Experimental Verification. We verified the distinguisher experimentally with 100 ran-
dom keys per experiment and 2s δ-sets, for s ∈ {20, . . . , 23}, on Small-AES. In each
experiment, we evaluated the number of collisions of the first nibble of the output. As
approximation of a random permutation, we employed full-round Speck-64-96 with 100
random keys. Our results are listed in Table 4. The values µ denote the obtained means
of the number of pairs that collide in at least on inactive inverse diagonal, over all experi-

ments, e.g. for 220 δ-sets, one could expect 220 ·
(

24

2

)
· (2−4 +2−15.721) ≈ 7 866 650 colliding

pairs per experiment.
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Table 4: Means and standard deviations for the number of pairs that collided in at least one
inverse diagonal for our four-round expectation distinguisher with Small-AES. Each experiment
employed 100 random independent keys and 2s random δ-sets. Experimental values are rounded.
Full-round Speck-64-96 was used as pseudorandom permutation π.

Theory Experiments

#δ-sets Small-AES π Small-AES π

(log2) µ µ µ σ µ σ

20 7 866 650 7 863 200 7 870 789. 2 918. 7 864 396. 2 566.

21 15 733 300 15 728 600 15 742 188. 3 809. 15 728 650. 3 957.

22 31 466 600 31 457 300 31 484 544. 6 007. 31 457 205. 5 096.

23 62 933 200 62 914 600 62 967 244. 7 030. 62 915 004. 7 820.

4.2 Five-round Expectation Distinguisher

We can extend the four-round distinguisher to five rounds. Consider some diagonal space
D{c} for some index c ∈ {0, 1, 2, 3}. Then, the expected probability that all four bytes in
that diagonal space collide for two texts in a δ-set can be approximated by:

Pr
AES

[
S3 ∈ D{c}

]
≃
(

2−8 +
1

28(28 − 1)3

)4

≃
(
2−8 + 2−31.983

)4
,

Naively, we can approximate the same probability for a random permutation by

Pr
rand

[
S3 ∈ D{c}

]
=

296 − 1

2128 − 1
≃ 2−32 − 2−128.

This approximation is naive since the texts are not independent. In [GR18, Appendix
C], Grassi and Rechberger provide arguments for the number of collisions for 232 input
texts that can be combined to pairs with each other to a mixed space MI for |I| = 3.
They consider the dependency between multiple texts. Still, they show that the collision
probability can be well approximated by 2−32.
Say, we observe the ciphertexts after five rounds that correspond to a δ-set of 28 plaintexts.
Again, the final MixColumns operation can be simply inverted to obtain the differences
before it. Then, the probability to have at least one all-zero anti-diagonal in the difference
is given for five-round AES by

pAES ≃ 1−
(

1− Pr
AES

[
S3 ∈ D{c}

])4

≃ 2−30 + 2−51.985,

whereas for a random permutation, it is approximately

prand ≃ 1−
(

1− Pr
rand

[
S3 ∈ D{c}

])4

≃ 2−30 − 2−61.415.

Steps. The steps of our distinguisher are as follows:

1. Initialize a collision counter.

2. For i = 1..2s, collect a structure S of 264 texts that iterate over all values in any eight
bytes and leave the remaining bytes constants. Query the plaintexts of a structure
and ask for their ciphertexts. Invert the final ShiftRows operations to get the states
S5,SB and store them in some list Q.
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Figure 1: Five-round distinguisher. Darkened cells represent bytes with active (non-zero) dif-
ference, white cells represent bytes with zero difference.

3. Form 8 · 256 δ-sets from a structure, i.e., the texts in each structure iterate over the
28 values in one byte and are constant in the 15 remaining bytes. For each δ-set:

3.1 Initialize four lists Li, for i = 0, 1, 2, 3 of 232 elements.

3.2 For each column i of S5,SB, interpret the column as 32-bit integer and append
the text to Li the index corresponding to the column value for each list.

4. For each of the lists Li:

4.1 Look for collisions, e.g., multiple values at the same index.

4.2 For each collision, look those pairs up in other columns if they have already
been counted. If not, increment the counter.

5. If the counter is higher than the threshold θ, output real; otherwise, output random.

An approximation for θ can be

2 · 8 · 256 ·
(

28

2

)
· pAES + prand

2
≃ 35 046 937 350 825.148 .

Complexity. For a success probability of approximately p = 0.95, we obtain n > 274.436.
By fixing any set of eight distinct bytes in the plaintexts, we can form 264 texts by iterating
over all values of those eight bytes and leaving the remaining eight bytes constant. For

each byte, the texts can be partitioned into 256 sets. Each set consists of
(

28

2

)
pairs of two

texts that differ in a single byte only. In total, the plaintext structure consists of 8 · 256

such sets for each byte of interest. So, one structure provides

8 · 256 ·
(

28

2

)
≃ 273.994 ≃ 274 pairs.
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Two structures from 265 chosen plaintexts with approximately 275 pairs suffice for a success
probability of more than 0.95 on average. The memory complexity is given by storing 264

states in Q and four lists Li of 4 · 232 columns at a time. The time complexity consists of

• 265 encryptions and 1/5 partial decryptions or 265.3 encryption equivalents.

• 265 + 265 · 4 ≃ 267.4 memory accesses for inserting the texts. Depending on the
data structure, insertions or lookups need sorting, which requires N log2(N) opera-
tions on average with e.g., quicksort. Given four lists of 28 elements, sorting needs
approximately 2 · 256 · 4 · 28 · 8 ≃ 270 memory accesses.

• At most 2 · 256 · 8 ·
(

28

2

)
· 2−32 · 3 ≃ 244.6 additional memory accesses when collisions

occur to look up if other columns collide in the other lists.

• Approximately 2 ·256 ·8 ·
(

28

2

)
·2−32 ≃ 243 memory accesses to increment the counter.

So, the computational complexity can be approximated by 267.4 + 270 + 244.6 + 243 ≃ 270.2

memory accesses and 265.3 encryptions.

Reduced Variant. In order to allow a practical verification, we derive the corresponding
probabilities for a downscaled variant of five-round AES with four-bit S-boxes.
Again, we view the downscaled variant of MixColumns as a sum of four independent
permutations on F24 . Then, the probability that a nibble after three rounds leads to a
zero difference is approximately

Pr
Small-AES

[
S3,i

r,c = S3,j
r,c

]
≃ 1

24
+

1

24(24 − 1)3
≃ 2−4 + 2−15.721.

For a random permutation, the probability can be approximated by

Pr
rand

[
S3,i

r,c = S3,j
r,c

]
=

260 − 1

264 − 1
≃ 2−4 − 2−64.093.

The expected probability that all four bytes in a diagonal space D{c} collide for two texts

in a δ-set can be approximated by E [N4]
4
:

Pr
Small-AES

[
S3 ∈ D{c}

]
=

(
2−4 +

1

24(24 − 1)3

)4

≃
(
2−4 + 2−15.721

)4
,

and that for a random permutation by

Pr
rand

[
S3 ∈ D{c}

]
=

248 − 1

264 − 1
≃ 2−16 − 2−64.

Then, the probability to have at least one all-zero anti-diagonal in the difference is given
for five-round Small-AES by

pSmallAES ≃ 1−
(

1− Pr
Small-AES

[
S3 ∈ D{c}

])4

≃ 2−14 + 2−23.748,

whereas for a random permutation, it is approximately

prand ≃ 1−
(

1− Pr
rand

[
S3 ∈ D{c}

])4

≃ 2−14 − 2−29.415.

Feeding those figures into Equation (2) yields, for a success probability of approximately
p = {0.95, 0.99}, that the number of pairs has to exceed n > {235.878, 236.878}. A structure

of (24)8 = 232 texts that fixes eight cells can form 8 · 24·7 sets of
(

24

2

)
pairs each, which

corresponds to

8 · 228 ·
(

24

2

)
≃ 237.907

pairs. So, one structure may suffice to have a distinguishing advantage of ≥ 0.99.
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Table 5: Means and standard deviations for the number of pairs that collided in at least one
inverse diagonal for our five-round expectation distinguisher with Small-AES. Each experiment
employed 100 random independent keys and 2s random δ-sets. Experimental values are rounded.
Full-round Speck-64-96 was used as pseudorandom permutation π.

Theory Experiments

#δ-sets Small-AES π Small-AES π

(log2) µ µ µ σ µ σ

23 61 512 61 439 61 518.80 237.14 61 416.79 246.80

24 123 023 122 877 123 042.21 345.99 122 833.97 329.42

25 246 046 245 754 246 039.13 485.50 245 778.46 543.67

26 492 092 491 509 492 213.04 644.16 491 464.80 724.31

Experimental Verification. Again, we tried to verify our claims experimentally. Table 5
depicts our results with 100 random keys and 2s random δ-sets of 24 texts each, for s ∈
{23, . . . , 26}. All values µ denote the means for the number of pairs in δ-sets that collided

in at least one inverse diagonal after five rounds, over all δ sets, e.g., µ =
(

24

2

)
·223 ·pSmallAES

for Small-AES for 223 δ-sets.

5 Six-round Key-recovery Attack

From the five-round distinguisher from Section 4.2, we can mount a key-recovery attack
on six rounds of AES that recovers 32 key bits. We apply the attack twice in shifted form
to recover 64 key bits and the remaining key bits exhaustively.

Precomputation. We construct four hash tables Hi : F4
28 → (F4

28 )∗, for 0 ≤ i ≤ 3. For
a column difference ∆X = (∆X0, ∆X1, ∆X2, ∆X3), Hi(∆X) contains a set of all four-
byte pairs (X, X ′) = ((X0, X1, X2, X3), (X ′

0, X ′
1, X ′

2, X ′
3)) to SubBytes such that ∆S1 =

MC(SB(X)) ⊕ MC(SB(X ⊕ ∆X)) is active in exactly the i-th byte. For each Hi, there
exist 255 differences ∆S1. Since the AES S-box and its inverse map an input difference to

127 output differences of 126 pairs and one 4-tuple, each mapping ∆X
SB

−1◦MC
−1

←−−−−−−−− ∆S1

contains one pair on average. So, each entry in Hi consists of 255 pairs on average. Since
we have four tables with 255 entries each, they need 4 · 255 · 255 · 8/16 Bytes, which
corresponds to approximately 217 state equivalents.

Steps. The steps are as follows:

1. Initialize a zeroed list K for the 232 key candidates for K0[0, 5, 10, 15].

2. Precompute the tables Hi, for 0 ≤ i ≤ 3.

3. For i = 1..2s, collect a structure S of 232 texts in a coset of D{0}.

3.1 So, the texts in each structure iterate over the 232 values in Bytes P [0, 5, 10, 15]
and are constant in the 12 remaining bytes.

3.2 Initialize four lists Li, for i = 0, 1, 2, 3. Query the plaintexts of a structure
to an encryption oracle to obtain the corresponding ciphertexts C. Invert the
final MixColumns and ShiftRows operations to get the states S6,SB and store
the tuples of (P [0, 5, 10, 15], S6,SB) into the four lists Li, where the texts are
indexed by the i-th column of S6,SB.
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3.3 For j = 0..3, consider the lists Lj :

i. Look up collisions of (S6,SB, S′6,SB
). For each collision, look up in the

lists with lower indices j if the same pair collided already in a different
anti-diagonal to prevent double counting.

ii. For each collision, consider their corresponding plaintexts P and P ′ and
derive their difference ∆P = P ⊕ P ′. From H0, H1, H2, and H3, look up
all possible states X that P ⊕K0[0, 5, 10, 15] could take such that P ⊕P ′ is
in a δ-set. For each value X , derive the candidate K0[0, 5, 10, 15] = P ⊕X
and increment its counter in K.

4. Sort the list of key candidates and output the sorted list.

5. Apply the attack another time from a shifted diagonal, e.g., D{1}, and with another
2s structures to recover another 32 bits of key material.

6. Test the keys in descending order of their counters to recover the remaining 64 key
bits.

Complexity. Each structure yields 4·
(

28

2

)
·224 δ-sets, which corresponds to approximately

241 pairs. We choose 2s = 233.5 structures, which corresponds to 265.5 chosen plaintexts.
The time complexity is given by the following:

• The precomputations cost 4 · 255 · 255 · 8/16 · 1/6 ≃ 214.5 encryption equivalents.

• Encrypting the data takes 265.5 encryptions and 1/6 partial decryptions, or at most
265.8 encryption equivalents.

• We need 267.5 memory accesses for storing the 265.5 texts into four lists. Sorting the
four lists requires 233.5 · 4 · 232 · 32 ≃ 272.5 memory accesses.

• Each structure yields about 263 pairs, and each pair has a probability of approxi-
mately 2−30 to collide on a column. So, we expect approximately 2s+63 · 2−30 ≃
2s+33 = 266.5 collisions. For each collision that occurs in a table Li, we need at most
three memory accesses for the three other tables in Lj , j 6= i, to prevent double
counting. Thus, we need 266.5 · 3 ≃ 268.1 MAs at that point.

• For each collision, we expect on average 4 · 255 suggestions from the hash tables Hi.
So, we need about 266.5 · 4 · 255 memory accesses plus the same amount in K, plus
the same amount of XORs.

Since the attack is performed twice with the same plaintext material but on 32 different
key bits, e.g., K[3, 4, 9, 14], we need the same number of encryptions (alternatively, they
could be stored) and lookups, plus 264 encryptions for the key search. In total, the time
complexity consists of

214.5 + 2 · 265.8 + 264 ≃ 267 encs. and 2 · (267.5 + 272.5 + 268.1 + 276.5) ≃ 277.6 MAs.

The attack stores 232 tuples of 4 + 16 bytes at a time for the states plus 232 byte counters
candidates plus 217 states for the hash tables Hi. So, the memory complexity is circa 232.4

states.

Experimental Verification. We verified our attack with the small-scale variant. The
four-bit S-box had been constructed to have similar properties as its bigger brother in
the AES. It is 4-differential-uniform; for each input difference α, there exist six output
differences β with Pr[S(x) ⊕ S(x ⊕ α) = β] = 2/16, and one difference β for which
Pr[S(x) ⊕ S(x⊕ α) = β] = 4/16. Similar properties hold for the inverse S-box.
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Figure 2: Rank distribution for the correct key among 216 candidates from 100 runs of our
six-round attack with Small-AES, with random keys and 215 or 216 structures of 216 texts each.

So, each hash table Hi, for 0 ≤ i ≤ 3 contains on average 15 · 216 16-bit entries for each
input difference ∆P , or 220 bytes, which corresponds to 217 64-bit states for Small-AES.

We choose one structure of 232 texts which yields 8 · 228
(

24

2

)
δ-sets, which corresponds to

approximately 237.907 pairs. The time complexity is given by

• 4 · 15 · 15 · 216 · 8/16 · 1/6 ≃ 222.3 encryptions for the hash tables.

• 232 encryptions and 1/6 partial decryptions, or at most 232.22 encryption equivalents.

• 234 memory accesses for storing the texts and 4 · 216 · 16 · 216 = 238 memory accesses
for sorting the lists.

• It yields about 8 ·
(

24

2

)
· 228 · 2−14 ≃ 223.91 collisions. Given that we need at most

three accesses to the lists L per collision as in our attack on the original five-round
AES, this corresponds to at most 225.5 memory accesses.

• Per collision, we expect on average 4 · 15 suggestions from the hash tables. So, we
require 2 · (223.91 · 4 · 15) ≃ 230.82 XORs for deriving the keys in K and the same
maximum number of MAs to increment the counters in K.

We omit the second execution; the attack requires

222.3 + 232.22 ≃ 232.23 encryptions and 234 + 238 + 225.5 + 230.82 ≃ 238.1 MAs

to reduce the key space for K0[0, 5, 10, 15]. The attack stores 216 tuples of 4 + 16 nibbles
at a time for the states plus 216 four-nibble key candidates, plus 217 states for the hash
tables. So, less than 217.9 states.
Figure 2 illustrates the results of 100 experiments that employed independent random keys
and 215 and 216 structures of 216 plaintexts each. Our experiments aimed at recovering
the 16 key bits K0[0, 5, 10, 15] from the first diagonal. In 53 runs, the correct key was
among the top 100 keys, among which it was in the top 16 keys in 27 runs. This yields a
conservative advantage of approximately one (1.089) bit over all runs, and an advantage
of about ten (10.117) bits in more than half of the experiments. The results improved for
216 structures, where the correct key ranked top for 47 experiments, and 92 times among
the top 100 keys, and at worst at rank 313. Over the runs, this yielded an advantage of
10.55 bits over all experiments.
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6 Six-round Expectation Distinguisher

We can derive a six-round distinguisher that uses the same higher-level concept as our
six-round key-recovery attack.

Core Idea. In our previous five-round distinguisher, we exploited a non-negligible but
very small difference between the expectation for a certain event of two distributions D0

and D5
1 of a random ideal permutation and a real construction on five rounds, respectively.

In theory, we can go one step further.
Let us focus on a set of inputs X , and on any event E with non-zero probability in both
worlds. Let p0 and p5

1 denote two expected probabilities of a certain event in the respective
distributions. We exploited that |p0 − p5

1| was not too small. For simplicity, assume for
the moment that the probability of an event for a given input is independent of previous
inputs and the ideal distribution D0 behaves equally on all inputs. So

Pr
XևX

[D0 = E] = p0.

In the following, consider p6
1 and D6

1 representing the expected probability of a certain
event and the distribution for six rounds, respectively. Assume that we sample over the
set of inputs that contains our previous input set – allowed us to determine p5

1– but
that also contains many further inputs, without partitioning them into sets. Clearly, the
distance between both distributions reduces considerably. More formally, the set of inputs
X can be partitioned into two disjoint sets X = Xa ∪ Xb, i.e., Xa ∩ Xb = ∅. Assume, the
distribution of the real construction has an expectation of p0 for E over the inputs from
Xa, but and expectation of q for E to occur over inputs from Xb. So

Pr
XևX

[D6
1(X) = E] = p6

1 =
|Xa| · p0 + |Xb| · q

|X | .

Application to The AES. Compared to the five-round distinguisher from Grassi et al.
[Gra18b], our approach from the previous section starts from a single active byte. Thus,
it can benefit from the fact that one can easily prepend one round for an attack and start
from a diagonal structure of 232 texts. We know that a diagonal structure contains 4 · 224

δ-sets that had been used in the distinguisher. Clearly, the event E was to find at least
one inactive inverse diagonal after five rounds. Since we aimed at finding the probability
for such collisions for p0 and p5

AES
. For this purpose, we had to guess the initial subkeys

used in the initial diagonal.
The following distinguisher avoids to guess key bits, but considers instead the probability

of collisions over all possible pairs of the diagonal. Clearly, among the
(

232

2

)
pairs, only

4 · 224 ·
(

28

2

)
pairs have a probability of p5

AES
to yield the inactive inverse diagonal after six

rounds. Naively, one could assume that all other pairs would behave pseudorandomly, i.e.,
their probability for at least one inactive inverse diagonal is also p0. Under those naive
assumptions, we could approximate p6

AES
by

≃
4 · 224 ·

(
28

2

)
·
(
2−30 + 2−51.985

)
+
((

232

2

)
− 4 · 224 ·

(
28

2

))
·
(
2−30 − 2−61.415

)

(
232

2

) (3)

≃ 2−30 − 2−61.415 + 2−73.995.

This would imply that |prand − p6
AES
| ≃ 2−73.995. This statistical difference is very small,

but may still be high enough to distinguish between the distributions.
Equation (2) yields, again for a success probability of 0.95, that one would need approxi-

mately n > 2120.43 pairs. Assuming that a diagonal structure of 232 texts contains
(

232

2

)
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pairs, this amount of pairs can be obtained by querying 257.43 structures or 289.43 chosen
plaintexts.

Steps. The steps are as follows:

1. Initialize a collision counter.

2. For i = 1..2s, collect a structure S of 232 texts that iterate over all values in D{0}

and leave the remaining bytes constant. Query the plaintexts of a structure and
ask for their corresponding ciphertexts after six rounds. Invert the final MixColumns

and ShiftRows operations to get the states S6,SB and store them in a list Q.

3. For each structure and each state S6,SB therein:

3.1 Initialize four lists Li, for i = 0, 1, 2, 3 of 232 elements.

3.2 For each column i ∈ {0, 1, 2, 3} of S6,SB, interpret the i-th column as 32-bit
integer c and append the text to Li[c] at the index corresponding to the column
value c, e.g., c = S6,SB[0, 1, 2, 3] for Column 0.

4. For each list Li:

4.1 Look for collisions, e.g., multiple values at the same index.

4.2 For each collision, look up those pairs in other lists Lj , for i 6= j, if they have
already been counted. Otherwise, increment the corresponding key counter.

5. If the counter exceeds a given threshold θ, output real; otherwise, output random.

An approximation for θ can be 257.43 ·
(

232

2

)
· (p6

AES
+ prand)/2.

Complexity. The attack employs 257.43 structures or 289.43 chosen plaintexts for a success
probability of about 0.95. The memory complexity is given by storing 232 states in Q and
four lists Li of 4 · 232 columns at a time. The time complexity consists of

• 289.43 encryptions and 1/6 partial decryptions or 289.7 encryption equivalents.

• 289.43 · 4 ≃ 291.43 memory accesses for inserting the texts. Sorting requires approxi-
mately 257.43 · 4 · 32 · 232 ≃ 296.43 memory accesses.

• If a collision occurs when inserting for a column, at most 2·257.43·
(

232

2

)
·2−32·3 ≃ 291.02

additional memory accesses are needed to look up if other columns collide in the
other lists.

• Approximately 2 · 257.43 ·
(

232

2

)
· 2−32 ≃ 289.43 memory accesses to increment the

counter.

So, the computational complexity is given by approximately 289.7 encryptions and 291.43 +
296.43 + 291.02 + 289.43 ≃ 296.52 memory accesses.

Small Variant. For the small-scaled variant of AES with four-bit S-boxes, we obtain
from Equation (3)

p6
SmallAES ≃ 2−14 − 2−29.415 + 2−33.869,

which yields a mean of p6
SmallAES

·
(

216

2

)
≃ 131 067.137 colliding pairs per structure. For a

random permutation, the probability of a pair to collide is approximately

prand ≃ 2−14 − 2−29.415,

which gives a mean of prand ·
(

216

2

)
≃ 131 067.000 colliding pairs per structure. So, a similar

distinguisher on the small-scale version of the AES would need 256.18 experiments, which
corresponds to 225.18 structures of 216 texts each, or 241.18 chosen plaintexts.
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Figure 3: Distribution of the means from 100 experiments that counted the number of collisions
in at least one ciphertext column per structure of 216 texts of our 6-round distinguisher on
Small-AES and full Speck-64 as pseudorandom permutation.

Experimental Verification. We implemented the distinguisher for Small-AES. For each
experiment, we encrypted 37 ·210 ≃ 225.21 structures of 216 texts each. For Small-AES, we
used five full rounds plus SubBytes and AddRoundKeys in the last round since MixColumns

and ShiftRows are easily invertible. As a pseudorandom permutation π, we employed full
Speck-64-96. For each primitive, the 100 experiments required about three CPU years of
computations.
As random independent keys, we employed the highest eight bytes from the first 100
output values from the NIST random Beacon service3. For each structure, we counted
the number of pairs that collided in at least one column. For Small-AES, we observed a
mean of µ = 131 067.191 pairs per structure, and µ = 131 066.993 for our pseudorandom
permutation. Figure 3 illustrates the results of our experiments. Both illustrate that the
difference in the distributions is even slightly higher in our experiments than in the theory.
Most importantly, they show that both distributions can be distinguished well.

7 Conclusion

This work extends the well-known integral distinguisher on three-round AES to expecta-
tion distinguishers on four and five rounds. At the core, our attacks exploit the small bias
in the number of byte collisions between the sum of four permutations—which MixColumns

approximates after three rounds—and the number of byte collisions of a truncated random
permutation. Thus, we could extend the integral attack to four rounds. By extending this
approach to collisions in the four bytes of an inverse diagonal, we proposed a novel five-
round distinguisher for the AES. Since those results start from a single byte, they could
be extended easily by prepending a key-recovery round. Last but not least, we showed
that even this prepended round could still be included into a secret-key distinguisher,
with considerably lower but still distinguishable bias. We note that our distinguishers are
infeasible to verify directly for the AES. Therefore, we implemented them with Cid et
al.’s defacto standard of Small-AES with four-bit cells.

3See https://beacon.nist.gov/beacon/2.0/chain/1/pulse/<i> for 1 ≤ i ≤ 100.
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