
Unconditionally Secure Computation Against

Low-Complexity Leakage

Andrej Bogdanov
Chinese University of Hong Kong

Yuval Ishai
Technion

Akshayaram Srinivasan
University of California, Berkeley

June 2, 2019

Abstract

We consider the problem of constructing leakage-resilient circuit compilers that are secure
against global leakage functions with bounded output length. By global, we mean that the
leakage can depend on all circuit wires and output a low-complexity function (represented as a
multi-output Boolean circuit) applied on these wires. In this work, we design compilers both
in the stateless (a.k.a. single-shot leakage) setting and the stateful (a.k.a. continuous leakage)
setting that are unconditionally secure against AC0 leakage and similar low-complexity classes.

In the stateless case, we show that the original private circuits construction of Ishai, Sahai,
and Wagner (Crypto 2003) is actually secure against AC0 leakage. In the stateful case, we modify
the construction of Rothblum (Crypto 2012), obtaining a simple construction with unconditional
security. Prior works that designed leakage-resilient circuit compilers against AC0 leakage had
to rely either on secure hardware components (Faust et al., Eurocrypt 2010, Miles-Viola, STOC
2013) or on (unproven) complexity-theoretic assumptions (Rothblum, Crypto 2012).

1 Introduction

There is a rich body of work on protecting computations that involve sensitive data against partial
information leakage. This line of work is motivated by practical side-channel attacks that use
physical measurements such as running time [Koc96] or power consumption [KJJ99] to compromise
secret keys embedded in cryptographic hardware or software. The recent high-profile Meltdown,
Spectre, and Foreshadow attacks [KGG+18, LSG+18, BMW+18] demonstrated the vulnerability of
most modern computer systems to this kind of attacks.

A clean theoretical model that captures the goal of protecting general computations against
leakage is that of a leakage resilient circuit compiler (LRCC). Here the computation is modeled as
a logical circuit, and the leakage as a function applying to the internal wires of the circuit. The goal
of a LRCC is to randomize the computation of a given circuit in a way that resists broad classes
of leakage while at the same time respecting the input-output relation of the original circuit. The
problem of LRCC has many flavors, depending on the computational model and the type of leakage.

A crude form of LRCC was already given in the 1980s by the seminal works on secure multiparty
computation [Yao86, GMW87, BGW88, CCD88]. Such protocols distribute computations across
multiple parties in a way that resists leakage from a bounded number of parties. The work of
Ishai, Sahai, and Wagner (ISW) [ISW03] initiated a more explicit and refined study of LRCC at
the circuit level, but still focused on the case of localized “probing attack” leakage that applies to

1

a bounded number of circuit wires. In spite of its restricted nature, this leakage model turned out
to be quite relevant to practical defenses against side-channel attacks. This is due in part to the
simplicity of the constructions and the ability of the same leakage model to accommodate more
realistic noisy leakage [FRR+10, DDF14] that obtains an independent noisy measurement of every
wire in the circuit. LRCCs in this model have been the subject of a large body of theoretical and
applied work (see, e.g., [RP10, Ajt11, CPRR13, Cor14, DFS15, BCPZ16, BBP+16, FPS17, AIS18]
and references therein).

Originating from the works of Micali and Reyzin [MR04] and Faust et al.
[FRR+10, FRR+14], another line of work went in the direction of accommodating more general
types of leakage classes that apply restricted types of functions to all wires in the circuit. In
particular, Faust et al. [FRR+10] presented a variant of the ISW compiler that employs small
leak-free hardware components to protect against any class of “computationally simple” leakage
functions for which strong average-case lower bounds are known. The most prominent example is
that of AC0 leakage, computed by constant-depth polynomial-size circuits with unbounded fan-in
AND/OR/NOT gates and a bounded number of outputs. Subsequent works along this line studied
LRCCs for different classes of global leakage under a variety of trusted hardware or setups and
computational intractability assumptions [GR10, JV10, GJS11, BGJK12, BCH12, DF12, Rot12,
GR12, BGJ+13, MV13, BDL14, Mil14, DLZ15, GIM+16, GIW17, BDIR18].

Constant-depth leakage. The focus of this work is mainly on the class of AC0 leakage and
related constant-depth complexity classes, such as AC0 augmented with additional mod-p gates.
This type of leakage strictly generalizes the ISW leakage model, which as discussed above is relevant
to many realistic scenarios. Moreover, while the class AC0 does not capture some natural leakage
functions, such as ones that take weighted sums of many wire values, it does apply to a wide variety
of natural attacks. For instance, suppose that a system crashes if a secret value represented by a
wire bundle is in a certain forbidden range, and there are many such wire bundles that may lead to
the system crashing. Then, whether the system crashes at a given moment is a single bit of depth-3
AC0 leakage that can be observed by the outside world. One can similarly cast in this class other
types of natural leakage functions that take the conjunction, disjunction, maximum, or minimum
of values that can themselves be computed by low-depth circuits.

Stateless vs. stateful LRCC. Before describing our contributions, it is instructive to present
the current state of the art in a more precise way. The ISW paper introduced two variants of
the LRCC problem: a simpler stateless variant and a more complex stateful variant. The stateless
variant captures standard computations that map a secret input to a secret or public output,
where the computation is subject to a single round of one-shot leakage. For instance, this scenario
can apply to zero-knowledge authentication by a hardware device, or computations performed by
payment terminals and access control readers (see [GIW17] for further discussion). In a more
theoretical context, stateless LRCCs have also been applied towards constructing different zero-
knowledge flavors of probabilistically checkable proofs [IWY16]. The stateful variant of LRCCs
captures a system (such as a personal computer or an IoT device) with persistent memory that
may store secrets. Users interacting with this system can feed it with a sequence of inputs and
observe the resulting outputs. For instance, think of an encryption device that stores a secret
encryption key, takes a plaintext as input and produces a ciphertext as output. Stateful LRCCs
may be subject to continuous leakage that applies a different leakage function in each round. To

2

help defend against this kind of leakage, they are allowed to refresh their internal state.
More formally, in the stateless variant of LRCC, the goal is to compile a (deterministic, stateless)

circuit C into a randomized circuit Ĉ, such that together with leak-free randomized input encoder
Enc and output decoder Dec we get the following correctness and security guarantees: (1) For any
input x, we have Dec(Ĉ(Enc(x))) = C(x); (2) For any admissible leakage function ` ∈ L, applying
` to the internal wires of the computation Ĉ(Enc(x)) reveals essentially nothing about x. To rule
out a trivial solution in which the entire computation is carried out by the leak-free components
Enc and Dec, these components are required to be universal in the sense that they depend only on
the input and output size of C and not on C itself. The ISW construction protects computations
against leakage that involves a bounded number of wire-probes. That is, the leakage ` can output
the values of t wires in Ĉ. Here we are interested in a bigger class L that includes constant-depth
circuits with t bits of output.

The stateful variant of LRCC considers the more challenging goal of protecting computations
against continual leakage. Here the ideal functionality is specified by a deterministic, stateful circuit
C, mapping the current input and state to the current output and the next state. The input and
output are considered to be public whereas the state is secret. The goal, as before, is to transform
C into a leakage-resilient randomized circuit Ĉ. The circuit Ĉ is initialized with some randomized
encoding ŝ0 of the initial secret state s0 of C. The computation can then proceed in a virtually
unlimited number of rounds, where in each round Ĉ receives an input, produces an output, and
replaces the old encoding of the secret state by a fresh encoding of a new state. The correctness
goal is to ensure that Ĉ[ŝ0] has the same input-output functionality as C[s0]. The security goal is
defined again with respect to a class L of leakage functions, where the adversary may adaptively
choose a different function ` ∈ L in each round. The security goal is to ensure that whatever
the adversary learns by interacting with Ĉ[ŝ0] and by additionally observing the leakage, it can
simulate by interacting with C[s0] without obtaining any leakage.

State of the art. Existing results of LRCCs for AC0 and similar constant-depth leakage classes
leave a number of basic questions open. In the stateful case, the works of Faust et al. [FRR+10]
and Miles and Viola [MV13] yield constructions that require small but leak-free trusted hardware
components, whose number is linear in the size of C and whose size grows with a statistical se-
curity parameter. Alternatively, Rothblum [Rot12] showed how to eliminate the trusted hardware
components, but at the cost of further complicating the construction and relying on an unproven
complexity theoretic conjecture (the so-called “IPPP conjecture”) that remains open to date. In the
stateless case, the trusted hardware components in the constructions of [FRR+10, MV13] can be
replaced by correlated random input bits that are fed directly into the stateless circuit in addition
to the input x [MV13, BIVW16, GIW17]. However, this requires the user of the leakage-resilient
circuit Ĉ to work at least as hard as computing C rather than simply feed Ĉ with its input.

We note that unlike the case of security against noisy leakage, which is implied by security
against probing attacks [DDF14], this is not the case for security against AC0 leakage. Indeed, there
are pairs of distributions over {0, 1}N that cannot be distinguished by probing any N0.99 of their
bits, and yet they can be distinguished by AC0 circuits with one bit of output [BIVW16, BKT19].
In the stateful case, an additional difficulty stems from the need to prove simulation-based security
rather than mere indistinguishability by AC0 circuits. The efficient simulation requirement poses a
major challenge in some related contexts [IWY16].

3

1.1 Our Contribution

In this work, we improve the above state of the art in both the stateless and stateful case by proving
two main unconditional results.

In the stateless case (with one-shot leakage), we show that the original ISW construction [ISW03],
which is quite simple and concretely efficient, is actually unconditionally secure against a much
wider class of low-complexity leakage functions that includes AC0. We also show similar results for
leakage computed by AC0 circuits with mod-p gates, for a prime modulus p > 2, though in this case
our security only follows from standard complexity-theoretic conjectures. In contrast to previous
constructions from [MV13, BIVW16, GIW17], here the circuit Ĉ directly computes on the input
x and does not require additional correlated random inputs or trusted leak-free hardware. This
construction is also simpler and more efficient than the (conditional) construction from [Rot12].

In the stateful case (with continuous leakage), we modify the previous construction of Roth-
blum [Rot12], obtaining the first construction that unconditionally resists AC0 leakage without
relying on trusted leak-free hardware.

At a higher level of generality, both of our constructions satisfy a composition theorem of
the following form (Theorems 4.1 and 5.1): For any given class of leakage functions L, if parity
has low correlation with L composed with NC0 (namely, functions where each output depends on a
constant number of inputs), then our constructions are secure against leakage from L. For L = NC0

we recover the ISW result, for L = AC0 we obtain our main result, and for L = AC0[mod p] we get
the extension to constant-depth circuits with mod p gates, assuming this class has low correlation
with parities.

Here is a formal statement of the results in these cases of interest. For the relevant definitions
see Section 3. The corresponding constructions are described in Sections 4 and 5.

Corollary 1.1 The ISW compiler when applied to circuits of size S and input length k is a kε-
leakage resilient stateless circuit compiler against the following classes, where n is the security
parameter:

1. Functions that depend on the values of at most (n− 1)/2 wires, with ε = 0,

2. Unbounded fan-in AND/OR/NOT circuits of size s − O(n2S), depth d, and cdn/(log s)d

outputs, with ε = 2−cdn/(log s)
d
,

3. Unbounded fan-in AND/OR/NOT/MODp circuits of size s−O(n2S), depth d, and m outputs,
assuming n-bit random parity-0 and parity-1 strings are 2 · 3−mε-indistinguishable by such
circuits of size s and depth d+ 1 (and one output).

Here cd is a constant that depends on d only. Part 1 recovers the stateless security result of
Ishai, Sahai, and Wagner. Parts 2 and 3 are new.

Corollary 1.2 There exists a construction of LRCC for a class of stateful circuits of size S that is
O(εT (S + n))-leakage resilient stateful circuit compiler against the following leakage classes, where
T , S, and n are the number of rounds of the leakage experiment, the circuit size, and the security
parameter, respectively:

1. Unbounded fan-in AND/OR/NOT circuits of size 2n
O(1/d) − O(n3S), depth d, and nO(1/d)

outputs, with ε = 2−n
O(1/d)

.

4

2. Unbounded fan-in AND/OR/NOT/MODp circuits of size s−O(n3S), depth d, and m outputs,
assuming n-bit random parity-0 and parity-1 strings are 2 · 3−mε-indistinguishable by such
circuits of size O(2ms) and depth d+ 1 (and one output).

2 Our Techniques

In this section, we give a high-level overview of our techniques for constructing a leakage resilient
compiler that is unconditionally secure against AC0 leakage. We start with a brief overview of the
prior approaches and highlight the limitations of these approaches in obtaining an unconditional
result. Next, in Section 2.1, we give an overview of the proof that the original private circuit
construction of Ishai, Sahai and Wagner [ISW03] is secure against AC0 leakage in the stateless
a.k.a. single-shot leakage setting. Finally, in Section 2.2, we discuss our construction of a leakage
resilient circuit compiler in the stateful a.k.a. continuous leakage setting.

Prior Approaches. All the prior works [ISW03, FRR+10, Rot12, MV13, Mil14] (including ours)
follow the same high-level blue print in constructing a leakage resilient circuit compiler. Each wire
in the original circuit C is transformed into a “bundle” of n-wires in the compiled circuit Ĉ such
that the bundle encodes the bit carried by the wire (using a suitable encoding procedure). Few
examples of the encoding procedures used in the prior work are the (i) parity encoding [ISW03,
FRR+10, Rot12] i.e., the parity of the wire bundle is equal to the value carried by the wire and
(ii) group encoding [MV13, Mil14] i.e., each element in the bundle is represented as an element
of an alternating group and the product of the group elements encodes the bit carried by the
wire. For concreteness, let us assume that the wires are encoded using the parity encoding. The
next step in these constructions is to implement the addition and the multiplication gates over
the wire bundles. That is, every gate g ∈ {+, ∗} in the original circuit C, is transformed into
a gadget ĝ that takes in 2 wire bundles, say a,b ∈ {0, 1}n and outputs a wire bundle c such
that parity of c is equal to g(⊕a,⊕b). Thus, evaluating these gate gadgets in Ĉ will eventually
lead us to the output wire bundles which are finally decoded by computing their parity. This
construction ensures correctness i.e., the compiled circuit computes the same function as that of
the original circuit. However, to prove security, these works required an additional refreshing gadget
(denoted as Refresh). The refreshing gadget takes in a wire bundle x and outputs a random bundle
y conditioned on ⊕y = ⊕x. In other words, this gadget refreshes the randomness used in the
encoding. To get a secure construction, the implementation of each gate gadget ĝ were augmented
in such a way that the output wire bundle, say c is sent through the Refresh gadget and the
resultant wire bundle is the new output. At an intuitive level, this leads to a secure construction
as the Refresh gadget ensures that the randomness used in encoding the output of each gate is
refreshed and hence, the leakage that has been accumulated as a result of the ĝ computation does
not propagate to the higher layers. This allowed the prior works to argue security against specific
leakage classes such as AC0 circuits. However, the task of implementing this refreshing gadget
is highly challenging and this is the primary reason that the prior works had to rely on secure
hardware components [FRR+10, MV13, Mil14] or computational assumptions [Rot12]. Specifically,
Faust et al. used a secure hardware component to generate a random vector z whose parity is 0
and implemented the Refresh gadget as y = x + z. This ensures that y has the same parity as that
of x and additionally, it is distributed randomly conditioned on its parity being fixed. Rothblum
removed the need of secure hardware components by generating random encodings of 0 using a more

5

involved procedure (that will be explained later) but had to rely on a computational assumption
in the proof of security. In the next two subsections, we discuss our approach of dealing with the
problem of generating a random encoding of 0, first in the stateless setting and then in the more
complicated stateful setting.

2.1 Unconditional Result in the Stateless Setting

The key insight behind our unconditional result in the stateless setting is that refreshing the output
of every gate gadget is actually an overkill and a far weaker property called as “local sampleability”
is sufficient. Before we go into the details, let us first give the definition of a local sampler. A
circuit Samp(x; r) (x ∈ {0, 1}n is the regular input and r is the randomness) is said to be a 2-local
sampler if each output bit of the circuit depends at most two bits of the regular input x. It can be
easily seen that for every r, Samp(PAR(n, 0); r) is indistinguishable to Samp(PAR(n, 1); r) by AC0

circuits where PAR(n, b) is an uniform distribution over n-bit strings whose parity is b.
The main technical lemma which allows us to prove security in the stateless setting is the

following. Fix the encodings of all input bits except one, say x and let Ĉ be the compiled circuit
in the construction of Ishai, Sahai and Wagner [ISW03]. Then, the distribution of the wires in Ĉ
is identical to the output of a 2-local sampler Samp(x; r) for an uniformly chosen r. This allows us
to prove an unconditional result as we can go over a sequence of hybrids such that in each hybrid,
we fix the encodings of all bits except one (say, x), use Samp(x; r) to generate the distribution of
all the wires in Ĉ and then conclude that the wire distribution is indistinguishable to AC0 circuits
when x encodes the bit 0 or 1. We stress that unlike the prior unconditional results in the stateless
setting [FRR+10, MV13], our construction does not require a source of correlated randomness
generated in a leak-free manner. We also remark that in the prior results, the number of bits of
this correlated randomness string is very large and in the worst case, could be as large as the circuit
itself.

Before we delve into the details of the proof of the main lemma, let us first recall the construction
of Ishai, Sahai and Wagner [ISW03]. As mentioned before, in this construction, each wire in the
original circuit is transformed into a bundle of n wires such that the parity of this wire bundle is
equal to the value carried by the wire. Given this encoding, implementing the addition gadget is
simple. It takes in two wire bundles, a,b ∈ {0, 1}n and outputs c = a + b. We give the details of
the multiplication gadget below.

Construction 2.1 On input two wire bundles a and b, the multiplication gadget does the following:

1. Define the matrix M ∈ {0, 1}n×n such that Mi,j = aibj.

2. For every 1 ≤ i, j ≤ n and i < j, choose a random bit zi,j.

3. For every 1 ≤ i, j ≤ n and i < j, set zj,i = zi,j ⊕ (Mj,i ⊕Mi,j).

4. For every 1 ≤ i ≤ n, set ci = (⊕j 6=izi,j)⊕Mi,i.

5. Output c = (c1, . . . , cn).

Correctness of both the gadgets is straightforward to verify. Let us fix the encodings of all the
input bits except one, say x. To prove the main lemma, we need to show that the wire distribution
in the compiled circuit conditioned on this fixing is identical to the output of a 2-local sampler.

6

Proof Overview. We prove this lemma via an inductive argument. We first prove that the
distribution of the internal wires in an addition and a multiplication gate is identical to a locally
sampleable distribution. We then use induction to prove that the wire assignment in the entire
circuit is locally sampleable.

Local sampleability of addition gadget is trivial and the main challenge is to show local sam-
pleability of multiplication gadget. For simplicity, let us consider a multiplication gate at the first
layer of the circuit where one input is x (which is the non-fixed encoding) and the other input is b
(for some fixed b). The other cases are dealt in section 4 of our paper. We need to show that for
any b, there exists a 2-local sampler Sampmult(x; z′) such that the output of the sampler (for an
uniform z′) is identical to the distribution of the internal wire assignments of a multiplication gate
on input x,b.

At first inspection, it appears that the internal wire assignments of the multiplication gadget are
“non-local.” Specifically, consider the wires in the computation of cn; it depends on every bit of x.
So the main question is how do we prove that the wires are 2-locally sampleable? The key insight
is that while the internal wires of the multiplication gadget could be non-local, it is distributed
identically to a 2-locally sampleable distribution. So, we need to demonstrate a 2-locally sampleable
distribution (which is the output of a Sampmult) and argue that this distribution is identical to the
distribution of the internal wires of the multiplication gadget. We now give details of such a sampler
Sampmult. On input x and uniform randomness z′, Sampmult (that depends on b) does the following:

1. Define the matrix M ∈ {0, 1}n×n where the (i, j)-th element Mi,j = xi · bj .

2. For every 1 ≤ i ≤ n, 1 ≤ j ≤ n and i < j, choose a random bit z′i,j and define zi,j = z′i,j ⊕Mi,j .

3. For every 1 ≤ i ≤ n, 1 ≤ j ≤ n and i < j, set zj,i = zi,j ⊕ (Mj,i ⊕Mi,j).

4. For every 1 ≤ i ≤ n, set c′i = (⊕j 6=izi,j)⊕Mi,i.

5. Output M, {zi,j}i<j , all the wires in the computation of {zi,j}i>j and the computation of
{c′i}i∈[n] along with the vector c′ = (c′1, . . . , c

′
n) (which are the output wires).

The only difference between the wire assignments output by Sampmult and the actual wire
assignments in multiplication gate is how {zi,j}i<j is set. Note that if z′ is chosen uniformly at
random then the distribution of {zi,j}i<j is identical to the uniform distribution. Thus, the wire
assignment output by Sampmult is identical to the actual wire assignment in the implementation
of the multiplication gate for a randomly chosen z. To see the 2-local sampleability of Sampmult,
observe that for any i < j, zi,j depends only on xi. Furthermore, for any i > j, it can be observed
that zi,j = z′j,i⊕Mi,j depends on only xi and wires used in computing zi,j is a 2-local function in x.
These two observations imply that for every i ∈ [n], computing c′i depends only on xi and hence the
wires in this computation are locally sampleable. This shows that the output of Sampmult is a 2-
local distribution. Combining this with the inductive argument allows us to obtain an unconditional
result in the stateless setting.

2.2 Unconditional Result in the Stateful Setting

In this subsection, we give a high level overview of our construction of a leakage-resilient circuit
compiler against AC0 circuits in the stateful setting that has unconditional security. As mentioned
before, the prior results in this setting either relied on secure hardware components or on compu-
tational assumptions.

7

Main Challenges. In the stateful setting, there are two key challenges that we need to overcome.
The first challenge is dealing with absence of a trusted decoder. In the stateless setting, a trusted
decoder was available and this allowed the simulator to “cheat” by hardwiring the correct output
in the trusted decoder such that even when the circuit is run on some junk inputs, the output
obtained is consistent with the actual output. However, in the stateful case, no such trusted
decoder is available and this makes the task of simulation much harder. In this case, the simulator
must somehow incorporate the correct output (without knowing the actual input) in the wire
distribution such that a leakage function cannot distinguish this from the real word distribution.
When considering leakage classes such as AC0 functions, this task is even more challenging as these
functions can check local consistency of the gates. The second challenge in the stateful setting is
the necessity to refresh the randomness. Unlike the stateless setting where we observed that local
sampleability is sufficient, in the stateful case, we need to additionally refresh the randomness used
in the encoding procedure. To see why this is the case, consider a stateful circuit that has a PRF
key k as its state and computes PRF(k, x) on a regular input x. If the randomness of the key
k is not refreshed across multiple queries, then in O(n|k|) leakage queries, the entire key can be
successfully retrieved by leakage functions that output a single bit. Thus, we need to refresh the
randomness of the state bundles across queries and for technical reasons, we also need to refresh
the randomness of the output of every gate.

Rothblum’s Construction. The starting point of our construction is the work of Rothblum [Rot12]
who showed that under a complexity theoretic assumption referred to as “Inner Products with Pre-
Processing” (IPPP)1, there exists a construction of a leakage resilient circuit compiler against AC0

in the stateful setting. Unfortunately, this assumption is unproven and even the state of highly
restricted versions of the assumption such as allowing only linear functions in the pre-processing
phase [ABG+14] is far from being resolved. In the rest of this subsection, we first give a high level
overview of the construction of Rothblum, indicate why the IPPP assumption is needed, and then
discuss our approach of removing the need for the assumption.

Recall that in the stateful setting, the output of every gate is refreshed and thus, the first
step is to implement the Refresh gadget. This Refresh gadget in fact helps in overcoming both the
challenges that we discussed earlier. Firstly, it helps in refreshing the randomness and thus, helps
in overcoming the second challenge. To overcome the first challenge, we additionally send the wire
bundles coming out of the output gate through the Refresh gadget and compute the parity of the
resultant output. In the ideal world distribution, the simulator will change the internal workings
of the Refresh gadget such that instead of only refreshing the randomness, this gadget could also
switch the parity when needed. This helps the simulator to hardcode the correct output of the
circuit even when it is run with some junk input.

Now, to implement the Refresh gadget, it is sufficient to generate a random encoding of the bit
0. The main technical contribution in Rothblum’s work is a method to securely generate a random
encoding of 0 without the use of hardware components. This is done as follows. A generator
matrix G ∈ {0, 1}n×2n is chosen uniformly at random subject to the parity of each column of G
being 0. This generator matrix is part of the state of the compiled circuit Ĉ. Whenever a random
encoding of 0 is required, choose r uniformly at random from {0, 1}2n and compute G · r. It is

1Let D′0, D
′
1 be uniform distributions over 2n-bit strings such that for every (x,y) ∈ D′b, < x,y >= b. IPPP

states that it is hard for AC0 circuits to distinguish between D′0 and D′1 even when given f(x) and g(y) for arbitrary
polynomial-time computable functions f, g.

8

straightforward to see that the resultant vector is statistically close to a random vector whose parity
is 0. This vector is then used in the Refresh gadget. In Rothblum’s work, the circuit for computing
the matrix-vector product G · r is the trivial O(n2) sized circuit (denoted by CMV).

While the above idea may seem extremely simple at first sight, the proof that this is indeed
secure in the presence of AC0 leakage is highly involved and requires the use of the (unproven) IPPP
assumption. Intuitively, the IPPP assumption is used in the proof to generate the assignment to
every wire in CMV by an AC0 circuit. To see this, consider the following two hybrids in the proof of
security from Rothblum’s work. In the first hybrid, G, r are sampled as in the construction i.e., G
is chosen randomly subject to its column parity being 0 and r is chosen uniformly at random. In
the second hybrid, G, r are both chosen uniformly at random from their respective domains. Just
given (G, r), these two distributions are clearly indistinguishable to an AC0 function. However,
to make sure that these hybrids are indistinguishable to an AC0 leakage function, one needs to
additionally generate, in constant depth, all the intermediate wire values in CMV when given G
and r as inputs. Rothblum showed that this is indeed possible with polynomial time, independent
pre-processing on G and r and that is why IPPP assumption is needed.

Our Approach. In this work, we remove the need for the IPPP assumption by designing a new
gadget called “RandZero” that generates a random encoding of 0. Crucially, unlike the circuit CMV,
it has a special property that its wire assignments are locally sampleable. This allows us to get rid
of the pre-processing phase in Rothblum’s paper and obtain an unconditionally secure construction.
We now give more details of our approach.

Like in Rothblum’s construction, we choose a generator matrix G ← {0, 1}n×n uniformly at
random subject to its column parity being 0 and make it part of the state. When we have to
generate a random encoding of 0, we choose r uniformly at random and compute RandZero(G, r).
Below, we give the description of this gadget.

Construction 2.2 Given a matrix G ∈ {0, 1}n×n and a vector r ∈ {0, 1}n, RandZero does the
following:

1. Define the matrix M ∈ {0, 1}n×n where the (i, j)-th element Mi,j = Gi,jrj.

2. For every 1 ≤ i ≤ n, 1 ≤ j ≤ n and i < j, choose a random bit zi,j.

3. For every 1 ≤ i ≤ n, 1 ≤ j ≤ n and i < j, set zj,i = (zi,j ⊕Mj,i)⊕Mi,j.

4. For every 1 ≤ i ≤ n, compute ci = (⊕j 6=izi,j)⊕Mi,i.

5. Output c = (c1, . . . , cn).

We first make a couple of simple observations. The first observation is that the parity of the
output c is same as that of the vector G · r. The second observation is that the distribution of c
is uniformly random subject to its parity being equal to parity of the vector G · r. Thus, when the
column parity of G is 0, we can use the output of this gadget to refresh the randomness.

Notice that the above gadget has a lot of similarities with the multiplication gadget in the work
of Ishai, Sahai and Wagner [ISW03] (described in Construction 2.1). In fact, the only difference
is how the matrix M is defined. We thus, extend the local sampleability property that we proved
for Construction 2.1 to this construction. In the actual proof of security, we go over a sequence of
hybrids (similar to the hybrid sequence used in Rothblum’s work) and show that each neighboring

9

hybrids in the sequence are indistinguishable to AC0 leakage using the local sampleability property
of our RandZero gadget. This allows us to prove an unconditional result. See Section 5 for the
details.

3 Preliminaries

Notation We will denote vectors by bold lowercase letters (e.g., x) and matrices with bold
uppercase letters (e.g., M). We will denote the i-th entry of a vector x by xi and the (i, j)-th entry
of the matrix M by Mi,j . We use ek ∈ {0, 1}n for the unit vector whose k-th coordinate is 1 and
the rest of the coordinates to be 0.

We use the notation W[C] for the vector of wire values of a circuit C (under a canonical ordering
consistent with the direction of evaluation), and PAR(n, b) for the distribution on n-bit strings that
is chosen uniformly at random subject to having parity b.

3.1 Indistinguishability

Definition 3.1 (Statistical distance) Let D1 and D2 be two distributions on a set S. The sta-
tistical distance between D1 and D2 is defined to be:

∆(D1, D2) = max
T⊆S
|D1(T)−D2(T)| = 1

2

∑
s∈S
|Pr[D1 = s]− Pr[D2 = s]|

We say that D1 is ε-close to D2 if ∆(D1, D2) ≤ ε, and ε-far otherwise.

Lemma 3.2 (Triangle Inequality) ∆(D1, D3) ≤ ∆(D1, D2) + ∆(D2, D3).

Definition 3.3 (ε-indistinguishability) Let X and Y be two distribution over the same do-
main. We say that (X,Y) is ε-indistinguishable by a class of functions C if for every C ∈ C,
∆(C(X), C(Y)) ≤ ε.

3.2 Circuit complexity

A class of functions C is closed under restriction (resp., negation) if for every f in C, the function
obtained by fixing the value of any input (resp., negating it) is also in C.

The composition C ◦ C′ consists of all functions (f ◦ f ′)(x) = f(f ′(x)), where f ∈ C and f ′ ∈ C′.
We use NC0[c] for the class of all multi-input, multi-output Boolean functions in which every

output depends on at most c inputs, AC0(d, s,m) for the class of circuits that use unbounded fan-in
AND-OR-NOT gates, have depth d, size at most s and m output bits, and AC0[B](d, s,m) for
circuits that may have other types of basis gates B that are closed under negation. If the input
or output length is unrestricted or clear from context it is left out of the notation. The following
claim follows directly from the definition.

Claim 3.4 NC0[c]◦NC0[c′] ⊆ NC0[cc′], AC0(d, s,m)◦NC0[c] ⊆ AC0(d+1, s+n·2c), and AC0[B](d, s,m)◦
NC0[c] ⊆ AC0[B](d+ 2, s+ n · 2c) where n is the output length of the NC0[c] circuit.

A 2-adaptive circuit over C is a collection of functions (A,By), where y ranges over all possible
output values of C. The value of the circuit on input x is (A(x), BA(x)(x)).

10

Claim 3.5 If (D1, D2) is ε-indistinguishable by AC0(2d+1, (2m+1)(s+O(1)), 2m) (resp., AC0[B](2d+
1, (2m +1)(s+O(1)), 2m)), then it is ε-indistinguishable by all 2-adaptive circuits over AC0(d, s,m)
(resp., AC0[B](d, s)).

Proof Given a 2-adaptive distinguisher (A,By), let C be the circuit that on input x, outputs
(A(x), By(x)) for y = A(x). Then C has the desired depth and size, as y can be selected by a DNF
or a CNF of size 2m, and distinguishes at least as well as (A,By).

Claim 3.6 If (D0, D1) is ε-indistinguishable by AC0(d, s, 1) (resp., AC0[B](d, s, 1)) then it is 3mε/2-
indistinguishable by AC0(d, 2s,m) (resp., AC0[B](d+ 1, s,m)).

Proof Let C be the distinguishing circuit with m outputs C1, . . . , Cm. For AC0 circuits we may
assume without loss of generality that all the topmost gates of C1, . . . , Cm are ANDs. Modifying
the distinguisher to have this form only affects the size by a factor of two.

By closure, for all subsets S of {1, . . . ,m}, the circuit ANDi∈SCi distinguishes D0 and D1 with
advantage at most ε. Any AND of literals in the Ci’s can be written as a linear combination of the
functions ANDi∈SCi via the Möbius transform (i.e., inclusion-exclusion):

ANDi∈TCi ANDi 6∈TCi = ANDi∈TCi (1− ORi 6∈TCi) =
∑
S⊆T

(−1)|S|ANDi∈T∪SCi.

By linearity it follows that the distinguishing advantage of any AND of literals, t out of which
are positive, can be at most 2m−tε. As the statistical distance between C(D0) and C(D1) is half
the sum of these advantages, it can be at most 1

2

∑(
m
t

)
2m−tα = 3mα/2.

We conclude with H̊astad’s unconditional result on indistinguishability of parity by constant-
depth circuits.

Theorem 3.7 ([H̊as14]) For any d, s ∈ N there exists a constant cd that depends only on d such

that (PAR(n, 0),PAR(n, 1)) is 2−cdn/(log s)
d−1

-indistinguishable by AC0(d, s, 1)

Corollary 3.8 There exists a constant cd such that (PAR(n, 0),PAR(n, 1)) are 2−cdn/(log s)
d−1

-

indistinguishable by AC0(d, s/2, cdn/(log s)d−1) and 2−n
O(1/d)

-

indistinguishable by 2-adaptive circuits over AC0(d/2− 1, 2n
O(1/d)

, nO(1/d)).

3.3 Leakage Resilient Circuit Compilers

In this subsection, we give the definitions of leakage resilient circuit compiler (abbreviated as LRCC)
for stateful and stateless circuits.

LRCC for Stateful Circuits. We first recall the notion of stateful circuits. This description
is taken verbatim from [ISW03]. A stateful circuit is a circuit augmented with memory cells. A
memory cell is a stateful gate with fan-in 1: on any invocation of the circuit, it outputs the previous
input to the gate, and stores the current input for the next invocation. Thus, memory cells act as
delay elements. We extend the usual definition of a circuit by allowing stateful circuits to possibly
contain cycles, so long as every cycle traverses at least one memory cell. When specifying a stateful
circuit, we must also specify an initial state for the memory cells. When C denotes a circuit with

11

memory cells and s0 an initial state for the memory cells, we write C[s0] for the circuit C with
memory cells initially filled with s0. Stateful circuits can also have external input and output wires.
For instance, in an AES circuit the internal memory cells contain the secret key, the input wires
a plaintext, and the output wires produce the corresponding ciphertext. The computation of C[s]
on an input x results in a wire assignment W (a wire assignment is a string that is obtained by
concatenating the values carried by all the wires in C), the output y and an updated state s1.

Definition 3.9 ((L, τ, ε)-leakage resilient implementation) Let C be a deterministic stateful
circuit, L be a leakage class, τ be a round parameter and ε be an error parameter. We say that
(Ĉ,Setup) is an (L, τ, ε)-leakage resilient implementation of C if:

• Ĉ is a randomized, stateful circuit.

• Setup is a randomized mapping from the initial state s0 of C to an initial state ŝ0 of Ĉ.

• Correctness. For every k ∈ N and every sequence of inputs x1, . . . , xk, we require that
probability (over the random coins of Setup and Ĉ) that the same outputs are obtained by
(stateful) invocations of C[s0] and Ĉ[ŝ0] on this input sequence is 1.

• Security. For every (possibly unbounded) stateful adversary A, there exists a (stateful) sim-
ulator S such that for every initial state s0 :∣∣Pr[RealA,Ĉ,Setup,L(s0, τ) = 1]− Pr[IdealA,Ĉ,Setup,S,L(s0, τ) = 1]

∣∣ ≤ ε
where Real and Ideal experiments are defined in Figure 1.

RealA,Ĉ,Setup,L(s0, τ)

1. ŝ0 ← Setup(s0).

2. Set y0, z0 = ⊥.
3. for every round t from 1 to τ :

• xt, `t ← A(Ĉ, yt−1, zt−1) where `t ∈ L.

• (Ŵt, yt, ŝt) W Ĉ[ŝt−1](xt).

• zt = `t(Ŵt).

4. Output whatever A outputs.

IdealA,Ĉ,Setup,S,L(s0, τ)

1. Set y0, z0 = ⊥.
2. for every round t from 1 to τ :

• xt, `t ← A(Ĉ, yt−1, zt−1) where `t ∈ L.
• (Wt, yt, st) W C[st−1](xt)

• zt = `t(S(C, xt, yt)).

3. Output whatever A outputs.

Figure 1: Real and Ideal Experiments

Definition 3.10 (LRCC for Stateful Circuits) Let n be the security parameter. A leakage re-
silient stateful circuit compiler for the (stateful) circuit class C is a pair of polynomial-time algo-
rithms (Tr, St) such that:

• Tr is a deterministic algorithm that maps a deterministic stateful circuit in C ∈ C and the
security parameter 1n to another stateful, randomized circuit Ĉ.

12

• St is a randomized algorithm that maps an initial state s0 of C and the security parameter
1n to an initial state ŝ0 of Ĉ.

For a leakage class L(n), round parameter τ(n) and error parameter ε(n), we say that (Tr, St)
is a (L(n), τ(n), ε(n))-leakage resilient circuit compiler for C, if for every stateful circuit C ∈ C,
(Tr(C, 1n),St(?, 1n)) is a (L(n), τ(n), ε(n))-leakage resilient implementation of C.

LRCC for Stateless Circuits. We now define a leakage-resilient circuit compiler for stateless
circuits.

Definition 3.11 ((L, ε)-leakage resilient implementation) Let C : {0, 1}k → {0, 1}m be a de-
terministic stateless circuit, L be a leakage class, and ε be an error parameter. We say that (I, Ĉ, O)
is a (L, ε)-leakage resilient implementation of C if:

• I : {0, 1}k → {0, 1}k̂ is a randomized input encoder which maps an input x to an encoded
input x̂.

• Ĉ is a randomized circuit that maps an encoded input x̂ to an encoded output ŷ ∈ {0, 1}m̂.

• O : {0, 1}m̂ → {0, 1}m is the deterministic output decoder that maps an encoded output ŷ to
y.

• Correctness: For every input x ∈ {0, 1}k, Pr[O(Ĉ(I(x))) = f(x)] = 1 where the probability
is over the random coins of I and Ĉ.

• Security: For any two inputs x0, x1 ∈ {0, 1}k, let (W0, ŷ0) W Ĉ[I(x0)] and (W1, ŷ1) W
Ĉ[I(x1)] where W0 (resp. W1) represents the assignment to every wire of Ĉ on input I(x0)
(resp. I(x1)). For any leakage function ` ∈ L, the statistical distance between `(W0) and
`(W1) is at most ε.

Definition 3.12 (LRCC for Stateless Circuits) Let n be the security parameter and let C be a
class of stateless circuits taking k input bits and having m output bits. A leakage resilient stateless
circuit compiler for the class C is a tuple of polynomial-time algorithms (Enc,Tr,Dec) where

• Enc is a randomized input encoder which maps an input x ∈ {0, 1}k and the security parameter
1n to an encoded input x̂.

• Tr is a deterministic algorithm that maps a deterministic stateless circuit in C ∈ C and the
security parameter 1n to another stateful, randomized circuit Ĉ. Ĉ maps an encoded input x̂
to an encoded output ŷ.

• Dec is the deterministic output decoder that maps an encoded output ŷ to y ∈ {0, 1}m.

For a leakage class L(n) and the error parameter ε(n), we say that (Enc,Tr,Dec) is a (L(n), ε(n))-
leakage resilient circuit compiler for C if for every C ∈ C, (Enc(?, 1n),Tr(C, 1n),Dec) is a (L(n), ε(n))-
leakage resilient implementation of C.

13

The input encoder Enc(1n, x): Every input bit xi ∈ {0, 1} is encoded independently by xi ∈
{0, 1}n which is random conditioned on its parity being equal to xi.

The transformer Tr(1n, C):

Every wire w ∈ {0, 1} of C is replaced by a wire bundle w ∈ {0, 1}n.

Every addition gate a+ b in C is implemented by a + b, where a,b are the wire bundles
representing a, b, respectively.

Every multiplication gate a × b is implemented as follows. Compute the matrix Z ∈
{0, 1}n×n given by

Zij =

a random bit, if i < j

aibj , if i = j

Zji + aibj + ajbi, if i > j

and output the matrix-vector product Z · 1 computed from left to right.

The output decoder Dec(1n,y1 · · ·ym): Replace every encoded output wire bundle yj by its
parity yj1 + · · ·+ yjn.

Figure 2: The Ishai-Sahai-Wagner circuit compiler [ISW03].

4 Improved Analysis of the ISW Construction

The leakage-resilient circuit transformer of Ishai, Sahai, and Wagner [ISW03] is shown in Figure 2.
Ishai et al. proved it is correct and perfectly secure against leakage functions that depend on at
most n/2− 1 wires.

The transformer maintains the invariant that every wire w of C is represented by a wire bundle w
that XORs to the bit value w, ensuring correctness; for details of the correctness proof see [ISW03].

Theorem 4.1 Let C be any class of functions that is closed under restriction and negation of
inputs. Assume (PAR(n, 0),PAR(n, 1)) is ε-indistinguishable by C ◦ NC0[2]. Then the ISW circuit
compiler is (C, kε)-leakage resilient stateless compiler where k is the input size of the circuit.

Let Ĉ(x1, . . . ,xk) represent the transformed circuit when it is given wire bundles x1, . . . ,xk as
its inputs. The following lemma is key to the proof of Theorem 4.1.

Lemma 4.2 For every circuit C of size S on k inputs, every k strings w1, . . . ,wk ∈ {0, 1}n,
and every k bits c1, . . . , ck, the wire distributions of Ĉ(w1 + c1 · x, . . . ,wk + ck · x) in the cases
x ∼ PAR(n, 0) and x ∼ PAR(n, 1) are ε-indistinguishable by C under the assumption in Theorem 4.1.

Proof of Theorem 4.1: Fix a leakage function ` ∈ C. We need to show that `(W) is statistically
close to `(W′) where W and W′ are the wires of Ĉ(Enc(x)) and Ĉ(Enc(x′)) for any x, x′ ∈ {0, 1}k.
First consider the case when x and x′ differ in a single bit, say the i-th bit. Hardwiring all
encoded inputs except for xi into Ĉ and applying Lemma 4.2 with wj = xj , cj = 0 for j 6= i, and

wi = 0, ci = 1,x = xi, it follows that Ĉ(Enc(x)) and Ĉ(Enc(x′)) are ε-indistinguishable by C.

14

For the general case, consider the hybrid wire distributions Ĉ(Enc(xi)), where x0 = x, xk = x′,
and xi−1, xi differ in at most one bit. By what was just proved Ĉ(Enc(xi−1)) and Ĉ(Enc(xi)) are ε-
indistnguishable, so by the triangle inequality Ĉ(Enc(x)) and Ĉ(Enc(x′)) must be kε-indistinguishable.

The main idea in the proof of Lemma 4.2 is the following claim, which states that the wire
distribution of any single gate in the transformed circuit can be described locally, and moreover
the output of the gate obeys the same type of distribution as its inputs.

Claim 4.3 For all g ∈ {+,×} and w,w′, c, c′ there exists a simulator Sim such that

1. The wires of Sim(w + c · x,w′ + c′ · x) and ĝ(w + c · x,w′ + c′ · x) are identically distributed
even conditioned on x.

2. The value y assigned to the output bundle by Sim(w + c · x,w′ + c′ · x) equals w′′ + c′′ · x for
some w′′ and c′′ that depend on the internal randomness of Sim only.

3. Every wire of Sim(w + c · x,w′ + c′ · x) depends on at most two bits of x.

Proof of Lemma 4.2: We consider the following slightly stronger formulation of the lemma as it
enables a proof by induction: Under the same assumptions, the joint distribution(

x,W[Ĉ(w1 + c1 · x, . . . ,wk + ck · x)]
)

in the cases x ∼ PAR(n, 0) and x ∼ PAR(n, 1) are ε-indistinguishable by circuits that are C ◦NC0[2]
functions in the first input x and C functions in the second input W[· · ·].

The proof is by induction on S. When S = 0, there are no internal gates so the leakage function
` observes x together with the input wires (w1 + c1 ·x, . . . ,wk + ck ·x) and attempts to distinguish
x ∼ PAR(n, 0) from x ∼ PAR(n, 1). As each input wire bundle is either a constant or a shift of x,
the second input can be emulated from the first one by the closure properties of C. Therefore the
distributions PAR(n, 0) and PAR(n, 1) can be distinguished by C, and therefore by C ◦NC0[2], with
the same advantage ε.

Now suppose the lemma holds for all circuits of size S − 1. Given a circuit C of size S, let g
be a bottom gate of C and xi, xj its (possibly identical) inputs. The leakage function ` of interest

observes x, the wires of ĝ(wi + ci ·x,wj + cj ·x), and the wires of Ĉ−(w1 + c1 ·x, . . . ,wk + ck ·x,y),
where C− is the circuit obtained by removing gate g from C and replacing its output by y.

By part 1 of Claim 4.3, the wires of ĝ(wi + ci · x,wj + cj · x) can be replaced by those of
Sim(wi +ci ·x,wj +cj ·x) without affecting the distinguisher’s advantage. By part 3 they are 2-local
functions of x. Therefore they are a C ◦ NC0[2] function of x, so can be omitted from the input to
`. The Lemma now follows from part 2 of Claim 4.3 and the inductive hypothesis applied to the
circuit C−.

Proof of Claim 4.3: If g is an addition gate, set Sim = +̂: The output is the sum of its two inputs
confirming part 2, and there are no wires other than the output wires, from where part 3 follows.

Let a = w + cx and b = w′ + c′x. If g is a multiplication gate, the simulator Sim(a,b) works
like ×̂, but uses the following alternative implementation of the matrix Z:

Zij =

a random bit + aiw

′
j + biwj , if i < j

aibj , if i = j

Zji + aibj + ajbi, if i > j

15

This alternative implementation of Z does not affect the distribution of the entries of Z and therefore
of the wires of the transformed circuit. We now argue properties 2 and 3 of Claim 4.3.

When i = j and i < j, Zij only depends on the i-th bit of a and b, which are independent of
all but possibly the i-th bit of x. When i > j, Zij = Zji + aibj + ajbi and this equals randomness
plus the bit

(ajw
′
i + bjwi) + (aibj + ajbi).

The first bracketed term equals cxjw
′
i + c′xjwi plus a term that only depends on w. The second

one equals

(wi + cxi)(w
′
j + c′xj) + (w′i + c′xi)(wj + cxj)

= (cxiw
′
j + c′xiwj) + (cxjw

′
i + c′xjwi) + (wiw

′
j + wjwi).

Therefore the sum of the two equals cxiw
′
j + c′xiwj plus a term that only depends on w. It follows

that for any i, j, Zij can only depend on the i-th bit of x and the wires in the computation of Zi,j

for i > j is a 2-local function of x. We thus conclude that the wires in the computation of Z · 1 is
a 1-local function in x and the output is of the form w′′ + c′′ · x.

Corollary 1.1 follows directly from Theorem 4.1, Claim 3.4 and Corollary 3.8.

5 LRCC for Stateful Circuits

In this section, we give a construction of leakage resilient circuit compiler and prove its security
against leakage classes that have low correlation with parity.

The class C ◦NC0[c] consists of all composed functions f ◦ g where f ∈ C and every output of g
depends on at most c inputs.

Theorem 5.1 Let c be a universal constant and C be any class of functions that is closed under
restriction. If (PAR(n, 0),PAR(n, 1)) is ε-indistinguishable by 2-adaptive functions in C ◦ NC0[c],
then the construction in Figure 3 is a (C, T,O(εT (S+n)))-leakage resilient stateful circuit compiler
for the class of stateful circuits of size S and T is the number of rounds.

Organization. In Section 5.1, we will describe a building block that generates a random encoding
of 0 and prove some useful properties. In Section 5.2, we give the description of the transformer
(Tr, St). In Sections 5.3-5.5, we prove the security of the construction.

5.1 The Zero-Encoder

In this subsection, we describe and analyze a circuit RandZero that produces random encodings of
the bit zero.

Construction 5.2 RandZero: On input matrix G ∈ {0, 1}n×n and vector r ∈ {0, 1}n, calculate

Zij =

a random bit, if i < j,

Giiri, if i = j,

Zji +Gijrj +Gjiri, if i > j,

and output the matrix-vector product Z · 1 computed from left to right.

16

We denote by W[RandZero(G, r; z)] the wire assignment of the circuit on input G, r and internal
randomness z. The dependence on internal randomness is hidden when irrelevant.

For an n-by-m matrix R with columns r1, . . . , rm, we write RandZero(G,R) for the multi-
output circuit (RandZero(G, r1; z1), . . . ,RandZero(G, rm; zm)), where zi is chosen uniformly and
independently.

Basic properties The following facts can be inferred directly from the construction.

Fact 5.3 (Output distribution) For every G and r, c = RandZero(G, r) is uniformly random
conditioned on 1T · c = 1T ·G · r.

In particular, when the columns of G have parity zero then RandZero(G, r) is a random string
of parity zero. On the other hand, when the columns of G have parity one and r is random, then
the RandZero(G, r) is a uniformly random string.

Proof The equation is satisfied as both the left and right-hand sides are equal to the sum of the
entries of Z. On the other hand c is (n − 1)-wise independent as any n − 1 of its outputs depend
on distinct random bits.

Fact 5.4 (Linearity) W[RandZero(G, r1 + r2)] is identically distributed to
W[RandZero(G, r1; z1)]+W[RandZero(G, r2; z2)] provided at least one of z1, z2 is uniformly random.

Proof W[RandZero(G, r; z)] is a linear function of r and z, so even when say z1 is fixed, z = z1+z2
is uniform.

Simulation The following claims provide simulations of the RandZero that are in a suitable sense
“indepenent” of its respective inputs G and r.

Claim 5.5 There exists a simulator circuit Simr such that

1. For every G and r, W[Simr(G, r)] and W[RandZero(G, r)] are identically distributed.2

2. The output of Simr(G, r; z) equals Diagonal(r1, . . . , rn)GT1 plus some function that depends
only on z.

3. For fixed G and z, W[Simr(G, r; z)] is an NC0 function of r.

Claim 5.6 There exists a simulator Simv such that

1. For every G, r, and v ∈ {0, 1}n, W[Simv(G,v, r)] and W[RandZero(G + v · 1T , r)] are iden-
tically distributed.

2. Simv(G,v, r) equals vrT1 plus some function that does not depend on v.

3. For fixed G, r, z, W[Simr(G,v, r; z)] is an NC0 function of v.

2The simulator circuit Simr is the composition of RandZero and a preprocessing circuit. The irrelevant wires from
preprocessing are discounted when comparing the two distributions.

17

Proof of Claim 5.5: The only difference between Simr and RandZero is in the choice of Zij when
i < j:

Zij =

a random bit +Gjiri, if i < j,

Giiri, if i = j,

Zji +Gijrj +Gjiri, if i > j,

This does not affect the wire distribution, confirming property 1. For property 2, it is direct from
the redefinition of Z that Z ·1 now equals Diagonal(r1, . . . , rn)GT1 plus some linear function in the
randomness z. For property 3, observe that all the wires in Simr are affine functions of at most two
bits of r.

Proof of Claim 5.6: Set G′ = G + v1T and modify Z so that

Zij =

a random bit +G′ijrj , if i < j,

G′iiri, if i = j,

Zji +G′ijrj +G′jiri, if i > j,

.

The changes do not affect the wire distribution, confirming property 1. For property 2, Zij now
equals virj plus some affine function of the other inputs, so Z ·1 = vrT1 as desired. As for property
3, observe that Zij does not depend on any entries of v except possibly vi, so the wires of Simv are
affine functions of at most two bits of v.

5.2 Construction

We give the description of our leakage resilient circuit compiler (Tr,St) in Figure 3.

Correctness. The invariant maintained by the implementation is that the value of each wire w
of C equals the parity of the wire bundle w in Ĉ representing it. By construction this is true for the
input wires and the state wires. In all applications of RandZero, the parity of the output of RandZero
equals zero by Fact 5.3. It follows that the output of addition has parity 1Ta+1Tb =

∑
(ai+bi), the

output of multplication has parity 1TaTb1 = (
∑
ai)(

∑
bi), and the state wire updates, including

those to G, preserve parity. Finally, the output gates equal the parity of the corresponding wires,
establishing correctness.

Security. We now prove the security part of Theorem 5.1. We will show that for every (possibly
unbounded) stateful adversary A, there exists a (stateful) simulator S such that for every initial
state, the adversary’s view in the real and ideal experiment described in Figure 1 are statistically
close.

In Section 5.3, we give the description of our simulator. The security proof consists of two steps,
following the structure in the works of Faust et al. [FRR+10] and Rothblum [Rot12] (a pictorial
representation of the structure of the proof is given in Figure 4.). First, in Section 5.4, we describe a
local internal reconstruction procedure that represents the adversary’s view as a local (NC0) function
of an external wire distribution. This distribution contains explicit descriptions for all the wires in
all evaluation rounds of Ĉ, as well as some additional information for the multiplication gates and
state updates.

18

The construction. Given a security parameter 1n, a circuit C, and an initial state s ∈ {0, 1}k:

Initialization:

The encoded state consists of k wire bundles s, where the i-th one is a random n-bit string of
parity si. In addition the state contains an n × n matrix G that is random conditioned
on 1TG = 0T .

Every wire w of C is represented by an n-wire bundle w in the transformed circuit Ĉ = Tr[C].

Computation:

Every input gate x in C is implemented by the wire bundle x · e1, where e1 = (1, 0, . . . , 0).

Every addition gate a+ b in C is implemented as a + b + RandZero(G, r), where a,b are the
bundles representing a, b and r is a random string.

Every multiplication gate a×b in C is implemented as (a·bT +RandZero(G,R))·1, where where
a,b are the bundles representing a, b, R is a random n × n matrix, and matrix-vector
multiplication is implemented left-to-right.

For every output gate in C represented by wire bundle out, compute out′ = (out +
RandZero(G, r)) for a random r and decode the output as 1T · out′.

State update:

Replace every bundle si of the state by si + RandZero(G, ri) for a random ri. Replace G by
RandZero(G,R) for a random n by n matrix R.

Figure 3: LRCC (Tr, St) for stateful circuits.

Then in Section 5.5, we gradually modify the components of the external wire distribution until
the wire values in Ĉ observed by the adversary become independent of the wires of C and so the
adversary’s view can be simulated, unless various circuits obtained by restricting inputs in the
composition of the leakage and the internal reconstruction procedure can compute parity.

5.3 Description of the Simulator

We give the description of the simulator S in Figure 5.

5.4 External Data Sampler

The external data associated to a circuit wire (of C in a given round) consists of the wires of a
copy of the circuit RandZero. The external data associated to a gate consists of the external data
of all its incident wires, plus some auxiliary data specific to the gate. We give the description of
the external data sampler in Figure 6.

19

Leakage

Internal Reconstruction

External Data Sampler

Hybrid DataComputation tableau of C

Figure 4: Components of the security proof. When the external sampler is given the input data
for Hybrid0, the adversary’s view is identical to the output of the transformed circuit as in the real
world. In Hybrid3, the adversary’s view is identical to the output of the simulator as in the ideal
world. Indistinguishability of consecutive hybrids is argued by analyzing the view of the the leakage
function composed with Internal Reconstruction.

The (stateful) simulator. Given a security parameter 1n, a circuit C, inputs x, and outputs
y:

Initialization. The encoded state consists of k wire bundles s, where the i-th one is
uniformly random n-bit string. The matrix G is random conditioned on 1TG = 1T .

The simulator runs the circuit Ĉ using the input, addition, and multiplication gates imple-
mentation from Figure 3.

For every output gate of Ĉ with input x whose value in y is out, the output of the gate Ĉ is
simulated as 1T (x + RandZero(G, r)), where r is a random string of parity out+ 1Tx.

State update: The state update is the same as in 3, except that the matrix R used in G’s
update is random conditioned on 1TR = 1T .

Figure 5: The simulator S.

The external wire distribution denotes the induced distribution on the output of the external
data sampler when it run by sampling G1 (which is the generator matrix of the first round) and
for every round, sampling {ri},R from some distribution.

Internal Reconstruction Procedures. We now prove the following lemmas.

Lemma 5.7 (Addition Reconstruction Procedure) Fix a round and let G be the genera-
tor matrix for this round. There exists an NC0 circuit IR+ that, given inputs a, b ∈ {0, 1}
and the external gate data Wa = W[RandZero(G, ra; za)], Wb = W[RandZero(G, rb; zb)], Wc =

20

The External Data Sampler. The input to the Sampler consists of the round number t, a
generator matrix for this round Gt, a wire update seed rwt for each wire bundle w, and a state
update seed matrix Rt.

To sample the external wires for the round number t do the following:

1. For every input wire, sample the external data as W[RandZero(Gt,0; 0)].

2. For all other wires w, sample the external data W[RandZero(Gt, rwt)].

3. For every multiplication gate, sample the auxiliary data W[RandZero(Gt,F)], where F is
a uniformly random n× (n− 1) matrix.

4. For the state update, sample W[RandZero(Gt,Rt)] and update Gt+1 to equal the output
of this circuit.

Figure 6: External Data Sampler

W[RandZero(G, rc; zc)] outputs an assignment to the wires of a transformed addition gate +̂ such
that if rc and zc are uniformly random, the output of IR+ is identically distributed to the wires of
+̂((ae1 + oa), (be1 + ob)), where oa, ob are the outputs of Wa, Wb, respectively.

Proof The circuit IR+ outputs the values (ae1 + oa) and (be1 + ob) for the input wires a and
b and Wa + Wb + Wc for the wires of the RandZero(G, r) circuit used in the implementation of +̂,
and obtains the output by adding the values assigned to the top gate of +̂.

By Fact 5.4, Wa +Wb +Wc is identically distributed to W[RandZero(G, r)] for a random r, from
where the identical distribution of the wires follows.

Note that updating the state can be expressed as special case of the addition circuit (i.e., setting
one of the input vectors as 0). Hence, we get the following corollary.

Corollary 5.8 (State Update Reconstruction Procedure) Fix a round and let G be the gen-
erator matrix for this round. There exists an NC0 circuit IRst that, given inputs a ∈ {0, 1} and the
external gate data Wa = W[RandZero(G, ra; za)], Wc = W[RandZero(G, rc; zc)], outputs an assign-
ment to all the wires in the transformed state update gate ŝt such that if rc and zc are uniformly
random, the output of IRst is identically distributed to the wires of ŝt(ae1 + oa), where oa is the
output in Wa.

Lemma 5.9 (Output Reconstruction Procedure) Fix a round and let G be the generator ma-
trix for this round. There exists an NC0 circuit IRout that, given inputs a ∈ {0, 1} and the external
gate data Wa = W[RandZero(G, ra; za)], Wc = W[RandZero(G, rc; zc)], outputs an assignment to
all the wires except those in the final decoding step of a transformed output gate ôut such that:

1. If 1T · G = 0T and rc and zc are uniformly random, the output of IRout is identically
distributed to these wires in ôut(ae1 + oa), where oa is the output in Wa.

21

2. If 1T ·G = 1T and rc ∼ PAR(n, 0), zc is chosen uniformly random, the output of IRout is
identically distributed to these wires in the simulated distribution.

Proof Consider the NC0 circuit from Lemma 5.7 where we set b = 0 and ob, rb and Wb to be
all zeroes string. The first part of the corollary is a direct consequence of Lemma 5.7. To see the
second part, note that the NC0 circuit from Lemma 5.7 implicitly sets the randomness used in the
gadget as r = ra + rc. Thus, parity of r is equal to the parity of G · (ra + rc) (since column parity
of G is 1). This is equal to parity of oa + oc (follows from Fact 5.3) which is in turn equal to the
parity of (ae1 + oa) + (ae1 + oc). Since rc is chosen uniformly subject to its parity being 0, r is
distributed uniformly subject to its parity being equal to the parity of (ae1 +oa)+(ae1 +oc). This
is precisely the simulated distribution.

Lemma 5.10 (Multiplication Reconstruction Procedure) Fix a round and let G be the gen-
erator matrix for this round. There exists an NC0 circuit IR× that, given inputs a, b ∈ {0, 1} and
the external gate data Wa = W[RandZero(G,
ra; za)], Wb = W[RandZero(G, rb; zb)], Wc = W[RandZero(G, rc; zc)], WF = W[RandZero(G,F; zF)]
outputs an assignment to the wires of a transformed multiplication gate ×̂ such that if rc, zc,F, zF
are uniformly random, the output of IR× is identically distributed to the wires of ×̂((ae1+oa), (be1+
ob)), where oa, ob are the outputs of Wa, Wb, respectively.

Proof We start with the description of IR×.

1. Compute in NC0 the matrix C = (ae1 + oa) · (be1 + ob)
T . The m-th column of this matrix is

given by cm and is equal to

cm = bm · (oa + a · e1)
= bm · oa + bma · e1
= RandZero(G, t′m; z′m) + bma · e1

where (t′m, z
′
m) =

{
(ra, za), if bm 6= 0,

(0,0), if bm = 0
.

2. Let (h1, . . . ,hn−1) = RandZero(G,F; zF). Compute a matrix U ∈ {0, 1}n×n in NC0 defined
as follows:

U = (oc + a · ob + h1,h1 + h2, . . . ,hn−2 + hn−1,hn−1) + a · Diagonal(b1, . . . , bn)

The sum of all the columns of this matrix is given by oc + a · ob + a · (ob + b · e0) = oc + abe1.
Additionally, we note that we can compute U ·1 in NC0. Now, observe that the m-th column
of U given by um is of the form

um = RandZero(G, tm; zm) + abm · em

where (tm, zm) =

(rc + a · rb + f1, zc + a · zb + zF,1), if m = 1,

(fm−1 + fm, zF,m−1 + zF,m), if 1 < m < n,

(fn−1, zF,n−1), if m = n,

Note that W[RandZero(G, tm; zm)] can be computed in NC0.

22

3. Compute in NC0, Wm = W[RandZero(G, t′m; z′m)]+W[RandZero(G, tm; zm)]+W[RandZero(G,0; z′′m)]
where z′′m is an assignment such that RandZero(G,0; z′′m) = abm(e1+em).3 Let S be the matrix
whose m-th column is the output in Wm.

4. Output C, the wire assignments in computing {Wm}, U = S + C and the computation of
U · 1.

To show that the distribution output by this circuit is identical to the real distribution of the
internal wires of the multiplication gate, it is sufficient to show that each column of S is dis-
tributed identically to the output of RandZero(G, r; z) for a randomly chosen r and z. We argue
this as follows. Observe that (rk, zk) and (F, zF) are chosen uniformly at random and hence
from the linearity property (Lemma 5.4) that for every column m, the distribution of the wire
assignments in RandZero(G, tm) computed by the above circuit is identical to the distribution of
RandZero(G, rm; z) for a uniformly chosen rm and randomly chosen z. The claim now follows by one
more application of the linearity property allowing us to deduce that Wm is distributed identically
to W[RandZero(G, rm; z)] for an uniform rm, zm.

Lemma 5.11 (Composition) There exists a circuit IR such that for every round, given the
tableau of C and the external data for that round, outputs an assignment to all the wires of the
transformed circuit except for those wires involved in the final output decoding such that:

1. (Locality) IR is in NC0, and moreover every gate in the output of IR only depends the tableau
of the gate and on external data for its incident wires and the gate.

2. (Real world distribution) If G for the first round is sampled randomly such that 1T ·G = 0T

and for every round, if the external data is generated by giving the sampler {ri},R that are
chosen uniformly at random, the concatenated outputs of IR in every round is identical to
the real distribution of these wires.

3. (Ideal world distribution) If G for the first round is sampled randomly such that 1T ·G = 1T

and for every round, if the external data is generated by giving the sampler ri
$← {0, 1}n

for every wire i that is not an output wire and for every output wire i, ri ∼ PAR(n, 0) and

R
$← {0, 1}n×n subject to 1TR = 1T then the concatenated outputs of IR for every round is

identical to the simulated distribution of these wires.

Proof IR on inputs, the tableau and the the external data, simply invokes the corresponding
internal reconstruction procedure for every gate (Lemmas 5.7, 5.10, 5.9 and Corollary 5.8), con-
catenates their wire assignment and outputs it. It is clear that IR is local in both senses specified.

To prove the first (resp. second) part, we consider a sequence of hybrids starting from the real
(resp. simulated) distribution and ending with the output of IR. In the first hybrid of this sequence,
the only change that we make is that in the first round of the experiment, we sample initial state
encoding si as RandZero(G, r) + sie1. It follows from Fact 5.3 that this hybrid is identical to the
real (resp. simulated) distribution since 1T ·G = 0T (resp. 1T). Now, in the (t, i)-th hybrid in this
sequence, for every output wire w of a gate in the i-th layer of C in the t-th round, the external
data corresponding to this wire is generated by running the sampler on an uniformly chosen rw

3Note that for any vector v whose parity is 0, there exists an assignment z such that RandZero(G,0; z) = v.

23

(resp. sampling rw ∼ PAR(n, 0) if w is an output wire). Then, the internal wires of every gate in
the i-th layer is generated by running their corresponding internal reconstruction procedure. We
note that it now follows as a direct consequence of Lemmas 5.7, 5.10, 5.9 and Corollary 5.8 that the
i-th hybrid in this sequence is identical to the previous hybrid and this completes the argument.

5.5 Proof of Indistinguishability

In this subsection, we complete the proof of security. For this purpose we describe describe four
hybrid distributions Hybrid0,
Hybrid1,Hybrid2,Hybrid3 observed by the leakage. We argue that Hybrid0 and Hybrid3 are identically
distributed to the wires of the transformed circuit and the simulator’s output, respectively, and
that all pairs of consecutive distributions are computationally indistinguishable by the leakage.

The four distributions are sampled by instantiating the external data sampler with different
inputs, and then applying the internal reconstruction in Lemma 5.11 to the output. The inputs
used to instantiate the external data sampler are:

Hybrid0: Initial G is random conditioned on having zero column-parity (1TG = 0T). all wire
update seeds rwt and all state update seeds Rt are uniformly random.

Hybrid1: G is sampled as in Hybrid0. All wire update seeds rwt and all state update seeds Rt are
random conditioned on having column-parity 0 (1T rwt = 0,1TRt = 0T).

Hybrid2: rwt are sampled as in Hybrid1. G and Rt are random conditioned on having column-parity
1 (1TG = 1T ,1TRt = 1T).

Hybrid3: G and Rt are sampled as in Hybrid2. rwt are uniformly random except for the output
wires, which remain unchanged.

We note that the assignment to the final output decoding wires is a deterministic function of
the external data. Thus, it follows from part 2 of Lemma 5.11, the view of the leakage function
in Hybrid0 is identical to the real distribution of the transformed circuit’s wires, and by part 3, its
view in Hybrid3 is identical to the output of the simulator. To finish the proof, we establish the
following three claims.

Claim 5.12 Under the assumptions of Theorem 5.1, the adversary’s outputs on Hybrid0 and Hybrid1
are O(εT (S + n))-statistically close.

Proof We fix G = G1 and modify the distribution of the relevant seeds rwt and the columns of
Rt one by one, in increasing order of the round t. As the effect of both types of seeds is the same,
without loss of generality, we analyze the effect of changing a seed of type rwt from being uniformly
random to having parity zero, assuming all the other seeds are fixed to maximize the adversary’s
distinguishing advantage.

We can simulate the first (t − 1) rounds of the leakage experiment using the fixed seeds.
In the t-th round, we can generate all the external data for this round non-uniformly except
W[RandZero(Gt, rwt)]. As all random seeds from the previous rounds have been fixed, by Fact 5.3
Gt is a fixed matrix with column-parity zero. By part 1 of Claim 5.5, this external data item can
therefore be replaced by W[Simr(Gt, rwt)] without affecting the adversary’s advantage. By part 3

24

of Claim 5.5, we infer that W[Simr(Gt, rwt)] is NC0 computable from rwt and therefore, we can
generate all the external data for the t-th round by an NC0 circuit. Now, running the internal
reconstruction procedure IR (which is again an NC0 circuit) on this external data outputs an as-
signment to every wire of Ĉ in the t-th round except those in the final output decoding step. Since
GT

t 1 = 0, by part 2 of Claim 5.5, the output of Simr(Gt, rwt) is statistically independent of rwt.
Therefore, the wires of all the gates in the computation (including the final output decoding in case
that w is an output wire) that are evaluated after w are independent of rwt and can be fixed to
maximize the adversary’s advantage. Thus, we can generate the wire assignment to every wire of
Ĉ in the t-th round using an NC0 circuit. The subsequent rounds of the leakage experiment can be
simulated from the fixed seeds since even if w is an updated state wire, the output of Simr(Gt, rwt)
is statistically independent of rwt and hence the bundles which feed into the subsequent rounds are
independent of rwt and depend only on the fixed seeds.

By the above argument, we deduced that (i) the first (t− 1) rounds of the leakage experiment
can be simulated independent of rwt, (ii) the wire assignment in t-th round are NC0 computable
from rwt, and (iii) the subsequent rounds of the experiment are independent of rwt. Therefore the
adversary’s advantage cannot exceed the ability of C ◦ NC0 in distinguishing a uniform random
string from a parity-zero string. This is at most twice the advantage in distinguishing random
parity-zero and parity-one strings, which is assumed to be ε.

By the triangle inequality, the adversary’s advantage accumulated by all O(T (S + n)) changes
is at most O(εT (S + n)).

Claim 5.13 Under the assumptions of Theorem 5.1, the adversary’s outputs on Hybrid1 and Hybrid2
are O(εT)-statistically close.

Proof We modify the distribution on the matrices G = G1,R1, . . . ,Rn one by one such that
they are random subject to their column parity being 1.

The change in the distribution of G can be implemented by setting G = G′ + v · 1T , where G′

is a random column-parity zero matrix and v changes from a random parity-0 to a random parity-1
vector.

To analyze the effect of this change, we apply part 1 Claim 5.6 and replace all items of type
W[RandZero(G, rw1)], W[RandZero(G,F)], and W[RandZero(G,R1)] in the external data for the
first round by W[Simv(G′,v, rw1)], W[Simv(G′,v,F)], and W[Simv(G′,v,R1)] without affecting
the adversary’s advantage. This defines the external data for the first round and by part 3 of
claim 5.6, we can generate this by an NC0 circuit. Now, applying the internal reconstructing
procedure, IR (which is again an NC0 circuit) from Lemma 5.11 on this external data allows us
to generate all the wires in the computation of Ĉ in the first round, except the assignment to the
final output decoding wires. By part 2 of Claim 5.6, the output of Simv(G′,v, r) is independent of
v provided r has parity zero, which is true in all instantiations. Therefore all the wires in the final
output decoding step of the first round are independent of v and can be non-uniformly computed.
Thus, we have generated the assignment to every wire of Ĉ in the first round by an NC0 circuit.
The subsequent rounds are independent of v as a direct consequence of part 2 of Claim 5.6. Thus,
the assumption that random strings of parity zero and one are indistinguishable by C ◦ NC0, we
obtain that the adversary’s outputs when G is modified are ε-close.

We now analyze the change in advantage when Rt−1 is modified from having column-parity
zero to one. We represent Rt−1 as R′+v ·1T , where R′ s a random column-parity zero matrix and
v changes from a random parity-0 to a random parity-1 vector. We fix all the random seeds given

25

as input the external data sampler except for v such that adversary’s distinguishing advantage is
maximized conditioned on this fixing. This allows us to simulate the first (t − 2) rounds of the
leakage experiment.

Recall that Gt = RandZero(Gt−1,Rt−1). By part 1 of Claim 5.5, we may replace W[RandZero(Gt−1,
Rt−1)] in external data of the (t− 1)-th round with W[Simr(Gt−1,Rt−1)] without affecting the ad-
versary’s advantage. This defines the external data for the (t−1)-th round as well as the assignment
to the final output decoding wires which are independent of v and hence can be non-uniformly fixed.
As a consequence of part 3 of Claim 5.5 and part 1 of Lemma 5.11, we deduce that the assign-
ment to all the wires of Ĉ in the (t − 1)-th round can be generated by an NC0 circuit. Since the
column parity of Gt−1 is 1, by part 2 of Claim 5.5 Gt = RandZero(Gt−1,Rt−1) can be expressed
as G′ + v · 1T where G′ is independent of v. We may now use Claim 5.6 and Lemma 5.11 in an
analogous manner to the first part of the proof to deduce that the assignment to all the wires of Ĉ
in the t-th round can be generated by an NC0 circuit. Again, it follows from the part 2 of claim 5.6,
the subsequent rounds of the leakage experiment can be simulated independent of v.

We thus, conclude that the advantage of the adversary cannot exceed that of a 2-adaptive circuit
in the class C ◦NC0 in distinguishing random strings v of parity zero and one. By assumption, this
advantage is at most ε.

By the triangle inequality, the adversary’s advantage accumulated by all T changes is at most
εT .

Claim 5.14 Under the assumptions of Theorem 5.1, the adversary’s outputs on Hybrid2 and Hybrid3
are O(εTS)-statistically close.

Proof We fix G,R1, . . . ,RT and modify the distribution of rwt one by one in the increasing
order of round t if w is not an output wire. By a standard hybrid argument, it is sufficient to show
that for some t, w, the effect of changing rwt is ε-indistinguishable. We fix all other seeds except
rwt such that the adversary’s distinguishing advantage is maximized conditioned on this fixing.

We can simulate the first (t − 1) rounds of the leakage experiment using the fixed seeds.
In the t-th round, we can generate all the external data for this round non-uniformly except
W[RandZero(Gt, rwt)]. As G,R1, . . . ,Rt−1 are fixed with column parity 1, by Fact 5.3 Gt is a
fixed matrix with column-parity 1. By part 1 of Claim 5.5, this external data item can therefore be
replaced by W[Simr(Gt, rwt)] without affecting the adversary’s advantage. By part 3 of Claim 5.5,
we infer that W[Simr(Gt, rwt)] is NC0 computable from rwt and therefore, we can generate in NC0

all the external data for the t-th round along with the assignment to the final output decoding
wires which are independent of rwt. Now, by running the internal reconstruction procedure IR
from Lemma 5.11 on this external data, we can generate the assignment to every wire of Ĉ in the
t-th round using an NC0 circuit. Since GT

t 1 = 1, by part 2 of Claim 5.5, the output of Simr(Gt, rwt)
is statistically independent of Gt. In particular, for any two matrices Gt and Gt+1 whose column
parity is 1 and randomness z, Simr(Gt, rwt; z) = Simr(Gt+1, rwt; z). Thus, even when w is an
updated state wire, the external data for the (t+ 1)-th round can be generated by an NC0 circuit
(from part 3 of Claim 5.5). This allows to obtain an assignment to every wire of Ĉ in the (t+ 1)-th
round by an NC0 circuit (as a consequence of Lemma 5.11). The subsequent rounds of the leakage
experiment can be simulated from the fixed seeds and are independent of rwt.

By the above argument, we deduced that (i) the first (t− 1) rounds of the leakage experiment
can be simulated independent of rwt, (ii) the wire assignment in t and (t + 1)-th rounds are NC0

computable from rwt, and (iii) the subsequent rounds of the experiment are independent of rwt.

26

Therefore the adversary’s advantage cannot exceed the ability of 2-adaptive circuits from C ◦ NC0

in distinguishing a uniform random string from a parity-zero string. This is at most twice the
advantage in distinguishing random parity-zero and parity-one strings, which is assumed to be ε.

From the above claims, we deduce that the real distribution is O((S + n) · τ · ε)-close to the
simulated distribution. This completes the proof of Theorem 5.1. Corollary 1.2 follows directly
from Theorem 5.1, Claim 3.4 and Corollary 3.8.

Acknowledgements. The first author’s research is supported by Hong Kong RGC GRF CUHK14208215
and CUHK14207618. The second author’s research is supported by ERC Project NTSC (742754),
ISF grant 1709/14, NSF-BSF grant 2015782, and a grant from the Ministry of Science and Tech-
nology, Israel and Department of Science and Technology, Government of India. The third author’s
research is supported in part from DARPA/ARL SAFEWARE Award W911NF15C0210, AFOSR
Award FA9550-15-1-0274, AFOSR YIP Award, a Hellman Award and research grants by the Okawa
Foundation, Visa Inc., and Center for LongTerm Cybersecurity (CLTC, UC Berkeley).

References

[ABG+14] Adi Akavia, Andrej Bogdanov, Siyao Guo, Akshay Kamath, and Alon Rosen. Can-
didate weak pseudorandom functions in AC0 o MOD2. In Moni Naor, editor, ITCS
2014, pages 251–260. ACM, January 2014.

[AIS18] Prabhanjan Ananth, Yuval Ishai, and Amit Sahai. Private circuits: A modular ap-
proach. In Advances in Cryptology - CRYPTO 2018 - 38th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings,
Part III, pages 427–455, 2018.

[Ajt11] Miklós Ajtai. Secure computation with information leaking to an adversary. In Pro-
ceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose,
CA, USA, 6-8 June 2011, pages 715–724, 2011.

[BBP+16] Sonia Beläıd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff, Adrian
Thillard, and Damien Vergnaud. Randomness complexity of private circuits for mul-
tiplication. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 616–648. Springer, Heidelberg, May 2016.

[BCH12] Nir Bitansky, Ran Canetti, and Shai Halevi. Leakage-tolerant interactive protocols.
In Theory of Cryptography - 9th Theory of Cryptography Conference, TCC 2012,
Taormina, Sicily, Italy, March 19-21, 2012. Proceedings, pages 266–284, 2012.

[BCPZ16] Alberto Battistello, Jean-Sébastien Coron, Emmanuel Prouff, and Rina Zeitoun. Hor-
izontal side-channel attacks and countermeasures on the ISW masking scheme. In
Benedikt Gierlichs and Axel Y. Poschmann, editors, CHES 2016, volume 9813 of LNCS,
pages 23–39. Springer, Heidelberg, August 2016.

[BDIR18] Fabrice Benhamouda, Akshay Degwekar, Yuval Ishai, and Tal Rabin. On the local leak-
age resilience of linear secret sharing schemes. In Advances in Cryptology - CRYPTO

27

2018 - 38th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2018, Proceedings, Part I, pages 531–561, 2018.

[BDL14] Nir Bitansky, Dana Dachman-Soled, and Huijia Lin. Leakage-tolerant computation
with input-independent preprocessing. In CRYPTO, pages 146–163, 2014.

[BGJ+13] Elette Boyle, Sanjam Garg, Abhishek Jain, Yael Tauman Kalai, and Amit Sahai. Se-
cure computation against adaptive auxiliary information. In Advances in Cryptology
- CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2013. Proceedings, Part I, pages 316–334, 2013.

[BGJK12] Elette Boyle, Shafi Goldwasser, Abhishek Jain, and Yael Tauman Kalai. Multiparty
computation secure against continual memory leakage. In Proceedings of the 44th
Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA,
May 19 - 22, 2012, pages 1235–1254, 2012.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In
STOC, pages 1–10, 1988.

[BIVW16] Andrej Bogdanov, Yuval Ishai, Emanuele Viola, and Christopher Williamson. Bounded
indistinguishability and the complexity of recovering secrets. In Matthew Robshaw and
Jonathan Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages 593–
618. Springer, Heidelberg, August 2016.

[BKT19] Mark Bun, Robin Kothari, and Justin Thaler. Quantum algorithms and approximating
polynomials for composed functions with shared inputs. In Proceedings of the Thirti-
eth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego,
California, USA, January 6-9, 2019, pages 662–678, 2019.

[BMW+18] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the keys to the intel SGX kingdom with transient out-of-order
execution. In 27th USENIX Security Symposium, USENIX Security 2018, Baltimore,
MD, USA, August 15-17, 2018., pages 991–1008, 2018.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally secure
protocols (extended abstract). In STOC, pages 11–19, 1988.

[Cor14] Jean-Sébastien Coron. Higher order masking of look-up tables. In Phong Q. Nguyen
and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 441–
458. Springer, Heidelberg, May 2014.

[CPRR13] Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche.
Higher-order side channel security and mask refreshing. In Fast Software Encryp-
tion - 20th International Workshop, FSE 2013, Singapore, March 11-13, 2013. Revised
Selected Papers, pages 410–424, 2013.

28

[DDF14] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage models:
From probing attacks to noisy leakage. In Phong Q. Nguyen and Elisabeth Oswald, ed-
itors, EUROCRYPT 2014, volume 8441 of LNCS, pages 423–440. Springer, Heidelberg,
May 2014.

[DF12] Stefan Dziembowski and Sebastian Faust. Leakage-resilient circuits without computa-
tional assumptions. In TCC 2012, pages 230–247, 2012.

[DFS15] Stefan Dziembowski, Sebastian Faust, and Maciej Skorski. Noisy leakage revisited. In
Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume
9057 of LNCS, pages 159–188. Springer, Heidelberg, April 2015.

[DLZ15] Dana Dachman-Soled, Feng-Hao Liu, and Hong-Sheng Zhou. Leakage-resilient circuits
revisited - optimal number of computing components without leak-free hardware. In
EUROCRYPT 2015, pages 131–158, 2015.

[FPS17] Sebastian Faust, Clara Paglialonga, and Tobias Schneider. Amortizing randomness
complexity in private circuits. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASI-
ACRYPT 2017, Part I, volume 10624 of LNCS, pages 781–810. Springer, Heidelberg,
December 2017.

[FRR+10] Sebastian Faust, Tal Rabin, Leonid Reyzin, Eran Tromer, and Vinod Vaikuntanathan.
Protecting circuits from leakage: the computationally-bounded and noisy cases. In
Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 135–156.
Springer, Heidelberg, May 2010.

[FRR+14] Sebastian Faust, Tal Rabin, Leonid Reyzin, Eran Tromer, and Vinod Vaikuntanathan.
Protecting circuits from computationally bounded and noisy leakage. SIAM J. Com-
put., 43(5):1564–1614, 2014. Extended abstract in Eurocrypt 2010.

[GIM+16] Vipul Goyal, Yuval Ishai, Hemanta K. Maji, Amit Sahai, and Alexander A. Sherstov.
Bounded-communication leakage resilience via parity-resilient circuits. In FOCS 2016,
pages 1–10, 2016.

[GIW17] Daniel Genkin, Yuval Ishai, and Mor Weiss. How to construct a leakage-resilient
(stateless) trusted party. In Theory of Cryptography - 15th International Conference,
TCC 2017, Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part II, pages
209–244, 2017.

[GJS11] Sanjam Garg, Abhishek Jain, and Amit Sahai. Leakage-resilient zero knowledge.
In Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 297–315.
Springer, Heidelberg, August 2011.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th
ACM STOC, pages 218–229. ACM Press, May 1987.

[GR10] Shafi Goldwasser and Guy N. Rothblum. Securing computation against continuous
leakage. In CRYPTO 2010, pages 59–79, 2010.

29

[GR12] Shafi Goldwasser and Guy N. Rothblum. How to compute in the presence of leakage.
In 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012,
New Brunswick, NJ, USA, October 20-23, 2012, pages 31–40, 2012.

[H̊as14] Johan H̊astad. On the correlation of parity and small-depth circuits. SIAM J. Comput.,
43(5):1699–1708, 2014.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware
against probing attacks. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS,
pages 463–481. Springer, Heidelberg, August 2003.

[IWY16] Yuval Ishai, Mor Weiss, and Guang Yang. Making the best of a leaky situation: Zero-
knowledge pcps from leakage-resilient circuits. In Theory of Cryptography - 13th Inter-
national Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings,
Part II, pages 3–32, 2016.

[JV10] Ali Juma and Yevgeniy Vahlis. Protecting cryptographic keys against continual leakage.
In CRYPTO 2010, pages 41–58, 2010.

[KGG+18] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp,
Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre at-
tacks: Exploiting speculative execution. CoRR, abs/1801.01203, 2018.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 388–397.
Springer, Heidelberg, August 1999.

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In Neal Koblitz, editor, CRYPTO’96, volume 1109 of LNCS, pages
104–113. Springer, Heidelberg, August 1996.

[LSG+18] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders
Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and
Mike Hamburg. Meltdown: Reading kernel memory from user space. In 27th USENIX
Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-17,
2018., pages 973–990, 2018.

[Mil14] Eric Miles. Iterated group products and leakage resilience against NC1. In Moni Naor,
editor, ITCS 2014, pages 261–268. ACM, January 2014.

[MR04] Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended ab-
stract). In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages 278–296.
Springer, Heidelberg, February 2004.

[MV13] Eric Miles and Emanuele Viola. Shielding circuits with groups. In Dan Boneh, Tim
Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC, pages 251–260. ACM
Press, June 2013.

[Rot12] Guy N. Rothblum. How to compute under AC0 leakage without secure hardware.
In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of
LNCS, pages 552–569. Springer, Heidelberg, August 2012.

30

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking of AES.
In Stefan Mangard and François-Xavier Standaert, editors, CHES 2010, volume 6225
of Lecture Notes in Computer Science, pages 413–427. Springer, 2010.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
27th FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

31

	Introduction
	Our Contribution

	Our Techniques
	Unconditional Result in the Stateless Setting
	Unconditional Result in the Stateful Setting

	Preliminaries
	Indistinguishability
	Circuit complexity
	Leakage Resilient Circuit Compilers

	Improved Analysis of the ISW Construction
	LRCC for Stateful Circuits
	The Zero-Encoder
	Construction
	Description of the Simulator
	External Data Sampler
	Proof of Indistinguishability

