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Abstract. We initiate the study of fully homomorphic encryption for
RAMs (RAM-FHE). This is a public-key encryption scheme where, given
an encryption of a large database D, anybody can efficiently compute
an encryption of P (D) for an arbitrary RAM program P . The running
time over the encrypted data should be as close as possible to the worst
case running time of P , which may be sub-linear in the data size.
A central difficulty in constructing a RAM-FHE scheme is hiding the
sequence of memory addresses accessed by P . This is particularly prob-
lematic because an adversary may homomorphically evaluate many pro-
grams over the same ciphertext, therefore effectively “rewinding” any
mechanism for making memory accesses oblivious.
We identify a necessary prerequisite towards constructing RAM-FHE
that we call rewindable oblivious RAM (rewindable ORAM), which pro-
vides security even in this strong adversarial setting. We show how to
construct rewindable ORAM using symmetric-key doubly efficient PIR
(SK-DEPIR) (Canetti-Holmgren-Richelson, Boyle-Ishai-Pass-Wootters:
TCC ’17). We then show how to use rewindable ORAM, along with
virtual black-box (VBB) obfuscation for specific circuits, to construct
RAM-FHE. The latter primitive can be heuristically instantiated using
existing indistinguishability obfuscation candidates. Overall, we obtain a
RAM-FHE scheme where the multiplicative overhead in running time is
polylogarithmic in the database size N . Our basic scheme is single-hop,
but we also extend it to obtain multi-hop RAM-FHE with overhead N ε

for arbitrarily small ε > 0.
We view our work as the first evidence that RAM-FHE is likely to exist.
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1 Introduction

Fully Homomorphic Encryption. Fully Homomorphic Encryption (FHE), pro-
posed by Rivest, Adleman, and Dertouzos [RAD78], is an extension of standard
semantically secure encryption that supports computations “underneath” en-
cryption. That is, given an encryption of some data D, anybody can compute an
encryption of P (D) for arbitrary programs P , while D remains computationally
hidden. We currently have constructions of FHE schemes based on the Learning
With Errors (LWE) assumption (either satisfying a relaxation called “leveled”
FHE, or additionally requiring a circular security assumption) [Gen09, BV11].

FHE has proven to be an indispensable tool in the foundational study of cryp-
tography, with wide-ranging applications including functional encryption [GKP+b],
program obfuscation [GGH+], verifiable computation [GGP10, KRR14], crypto-
graphic hash functions [CCH+19], and more.

The most immediate use-case of FHE is to outsource private computation.
A client Alice stores her sensitive database D on an untrusted server, and the
server non-interactively executes computations on Alice’s behalf (by computing
encryptions of P (D) for arbitrary programs P ), but learns nothing about D.
In known FHE schemes, Alice’s work is asymptotically optimal: encrypting her
database takes |D| · poly(λ) work, and decrypting the server’s ciphertexts takes
|P (D)| · poly(λ) work. The server’s work is also optimal; however, the program
P must be represented as a circuit C, and the server’s work is then |C| · poly(λ).

There has been much work towards making FHE more practical by mini-
mizing the poly(λ) factors [BGH13, GHS12, BGV12, GSW, GHPS13], but the
necessity of representing P as a circuit can lead to a much larger asymptotic
loss in efficiency. Indeed, we typically think of programs and their efficiency in
the Random-Access Memory (RAM) model of computation. Although any RAM
program can be converted into a circuit, this may result in a large efficiency loss:
in general, a RAM program that runs in time T over a database of size N can be
converted into a circuit of size Õ(N + T 2) [CR72, PF79]. As a result, for RAM
computations running in time T � N (e.g., binary search, whose RAM running
time is O(logN)), the circuit conversion can incur an exponential efficiency loss.
Even for RAM computations with longer running times T > N , circuit conver-
sion incurs a quadratic overhead, which asymptotically will be more significant
than any poly(λ)multiplicative factor. Therefore, it is crucial to ask the question:
Can an FHE scheme “natively” support RAM computations?

1.1 Our Results

RAM-FHE. We define and construct two notions of RAM-FHE. In both notions,
given an encryption D̂ of an N -bit database D, a RAM program P , and a bound
T on the running time of P , anyone can obtain an encryption ŷ of P (D) in
time roughly T . We note that the bound T on evaluation runtime is necessary
for semantic security: if homomorphic evaluation preserved the input-specific
running time of P , then one could completely learn D by measuring the time to
homomorphically evaluate several carefully chosen programs.
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Our basic notion is single-hop, in which the output ciphertext ŷ and any
changes made to D by P , cannot be meaningfully used by future homomorphic
computations. We also consider a multi-hop variant, in which one can homomor-
phically evaluate a sequence of RAM programs, which may read and write to
D, with the changes made by each program execution visible to the next.

We give the first evidence that these notions are possible by constructing
(single- and multi-hop) RAM-FHE schemes using extremely strong but plau-
sible assumptions. Specifically, we rely on a recent primitive called Secret Key
Doubly-Efficient Private Information Retrieval (SK-DEPIR), as well as Virtual
Black-Box (VBB) obfuscation for specific circuits. We have candidate SK-DEPIR
constructions based on non-standard assumptions related to permuted and noisy
Reed-Muller codes [BIPW17, CHR17]. While VBB obfuscation for general cir-
cuits is impossible [BGI+01], it appears reasonable to assume that it can be done
for most specific circuits and, indeed, any of the candidate constructions of indis-
tinguishability obfuscation (iO) [GMM+16, BMSZ16, MZ18, CVW18, BGMZ18,
Agr, LM18, AJS18] can be used to heuristically instantiate it. We view such use
of VBB obfuscation as analogous to the random-oracle heuristic: although it is
known to be unsound in general, all examples where it fails tend to be contrived,
and natural uses of it appear to be sound.1

Our constructions have the following efficiency guarantees:

– In the single-hop setting, encryptions of anN -bit database have size poly(λ,N),
and the cost of homomorphically evaluating a program P with description
size |P | and run-time T is (T + |P |) · poly(λ, logN).

– In the multi-hop setting, for any constant ε > 0, ciphertext sizes are N1+ε ·
poly(λ) and homomorphic evaluation takes time (T + |P |) ·N ε · poly(λ).

Rewindable Oblivious RAM. As explained in Section 1.2 below, the main dif-
ficulty in constructing RAM-FHE is hiding the memory access pattern when
the evaluator repeatedly runs different programs on the same initial ciphertext.
We abstract this as a strengthening of Oblivious RAM (ORAM) [Gol87, Ost90,
GO96] that we call rewindable ORAM, which we believe may be of interest
beyond its applications to RAM-FHE. Recall that a standard ORAM scheme
allows a client with a small local state k to privately access his own database
whose encoding D̃ is stored on a remote untrusted server. Informally, rewindable
ORAM extends this notion to guarantee privacy even when the server can reset
the client’s state to a previous value.

We construct rewindable ORAM schemes based on any SK-DEPIR scheme.
We do not assume the existence of any type of obfuscator and obtain different
tradeoffs between efficiency and the types of rewinding attacks, specifically:

– If the server is only allowed to rewind the client to his initial state, then fol-
lowing a poly (λ,N)-time setup, accessing the database costs poly (λ, logN).

1 Furthermore, it is possible to replace VBB obfuscation by a small stateless hardware
token, resulting in a RAM-FHE scheme where ciphertexts contain such tokens, which
appears to still be non-trivial. We note that VBB was similarly used to construct a
public-key DEPIR scheme [BIPW17].
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– If the server is allowed to rewind the client to any previous state, then
following an N1+ε · poly (λ)-time setup, accessing the database costs N ε ·
poly (λ), for any ε > 0.

1.2 Our Techniques

As alluded to above, the main difficulty in constructing RAM-FHE arises from
the fact that the memory access pattern induced by evaluating P on D may be
highly dependent on the database D, whereas the access pattern of the homo-
morphic evaluation of P must hide everything about D. One natural approach
towards hiding the access pattern is to force the evaluator to emulate P via an
ORAM. However, the RAM-FHE evaluator should be able to evaluate arbitrarily
many different programs on the same ciphertex D̂, and is not required to update
his state between executions. This raises the concern that (even a semi-honest)
evaluator evaluating two different programs P1, P2 on D̂ may potentially deduce
non-trivial information about the database D from the correlations between the
two memory access patterns during these evaluations. This strategy corresponds
to a “rewinding” attack on the underlying ORAM, and is not just a theoretical
concern - all known ORAM constructions are indeed insecure in this case. (For
example, if an ORAM client accesses an address a0, fails to update his state,
and then accesses a1, the server’s view will reveal whether or not a0 = a1.)

Main Component: Rewindable ORAM. We consider (Section 3.1) two flavors
of rewindable ORAM, which provide security against this type of attack. The
weaker flavor, called Initial-State Rewindable ORAM (ISR-ORAM) allows the
adversary to observe the ORAM access patterns of various programs P1, P2, . . .
executed on D, where between executions the client/server states are reset to
their initial values k, D̃. The adversary should learn nothing about the underlying
access patterns of the programs.

We also define a stronger flavor called Any-State Rewindable ORAM (ASR-
ORAM) where the adversary can rewind the client/server states to any point
in time.2 The ORAM access patterns that the adversary observes should reveal
nothing about the underlying access patterns of the programs.

Rewindable ORAM Constructions. Constructing rewindable (even ISR-) ORAM
appears to be difficult, and none of the standard ORAM constructions suffice.
Indeed, all standard ORAM constructions follow the “balls and bins” model in
which each data block is represented as a “ball” and stored on the server in some
“bin”. Such structures cannot guarantee even ISR-ORAM security since, as noted
above, if the client state is reset between accesses then the server can distinguish
whether the client is accessing the same data block or not (when accessing the

2 For example, the adversary can observe the sequential ORAM execution of programs
P1, P2, P3, then rewind the client/server state to the point immediately after P1’s
execution and observe the execution of a different program P ′2, etc.
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same block, the client will access the same “ball” on the server). Thus, we need
fundamentally different techniques than prior ORAM constructions.

Our new approach to rewindable ORAM leverages a powerful recent tool
called SK-DEPIR [BIPW17, CHR17], which can be viewed as a stateless read-
only ORAM. Informally, following a setup phase in which the client receives a
secret key k and the server receives an encoding D̃ of the database D, the client
can privately read arbitrary locations i of D by reading a few positions in D̃,
without having to update the client/server state during the process. The server
should learn nothing about the underlying locations i being read. In particular,
we can think of SK-DEPIR as a very restricted form of ISR-ORAM for the class
of RAM program Pi(D) that read and output the i’th location of D.

The works of [BIPW17, CHR17] constructed SK-DEPIR schemes under non-
standard assumptions relating to permuted and noisy Reed-Muller codes. Note
that such SK-DEPIR cannot exist in the “balls and bins” model, and must encode
the data in some complex way that intertwines many data locations together.
Indeed, repeatedly accessing the same data location i in a SK-DEPIR should
be indistinguishable from accessing completely random and unrelated data lo-
cations, so there must be many different, and seemingly unrelated, tuples of lo-
cations in D̃ that contain information about data location i. We use SK-DEPIR
to construct both ISR- and ASR-ORAM schemes.

ISR-ORAM from SK-DEPIR and standard ORAM. The ISR-ORAM scheme is
simple. Recall that SK-DEPIR is read-only, while ISR-ORAM supports arbitrary
RAM programs that can both read and write to the database. In both cases,
we can rewind the state to its initial value after an execution while maintaining
privacy of the underlying access pattern. The high-level idea is to use the SK-
DEPIR to support reads, and use a standard ORAM scheme to support writes.

Specifically, the initial states in our ISR-ORAM are the client and server
states k, D̃ of the SK-DEPIR. To execute a RAM program P , the client initializes
a fresh copy of a standard, non-rewindable ORAM O, which is initially empty.
(We provide an explicit construction of an ORAM scheme for initially empty
databases in the full version [HHWW].) Writes are executed using the ORAM
scheme O. To read some location i, the client reads i from both the ORAM O and
the SK-DEPIR. If location i was found in O, the client uses that value, otherwise
he uses the SK-DEPIR value. Thus, the client always gets the freshest copy of
the value in any location. Note that rewinding the ISR-ORAM client/server to
their initial states erases all information about O (which was initialized only
in the first access), so we do not require rewindable security from O: the next
access will instantiate a completely fresh ORAM scheme O for the execution.
The scheme is described in the full version [HHWW].

ASR-ORAM from SK-DEPIR via a hierarchical structure. The ASR-ORAM
construction is more complex. ASR-ORAM should support repeated sequen-
tial execution of different programs, and remain secure when the adversary can
rewind to any intermediate state from which it starts a new sequence of pro-
gram executions. Unfortunately, this precludes our previous solution of storing
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intermediate values written during the execution in a standard, non-rewindable
ORAM: rewinding to an intermediate point will rewind the ORAM.

We solve this problem by combining SK-DEPIR with techniques from hi-
erarchical ORAM [Ost90, GO96]. In particular, our ASR-ORAM consists of a
hierarchy of SK-DEPIR schemes of exponentially increasing size, where the top-
most scheme has size 1 and the bottom-most scheme has size N . Initially, the
data is entirely contained in the bottom-most scheme. To read a location i we
try to read it using the SK-DEPIR schemes at all levels, and use the value
found in the top-most scheme that contains i. To write a location i, we write
it to the top level (which requires re-generating its SK-DEPIR scheme). As in
Hierarchical ORAM this requires “reshuffles”: every pre-determined number of
writes, we need to merge sufficiently many of the top levels to ensure that their
combined size is large enough to hold the database. Since levels are implemented
using SK-DEPIR, this requires reading and re-writing the levels in their entirety.
However, as levels get larger, they are “reshuffled” with decreasing frequency so
the overall amortized3 complexity is low. Notice that reshuffles reveal no infor-
mation, even under arbitrary rewinding, because they occur at pre-determined
times (independent of the access history), and reads are secure by the security
of the (stateless) SK-DEPIR even under arbitrary rewinding.

We note that the actual construction (Section 3.2) is somewhat more in-
volved. One issue arises because SK-DEPIR schemes are designed for array struc-
tures (i.e., reading a data block requires knowing its location in D), whereas the
hierarchical construction imposes a map structure at each level because it con-
tains a subset of (not necessarily consecutive) data blocks. To resolve this we
use the standard data-structures trick of pseudorandomly mapping data blocks
into buckets, thus guaranteeing that the block’s location in each level in which
it appears is independent of the history of accesses.

RAM-FHE from Rewindable ORAM. We construct RAM-FHE from rewindable
ORAM using VBB obfuscation. At a high level, to encrypt some database D, we
first construct the rewindable ORAM client/server states k, D̃ for D. We then
obfuscate the ORAM client program, with k hard-wired into it, and output the
ciphertext consisting of D̃ and the obfuscated program. The evaluator can then
use the obfuscated ORAM client to execute an arbitrary RAM program over
the encrypted database D̃ and derive an encrypted output. During the execu-
tion, the evaluator emulates the ORAM server using D̃ (performing read/write
operations as instructed by the client).

Formalizing the above approach is challenging, and requires some adapta-
tions. The final construction is obtained through the following steps.

Step (1): emulating statefulness. We cannot directly use a circuit obfus-
cator to obfuscate the rewindable ORAM client, because the client is stateful,
and state is needed even for correctness. Instead, we obfuscate the circuit em-
ulating a single client step in the ORAM scheme. This circuit takes the client

3 We note that as in [OS97], reshuffles can be “spread-out” over many operations to
achieve low worst-case complexity.
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state as input, and returns the updated client state as part of its output. We note
that representing the client as a circuit in this way is fundamentally different
(and significantly more efficient) than representing an entire RAM program as
a circuit. Indeed, the circuit performs a single execution step, thus the overhead
is independent of the database size or the worst-case runtime of the program.

For simplicity of the exposition, we assume for now that the program’s de-
scription is short (of size p (λ) for some a-priori fixed polynomial p), and can
therefore be given in its entirety to the obfuscated circuit in the first execution
step. We explain below how to remove this restriction.

Step (2): hiding client state. (Standard/rewindable) ORAM security as-
sumes the adversary does not see the client state, but in our construction the
evaluator sees the client’s internal states throughout the execution (since the ob-
fuscated circuit outputs them). To hide the client states, we have the obfuscated
circuit encrypt the state, using a hard-wired (symmetric) encryption key.

Step (3): forcing honest behavior. The rewindable ORAM is secure only
as long as the ORAM client behaves honestly, and the ORAM server behaves
semi-honestly. However, RAM-FHE should guarantee semantic security of the
encrypted database against arbitrary (possibly malicious) evaluators. A mali-
cious evaluator may deviate from a semi-honest emulation of the rewindable
ORAM scheme in two ways.

First, the evaluator may emulate a malicious server whose answers to read
requests are inconsistent with the database, and who fails to perform requested
write operations. Such attacks can be prevented using the standard approach
of maintaining a Merkle Hash Tree (MHT) of the server state. More specifically,
we hard-code the initial MHT root into the obfuscated circuit. Answers to read
requests include also the MHT path proving consistency of the answer (which
is verified by the obfuscated circuit using the MHT root). Answers to write
requests outputted by the obfuscated circuit additionally include an updated
MHT path proving that the root was updated correctly.

Second, the evaluator may emulate a malicious client, by providing incor-
rect/inconsistent client states to the obfuscated circuit. We prevent such attacks
by hard-wiring a Message-Authentication Code (MAC) key into the obfuscated
circuit, and having it verify the input state and MAC the output state.

Step (4): hiding the output. Recall from Step (2) that the internal ORAM
client state is encrypted using a “temporary” symmetric encryption key that is
chosen at encryption time. Consequently, this key cannot be used to encrypt the
computation output (which should be encrypted using a persistent public key
that is chosen during key generation). We encrypt the output using a standard
PKE scheme, where the public key is hard-wired into the obfuscated circuit.

Step (5): generating randomness for the execution. Even if the em-
ulated RAM program is deterministic, the obfuscated circuit described above
needs random coins for encryption, and to emulate the ORAM client. We use a
PRF (applied to the MHT root, and the entire execution history) to derive the
needed randomness, where the PRF key is hard-wired into the circuit.
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An additional point that needs to be handled is the fact that a RAM program
P has a volatile tape (a “scratch tape”) which is used only during P ’s execution,
after which it is erased. We use a standard ORAM to instantiate the scratch
tape at the onset of the execution. Notice that standard ORAM security suffices
here, since each execution instantiates a fresh ORAM for the scratch tape.4

The construction described above gives a single-hop RAM-FHE scheme when
the underlying ORAM is an ISR-ORAM (see Section 6). The multi-hop RAM-
FHE scheme is obtained by instantiating the ORAM with an ASR-ORAM, with
some modifications to allow the evaluator to perform sequential computations
on the database. (For example, this requires MAC-ing the initial state of the
ASR-ORAM client together with the MHT root of the updated database, see
the full version [HHWW] for more details.)

Generalizing to programs of any length. The construction described
above assumed the entire program description was given as input to the obfus-
cated circuit (this requires an a-priori fixed bound on the description size). To
support longer programs, we first copy the program description into the scratch
tape at the onset of the computation. More specifically, the evaluator provides
a MHT root for the program description as input to the obfuscated circuit, and
the circuit then copies the program bit-by-bit into the scratch-tape, verifying
consistency with the MHT root in each step. See the full version for details.

On the necessity of rewindable ORAM and DEPIR. As a final note, we informally
argue that rewindable ORAM is inherent to the construction of RAM-FHE, by
explaining how to construct ISR/ASR-ORAM from single-hop/multi-hop RAM-
FHE. To initialize the ORAM with a database D, the client generates a ran-
dom encryption-decryption key pair, encrypts D using the encryption key, and
stores the ciphertext D̂ on the server. To execute a RAM program P on D,
the client homomorphically evaluates P on D̂ by accessing all relevant bits of
D̂ remotely on the server. Finally, the client decrypts the computation output
using the decryption key. These ORAM access patterns reveal nothing about the
database because the RAM-FHE scheme is semantically secure.5 If we use multi-
hop RAM-FHE then we can sequentially execute many programs and rewind to
any intermediate state; semantic security still ensures that the access patterns
reveal nothing about the underlying database, so we obtain ASR-ORAM. If we
use a single-hop RAM-FHE, the ORAM only allows for the execution of a single
program before rewinding to the initial state, so we only get ISR-ORAM. As
4 We note that if an a-priori bound on the scratch tape size is known during encryp-
tion, then in the single-hop setting the scratch tape can be included as part of the
encrypted database, since any updates to the database during execution are anyway
lost when the execution ends.

5 More formally, there is a discrepancy since the access pattern of homomorphic evalu-
ation, though revealing nothing about D, may reveal something about P . To prevent
this, we can append an encryption secret key sk to the database D, and execute a
program P̃ in which P ’s code is encrypted under sk, where P̃ first decrypts P and
then executes it over D. This way, the access pattern of the FHE evaluation cannot
reveal anything about neither P nor D.
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discussed above, SK-DEPIR can be thought of as a read-only ISR-ORAM, so
RAM-FHE also implies SK-DEPIR.

1.3 Related Work

Supporting RAM computations directly, without first representing the RAM
program as a circuit, has been considered for several cryptographic primitives.

Similar to RAM-FHE, Garbled RAM [LO13, GHL+14] (also known as private
RAM delegation) allows a user to garble a database D, following which an eval-
uator can run RAM computations on the garbled D. (There are also works on
non-private RAM delegation, e.g., [KP16].) However, in garbled RAM the eval-
uator can only compute specific RAM programs P which the garbler generated.
Similar to RAM-FHE, the size of the garbled program, and the garbling and
evaluation times, are proportional to P ’s running time. There has been a large
body of works on garbled RAM, improving its efficiency, underlying assump-
tions, properties, and applications [GLOS, CHJV15, CH16, CCHR16, ACC+16,
BCP, CCC+, Mia16, GGMP16, HY16, LO17, GOS18]. Succinct garbled RAMs
together with iO for circuits also imply indistinguishability Obfuscation (iO) for
RAMs [CHJV15, BCG+18].

Functional Encryption (FE) for RAMs, namely an FE scheme in which the
master secret key can be used to generate function keys for RAM programs,
was studied in [AIT16, GHRW, BCG+18]. These constructions are not function-
private, and [AIT16] additionally do not hide the access pattern of the RAM
program (which, as discussed in Section 1.2, seems to be a central difficulty in
constructing RAM-FHE).

The notion of FHE for Turing machines was considered in [GKP+a], who con-
struct FHE schemes with input-specific running time during evaluation. However,
the runtime is still at least linear in the database size, whereas RAM-FHE eval-
uation time may be sublinear in the database size (if the original RAM program
runs in sublinear time). Moreover, their model is somewhat restricted in that
the Turing machine and its input are encrypted together (so one cannot execute
arbitrary Turing machines on the input).

2 Preliminaries

Throughout this paper, λ denotes a security parameter. We use poly (λ) and
negl (λ) to denote unspecified functions that are polynomial and negligible in
λ, respectively. We use standard cryptographic definitions of one-way func-
tions (OWFs), pseudorandom functions (PRFs), collision-resistant hash func-
tions (CRHFs), and message authentication codes (MACs) (see, e.g., [Gol01,
Gol04]). For a randomized algorithm A with n inputs, we use A (x1, . . . , xn; r)
to denote the output of A on inputs x1, . . . , xn when it uses randomness r. We
use ≈ to denote computational indistinguishability.

We use PPT to refer to probabilistic polynomial-time algorithms, and non-
uniform PPT to refer to (ensembles of) polynomial-sized probabilistic circuits.
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We use the notion of Virtual Black Box (VBB) obfuscation with auxiliary input
(see the full version [HHWW]).

2.1 Doubly-Efficient Private Information Retreival (DEPIR)

Definition 1 (Secret-Key Doubly-Efficient PIR (SK-DEPIR) [CHR17,
BIPW17]). A secret-key doubly-efficient PIR (SK-DEPIR) scheme consists of pro-
cedures (KeyGen,Process,Query,Decode) where KeyGen,Process,Query are ran-
domized and Decode is deterministic, with the following syntax:

– KeyGen
(
1λ
)
takes as input a security parameter λ, and outputs a client

secret-key sk.
– Process (sk,DB) takes as input a client secret-key sk and a database DB ∈
{0, 1}N , and outputs a processed database D̃B ∈ {0, 1}Ñ .

– Query (sk, addr) takes as input a client secret-key sk and an address addr ∈
[N ], and outputs a set Q ⊆

[
Ñ
]
of queries, and a temporary state st.

– Decode
(

sk, st,
{

D̃Bi : i ∈ Q
})

takes as input a secret key sk, a temporary

state st, and a set of values from the processed database
{

D̃Bi : i ∈ Q
}
,

and outputs a value val.

We require that the scheme satisfies the following properties:

– Correctness: for every N ∈ N, every DB ∈ {0, 1}N , and every addr ∈ [N ],
it holds that:

Pr

Decode
(

sk, st,
{

D̃Bi : i ∈ Q
})

= DBi :

sk← KeyGen
(
1λ
)

D̃B← Process (sk,DB)
(Q, st)← Query (sk, addr)

 = 1

– Security: Any non-uniform PPT adversary A has only negl (λ) advantage
in the following security game with a challenger C:
1. A sends to C a database DB ∈ {0, 1}N .
2. C picks a random bit b ← {0, 1}, and runs sk ← KeyGen

(
1λ
)
to obtain

a client secret-key sk, and then runs D̃B ← Process (sk,DB) to obtain a
processed database D̃B, which it sends to A.

3. A selects two addresses addr0, addr1 ∈ [N ], and sends (addr0, addr1) to
C.

4. C samples (Q, st)← Query(sk, addrb), and sends Q to A.
5. Steps 3 and 4 are repeated an arbitrary (polynomial) number of times.
6. A outputs a bit b′, and his advantage in the game is defined to be Pr[b =

b′]− 1
2 .

– Efficiency. The runtime of KeyGen is poly (λ), the runtime of Process is
poly (N,λ), and the runtime of Query,Decode is o (N) · poly (λ), where N is
the database size.
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We will need a SK-DEPIR scheme with the additional guarantee that prepro-
cessing is oblivious of the database contents. We note that both the SK-DEPIR
constructions of [CHR17, BIPW17] satisfy this guarantee.

Definition 2 (Security with oblivious preprocessing). We say that a SK-
DEPIR scheme is secure with oblivious preprocessing if the security property
of Definition 1 holds even when in Step 2 above, the adversary is given the
sequence of memory accesses (including which address was accessed, whether it
was read or written, and what value was written) performed during the execution
of Process (sk,DB).

Remark on existence of SK-DEPIR schemes with specific parameters and oblivi-
ous preprocessing. The works [BIPW17, CHR17] prove that under a new assump-
tion on noisy Reed-Muller codes, there exist SK-DEPIR schemes with either of
the following parameters for databases of size N and security parameter λ:

– Sublinear SK-DEPIR: For any ε > 0, the running time of Process can be
N1+ε ·poly(λ), and the running time of Query and Decode can be N ε ·poly(λ).

– Polylog SK-DEPIR: The running time of Process can be poly(λ,N), and
the running time of Query and Decode can be poly(λ, logN).

We note that both of these schemes have oblivious preprocessing. Indeed, in these
constructions Process randomly permutes a (noisy) Reed-Muller encoding of an
encryption of the database. The encoding is data-oblivious since it is applied to
ciphertexts, and using oblivious sorting algorithms the permuting operation can
also be done obliviously.

3 Rewindable Oblivious RAM

We define two ORAM variants which guarantee security against rewinding at-
tacks. The two notions differ in the type of attacks they can handle. We first
recall the notion of an access pattern, and the standard ORAM definition [Gol87,
Ost90, GO96].

Notation 1 (Access pattern). A length-q access pattern Q consists of a list
(opl, vall, addrl)1≤l≤q of instructions, where instruction (opl, vall, addrl) denotes
that the client performs operation opl ∈ {read, write} at address addrl with
value vall (which, if opl = read, is ⊥).

Informally, an ORAM scheme allows a client to store his database, or “log-
ical memory”, remotely on a server, or “physical memory”. Following a Setup
procedure which generates client and server states, reads and writes to logi-
cal memory are performed through an interactive protocol Access between the
client and server, where in each round the client generates a read request and
an update request for the server. The access pattern to physical memory during
the Access protocol completely hides from the server the database contents and
access pattern to logical memory (see the full version for the formal definition).
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3.1 Rewindable ORAM Security

We now describe a game that formalizes the security of our ORAM variants.
The adversarial server in the game chooses a pair of initial databases, and (as
in standard ORAM) two sequences of access patterns, with the goal of distin-
guishing between the executions of these sequences on the two databases. Unlike
standard ORAM, the adversarial server in our security game can also rewind the
execution to a previous state, and continue the execution from that state.

Definition 3 (Rewindable ORAM security game). The ORAM security
game is run between an adversary A, and a challenger C.

1. A sends to C two databases DB0,DB1 ∈ {0, 1}N .
2. C picks a random bit b ← {0, 1}, and runs Setup

(
1λ,DBb

)
to obtain client

and server states ck, st. C sends st to A.
3. Let st0 = st and ck0 = ck. Repeat the following poly (λ) times, where in the

i’th iteration:
(a) A sends to C an index ji ∈ {0, 1, . . . , i− 1}, as well as two se-

quences of instructions Q0
i =

(
opi,l, addr0i,l, val0i,l

)
l∈[qi]

, and Q1
i =(

opi,l, addr1i,l, val1i,l
)
l∈[qi]

, where qi ≤ poly (λ), opi,l ∈ {read, write},
addr0i,l, addr1i,l ∈ [N ], and val0i,l, val1i,l ∈ {0, 1}.

(b) Starting from server state stji and client state ckji , C executes
Access

(
opi,l, addrbi,l, valbi,l

)
for 1 ≤ l ≤ qi. Let cki, sti denote the up-

dated client and server states (respectively) at the end of this sequence
of executions. Let ACCi denote the access pattern to physical memory
during this sequence of Access executions.

(c) C sends ACCi to A.
4. A outputs a bit b′, and his advantage in the game is defined as Pr [b = b′]− 1

2 .

Discussion. The rewindable ORAM security game of Definition 3 captures sev-
eral security variants, depending on the permissible choice of ji. First, notice that
the security game with poly(λ) iterations in the security game, when the adver-
sary is restricted to choose ji = i − 1 in each iteration, and DB0 = DB1, yields
the standard ORAM security definition without rewinds. Second, restricting the
adversary to choose ji = {0, i− 1} in every iteration i means the adversary can
only rewind the execution to the initial state, but can adaptively decide to “ex-
tend” a previous execution. Restricting the adversary to choose ji = 0 in every
iteration corresponds to an adversary that can only rewind the execution to the
initial state, where any rewind “finalizes” the current branch of the execution,
and the adversary cannot later extend it. In the most general form, when ji can
take any value in {0, 1, . . . , i− 1}, we can assume without loss of generality that
the adversary chooses a length-1 sequence in each iteration of the security game.
This corresponds to an adversary that can rewind the ORAM to any intermedi-
ate state. The security game of Definition 3 can be used to capture various other
security variants; we choose to focus on the latter two notions. Formally,
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Definition 4 (Any-State Rewindable ORAM (ASR-ORAM)). We say
that an ORAM scheme is Any-State Rewindable (ASR) if any PPT adversary A
has a negl(λ) advantage in the rewindable ORAM security game of Definition 3.

Definition 5 (Initial-State Rewindable ORAM (ISR-ORAM)). We say
that an adversary A is initial-state restricted if in every iteration i of the rewind-
able ORAM security game of Definition 3, it chooses ji = 0. We say that an
ORAM scheme is Initial-State Rewindable (ISR) if any initial-state restricted
PPT adversary A has a negl(λ) advantage in the rewindable ORAM security
game of Definition 3.

3.2 Rewindable ORAM Constructions

In this section we construct ISR- and ASR-ORAM schemes from SK-DEPIR
and standard ORAM schemes. Our ISR-ORAM scheme, despite having a weaker
security guarantee than ASR-ORAM, has the advantage of being simpler and
more efficient. In the full version [HHWW], we construct an ISR-ORAM scheme
from a SK-DEPIR scheme along with an ORAM scheme for initially-empty
databases, proving the following:

Theorem 2 (ISR-ORAM). Assume there exist OWFs and SK-DEPIR. Then
there exists an ISR-ORAM scheme.

Moreover, if the Query and Decode algorithms of the SK-DEPIR scheme have
poly(λ) complexity for databases of size N and security parameter λ, and the
client (resp., server) state has size poly (λ) (resp., poly (λ,N)), then the Access
complexity of the ISR-ORAM is poly(λ), and the client (resp., server) state has
size poly(λ) (poly(λ,N)).

We now construct an ASR-ORAM scheme from SK-DEPIR and PRFs, prov-
ing the following (the proof appears in the full version):

Theorem 3 (ASR-ORAM). Assume the existence of OWFs and SK-DEPIR,
then there exists an ASR-ORAM scheme. Moreover, if for ε > 0 the Query
and Decode algorithms of the SK-DEPIR scheme have N ε · poly(λ) complexity,
and Process has N1+ε · poly (λ) complexity for databases of size N and security
parameter λ, then:

– The complexity of Access is N ε · poly (λ).
– The client state has size poly (λ), and the server state has size N1+ε ·poly (λ).

The construction. Recall from Section 1.2 that we use a hierarchical structure
whose levels contain SK-DEPIR schemes. Since a SK-DEPIR scheme is designed
for array structures, we use PRFs to map the data blocks of the level into buckets,
thus guaranteeing that a block’s location in each level (if it appears in the level)
is independent of the access history. To allow for more efficient reshuffles, each
level i also contains the (encrypted, unprocessed) database stored in the SK-
DEPIR of the level. We note that whenever a level is initialized as part of a
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reshuffle, we pick new PRF and SK-DEPIR keys for the level. This guarantees
security even under rewinds. Indeed, though a SK-DEPIR is rewind-secure, by
rewinding the ORAM the adversary may rewind a reshuffle. However, this will
result in a completely fresh SK-DEPIR scheme, and therefore doesn’t violate
security. In the following, we use B = λ to denote the bucket size.

Construction 1 (ASR-ORAM from SK-DEPIR and PRFs). The scheme uses:

– A PRF F .
– A SK-DEPIR scheme (DEPIR.KeyGen,Process,Query,Decode) with oblivious

preprocessing (Definition 2).
– A CPA-secure symmetric encryption scheme (SE.KeyGen,Encrypt,Decrypt).

The scheme consists of the following procedures.
Setup(1λ,DB): Recall that λ denotes the security parameter, and DB ∈

{0, 1}N . Let DB′ be the database obtained from DB by concatenating the address
to each bit, i.e., entries of DB′ have the form (addr,DBaddr). (This will be needed
when blocks are mapped to buckets.) Let ` = logN , and proceed as follows.

– Counter initialization: initialize a counter countW to 0. (countW counts the
total number of writes performed so far.)

– Encryption initialization: run sk← SE.KeyGen
(
1λ
)
to generate a secret-key

sk for the encryption scheme.
– PRF and SK-DEPIR key initialization for all levels: for every level 1 ≤ i ≤
`, set K̃i = s̃k

i
=⊥. (Later, K̃i, s̃k

i
will contain encryptions of level-specific

PRF and SK-DEPIR keys, respectively.)
– Initializing level `: encrypt the database by running DB′′ ←

Encrypt
(
sk,DB′

)
. Run

(
DB′′, D̃B, K̃`′, s̃k

`′)
← InitLevel

(
`,DB′′

)
(Fig-

ure 1 on page 16) to obtain the processed SK-DEPIR database D̃B,
and the PRF and SK-DEPIR keys for level `. Initialize level ` to be
L` =

(
DB′′, D̃B

)
, and all other levels Li to be empty. Replace K̃`, s̃k

`
with

K̃`′, s̃k
`′
, respectively.

– Output: the client state ck = sk consists of the encryption key. The server

state st =

(
countW ,

(
Li, K̃i, s̃k

i
)
i∈[`]

)
consist of the counter, the contents of

all levels, and the (encrypted) PRF and SK-DEPIR keys for all levels (which
are currently empty, except for the keys of level `).

The Access protocol. To perform the operation op on location addr ∈ [N ]
in the database with value val, the client C with state ck = sk, and the server

with state st =

(
countW ,

(
Li, K̃i, s̃k

i
)
i∈[`]

)
operate as follows.

– If op = read:
• Initialize an output value val′ to ⊥.
• For every non-empty level i from 1 to `, do:
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∗ Computing bucket index: read K̃i, s̃k
i
from the server, and de-

crypt Ki = Decrypt
(

sk, K̃i
)
, ski = Decrypt

(
sk, s̃k

i
)
. Compute

l = F
(
Ki, addr

)
. (If addr appears in level i, it will be in the l’th

bucket.)
∗ Looking for data block addr in level i: look for block addr in the l’th

bucket by running the procedure ReadBucket
(
l, i, ski, addr

)
of Fig-

ure 2 to obtain a value vali. If val′ 6=⊥ then set val′ := vali.
• Output: output val′ to the client.

If op = write:

– Encrypt the data block as c← Encrypt (sk, (addr, val)), and generate a “dummy”
level 0 database which contains a single (encrypted) data block c.

– Update the server state as follows:
• countW := countW + 1.
• For i = 0, 1, . . . , ` such that 2i divides countW , reshuffle level i into

level i + 1 using the ReShuffle procedure of Figure 3, namely executes
ReShuffle

(
i, Li, Li+1

)
.6

4 Definition of RAM-FHE

We first informally describe the RAM model we work with, which is a simple
model of RAM computation that captures their essential efficiency advantage
over Turing machines. Specifically, we define RAM machines via a transition cir-
cuit δ, with the following functionality. The circuit δ is designed to be evaluated
repeatedly in a prescribed way, such that the main output of the i’th evalua-
tion is an operation on one of the RAM machine’s tapes, which is either the
“persistent” tape containing the database, a volatile work tape which we call the
“scratch tape”, or the input and output tapes. The main input to δ is the result
of the previously outputted operation. Additionally, the circuit δ simulates state-
fulness by taking as input and producing as output an internal state. We now
define single-hop RAM-FHE. (See full version [HHWW] for the formal definition
of RAM model and the multi-hop version.)

Definition 6 (Single-hop RAM FHE). A public-key (single-hop) RAM FHE
scheme is a tuple of PPT7 algorithms (KeyGen, Enc, Dec, Eval) such that:

– Syntax.
• KeyGen

(
1λ
)
takes as input a security parameter λ, and outputs public

and secret keys pk, sk.
6 Using a technique of Ostrovsky and Shoup [OS97], these operations can be be spread-
out over multiple write operations. We analyze the scheme below assuming the
reshuffle operations are indeed spread-out across all write operations.

7 In fact, in our construction Eval and Dec are deterministic.
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The InitLevel procedure
Constant: the encryption key sk, and the security parameter λ.
Inputs:

i: the index of the level to initialize.
DBi: a size-2i database DBi encrypted using Encrypt (sk, ·).

Operation:

1. Pick a (fresh) random PRF key Ki′ for level i, generate a (fresh) SK-DEPIR
key ski′ ← DEPIR.KeyGen

(
1λ
)
for level i, and encrypt the keys by running

K̃i′ ← Encrypt
(
sk,Ki′) , s̃k

i′
← Encrypt

(
sk, ski′

)
.

2. Generate 2i buckets, each with B “empty” blocks,a and encrypt the bucket
contents using Encrypt.

3. Randomly and obliviously permute DBi using the Fisher-Yates shuffle, to ob-
tain a permuted database D̂B

i
. In each step of the shuffle, the blocks touched

during that step are re-encrypted. (That is, if a step of the shuffle touches
blocks i, j then these blocks are downloaded from the server, decrypted, en-
crypted with fresh randomness, and then uploaded to the server again, in the
correct order as determined by the shuffle.)

4. Insert D̂B
i
into the buckets as follows. For every 1 ≤ j ≤ 2i, compute the

index l of the bucket into which block j is mapped, as follows:
– If block j is “empty”, then pick l at random from 2i.
– Otherwise, let addr be the logical address of block j (recall that each

block contains its logical address). Set l = F
(
Ki′, addr

)
.

Insert block j into bucket l by downloading the entire bucket l from the
server, decrypting all blocks in the bucket, replacing the first “empty” block
with block j, encrypting each block in the bucket, and reloading the bucket
to the server.b

5. Run Process
(
ski′, L

)
to obtain a processed database D̃B

i
, and output(

DBi, D̃B
i
, K̃i′, s̃k

i′)
.

a See remark on physical memory block contents in full version for a discussion
of empty blocks.

b To obtain perfect correctness, if a bucket overflows then the contents of the level
are stored “in the clear” (i.e., the block encryptions are stored in an array). As
we show in the full version, this happens with negligible probability.

Fig. 1: The InitLevel procedure used in Construction 1
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The ReadBucket procedure
Input:

l: the index of the bucket to read.
i: the index of the level in which the bucket resides.
ski: the secret key of the SK-DEPIR of level i.
addr: the address of the block to read.

Operation: recall that B denotes the bucket size.

– Initialize an output value val to ⊥.
– For every (l − 1) · B + 1 ≤ m ≤ l · B:
• Run Query

(
ski,m

)
to obtain queries Q and a short-term client state stC ,

send Q to S, and obtains answers {aj}j∈Q.
• Run Decode

(
ski, stC , {aj}j∈Q

)
to obtain value (addrm, valm).

• If addrm = addr then set val := valm.
– Output val.

Fig. 2: The ReadBucket procedure used in Construction 1

• Enc
(
pk, D, 1B

)
takes as input a pubic key pk, a database D, and a bound

B on the description size of RAM machines. It outputs a database-
ciphertext D̂. For improved efficiency, it may also take as input a bound
s (in unary) on the space usage of the RAM machines for which homo-
morphic evaluation will be supported.

• Eval
(
M,x, 1T

)
takes as input a description M of a RAM machine, an

input x, and a running time bound T , and is given read/write random-
access to a database-ciphertext D̂. Eval outputs an output-ciphertext ŷ,
and may also change the contents of D̂ to some new value D̂′. We write
(ŷ, D̂′) = EvalD̂(M,x, 1T ).

• Dec (sk, ŷ) takes as input a secret key sk and an output-ciphertext ŷ, and
outputs a plaintext message y.

– Correctness. For any security parameter λ, any size bound B, any RAM
machine M satisfying |M | ≤ B, any database D ∈ {0, 1}∗, any input x, and
any T ∈ Z+ with Time(M,x,D) ≤ T , in the probability space defined by
sampling

(pk, sk)← KeyGen(1λ)

D̂ ← Enc(pk, D, 1B)(
ŷ, D̂′

)
:= EvalD̂(M,x, 1T )

(y,D′) :=MD(x)
y′ := Dec(sk, ŷ),

(1)

it holds that y = y′ except with negl (λ) probability.
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The ReShuffle procedure
Constant: the encryption key sk.
Inputs:

i: the index of a level to reshuffle.(
DBj , D̃B

j
)
, j ∈ {i, i+ 1}: the databases DBj (encrypted with Encrypt (sk, ·)),

and the processed databases D̃B
j
, of levels i, i+ 1.

Operation:

1. For j ∈ {i, i+1}, if DBj is empty (because it was not initialized yet, or follow-
ing a previous reshuffle), instantiate DBj with 2j “empty” blocks, encrypted
with Encrypt (sk, ·). (See full version for a discussion of empty blocks.)

2. For j ∈ {i, i+1}, perform a linear scan of DBj , concatenating encryptions of
the label “j − i” to all blocks. (That is, level-i blocks are given label 0, and
blocks from level i+ 1 are given label 1.)

3. Let A be the array of size
(
2i + 2i+1

)
obtained by concatenating DBi,DBi+1.

4. Obliviously sort A according to block addresses, breaking ties using the labels
created in Step 2. Each touched block is re-encrypted before being uploaded
to the server. (After this step, duplicate block copies appear consecutively,
and the copy from level i appears first.)

5. Perform a linear scan over A, replacing all duplicate blocks with “empty”
blocks, and updating the labels (created in Step 2) of all non-duplicate blocks
to 0. This is done as follows: the client locally stores the address of the previous
block in A (initialized to 0). When traversing the current block, if its address is
the same as the previous block, then replace the block with an “empty” block
with label 1, otherwise update the block label to 0. Each block is re-encrypted
before being uploaded to the server.

6. Obliviously sort A according to the labels, breaking ties according to block
addresses. Each touched block is re-encrypted before being uploaded to the
server. (After this step, real blocks appear before “empty” blocks.)

7. Perform a linear scan over A, removing the labels. Truncate A to size 2i+1.
(Notice that the truncated A still contains the freshest version of all blocks
from DBi,DBi+1.)

8. Run the procedure
(

DBi+1′, D̃B
i+1′

, K̃i+1′s̃k
i+1′)

← InitLevel (i+ 1, A) of

Figure 1 to obtain the processed database D̃B
i+1′

of level i + 1, and fresh
(encrypted) PRF and SK-DEPIR keys K̃i+1′, s̃k

i+1′
(respectively). Replace

K̃i+1, s̃k
i+1

with K̃i+1′, s̃k
i+1′

(respectively). Update level i to be empty
Li =⊥, and level i+ 1 to Li+1 =

(
DBi+1′, D̃B

i+1′)
.

Fig. 3: The ReShuffle protocol used in Construction 1
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– IND-CPA Security. For all non-uniform PPT A0 and A1, there is a
negligible function negl such that for every security parameter λ,

Pr

b′ = b :

(pk, sk)← KeyGen(1λ)
(st, D0, D1, 1

B) := A0(pk)
b← {0, 1}

D̂ ← Enc(pk, Db, B)

b′ := A1(st, D̂)

 ≤ 1

2
+ negl(λ).

– η (|D|)-Efficiency. With probability 1, the running time of Eval in the ex-
periment described in Eq. (1) is at most T · η (|D|) · poly (B, λ).

– Compactness. In the experiment described in Eq. (1), |ŷ| ≤ poly(log |Y|, λ).

Remark 1. We note that when Enc is executed with the additional space-bound
parameter s, then correctness holds for every RAM machine M whose volatile
tape throughout the execution has size at most s, and the adversary in the
security game is also allowed to choose s.

5 Road Map Towards Constructing RAM-FHE

As described in Section 1.2, the encryption of a database D consists of the
server state in a rewindable ORAM for D, together with a VBB obfuscation of
the circuit that emulates a single execution step of the rewindable ORAM client.
Formalizing this idea requires two steps. First, we need to emulate a consistent
client state throughout the execution (because the ORAM client is stateful, while
the obfuscated circuit is not), as well as guarantee semi-honest emulation of the
ORAM server. This covers steps (1) and (3) from Section 1.2. Second, we need
to hide the ORAM client state from the evaluator, using pseudorandom bits for
encryption, which was described as steps (2) and (5) in Section 1.2. We obtain
both of these using a new abstraction which we call a database-dependent RAM-
VBB obfuscator (Section 5.1) in which, informally, the obfuscator takes as input
not only a database D, but also a specific RAM machine M , and the evaluator
can runM on different inputs x with RAM access to (the mutable)D. We provide
two constructions (Section 5.2) to handle each of the issues described above. We
obtain the RAM-FHE by applying the RAM-VBB obfuscator to the universal
RAM machine (which takes as input a descriptionM of a RAM machine, and an
input x for it, and outputs MD (x), where D is the database), that additionally
encrypts its output using a PKE scheme (step (4) in Section 1.2).

5.1 Database-Dependent RAM-VBB Obfuscation

We define two notions of RAM-VBB obfuscation, in which the RAM machine
is obfuscated with relation to a specific database. These notions, which we call
database-dependent RAM-VBB, provide weaker security than RAM-FHE, and
incomparable correctness. We note that though such obfuscation is unlikely to
exist in general, similar to circuit-VBB obfuscation it might exist for restricted
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ensembles of RAM machines, and in particular might exist for the specific en-
semble we consider in this work.

Informally, the obfuscator O is parameterized by an ensembleM = {MN}N
of classes of RAM programs. It takes as input not only a database D0 ∈ {0, 1}N ,
but also a RAM machine M ∈ MN . The evaluator is able to compute MD(x)
for any input x and any database D that is either D0 or was obtained by a
previous execution of M . Formally,

Definition 7 (Database-dependent RAM-VBB obfuscator). Let n ∈ N
be an input length, N ≤ 2λ be a database size, andM = {MN}N be an ensemble
of classes of RAM programs. A database-dependent RAM-VBB obfuscator for
M is an algorithm O that takes as input a security parameter 1λ, a database
D0 ∈ {0, 1}N , and a RAM machine M ∈MN . It outputs a database D̃0, a RAM
machine M̃ , and some auxiliary input I0 for M̃ . We require that O satisfies the
following requirements:

– Correctness. For every n, k,N ∈ N, every M ∈ MN , every database
D0 ∈ {0, 1}N , and every inputs x1, . . . , xm ∈ {0, 1}n, the following two ex-
periments yield the same values of (y1, . . . , ym) ∈

(
{0, 1}k

)m except with
negl (λ) probability.

(D̃0, M̃ , I0)← O(1λ, D0,M)

(y1, D̃1, I1)← M̃ D̃0(x1, I0)
. . .

(ym, D̃m, Im)← M̃ D̃m−1(xm, Im−1)

and
(y1, D1)←MD0(x1)
. . .
(ym, Dm)←MDm−1(xm)

(2)

– Efficiency. In the above experiments, it holds that

Time(M̃, (xi, Ii−1) , D̃i−1) ≤ Time(M,xi, Di−1) · poly(|M | , λ)

where |M | denotes the combined length of the internal state and the descrip-
tion of M .

We define two security notions for database-dependent RAM-VBB obfusca-
tion. The first, which we call transcript-simulable, is roughly that any adversary
(with single-bit output) given an obfuscation of (D0,M) is simulatable given
only the execution trace (see full version [HHWW]for definition), namely given
oracle access to the function that takes a sequence of inputs x1, . . . , xd, and
returns the operations performed by M when sequentially executed (i.e., with a
mutable database D that is initially D0 but persists across executions) on the
inputs x1, . . . , xd. The second security property, which we call address simu-
latable, is stronger since it gives the simulator less information. Specifically, the
simulator no longer sees the entire computation transcripts but instead sees only
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the addresses of the physical memory which are operated on, the type (read or
write) of memory operation, and the outcome of the computation. The simula-
tor does not see the values read from / written to memory, or the contents D0

of the initial database, but instead sees only its size |D0|. These definitions ap-
pear in the full version [HHWW]. We abbreviate transcript/address-simulatable
database-dependent RAM-VBB as transcript/address-simulatable RAM-VBB.

5.2 Database-Dependent RAM-VBB Obfuscation: Constructions

In this section we construct (single-hop) transcript-simulatable and address-
simulatable RAM-VBB obfuscators. These will be used in Section 6 to construct
a RAM-FHE scheme.

In the single hop setting, we can assume without loss of generality that the
database is read-only, since database updates can be emulated in the scratch
tape, causing a multiplicative factor-2 increase in the scratch tape size, and the
number of read accesses. Therefore, we can (by performing dummy accesses if
needed) assume without impact that every execution step performs a single read
from the database and scratch tape, and a single write to the scratch tape.

We now construct a single-hop transcript-simulatable RAM-VBB obfuscator
(see full version for a multi-hop variant). The high level idea is to use MACs and
Merkle hash trees to enforce consistent execution, and to obfuscate the transition
circuit (computing the transition function δ of the RAM machine) which has the
MAC key hard-wired into it. This intuition is formalized in the next construction.
In the full version [HHWW], we prove the following construction is a transcript
Simulatable RAM-VBB obfuscator.

Construction 2 (Transcript-simulatable RAM-VBB obfuscation). The transcript-
simulatable RAM-VBB obfuscator Otrans uses:

– A family H of hash functions.
– A MAC scheme (KeyGen,Tag,Verify), in which Tag,Verify are deterministic

(this assumption is without loss of generality).
– A circuit obfuscator O.

Given a security parameter λ, a database D0, and a RAM machineM , Otrans:

– Generates a random MAC keyKMAC ← KeyGen
(
1λ
)
, and picks a description

of a hash function h← H.
– Generate a MHT MT for D0, and let Rt denote its root.
– Let stM denote the initial state of the RAMmachineM , set st = (true, stM ,Rt),

and pad st with zeros to have the same size as st in Figure 4. (The boolean
value true in st indicates that the execution hasn’t started yet.) Otrans gen-
erates a tag σ = Tag (KMAC, (false, st)). (The signature is on the state st, as
well as a boolean variable bfin indicating whether the execution has already
terminated.)

– Runs the obfuscator C̃ ← O
(
1λ, CExec

)
to obfuscate the circuit CExec de-

scribed in Figure 5, with the constants described in Figure 4 hard-wired into
it.
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– Outputs
(

MT,Mwrap, I =
(

st, σ, C̃
))

, where Mwrap is the RAM machine de-
scribed in Figure 6.

The constants and inputs used in the circuit CExec of Figure 5
Constants: a description h of a CRHF, and a key KMAC for a MAC scheme.
Inputs:

x ∈ {0, 1}n: an input for the RAM machine M .
bfin: a boolean variable indicating whether the computation has already termi-

nated.
st = (bfirst, stM ,Rt,Rthist,Phist, addrDB, addrstape, addrw, valw, x

′): an internal state
st, consisting of: a boolean variable bfirst indicating whether this is the first
operation, the internal state stM of a RAM machine, the root Rt for a MHT
MT for a database, the root Rthist of a MHT MThist of the history of accesses
performed so far, and the path Phist to the right-most (i.e., last) node in
MThist, addresses addrDB, addrstape read from the database and scratch tape
(respectively) in the previous execution step, the value valw written in the
last execution step to address addrw of the scratch tape, and an input x′ for
M .

σ: a MAC tag for (bfin, st).
valDB, valstape: the values at locations addrDB, addrstape (respectively) in the

database and scratch tape, respectively.
PDB,Pstape,Pw: the paths of nodes addrDB, addrstape, addrw (respectively) in MT.

Fig. 4: Description of the constants and inputs of CExec

In full version [HHWW], we construct an address-simulatable RAM-VBB
obfuscator from a transcript-simulatable RAM-VBB obfuscator. The high level
idea is to apply the transcript-simulatable VBB obfuscator to a RAM program
M that has a hard-wired encryption key, which the transition circuit uses to
encrypt the internal state. One issue that arises is how to generate randomness
for encryption, when M cannot toss coins. This is done by applying a PRF to
the current execution state. We also include a counter in the internal state to
guarantee that the states are unique throughout the execution.

6 A RAM-FHE Scheme

In this section we describe our single-hop RAM-FHE scheme, which uses an
address-simulatable RAM-VBB as a building block. We assume that (polyno-
mial) a-priori bounds on the input, output, and description lengths of the RAM
machine are known. In the full version [HHWW], we discuss extensions to the
general setting (in which no such bounds are a-priori known) and how we upgrade
the scheme to a multi-hop scheme. Concretely, we prove (in the full version) the
following theorem:
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The execution circuit CExec

Constants and inputs: as described in Figure 4.

1. Verify input consistency: verify that Verify (KMAC, (bfin, st) , σ) = 1. If
bfirst = false then verify additionally that:
(a) PDB,Pstape,Pw are paths to the nodes addrDB, addrstape, addrw in the MHT

whose root is Rt, and the values at addrDB, addrstape are valDB, valstape (re-
spectively).

(b) Phist is the path to the right-most node in the MHT whose root is Rthist.
(c) x′ = x. (Verifying the same input is used throughout the execution.)
If any of these checks fail, output abort.

2. Updating database MHT: if bfirst = false, use Pw to compute the root Rt′

of the MHT obtained from MT by replacing the value of the node addrw with
valw.

3. Emulating next transition step:
(a) Execute the next command of M , as described in stM (which indicates

which command is next), by applying the transition function δ using
valDB, valstape as the values obtained from the last command executed. (If
bfirst = true then valDB, valstape are not needed and are therefore ignored.)
The execution results in an updated internal state st′M of M (i.e., the
state outputted by the transition circuit).

(b) If M terminated in the current step with output y, then set bfin = true
and out = (bfin, y), and go to Step 5.

(c) Otherwise, the execution step results in accesses
addr′DB, addr′stape, (addr′w, val′w) reading addresses addr′DB, addr′stape from
the database and scratch tape (respectively), and writing value val′w to
address addr′w in the scratch tape. Set bfin = false.

4. Updating history and state: set leaves =(
valDB, valstape, addr′DB, addr′stape, addr′w, val′w

)
. If bfirst = false, use Phist to

compute the root Rt′hist of the MHT MT′hist obtained from MThist by
adding the leaves leaves. If bfirst = true, set bfirst = false and gener-
ate a (new) MHT MT′hist for leaves (see remark on page 26). In either
case, let P ′hist be the path to the right-most node in MT′hist, and set
st′ =

(
bfirst, st′M ,Rt′,Rt′hist,P ′hist, addr′DB, addr′stape, addr′w, val′w, x

)
, compute

σ′ = Tag (KMAC, (bfin, st′)), and set out = (bfin, st′, σ′).
5. Output: return out.

Fig. 5: Description of the circuit used to emulate a single transition of the RAMmachine
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The wrapper program Mwrap

RAM access to: a MHT MT for a database D (which contains an initial database,
concatenated with a scratch tape).
Inputs:

x ∈ {0, 1}n: an input for a RAM machine M .
st: the internal state used in the execution of CExec.
σ: a MAC tag for st.
C̃: an obfuscation of the circuit CExec of Figure 5.

Operation:

1. Initialization: Set Phist to be empty (this is a “place holder” for the right-most
path in a MHT MThist of the access history so far), and z = (x, false, st, σ),
padded with zeros to have the size of inputs to C̃.

2. Repeat:
– Emulate an execution step: execute (bfin, y) = C̃ (z) to obtain a bit
bfin indicating whether the execution has terminated, and an additional
output y.

– Generate output when the execution ends: if bfin = true then output
y and halt.

– Emulate database and scratch tape accesses:
• Interpret y as (st′, σ′), where σ′ is a MAC tag for (bfin, st′), and st′ is

the current internal execution state, consists of: a bit b, the current
internal state stM of M (as outputted by the transition circuit), the
root Rt of an updated MHT for D, a root Rthist for a MHT MThist, the
path Phist to the right-most node in MThist, addresses addrDB, addrstape

to read from D, a value valw to write to address addrw of D, and an
input x′ for M .

• Read the path PDB to the node addrDB in MT, and let valDB be the
value of the node.

• Read the path Pstape to the node addrstape in MT, and let valstape be
the value of the node.

• Read the path Pw to the node addrw in MT. Replace the value in
addrw with valw, and update its path in MT.

– Compute input for next execution step: Set z =
(x, bfin, st′, σ′, valDB, valstape,PDB,Pstape,Pw).

Fig. 6: Description of the wrapper RAM machine
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Theorem 4 (Single-hop RAM-FHE). Assume the existence of OWFs, CRHFs,
PKE schemes, and SK-DEPIR which for size-N databases has poly(λ, logN)
Query and Decode complexity, where λ denotes the security parameter. Then
for every d = poly (λ) there exists a poly logN -efficient single-hop RAM-FHE
scheme in the circuit-VBB hybrid model for RAM machines with input length,
output length, description size, and space usage at most d.

The Construction. The high level idea is to combine the address-simulatable
RAM-VBB for the universal RAM machine, with an ISR-ORAM (which is re-
placed with an ASR-ORAM in the multi-hop setting). The address-simulatable
RAM-VBB guarantees that the RAM machine emulation only reveals the se-
quence of physical memory addresses it accesses, which by ISR-ORAM security
reveals no information about the access pattern to logical memory. One technical
issue is that the universal machine should encrypt its output (using a persistent
encryption key that is generated during KeyGen, independent of the database and
any RAM machine that will be run on it) which requires generating randomness.
We use a PRF to generate this randomness.

Construction 3 (Single-hop RAM-FHE). The RAM-FHE scheme uses:

– An address-simulatable RAM-VBB obfuscator O.
– An ISR-ORAM scheme (ISR− ORAM.Setup, ISR− ORAM.Access) with a de-

terministic client during ISR− ORAM.Access.
– A PKE scheme (PKE.KeyGen,PKE.Encrypt,PKE.Decrypt).
– An unbounded-input PRF F .

It consists of the following algorithms:

– KeyGen
(
1λ
)
generates a public-secret key pair

(
pk′, sk′

)
← PKE.KeyGen

(
1λ
)
,

and outputs
(
pk =

(
1λ, pk′

)
, sk = sk′

)
.

– Encrypt
(
pk =

(
1λ, pk′

)
,DB, 1d, 1s

)
takes as input a public key pk, a database

DB, and bounds d, s on the description size and space usage of RAM ma-
chines (respectively). It operates as follows:
• Set DB′ to be the database of size |DB|+ s obtained by concatenating s

empty blocks to DB.(Intuitively, these blocks are “place holders” for the
contents of the scratch tape of a RAM machine; see remark on physi-
cal memory block contents in the full version for a discussion of empty
blocks.)

• Initialize an ISR-ORAMwith DB′, by running ISR− ORAM.Setup
(
1λ,DB′

)
,

to obtain a client state ckISR and a server state stISR.
• Pick a random PRF key K ← {0, 1}λ.
• Run

(
D̃B, M̃U , I

)
← O

(
1λ, stISR,MU

)
, where MU is the RAM machine

described in Figure 7, with hard-wired values |DB| , pk′,K, and internal
variable ckISR.

• Output the ciphertext cDB =
(

D̃B, M̃U , I
)
.
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– EvalcDB
(
M,x, 1T

)
takes as input a description M of size at most d of a

RAM machine, an input x for M , and a bound T on the runtime of M . It
also has RAM access to a database-ciphertext cDB =

(
D̃B, M̃U , I

)
. It runs

M̃U
D̃B (

M, 1T , x, I
)
, and outputs whatever it outputs.

– Decrypt (sk, c) takes as input a secret key sk, and an output-ciphertext c. It
outputs PKE.Decrypt (sk, c).

The RAM machine MU with RAM access to D̃B
Hard-wired value: a database size N , a public key pk for a PKE scheme, and a
PRF key K.
Internal variables:

ck: a client state in an ISR-ORAM.
y: the output of a RAM machine (initialized to 0).
fin: a boolean variable indicating whether the execution has terminated or not

(initialized to false).
count: a counter of the number of operations performed so far (initialized to 0).

Inputs:

M : a description (of length at most d) of a RAM machine.
T : a bound on the runtime of M .
x ∈ {0, 1}∗: the input for the RAM machine M .

Operation:

1. Initialize the run: set valDB, valstape to be empty. (This is the first operation,
no values were previously read from the database and scratch tape.)

2. Execute M for T steps: for i = 1, . . . , T , do:
– Emulate a transition step: execute the procedure from Figure 8 with

valDB, valstape as the values read from the database and the scratch tape,
respectively.

– Access DB and scratch tape: if count ≤ T then for j = 1, 2, 3: execute
the procedure from Figure 9.

3. Output: set r = F (K, (M,T, x)), encrypt c = PKE.Encrypt (pk, y; r) and
output c.

Fig. 7: RAM machine used in Construction 3

Remark on growing Merkel Hash Trees. Our construction (in particular, the
circuit CExec of Figure 5 on page 23) generate and grow MHTs. The hash trees use
an underlying hash function H : {0, 1}2n → {0, 1}n for some n ∈ N. Generating
a MHT T for a string s is done in the standard way by hashing adjacent pairs
of nodes repeatedly, and we say that the resultant tree T represents s. Growing
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Emulating a single transition of M in MU
Hard-wired values, internal variables, M : as in Figure 7.

1. If fin = true, perform a dummy step: perform a no-op operation,a and set
addrDB = 0, addrstape = addrw = N , and valw = 0 (these are dummy accesses
which read address 0 from the database and scratch tape, and write 0 to
address 0 of the scratch tape).

2. If fin = false, perform the next transition step:
(a) Execute the next command of M using valDB, valstape as the values read

from the database and the scratch tapes, respectively.
(b) If M terminated in the current step with output out, then set y = out

and fin = true.
(c) Otherwise, if count < T then this step results in accesses addrDB, addrstape,

(addrw, valw) reading addresses addrDB, addrstape (respectively) from the
database and scratch tape, and writing value valw to address addrw of
the scratch tape. Set addrstape := addrstape +N , addrw := addrw+N . (This
“translates” the addresses in the scratch tape to addresses in D̃B, since
M ’s scratch tape appears in D̃B after the size-N database.)

3. Update the counter: set count = count + 1.

a This is needed to hide whether a command of M was executed or not, which
would reveal information about the actual runtime of M .

Fig. 8: Emulating a single transition of M

Emulating a database or scratch tape access of M in MU
Hard-wired value, internal variables, j: as in Figure 7.
Memory accesses addrDB, addrstape, (addrw, valw): as in Figure 8.

1. Determine ORAM client input: if j = 1 (i.e., read from database) set
v = (addrDB,⊥). If j = 2 (i.e., read from scratch tape) set v = (addrstape,⊥).
If j = 3 (i.e., write to scratch tape), set v = (addrw, valw).

2. Initiate ORAM access: run the ISR-ORAM client from state ck with input
v, to obtain a query q to the physical memory, and an update instruction
update to the physical memory. (This results also in an updated client state
which is updated in MU ’s internal state).

3. Emulate ORAM access: until the ORAM client halts, do:
– Read the value val written in block q of D̃B, and perform update on D̃B.
– Run the ORAM client from state ck, given val as the server’s answer to

the last query q. The client outputs either the next query q and an update
instruction update to the physical memory, or an output value valout (in
this case, the ORAM client halts; in either case, this also results in an
updated ORAM client state).

4. Output: if j = 1 (i.e., a value was read from the database), set valDB = valout,
and if j = 2 (i.e., a value was read from the scratch tape), set valstape = valout.

Fig. 9: Emulating a database or scratch tape access in M
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an existing MHT T which represents a string s is done as follows. Assume T has
hight h growing from the leaves to the root, and let v1, . . . , vh be the right-most
nodes in each level of T , i.e., v1 is a suffix of s, and vh is the root. To generate
a MHT representing the string s ◦ s′ for some s′ ∈ {0, 1}n, concatenate s′ to
level 1 of the tree as the new right-most node, and let v′1 := s′. Compute a
new right-most path in the tree by generating, for every 1 < i ≤ h the node
v′i = H

(
vi−1, v

′
i−1
)
and concatenating v′i to the right of node vi in level i.

Finally, generate a new root at level h + 1 by computing H (vh, v
′
h). To grow

T be a string of length > n, partition the string into length-n substrings, and
apply this procedure sequentially on each of the substrings.
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