
Simulation Extractability in Groth’s zk-SNARK
Shahla Atapoor

Institute of Computer Science
University of Tartu

Tartu, Estonia
shahla.atapoor@ut.ee

Karim Baghery
Institute of Computer Science

University of Tartu
Tartu, Estonia

karim.baghery@ut.ee

Abstract—A Simulation Extractable (SE) zk-SNARK enables
a prover to prove that she knows a witness for an instance in
a way that the proof: (1) is succinct and can be verified very
efficiently; (2) does not leak information about the witness; (3) is
simulation-extractable -an adversary cannot come out with a new
valid proof unless it knows a witness, even if it has already seen
arbitrary number of simulated proofs. Non-malleable succinct
proofs and very efficient verification make SE zk-SNARKs an
elegant tool in various privacy-preserving applications such as
cryptocurrencies, smart contracts and etc. In Eurocrypt 2016,
Groth proposed the most efficient pairing-based zk-SNARK in
the CRS model, but its proof is vulnerable to malleability attacks.
In this paper, we show that one can efficiently achieve simulation
extractability in Groth’s zk-SNARK by some changes in the
underlying language using an OR construction. Analysis show
that in practical cases overload has minimal effects on the
efficiency of original scheme which currently is the most efficient
zk-SNARK. In new construction, proof size will be extended by
one element from G1, one element from G2 plus a bit string,
that totally will be still less than 200 bytes for 128-bit security.
Its verification is dominated with 4 parings which is the most
efficient verification among current SE zk-SNARKs.

Index Terms—Zero-knowledge proofs, zk-SNARKs, simulation
extractability, CRS model

I. INTRODUCTION

Non-Interactive Zero-Knowledge (NIZK) proofs are one of
the central design tools in cryptographically secure systems,
allowing one to verify the veracity of statements without
leaking extra information. Technically speaking, a NIZK al-
lows a prover to prove that, for a public statement x she
knows a witness w which hold in a relation R, (x,w) ∈ R,
without leaking any information about her witness w. In
the Common Reference String (CRS) model [1], a NIZK
is a three-party protocol that works as the following. First,
there exists a trusted party K (a.k.a. CRS generator) who
takes security parameter λ as an input and generates CRS
elements crs := (crsP, crsV) which later will be used by
prover and verifier for proof generation and proof verification,
respectively. Then the prover P gets crsP, the statement x and
her witness w and generates a proof π, attesting that for the
statement x, I know a witness w s.t. (x,w) ∈ R. Finally, a
verifier V takes crsV, the statment x and the proof π and returns
either accept (if proof is valid) or reject (if verification failed).
If V does not need any secret information to verify the proof
π, the proof is called publicly verifiable that can be verified by
many public verifiers (e.g. by nodes of a distributed network).

Generally, a NIZK proof system guarantees three essen-
tial properties known as completeness, soundness and zero-
knowledge. The property completeness guarantees that a hon-
est prover always convinces a honest verifier. The soundness
ensures that a malicious prover cannot convince the honest
verifier except with negligible probability. Zero-knowledge
property assures that the proof generated by prover does not
leak any information about the witness w of prover.

During last few years, a very efficient family of NIZK
proof systems are developed which are known as zero-
knowledge Succinct Non-interactive Argument of Knowledge
(zk-SNARK) [2]–[7]. A zk-SNARK has succinct proof size
that allows a computationally weak verifier to efficiently verify
the proof. Differently from a standard NIZK, a zk-SNARK
guarantees knowledge-soundness that is a stronger notion in
comparison with standard soundness. Knowledge-soundness
guarantees that if an adversarial prover manages to come out
with an acceptable proof, there exists an efficient extractor
which given some secret information can efficiently extract
the witness from the proof. Knowledge-soundness of zk-
SNARKs is achieved under knowledge assumptions [8] that
allow an extractor to extract witness from a succinct proof
in a non-black-box manner1. Impossibility result of Gentry
and Wichs [9] confirms that such kind of extraction should
be based on non-falsifiable (e.g. knowledge assumptions [8])
assumptions. By the date, the most efficient zk-SNARK is
proposed by Groth [6] in Eurocrypt 2016, that is constructed
for Quadratic Arithmetic Programs (QAPs) and works in a
biliner group. The proof in Groth’s zk-SNARK consists of
two elements in G1 and one element in G2, and in order to
verify the proof, a verifier V needs to check one equation that
contains 3 parings and m0 exponentiations [6], where m0 is
the length of inputs (statements) to the circuit.

In practice, however knowledge-soundness is an amplified
notion in comparison with standard soundness, but still a
knowledge-sound proof is vulnerable to the man-in-the-middle
attacks 2. Due to this fact, zk-SNARKs that only guarantee
knowledge-soundness cannot be deployed in many of prac-

1In non-black-box extraction, extractor EA needs to get full access to the
source code and random coins of adversaryA to be able to extract the witness.

2For instance, in the verification equations that have paring structure such
as a • b = · · · , where a and b are proof elements from G1 and G2 with
prime orders, one can see that such verification equation will be satisfied also
for new proof elements such as a′ = ra and b′ = 1

r
b, for arbitrary r ← Zp.



tical applications straightforwardly [10]–[13]. For instance,
privacy-preserving crypocurrencies such as Zerocash that uses
zk-SNARKs as a subroutine, takes extra steps to prevent
malleability attacks in the proofs for pour transactions [10].
Similarly, privacy-preserving smart contract systems [11], [12]
show that knowledge-soundness of zk-SNARKs is not enough
for their systems. Simulation-knowledge soundness which also
is known as simulation extractability [14], is an amplified ver-
sion of knowledge-soundness that is proposed to provide non-
malleability in NIZK proofs. A Simulation-Extractable (SE)
zk-SNARK guarantees the proof is succinct, zero-knowledge
(does not leak any information about w) and simulation-
extractable, meaning that an adversarial prover is unable to
come out with a new proof unless he knows a witness, even
if he has already seen arbitrary number of simulated proofs.
Intuitively, simulation extractability implies that the proofs are
non-malleable and even if an adversary sees arbitrary number
of simulated proofs, he will not be able to generate a new
acceptable proof, if he could, he must know the witness.

In Crypto 2017, Groth and Maller proposed the first SE
zk-SNARK in the CRS model that allows to generate non-
malleable proofs [7]. They also proved that a SE zk-SNARK
requires at least two verification equations. Their scheme
is constructed in the bilinear groups for Square Arithmetic
Programs (SAPs) and its proof consists of two elements in G1

and one element in G2. In order to verify a proof, their verifier
needs to check two equations that totally require 5 pairings and
m0 exponentiations, m0 is the length of statement [7]. One
may notice that Groth-Maller scheme is optimal in the number
of verification equations, but to guarantee non-malleability in
proofs, their scheme removes one of the bilinear group genera-
tors from the CRS, which creates some different challenges in
practice (e.g. in CRS generation by multi-party computation
protocols, or in achieving subversion security [15]). Above
all, Groth-Maller scheme is constructed for arithmetic circuits
with squaring gates that requires larger number of gates, as
each multiplication (MUL) gate requires two squaring gates
(a × b = (a+b)2−(a−b)2

4 ). Finally, implementations show that
for a particular circuit, Groth’s zk-SNARK [6] considerably
has better efficiency than Groth-Maller scheme [7], but Gorth’s
scheme does not achieve simulation extractability (its proof is
malleable). A short performance comparison of both schemes
on a Rank-1 Constraint System (R1CS) instance with 106

constraints and 106 variables, where 10 are input variables
is shown in Tab. I.

Table I
A short performance comparison of zk-SNARKs proposed by Groth and
Maller [7] (reffered as GM), and Groth [6] for arithmetic circuit satisfiability
with an R1CS instance with 106 constraints and 106 variables, where 10 are
input variables. Since [7] uses squaring gates, so n MUL gates translate to
2n squaring gates. Implementations are done on a PC with 3.40 GHz Intel
Core i7-4770 CPU, in single-threaded mode using the BN128 curve.

zk-
SNARK

CRS Gen.
CRS Size

Pro. Time
Proof Size

Ver. Time
Ver. Comp. Security

GM [7] 100.4 sec
385 MB

116.4 sec
2G1 + 1G2

2.3 msec
5 paring

Simulation
Extractability

Groth [6] 72.5 sec
201 MB

84.0 sec
2G1 + 1G2

1.3 msec
3 paring

Knowledge
Soundness

Problem statement. By reminding that currently zk-SNARK
of Groth [6] has the best efficiency but only achieves
knowledge-soundness, and the fact that Groth-Maller zk-
SNARK [7] ensures simulation extractability but with less
efficiency and only one group generator in the CRS, a re-
search question can be raised as if we can achieve simulation
extractability in Groth’s zk-SNARK efficiency? Such that, new
scheme will 1) work for QAPs 2) have both generators of
bilinear groups in the CRS 3) have a comparable or even better
efficiency than Groth-Maller zk-SNARK.

Our Contribution. In this paper, we address the questions
discussed above and propose a variation of Groth’s zk-SNARK
that can achieve simulation extractability with minimal effi-
ciency loss in practical cases. To this end, we use the known
OR technique and define a new language L′ based on the
language L in Groth’s zk-SNARK that is inspired by the works
of De Santis et al. [16] and Kosba et al. [17].

Defining new language implies some changes in algorithms
of the original scheme. Our evaluations show that for a partic-
ular practical instantiation, new changes have minimal affect
on efficiency of the original scheme which currently is the
state-of-the-art zk-SNARK. Strictly speaking, the verification
of new scheme has two equations as the optimal case, and
only adds 1 pairing to the verification of Groth’s scheme. As a
result, totally verification (Ver. Comp.) of new scheme requires
4 pairings which is less than 5 parings in the current state-of-
the-art simulation-extractable zk-SNARK proposed by Groth
and Maller [7]. So, by considering Tab. I, the verification
(Ver. Time) would take approximately 1.8 milliseconds. In
the proposed scheme, the proof size will be extended by
one element from G1, one element from G2 plus a 256-bit
string, that totally (Proof Size) will be 3 elements from G1,
2 elements from G2 and one 256-bit string, which for the
considered instance in Tab. I still it would be less than 200
bytes for 128-bit security. The prover will require to give a
proof for a new circuit that has approximately 50× 103 gates
more than before, which in practice the overload is negligible.
For instance Zerocash uses zk-SNARKs to give a proof in the
pour transactions that use an arithmetic circuit with around
2× 106 MUL gates3. As for a circuit with size c, the prover
does asymptotically O(c) cryptographic and O(c log2 c) non-
cryptographic computations, so for circuits with 106 gates, the
overload would be around 5-6%, where by considering reports
in Tab. I, the proof generation (Pro. Time) would take about 90
seconds. Similarly, for the same instance in Tab. I, the CRS
size in new scheme will increase around 5-6% which will
result around 215 MB, considerably smaller than CRS size of
Groth-Maller zk-SNARK [7] that chases the same goal.

Discussion and Related Works. Among different NIZK ar-
guments, zk-SNARKs are the most practically-interested ones,
because of their succinct proofs and very efficient verifications.
But as majority of them guarantee knowledge-soundness by

3Infact already their circuit for pour transactions had around 4×106 gates,
but recently they optimized the system and reduced the number of gates, but
still it has around 40 times 50× 103 gates.



default, that is vulnerable to the man-in-the-middle attacks,
so in practical systems they are supported by some other
cryptographic primitives [10]–[13]. In constructing large cryp-
tographic systems, this can make some challenges for non-
expert users. Due to this fact, recently constructing efficient SE
zk-SNARKs, that by default can guarantee non-malleability of
proofs, has become an active research topic [7], [18], [19]. In
2018, Bowe and Ariel [18] also proposed a variation of Groth’s
zk-SNARK that aimed to achieve simulation extractability but
in the random oracle model. However, recently Kim et al. [19]
showed that Bowe -Ariel scheme still is vulnerable to the
malleability attack. As Groth’s zk-SNARK is constructed and
proven in the CRS model, so we are interested to achieve
simulation extractability in the same model. Currently, we are
aware of only Groth-Maller SE zk-SNARK [7] in the CRS
model, which later we will compare it with the proposed
construction with more details.

The rest of paper is organized as follows; Sec. II introduces
notations and preliminaries. A simulation-extractable version
of Groth’s zk-SNARK is presented in Sec. III. In Sec. IV,
we discuss about instantiation and efficiency of the proposed
construction. Finally we conclude the paper in Sec. V.

II. PRELIMINARIES

Let PPT denote probabilistic polynomial-time, and NUPPT
denote non-uniform PPT. Let λ ∈ N be the information-
theoretic security parameter, say λ = 128. All adversaries will
be stateful. For an algorithm A, let Im(A) be the image of
A, i.e. the set of valid outputs of A, let RND(A) denote the
random tape of A, and let r ← RND(A) denote sampling
of a randomizer r of sufficient length for A’s needs. By
y ← A(x; r) we denote the fact that A, given an input x and
a randomizer r, outputs y. For algorithms A and EA, we write
(y ‖ y′) ← (A‖EA)(x; r) as a shorthand for “y ← A(x; r),
y′ ← EA(x; r)”. We denote by negl an arbitrary negligible
function. For distributions A and B, A ≈c B means that they
are computationally indistinguishable.

In pairing-based groups, we use additive notation together
with the bracket notation, i.e., in group Gµ, [a]µ = a [1]µ,
where [1]µ is a fixed generator of Gµ. A bilinear group gen-
erator BGgen(1λ) returns (p,G1,G2,GT , ê, [1]1 , [1]2), where
p (a large prime) is the order of cyclic abelian groups G1,
G2, and GT . Finally, ê : G1 ×G2 → GT is an efficient non-
degenerate bilinear pairing, s.t. ê([a]1 , [b]2) = [ab]T . Denote
[a]1 • [b]2 = ê([a]1 , [b]2).

Next we review Quadratic Arithmetic Programs (QAPs) that
defines NP-complete language specified by a quadratic equa-
tion over polynomials and have reduction from the language
CIRCUIT-SAT [6], [20].
Quadratic Arithmetic Programs. QAP was introduced by Gen-
naro et al. [20] as a language where for an input x and witness
w, (x,w) ∈ R can be verified by using a parallel quadratic
check. Consequently, any efficient simulation-extractable zk-
SNARK for QAP results in an efficient simulation-extractable
zk-SNARK for CIRCUIT-SAT.

An QAP instance Qp is specified by the so defined
(Zp,m0, {uj , vj , wj}mj=0). This instance defines the following
relation, where we assume that A0 = 1:

R =


(x,w) : x = (A1, . . . , Am0)

> ∧ w = (Am0+1, . . . , Am)>∧(∑m
j=0 Ajuj(X)

)(∑m
j=0 Ajvj(X)

)
≡∑m

j=0 Ajwj(X) (mod `(X))


Alternatively, (x,w) ∈ R if there exists a (degree ≤ n − 2)
polynomial h(X), s.t.

(∑m
j=0Ajuj(X)

)(∑m
j=0Ajvj(X)

)
−∑m

j=0Ajwj(X) = h(X)`(X) , where `(X) =
∏n
i=1(X −

ωi−1) is a polynomial related to Lagrange interpolation, and ω
is an n-th primitive root of unity modulo p. Roughly speaking,
the goal of the prover of a zk-SNARK for QAP [20] is to
prove that for public (A1, . . . , Am0) and A0 = 1, she knows
(Am0+1, . . . , Am) and a degree ≤ n − 2 polynomial h(X),
such that above equation holds.

A. Definitions

We use the definitions of NIZK arguments from [6], [7],
[14], [17]. Let R be a relation generator, such that R(1λ)
returns a polynomial-time decidable binary relation R =
{(x,w)}. Here, x is the statement and w is the witness.
Security parameter λ can be deduced from the description of
R. The relation generator also outputs auxiliary information
zR that will be given to the honest parties and the adversary.
As in [6], [15], zR is the value returned by BGgen(1λ), so
zR is given as an input to the honest parties; if needed, one
can include an additional auxiliary input to the adversary. Let
LR = {x : ∃w, (x,w) ∈ R} be an NP-language. A NIZK
argument system Ψ for R consists a tuple of PPT algorithms
(K,P,V,S), such that:
CRS generator: K is a PPT algorithm that, given (R, zR)

where (R, zR) ∈ Im(R(1λ)), outputs crs = (crsP, crsV)
and stores trapdoors of crs as ts. We distinguish crsP
(needed by the prover) from crsV (needed by the verifier).

Prover: P is a PPT algorithm that, given (R, zR, crsP, x, w),
where (x,w) ∈ R, outputs an argument π. Otherwise, it
outputs ⊥.

Verifier: V is a PPT algorithm that, given (R, zR, crsV, x, π),
returns either 0 (reject) or 1 (accept).

Simulator: S is a PPT algorithm that, given (R, zR, crs,
ts, x), outputs an argument π.

By definition, a zk-SNARK system is required to be com-
plete, (computationally) knowledge-sound, (statistically) ZK,
and succinct as in the following definitions.

Definition 1 (Perfect Completeness [6]). A non-interactive
argument Ψ is perfectly complete for R, if for all λ, all
(R, zR) ∈ Im(R(1λ)), and (x,w) ∈ R,

Pr

[
(crs ‖ ts)← K(R, zR), π ← P(R, zR, crsP, x, w) :

V(R, zR, crsV, x, π) = 1

]
= 1 .

Intuitively, it states an honest prover P always convinces an
honest verifier V.



Definition 2 (Computationally Knowledge-Soundness [6]). A
non-interactive argument Ψ is computationally (adaptively)
knowledge-sound for R, if for every NUPPT A, there exists
a NUPPT extractor EA, s.t. for all λ,

Pr

(crs ‖ ts)← K(R, zR), r ← RND(A),

((x, π) ‖w)← (A‖EA)(R, zR, crs; r) :

(x,w) 6∈ R ∧ V(R, zR, crsV, x, π) = 1

 ≈λ 0 .

Here, zR can be seen as a common auxiliary input to A
and EA that is generated by using a benign [21] relation
generator. Intuitively, the definition states that if an adversary
can convince the verifier, she knows the witness. A knowledge-
sound Ψ also is called an argument of knowledge.

Definition 3 (Statistically Zero-Knowledge (ZK) [6]). A non-
interactive argument Ψ is statistically ZK for R, if for all λ, all
(R, zR) ∈ Im(R(1λ)), and for all NUPPT A, εunb0 ≈λ εunb1 ,
where

εb = Pr[(crs ‖ ts)← K(R, zR) : AOb(·,·)(R, zR, crs) = 1] .

Here, the oracle O0(x,w) returns ⊥ (reject) if (x,w) 6∈
R, and otherwise it returns P(R, zR, crsP, x, w). Similarly,
O1(x,w) returns ⊥ (reject) if (x,w) 6∈ R, otherwise it returns
S(R, zR, crs, ts, x). Ψ is perfect ZK for R if one requires that
ε0 = ε1.

Intuitively, a non-interactive argument Ψ is zero-knowledge
if it does not leak extra information beside the truth of the
statement.

Definition 4 (Succinctness [7]). A non-interactive argument
Ψ is succinct if the proof size is polynominal in λ and
the verifier’s computation time is polynominal in security
parameter λ and the size of instance x.

In the rest, we recall the definition of (non-black-box)
simulation extractability that we aim to achieve in the proposed
variation of Groth’s zk-SNARK.

Definition 5 ((Non-Black-Box) Simulation Extractability [7]).
A non-interactive argument Ψ is (non-black-box) simulation-
extractable for R, if for any NUPPT A, there exists a NUPPT
extractor EA s.t. for all λ,

Pr

(crs ‖ ts)← K(R, zR), r ←r RND(A),

((x, π) ‖w)← (AO(.) ‖ EA)(R, zR, crs; r) :

(x, π) 6∈ Q ∧ (x,w) 6∈ R ∧ V(R, zR, crsV, x, π) = 1

 ≈λ 0 .

Here, Q is the set of simulated statement-proof pairs
generated by the adversary’s queries to O. It is worth to
mention that (non-black-box) simulation extractability implies
knowledge-soundness (given in Def. 2), as the earlier is a
strong notion of the later which additionally the adversary
is allowed to send query to the proof simulation oracle. Note
that in Def. 5 the extractor is non-black-box and to be able to
extract the witness, it should have access to the source code
and the random coins of A.

III. A VARIATION OF GROTH’S ZK-SNARK

As briefly discussed in the introduction, Groth’s zk-
SNARK [6] guarantees knowledge-soundness (defined in
Def. 2) which is weaker than simulation extractability. Techni-
cally speaking, knowledge-sound proofs are not secure against
the man-in-the-middle attacks. In this section we present a
variation of Groth’s zk-SNARK which can achieve (non-black-
box) simulation extractability, defined in Def. 5, that can
guarantee non-malleability of the proofs.

A. New Construction

In new construction, we use an OR technique [16],
[17] which adds some efficient computations for all algo-
rithms of the argument but keeps the internal computations
of prover and verifier as the original one that considerably
are optimized for the QAP relation. More precisely, initially
we define a new language L′ based on the language L in
Groth’s zk-SNARK that is embedded with commitment of
a secret randomness as a key for a pseudorandom number
generator. Let (KGen,Sign,SigVerify) be a one-time signature
scheme and (Com,ComVerify) be a perfectly binding commit-
ment scheme. Given the language L with the corresponding
NP relation RL, we define a new language L′ such that
((x, µ, pkSign, ρ), (w, r, s)) ∈ RL′ iff:

((x,w) ∈ RL ∨ (µ = fs(pkSign) ∧ ρ = Com(s, r))) ,

where {fs : {0, 1}∗ → {0, 1}λ}s∈{0,1}λ is a pseudo-random
function family.

Now, (knowledge-sound) zk-SNARK of Groth for the re-
lation R constructed from PPT algorithms (K,P,V,S) can

CRS generator K′(RL, zR): Sample (crs ‖ ts)← K(RL′ ,
zR); s, r ←u {0, 1}λ; ρ := Com(s, r); and output
(crs′ ‖ ts′) := ((crs, ρ) ‖ (ts, (s, r))); where ts′ is new
simulation trapdoor.

Prover P′(RL, zR, crs′, x, w): Parse crs′ := (crs, ρ);
abort if (x,w) /∈ RL; generate (pkSign, skSign) ←
KGen(1λ); sample z0, z1, z2 ←u {0, 1}λ; generate
π ← P(RL′ , zR, crs, (x, z0, pkSign, ρ), (w, z1, z2))
using the prover of Groth’s scheme; sign
σ ← Sign(skSign, (x, z0, π)); and return
π′ := (z0, π, pkSign, σ).

Verifier V′(RL, zR, crs′, x, π′): Parse crs′ := (crs, ρ)
and π′ := (z0, π, pkSign, σ); abort if
SigVerify(pkSign, (x, z0, π), σ) = 0; call the verifier of
Groth’s scheme V(RL′ , zR, crs, (x, z0, pkSign, ρ), π)
and abort if it outputs 0.

Simulator S′(RL, zR, crs′, ts′, x): Parse crs′ := (crs, ρ)
and ts′ := (ts, (s, r)); generate (pkSign, skSign) ←
KGen(1λ); set µ = fs(pkSign); generate
π ← S(RL′ , zR, crs, (x, µ, pkSign, ρ), (ts ‖ (s, r)));
sign σ ← Sign(skSign, (x, µ, π)); and output
π′ := (µ, π, pkSign, σ).

Figure 1. A variation of Groth’s zk-SNARK.



be lifted to a simulation-extractable zk-SNARK Ψ′ with PPT
algorithms (K′,P′,V′,S′) as described in Fig. 1.

B. Security Proofs

Here we present security proofs of the proposed scheme.

Theorem 1 (Completeness). The variation of Groth’s zk-
SNARK described in Sec. III-A, guarantees completeness.

Proof. As mentioned before, in the new construction internal
computations of P and V are the same as original one, except
few extra efficient computations. More precisely, P needs to
do the computation for a new instance that has slightly larger
size (e.g. n = nold+nnew, where nnew is the number of MUL
gates added to the old circuit in result of our changes) and also
output few new elements in result of singing the proof with
a one-time secure signature. On the other side, extra from
the original scheme, V requires to verify a one-time secure
signature which can be done very efficiently.

So by considering completeness of the original scheme,
and the fact that signature scheme is complete, where implies
SigVerify(pkSign,m,Sign(m, skSign) = 1, one can conclude
that the modified construction satisfies the completeness.

Theorem 2 (Zero-Knowledge). The variation of Groth’s zk-
SNARK described in Sec. III-A, guarantees computational
zero-knowledge.

Proof. To prove the theorem we write a series of hybrid
experiments which start from an experiment with the simulator
and gets to an experiment that uses the real prover. We
show that all experiments are two-by-two indistinguishable.
Before describing the games, recall that Groth’s zk-SNARK
guarantees perfect zero-knowledge and simulation procedure
of the modified scheme is expressed in Fig. 1. Now consider
the following experiments,

EXP1(simulator):
• Setup: Sample (crs ‖ ts) ← K(RL′ , zR); s, r ←u

{0, 1}λ; ρ := Com(s, r); and output (crs′ ‖ ts′) :=
((crs, ρ) ‖ (ts, (s, r))); where ts′ is simulation trapdoor.

• Define function O(x,w): Abort if (x,w) 6∈ RL;
(pkSign, skSign) ← KGen(1λ); set µ = fs(pkSign); gener-
ate π ← S(RL′ , zR, crs, (x, µ, pkSign, ρ), ts′); sign σ ←
Sign(skSign, (x, µ, π)); return π′ := (µ, π, pkSign, σ).

• b← AO(x,w)(crs′)

EXP2(separate secret key of pseudo random function):
• Setup: Sample (crs ‖ ts) ← K(RL′ , zR);
s′, s, r ←u {0, 1}λ; ρ := Com(s′, r); and output
(crs′ ‖ ts′) := ((crs, ρ) ‖ (ts, (s, s′, r))); where ts′ is
simulation trapdoor.

• Define function O(x,w): Abort if (x,w) 6∈ RL; generate
(pkSign, skSign) ← KGen(1λ); set µ = fs(pkSign); gen-
erate π ← S(RL′ , zR, crs, (x, µ, pkSign, ρ), (ts ‖ (s, r)));
sign σ ← Sign(skSign, (x, µ, π)); return π′ := (µ, π,
pkSign, σ).

• b← AO(x,w)(crs′)

Lemma 1. If the underlying commitment scheme is computa-
tionally hiding, then for two experiments EXP2 and EXP1 we
have Pr[EXP2] ≈ Pr[EXP1].

Proof. Computationally hiding property of a commitment
scheme implies that Com(m1, r) is computationally indistin-
guishable from Com(m2, r). So this property straightforwardly
results the lemma.

EXP3(replace pseudo random function):
• Setup: Sample (crs ‖ ts) ← K(RL′ , zR); s′, �s, r ←u

{0, 1}λ; ρ := Com(s′, r); and output (crs′ ‖ ts′) := ((crs,
ρ) ‖ (ts, (�s, s

′, r))); where ts′ is simulation trapdoor.
• Define function O(x,w): Abort if (x,w) 6∈ RL;

(pkSign, skSign) ← KGen(1λ); set µ←u {0, 1}λ; gen-
erate π ← S(RL′ , zR, crs, (x, µ, pkSign, ρ), (ts ‖ (s′, r)));
sign σ ← Sign(skSign, (x, µ, π)); return π′ :=
(µ, π, pkSign, σ).

• b← AO(x,w)(crs′)

Lemma 2. If the underlying pseudo random function fs(·)
is secure and the underlying one-time signature scheme is
unforgeable, we have Pr[EXP3] ≈ Pr[EXP2].

Proof. By considering that the signature scheme is secure, we
note that the generated pkSign is unique with overwhelming
probability. Additionally, we can replace the pseudo random
function fs(·) with a true random function that will result
EXP4. By considering unique values of pkSign and indistin-
guishability of output of fs(·) and truly random function, one
can conclude the claim.

EXP4(prover):
• Setup: Sample (crs ‖ ts) ← K(RL′ , zR); s′, r ←u

{0, 1}λ; ρ := Com(s′, r); and output (crs′ ‖ ts′) := ((crs,
ρ) ‖ (ts, (s′, r))); where ts′ is simulation trapdoor.

• Define function O(x,w): Abort if (x,w) 6∈ RL;
(pkSign, skSign)← KGen(1λ); set µ←u {0, 1}λ (µ plays
the role of z0 in Fig. 1); sample z1, z2 ←u {0, 1}λ; gen-
erate π ← P(RL′ , zR, crs, (x, µ, pkSign, ρ), (w, z1, z2));
sign σ ← Sign(skSign, (x, µ, π)); return π′ := (µ, π,
pkSign, σ).

• b← AO(x,w)(crs′)

Lemma 3. If Groth’s zk-SNARK guarantees zero-knowledge,
then we have Pr[EXP4] ≈ Pr[EXP3].

Proof. The last experiment exactly models the real prover of
construction in Fig. 1, and as already Groth’s scheme guaran-
tees zero-knowledge, so one can conclude that the real proof
(generated by prover) in experiment EXP4 is indistinguishable
from the simulated proof (generated by simulator) in EXP3.
Intuitively this is because all new elements added to the new
construction are chosen randomly and independently.

This results that the construction proposed in Fig. 1, guar-
antees computationally zero-knowledge.

Theorem 3 ((Non-Black-Box) Simulation Extractability). The
variation of Groth’s zk-SNARK, described in Sec. III-A, guar-
antees (non-black-box) simulation extractability.



Proof. Similarly, we will go through a sequence of hybrid
experiences that starts by the definition, and finally we show
that success probability in the game is negligible; which proves
the theorem. First of all, recall that Groth’s scheme is proven
to achieve knowledge-soundness (defined in Def. 2). Now
consider the following game,

EXP1(main experiment):
• Setup: Sample (crs ‖ ts) ← K(RL′ , zR); s, r ←u

{0, 1}λ; ρ := Com(s, r); and output (crs′ ‖ ts′) :=
((crs, ρ) ‖ (ts, (s, r))); where ts′ is simulation trapdoor.

• Define function O(x): (pkSign, skSign) ← KGen(1λ);
set µ = fs(pkSign); generate π ← P(RL′ , zR, crs,
(x, µ, pkSign, ρ), (w, (s, r))); sign σ ← Sign(skSign, (x,
µ, π)); return π′ := (µ, π, pkSign, σ).

• (x, π′)← AO(x)(crs′).
• Parse π′ := (µ, π, pkSign, σ); w ← EA(crs′, x, π, zR).
• Return 1 iff ((x, π′) 6∈ Q) ∧ (V′(RL, zR, crs′, x, π′) =

1) ∧ ((x,w) 6∈ RL);
where Q shows the set of statment-proof pairs generated
by O(x).

EXP2(relaxing the return checking):
• Setup: Sample (crs ‖ ts) ← K(RL′ , zR); s, r ←u

{0, 1}λ; ρ := Com(s, r); and output (crs′ ‖ ts′) :=
((crs, ρ) ‖ (ts, (s, r))); where ts′ is simulation trapdoor.

• Define function O(x): (pkSign, skSign) ← KGen(1λ);
set µ = fs(pkSign); generate π ← P(RL′ , zR, crs,
(x, µ, pkSign, ρ), (w, (s, r))); sign σ ← Sign(skSign, (x,
µ, π)); return π′ := (µ, π, pkSign, σ).

• (x, π′)← AO(x)(crs′).
• Parse π′ := (µ, π, pkSign, σ); w ← EA(crs′, x, π, zR).
• Return 1 iff ((x, π′) 6∈ Q) ∧ (V′(RL, zR, crs′, x, π′) =

1)∧ (pkSign 6∈ PK) ∧ (µ = fs(pkSign));
where Q is the set of statment-proof pairs and PK is the
set of signature verification keys, both generated by O(x).

Lemma 4. If the underlying one-time signature scheme
is strongly unforgeable, and Groth’s scheme guarantees
knowledge-soundness, then Pr[EXP2] ≤ Pr[EXP1] + negl(λ).

Proof. We note that if (x, π′) 6∈ Q and ”pkSign from (x, π′),
has been generated by O(·)”, then the (x, µ, π) is a valid
message/signature pairs. Therefore by unforgeability of the
signature scheme, we know that (x, π) 6∈ Q and ”pkSign has
been generated by O(·)” happens with negligible probability,
which allows us to focus on pkSign 6∈ PK.

Now, due to knowledge-soundness of the original scheme
(there is an extractor EA where can extract witness from A), if
some witness is valid for L′ and (x,w) 6∈ RL, so we conclude
it must be the case that there exists some s′, such that ρ is valid
commitment of s′ and µ = fs′(pkSign), which by perfectly
binding property of the commitment scheme, it implies µ =
fs(pkSign).
EXP3(simulator):
• Setup: Sample (crs ‖ ts) ← K(RL′ , zR); s, r ←u

{0, 1}λ; ρ := Com(s, r); and output (crs′ ‖ ts′) :=
((crs, ρ) ‖ (ts, (s, r))); where ts′ is simulation trapdoor.

• Define function O(x): (pkSign, skSign) ← KGen(1λ);
set µ = fs(pkSign); generate π ← S(RL′ , zR,
crs, (x, µ, pkSign, ρ), (ts ‖ (s, r))); sign σ ← Sign(skSign,
(x, µ, π)); return π′ := (µ, π, pkSign, σ).

• (x, π′)← AO(x)(crs′).
• Parse π′ := (µ, π, pkSign, σ); w ← EA(crs′, x, π, zR).
• Return 1 iff ((x, π′) 6∈ Q) ∧ (V′(RL, zR, crs′, x, π′) =

1) ∧ (pkSign 6∈ PK) ∧ (µ = fs(pkSign));
where Q is the set of statment-proof pairs and PK is the
set of signature verification keys, both generated by O(x).

Lemma 5. If Groth’s zk-SNARK guarantees zero-knowledge,
then for two experiments EXP3 and EXP2, we have
Pr[EXP3] ≤ Pr[EXP2] + negl(λ).

Proof. As the original scheme ensures (perfect) zero-
knowledge, so it implies no polynomial time adversary can
distinguish a proof generated by the simulator from a proof
that is generated by the prover. So, as we are running in poly-
nomial time, thus two experiments are indistinguishable.
EXP4(separating secret key of pseudo random function):
• Setup: Sample (crs ‖ ts) ← K(RL′ , zR);
s′, s, r ←u {0, 1}λ; ρ := Com(s′, r); and output
(crs′ ‖ ts′) := ((crs, ρ) ‖ (ts, (s, s′, r))); where ts′ is
simulation trapdoor.

• Define function O(x): (pkSign, skSign) ← KGen(1λ);
set µ = fs(pkSign); generate π ← S(RL′ , zR, crs,
(x, µ, pkSign, ρ), (ts ‖ (s, r))); sign σ ← Sign(skSign, (x,
µ, π)); return π′ := (µ, π, pkSign, σ).

• (x, π′)← AO(x)(crs′).
• Parse π′ := (µ, π, pkSign, σ); w ← EA(crs′, x, π, zR).
• Return 1 iff ((x, π′) 6∈ Q) ∧ (V′(RL, zR, crs′, x, π′) =

1) ∧ (pkSign 6∈ PK) ∧ (µ = fs(pkSign));
where Q is the set of statment-proof pairs and PK is the
set of signature verification keys, both generated by O(x).

Lemma 6. If the commitment scheme used in the CRS gen-
eration is computationally hiding, then for two experiments
EXP4 and EXP3, we have Pr[EXP4] ≤ Pr[EXP3] + negl(λ).

Proof. Computationally hiding of a commitment scheme im-
plies that Com(m1, r) and Com(m2, r) are computationally
indistinguishable. So this concludes the lemma.

EXP5(replace pseudo random function fs(·) with true random
function F (·)):
• Setup: Sample (crs ‖ ts) ← K(RL′ , zR); s′, �s, r ←u

{0, 1}λ; ρ := Com(s′, r); and output (crs′ ‖ ts′) := ((crs,
ρ) ‖ (ts, (�s, s

′, r))); where ts′ is simulation trapdoor.
• Define function O(x): (pkSign, skSign) ← KGen(1λ);

set µ = F (pkSign); generate π ← S(RL′ , zR, crs,
(x, µ, pkSign, ρ), (ts ‖ (s, r))); sign σ ← Sign(skSign, (x,
µ, π)); return π′ := (µ, π, pkSign, σ).

• (x, π′)← AO(x)(crs′).
• Parse π′ := (µ, π, pkSign, σ); w ← EA(crs′, x, π, zR).
• Return 1 iff ((x, π′) 6∈ Q) ∧ (V′(RL, zR, crs′, x, π′) =

1) ∧ (pkSign 6∈ PK)∧ (µ = F (pkSign));
where Q is the set of statment-proof pairs and PK is the
set of signature verification keys, both generated by O(x).



Table II
A comparison of Groth’s [6] and Groth-Maller [7] with the proposed scheme for arithmetic circuit satisfiability with m0 elements instance, m wires, n MUL
gates. Since [7] uses squaring gates, so n MUL gates translate to 2n squaring gates. Implementations are done on a PC with 3.40 GHz Intel Core i7-4770
CPU, in single-threaded mode, for an R1CS instance with n = 106 constraints and m = 106 variables, of which m0 = 10 are input variables. G1 and
G2: group elements, E: exponentiations and P : pairings. Note that in result of defining new language, new statement contains (x, µ, pkSign, ρ) which has
3 new elements (µ, pkSign, ρ), so m′

0 = m0 + 3. All asymptotic analysis of our construction are done based on instantiation of commitment and pseudo
random function with SHA-256 hash function. With this in mind, since new changes will add ≈ 50 × 103 MUL gates to n and m, so n′ = n + 50.000
and m′ = m + 50.000. Based on these changes, by considering the asymptotic performance of each algorithm in Groth’s scheme [6], we write down the
expected empirical performance of new scheme. For instance since ≈ 50× 103 is 5% of 106 and CRS size is O(m), so the CRS size and CRS generation
time for new construction would be about 215 MB (1.05× 201 MB < 215 MB) and 77 seconds (1.05× 72.5 seconds < 77 seconds), respectively.

zk-SNARK in the CRS model CRS Size, CRS Time Proof Size Prover Computation Verifier Comp. Security
m+ 4n+ 5 G1

2n+ 3 G2

2 G1

1 G2

m+ 4n−m0 E1

2n E2

m0 E1

5 P
Groth and Maller [7]

&
Empirical performance in libsnark 385 MB, 100.4 seconds 127 bytes 116.4 seconds 2.3 millisec.

Simulation
Extractability

m+ 2n−m0 G1

n+ 3 G2

2 G1

1 G2

m+ 3n−m0 + 3 E1

n+ 1 E2

m0 E1

3 P
Groth [6]

&
Empirical performance in libsnark 201 MB, 72.5 seconds 127 bytes 84.0 seconds 1.3 millisec.

Knowledge
Soundness

m′ + 2n′ −m′
0 + 5 G1

n′ + 3 G2

3 G1 + 2 G2

1 λ-bit string
m′ + 3n′ −m′

0 + 4 E1

n′ + 2 E2

m′
0 + 1 E1

4 P
New variation (with our instantiation)

&
Empirical performance prediction 215 MB, ≈ 77 seconds < 200 bytes ≈ 90 seconds ≈ 1.8 millisec.

Simulation
Extractability

Lemma 7. If the underlying truly random function F (·) is
secure, then Pr[EXP4] ≤ Pr[EXP5].

Proof. By assuming function F (·) is secure, we can conclude
no polynomial time adversary can distinguish an output of
the true random function F (·) from an output of the pseudo
random function fs(·). Indeed, experiment EXP5 can be
converted to an adversary for the game of a true random
function.

Claim 1. For experiment EXP5, we have Pr[EXP5] ≤ 2−λ.
Proof. From verification we know pkSign 6∈ PK, therefore
F (pkSign) has not been queried already. Thus, we will see
F (pkSign) as a newly generated random string independent
from µ, which implies adversary only can guess.

This completes proof of the main theorem.

IV. INSTANTIATION AND EFFICIENCY EVALUATION

As we observed in Sec. III-A, defining the new language L′
implies some changes in the algorithms of the original scheme.
In this section, we discuss how efficient can be such changes
(shown in Fig. 1). We first discuss how the used primitives can
be efficiently instantiated and then go trough the efficiency of
whole protocol.

Recall that in result of new changes, one need a pseudo
random function, a commitment scheme and a one-time secure
signature scheme. In similar practical cases, both pseudo ran-
dom function and commitment scheme are instantiated using
an efficient SHA-256 circuit which costs about ≈ 25 × 103

gates for one block (512-bit input) [10], [11]4. We instantiate
the signature scheme with Boneh and Boyen’s signature [22]
where its setup phase, signing and verification for message m
can be summarized as below.
Setup: Given system parameters (p,G1,G2,GT , ê,

[1]1 , [1]2), randomly selects sk ←u Z∗p, and computes
sk · [1]1 and returns (pk, sk) := ([sk]1 , sk).

4More precisely, it has 25.538 gates in xjsnark library; available on https:
//github.com/akosba/xjsnark

Sining: Given a secret key sk, and a message m, computes

[σ]2 =

[
1

m+ sk

]
2

and returns [σ]2 as the signature.

Verification: Given a public key pk, a message m, and a

signature σ, verifies if [m+ sk]1 •
[

1

m+ sk

]
2

= [1]T .

where • denotes the paring operation. In our case, we use
the same bilinear group as in zk-SNARK and m would be
the hash (e.g with SHA-256) of concatenation of the proof
elements with the statement, e.g. m := H(x‖z0‖π). As it can
be seen, the scheme generates a single-element signature in
G2, its public key is a single group element in G1, and above
all its verification only requires one paring. Note that [1]T can
be prprocessed and shared in CRS.

So by considering the above instantiation new proof π′ =

(µ, π, pkSign, σ) will be as π′ = (µ, π, [sk]1 ,

[
1

m+ sk

]
2

)

where from original scheme π = ([a]1 , [b]2 , [c]1), and µ is an
output of the pseudo random function fs(·) which usually is
instantiated with SHA-256 hash function [11]. As a result, new
proof will be 3 elements from G1, 2 elements from G2 and
one 256-bit string. Consequently, verification of the proposed
construction will add only one paring to the verification of
original scheme that requires 3 parings. To the best of our
knowledge, this is the first simulation-extractable zk-SNARKs
in the CRS model which its verification requires 4 parings.

Next we evaluate efficiency of the new construction (given
in Fig. 1) from different points of view. Tab. II summarize
asymptotic and empirical performance of Groth’s [6], Groth-
Maller [7] zk-SNARKs5 and evaluation of new construction
proposed in Sec. III-A. The comparison is done for arithmetic
circuit satisfiability with m0 = 10 elements instance, m = 106

wires and n = 106 MUL gates [5]. All evaluations for
the proposed construction are done for an arithmetic circuit
satisfiability with the same parameters and empirical analysis
are predicted based on asymptotic and implementation of

5Based on analysis in libsnark library, https://github.com/scipr-lab/
libsnark/tree/master/libsnark/zk proof systems/ppzksnark

https://github.com/akosba/xjsnark
https://github.com/akosba/xjsnark
https://github.com/scipr-lab/libsnark/tree/master/libsnark/zk_proof_systems/ppzksnark
https://github.com/scipr-lab/libsnark/tree/master/libsnark/zk_proof_systems/ppzksnark


Groth’s zk-SNARK [6]
As an instance, since for a circuit with size n, the prover

does O(n) cryptographic and O(n log n) non-cryptographic
computations, so one can observe that for circuits with 1×106

gates, by considering 50× 103 new MUL gates, the overload
would be around 5%, which by considering prover’s execution
time of Groth scheme (84.1 seconds), proof generation (Pro.
Time) for new construction would take around 90 seconds.
Similarly, for the considered instance in Tab. II, the CRS Size
in the new scheme will be around 215 Mega Bytes (MB)
which is considerably smaller than the public parameters of
Groth-Maller zk-SNARK [7]. As it can be concluded from the
evaluations in Tab. II, in order to give non-malleable proofs for
an arithmetic circuit satisfiability in circuits with large number
of MUL gates (clearly larger than 50 × 103) the proposed
variation of Groth’s zk-SNARK can outperform Groth-Maller
zk-SNARK. Note that, however new construction has slightly
larger proof size than Groth-Maller zk-SNARK, but still its
verification would be faster than Groth-Maller zk-SNARK.

V. CONCLUSION

In this paper, we proposed a variation of the state-of-the-art
zk-SNARK proposed by Groth [6], that can achieve simulation
extractability. Simulation extractability is an amplified version
of knowledge-soundness that additionally guarantees non-
malleability of proofs. We used the known OR technique to
define a new language L′ from the language L in original
scheme, that led to apply some changes in algorithms of the
original scheme. Evaluations showed that in practical systems,
e.g. when a prover needs to give a proof for satisfiability of an
arithmetic circuit with 106 MUL gates, 106 variables of which
10 are input variables, new changes have minimal effect on
the efficiency of the original zk-SNARK which considerably
is optimized. Strictly speaking, our comparisons showed that
for arithmetic circuits with approximately larger than 50×103

MUL gates, the proposed construction can outperform Groth-
Maller SE zk-SNARK [7] that currently is the only zk-SNARK
in the CRS model which achieves simulation extractability.
We emphasize that in current real-life systems that use zk-
SNARK, the underlying arithmetic circuits have much more
number of gates than 50 × 103. For instance, in Zerocash
cryptocurrency [10] their current circuit for pour transactions
has 2× 106 MUL gates; or similarly in Hawk smart contract
system [11], their circuit for finalize operation in an auction
with 50 bidders has around 4× 106 MUL gates.

In comparison with Groth-Maller SE zk-SNARK, we ob-
served that in our case the proof size is extended slightly, but
still its total size is less than 200 bytes for 128-bit security; and
interestingly its verification is faster than proof verification in
their scheme.

REFERENCES

[1] M. Blum, P. Feldman, and S. Micali, “Non-interactive zero-knowledge
and its applications (extended abstract),” in 20th ACM STOC. ACM
Press, May 1988, pp. 103–112.

[2] J. Groth, “Short pairing-based non-interactive zero-knowledge argu-
ments,” in ASIACRYPT 2010, ser. LNCS, M. Abe, Ed., vol. 6477.
Springer, Heidelberg, Dec. 2010, pp. 321–340.

[3] H. Lipmaa, “Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments,” in TCC 2012, ser. LNCS,
R. Cramer, Ed., vol. 7194. Springer, Heidelberg, Mar. 2012, pp. 169–
189.

[4] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: Nearly
practical verifiable computation,” in 2013 IEEE Symposium on Security
and Privacy. IEEE Computer Society Press, May 2013, pp. 238–252.

[5] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct non-
interactive arguments for a von neumann architecture,” Cryptology
ePrint Archive, Report 2013/879, 2013, http://eprint.iacr.org/2013/879.

[6] J. Groth, “On the size of pairing-based non-interactive arguments,” in
EUROCRYPT 2016, Part II, ser. LNCS, M. Fischlin and J.-S. Coron,
Eds., vol. 9666. Springer, Heidelberg, May 2016, pp. 305–326.

[7] J. Groth and M. Maller, “Snarky signatures: Minimal signatures of
knowledge from simulation-extractable SNARKs,” in CRYPTO 2017,
Part II, ser. LNCS, J. Katz and H. Shacham, Eds., vol. 10402. Springer,
Heidelberg, Aug. 2017, pp. 581–612.

[8] I. Damgård, “Towards practical public key systems secure against chosen
ciphertext attacks,” in CRYPTO’91, ser. LNCS, J. Feigenbaum, Ed., vol.
576. Springer, Heidelberg, Aug. 1992, pp. 445–456.

[9] C. Gentry and D. Wichs, “Separating succinct non-interactive arguments
from all falsifiable assumptions,” in 43rd ACM STOC, L. Fortnow and
S. P. Vadhan, Eds. ACM Press, Jun. 2011, pp. 99–108.

[10] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza, “Zerocash: Decentralized anonymous payments from
bitcoin,” in 2014 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, May 2014, pp. 459–474.

[11] A. E. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” in 2016 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, May 2016, pp. 839–858.

[12] A. Juels, A. E. Kosba, and E. Shi, “The ring of Gyges: Investigating
the future of criminal smart contracts,” in ACM CCS 16, E. R. Weippl,
S. Katzenbeisser, C. Kruegel, A. C. Myers, and S. Halevi, Eds. ACM
Press, Oct. 2016, pp. 283–295.

[13] K. Baghery, “On the efficiency of privacy-preserving smart contract
systems,” Cryptology ePrint Archive, Report 2019/480, 2019, https:
//eprint.iacr.org/2019/480.

[14] J. Groth, “Simulation-sound NIZK proofs for a practical language and
constant size group signatures,” in ASIACRYPT 2006, ser. LNCS, X. Lai
and K. Chen, Eds., vol. 4284. Springer, Heidelberg, Dec. 2006, pp.
444–459.

[15] B. Abdolmaleki, K. Baghery, H. Lipmaa, and M. Zajac, “A subversion-
resistant SNARK,” in ASIACRYPT 2017, Part III, ser. LNCS, T. Takagi
and T. Peyrin, Eds., vol. 10626. Springer, Heidelberg, Dec. 2017, pp.
3–33.

[16] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai,
“Robust non-interactive zero knowledge,” in CRYPTO 2001, ser. LNCS,
J. Kilian, Ed., vol. 2139. Springer, Heidelberg, Aug. 2001, pp. 566–598.

[17] A. E. Kosba, Z. Zhao, A. Miller, Y. Qian, T. H. Chan, C. Papamanthou,
R. Pass, A. Shelat, and E. Shi, “C∅C∅: A Framework for Building
Composable Zero-Knowledge Proofs,” Tech. Rep. 2015/1093, Nov. 10,
2015, http://eprint.iacr.org/2015/1093, last accessed version from 9 Apr
2017.

[18] S. Bowe and A. Gabizon, “Making groth’s zk-snark simulation
extractable in the random oracle model,” IACR Cryptology ePrint
Archive, vol. 2018, p. 187, 2018. [Online]. Available: http://eprint.iacr.
org/2018/187

[19] J. Kim, J. Lee, and H. Oh, “Qap-based simulation-extractable snark
with a single verification,” Cryptology ePrint Archive, Report 2019/586,
2019, https://eprint.iacr.org/2019/586.

[20] R. Gennaro, C. Gentry, B. Parno, and M. Raykova, “Quadratic span
programs and succinct NIZKs without PCPs,” in EUROCRYPT 2013,
ser. LNCS, T. Johansson and P. Q. Nguyen, Eds., vol. 7881. Springer,
Heidelberg, May 2013, pp. 626–645.

[21] N. Bitansky, R. Canetti, O. Paneth, and A. Rosen, “On the existence of
extractable one-way functions,” in 46th ACM STOC, D. B. Shmoys, Ed.
ACM Press, May / Jun. 2014, pp. 505–514.

[22] D. Boneh and X. Boyen, “Short signatures without random oracles and
the SDH assumption in bilinear groups,” Journal of Cryptology, vol. 21,
no. 2, pp. 149–177, Apr. 2008.

http://eprint.iacr.org/2013/879
https://eprint.iacr.org/2019/480
https://eprint.iacr.org/2019/480
http://eprint.iacr.org/2015/1093
http://eprint.iacr.org/2018/187
http://eprint.iacr.org/2018/187
https://eprint.iacr.org/2019/586

	Introduction
	Preliminaries
	Definitions

	A Variation of Groth's zk-SNARK
	New Construction
	Security Proofs

	Instantiation and Efficiency Evaluation
	Conclusion
	References

